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Adaptive Matching in Randomized Trials and
Observational Studies

Mark J. van der Laan, Laura Balzer, and Maya L. Petersen

Abstract

In many randomized and observational studies the allocation of treatment among
a sample of n independent and identically distributed units is a function of the co-
variates of all sampled units. As a result, the treatment labels among the units are
possibly dependent, complicating estimation and posing challenges for statistical
inference. For example, cluster randomized trials frequently sample communities
from some target population, construct matched pairs of communities from those
included in the sample based on some metric of similarity in baseline community
characteristics, and then randomly allocate a treatment and a control intervention
within each matched pair. In this case, the observed data can neither be rep-
resented as the realization of n independent random variables, nor, contrary to
current practice, as the realization of n/2 independent random variables (treating
the matched pair as the independent sampling unit).

In this paper we study estimation of the average causal effect of a treatment un-
der experimental designs in which treatment allocation potentially depends on the
pre-intervention covariates of all units included in the sample. We define efficient
targeted minimum loss based estimators for this general design, present a theorem
that establishes the desired asymptotic normality of these estimators and allows
for asymptotically valid statistical inference, and discuss implementation of these
estimators. We further investigate the relative asymptotic efficiency of this design
compared with a design in which unit-specific treatment assignment depends only
on the units’ covariates. Our findings have practical implications for the optimal
design and analysis of pair matched cluster randomized trials, as well as for ob-
servational studies in which treatment decisions may depend on characteristics of
the entire sample.



1 Introduction

In a typical randomized controlled trial, one randomly draws a unit from a
target population, measures baseline covariates on the unit, randomly assigns
a treatment from among a set of possible treatments according to a known
distribution (possibly conditional on the baseline covariate of the unit), and
measures the unit’s treatment-specific outcome. This experiment is repeated
n times resulting in n independent and identically distributed (i.i.d.) copies,
providing a firm basis for statistical estimation and inference using the central
limit theorem.

In this article we consider an alternative data generating experiment in
which one first randomly draws n units from a target population and measures
the baseline covariates of each, then assigns n treatments from among some
set according to a conditional distribution, given the n unit-specific baseline
covariates, and finally measures the n treatment-specific outcomes. In such an
experiment, the underlying units are independently and identically distributed
draws from a common target population, so that the covariates and the un-
derlying treatment-specific outcomes represent an i.i.d sample. However, the
treatment assigned to one unit can be a function of the covariates of other
units in the sample, creating dependence between the n unit-specific observed
data structures. As a result, the data generating design cannot be represented
as n repetitions of an experiment, and not even as n independent experiments.
The challenge posed to statistical inference by this design is highlighted by the
fact that it is unclear how to implement valid bootstrap-based variance esti-
mation. The available data constitute a single repetition of the underlying
experiment.

Our study of this problem is motivated, in particular, by a common design-
based approach to enforce empirical balance in baseline covariates among the
treated and non-treated units in a finite sample. One way to enforce such
balance is to partition the random sample of n units into n/2 pairs that are
maximally similar with respect to covariate values according to some metric,
and then to assign the treatment and control intervention to each pair. A vari-
ation of this design partitions the sample into fewer than n/2 pairs, discarding
those units for which the poorest matches are obtained. Such pair-matched
designs are particularly common in community or cluster randomized con-
trolled trials, motivated in part by the fact that such trials typically enroll
far fewer independent units than their individual-level counterparts, and are
thus less able to rely on chance alone to achieve the desired covariate bal-
ance between treatment groups, as well as by a desire to improve efficiency.
(See, for example, reviews by Donner and Klar (2000), Hayes and Moulton
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(2009), Campbell et al. (2007).) Treatment assignment conditional on such
a covariate-based partition of the sample preserves randomization while en-
suring a degree of covariate balance between treatment and control arms of
the trial. However, since the partition (in this case, the construction of the
matched pairs) is generated as a function of all n covariate vectors, the treat-
ment assignment of each unit in the sample is now a function of the covariate
values of the entire sample.

While the fact that pair matching in randomized trials can introduce depen-
dence between units is well-recognized, the extensive literature on the design
and analysis of pair matched trials, including the literature debating the mer-
its and perils of pair-matching, focuses on experimental designs in which the
matched pair constitutes the unit of independence (Freedman et al. (1990);
Campbell et al. (2007); Hayes and Moulton (2009); Imai et al. (2009); Imai
(2008); Donner and Klar (2000); Murray (1998); Donner and Klar (2000);
Raudenbush et al. (2007); Klar and Donner (1997); Balzer et al. (2012)). In
one well studied design, two units are sampled from a conditional distribution
given a stratum of a baseline covariate, the treatment and control interven-
tion are randomly allocated to the pair, the outcomes for the two units are
observed, and the experiment is repeated multiple times at different strata. In
such an experiment, the data generating distribution involves independently
repeating the strata-specific experiment of drawing the pair of units from the
strata, assigning the treatments, and measuring the outcomes, across different
strata. Therefore, statistical inference can be based on a central limit theorem
for sums of independent random variables. If the strata are set by design, then
the data for each pair are independent across pairs (with a strata-specific data
distribution for each pair) but are not identically distributed.

A variation of this design is based on randomly sampling a unit and mea-
suring a baseline covariate on the unit, and then sampling a second unit from a
conditional distribution, given that the baseline covariate has the same value
as the first unit. Treatment and control are allocated within the matched
pair, outcomes on each unit in the pair are measured, and the experiment is
repeated multiple times. In this case, the data on each pair are not only in-
dependent across the pairs but are also identically distributed. van der Laan
(2008), Rose and van der Laan (2009), Balzer et al. (2012) discuss formulation
of the above two data structures in terms of matched case-control sampling,
and present corresponding targeted minimum loss-based estimators.

The focus in the literature on designs in which the matched pair represents
the unit of independence may be due in part to the specific studies for which
much of the early theory was developed. These include randomized trials in
ophthalmology in which the patient’s two eyes provide the matched pair, as
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well as some cluster randomized trials. For example, the Community Inter-
vention Trial for Smoking Cessation (COMMIT) motivated important early
work on the use of pair matching in cluster randomized trials (Freedman et al.
(1997); Gail et al. (1992); Group (1991)). This study in fact sampled (albeit
not randomly) 11 matched pairs of communities from a larger population of
candidate matched pairs.

In contrast, however, many current cluster randomized trials employ a fun-
damentally different pair matched design. Communities are first sampled, and
only then are matched pairs created from among this finite set by applying
some algorithm to the baseline characteristics of the communities included in
the sample. We refer to this design as “adaptive matching” in order to make
explicit its links to the larger literature on adaptive study designs, and specif-
ically adaptive treatment allocation in response to characteristics of the previ-
ously observed units: Bai et al. (2002); Andersen et al. (1994); Flournoy and
Rosenberger (1995); Hu and Rosenberger (2000); Rosenberger (1996); Rosen-
berger et al. (1997); Rosenberger and Grill (1997); Rosenberger and Shiram
(1997); Tamura et al. (1994); Wei (1979); Wei and Durham (1978); Wei et al.
(1990); Zelen (1969); Cheng and Shen (2005); van der Laan (2008); Chambaz
and van der Laan (2010); van der Laan and Rose (2012).

Recent cluster randomized trials that have employed adaptive matching
include the SPACE study of a school level intervention to improve physical ac-
tivity in Denmark (Toftager et al., 2011), a cluster randomized trial of routine
HIV-1 viral load monitoring in Zambia (Koethe et al., 2010), and the PRISM
trial of a community-level intervention to prevent post-partum depression in
Australia (Watson et al., 2004). Under adaptive matching, the matched pair
no longer represents the independent sampling unit. Instead, such a design
corresponds to a special case of the general experimental design in which the
allocation of treatment among a sample of n independent and identically dis-
tributed units is a function of the covariates of all sampled units. This raises
a number of questions with practical implications for the design and analysis
of cluster (as well as individual) randomized trials. When will adaptively pair
matched designs result in efficiency gains relative to their non-matched coun-
terparts? What is the optimally efficient approach to estimating the treatment
effect in such studies? How should statistical inference be carried out given
the dependence between randomized units?

The results developed in this paper further apply to observational stud-
ies in which treatment decisions for each participant in a randomly sampled
cohort may be influenced by the covariates of all or a subset of the other
cohort members, while the participant-specific outcome is only influenced by
a participant’s own covariates and assigned treatment. Consider, for exam-
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ple, a study that aims to evaluate the impact of enrollment in a weight loss
program on participant weight loss. The study protocol might bring subsets
of the sampled cohort members together to discuss the program, after which
participants are allowed to decide whether or not they wish to enroll. In such
a study, enrollment probabilities might differ depending on the characteristics
of the subgroup to which enrollees are assigned (for example, the extent to
which the subgroup includes charismatic or vocal individuals who have failed
similar weight loss programs in the past). As a result, enrollment decisions
within a subgroup are no longer independent.

Finally, a special case of the general experiment described in this article is
one in which the treatment allocation for each unit in an i.i.d. sample from
some target population can be a different function of the sample characteristics
of all of the other units in the sample. Conditional on the baseline character-
istics of the sample, the treatment assignment of each individual is indepen-
dent; however, the individual-specific assignment mechanisms are not identical
across the individuals. In the example study to evaluate the effect of a weight
loss program, the entire sample might be divided up in several subgroups, al-
lowing the subjects within a subgroup to mingle and talk among themselves,
before being provided with information about the weight loss program and
subsequently deciding whether to enroll. Individual enrollment decisions in
such a scenario might depend on the characteristics of other attendees in that
subgroup. One might be willing to assume that each individual’s enrollment
decision is made independently, given what he or she has observed about the
characteristics of the other attendees in the subgroup. The individuals en-
rollment decision is indexed by the subgroup it belongs to, so that treatment
allocation is not identical across all individuals.

1.1 Organization of article

In Section 2 we define the statistical estimation problem posed by estimating
the additive causal effect of treatment (or average treatment effect) under the
general experimental design in which treatment allocation can depend on the
characteristics of other units in the sample. Specifically, we define the data
generating experiment, the observed data, the likelihood, the statistical model
and the target parameter.

In Section 3 we study the fundamental mathematics of the design by de-
termining the tangent space of the model and the canonical gradient of the
pathwise derivative of the target parameter. Section 4 presents a targeted min-
imum loss based estimator (TMLE) of the additive causal effect of treatment
and discusses its implementation. The TMLE presented is double robust. In
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particular, it remains consistent and asymptotically normally distributed as
long as the treatment assignment mechanism for the n treatments is known or
well estimated, even if the conditional mean of the outcome given the treatment
and covariates is estimated inconsistently. We further present an estimator of
the asymptotic variance of this TMLE. Interestingly, it appears that no dou-
ble robust estimator of this variance is available, so that asymptotic consistent
estimation of the variance requires a consistent estimator of the outcome re-
gression. This demonstrates a strong contrast with designs in which treatment
is independently assigned. In Section 5 we present a theorem that provides a
formal basis for the estimators introduced in Section 4, and in particular estab-
lishes the asymptotics of the TMLE and thereby the validity of the statistical
inference based on a normal limit distribution.

Section 6 discusses implications of these results for the design and analysis
of randomized trials with adaptive pair matching. In particular, we discuss
implementation of a TMLE of the average treatment effect and correspond-
ing statistical inference in terms of confidence intervals and testing. While
consistent estimation of the variance requires consistent estimation of the out-
come regression, for this special case we show that a conservative estimate
of the variance is possible. We further contrast the asymptotic variance of
the adaptive pair matched design with the asymptotic variance of a design
in which the intervention is randomly allocated to each unit independently.
This provides insight into the potential benefits of pair matching in cluster
randomized trials, beyond that provided by previous literature in which the
matched pair constituted the unit of independence. In addition, we also con-
trast the valid statistical inference from this article with the current approach
of effect estimation with the sample mean of paired differences and variance
estimation with the sample variance treating the pairs as independent. It is
shown that the current approach happens to provide conservative inference,
under an explicitly stated assumption expected to hold.

Section 7 extends these results to the common case in which some units in
the initial sample are missing treatment and outcome data. Such a case would
occur, for example, in a cluster randomized trial with adaptive pair matching
in which treatment were only allocated among the subset of sampled units for
which adequate pair matches were identified. We conclude with a summary
of the practical implications of our results and identify areas for future work.
Proofs of all theorems and an overview of the required empirical process theory
are provided in an Appendix.
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1.2 Novel contributions of this article.

To the best of our knowledge, the estimation problem addressed in this article
has not been formally studied. This estimation problem targets the usual
average causal effect, but the dependent allocation of treatment allowed by our
model makes it different from other estimation problems that the literature
has covered.

Even though targeted maximum likelihood estimation is a general method
that has been applied to many problems in the literature (see e.g., van der Laan
and Rose (2012) for an overview and comprehensive coverage of this method),
the actual construction of a targeted maximum likelihood estimator for a new
estimation problem, as defined by the statistical model and target parameter,
requires new research: it relies on the construction of a least favorable sub-
model for fluctuating an initial estimator and a loss function so that the loss-
function specific score of the least favorable sub-model at zero fluctuation
spans the efficient influence curve. In particular, this requires determining the
efficient influence curve (i.e., canonical gradient of pathwise derivative) for this
target parameter in this new model. Indeed, the resulting TMLE as developed
in this article is new and not presented anywhere else. In addition, the analysis
of this TMLE relies on the state of the art methods in empirical process theory
as presented in van der Vaart and Wellner (1996). Finally, the implications
of our results for the analysis of cluster randomized trials and observational
studies in which treatment allocation depends on the covariates of other units
in the sample are new and important. In particular, our theoretical results
allow us to formally compare the efficiency of different possible matched pair
designs mentioned in the introduction. This work will appear in a future
article.

2 Definition of Statistical Estimation Problem

2.1 Observed data.

Let Xn = (X1, . . . , Xn) be a vector consisting of n i.i.d. observations of Xi =
(Wi, Yi(0), Yi(1)), where Wi denotes the baseline covariates, and (Yi(0), Yi(1))
denotes the treatment-specific counterfactual outcomes for subject i. (In
words, Yi(a) denotes the outcome that would have been observed for unit
i if it had received treatment level A = a.) Let PX,0 denote the common
distribution of Xi. In addition, gn0 (A1, . . . , An | Xn) is the true conditional
distribution of the treatment or intervention An = (A1, . . . , An), conditional
on Xn. The observed data are Oi = (Wi, Ai, Yi = Yi(Ai)), i = 1, . . . , n, so that
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only one counterfactual outcome, corresponding to the treatment actually re-
ceived, is observed for each unit. Note that On = (O1, . . . , On) is a many to
one function of An and Xn, and is thus a missing or censored data structure
in which the full data is Xn and the censoring or missingness variable is An.

We assume throughout that the conditional distribution of An, given Xn,
gn0 (· | Xn), is only a function of Xn through W n = (W1, . . . ,Wn), which
implies the coarsening at random assumption on gn0 with respect to the full
data Xn (Heitjan and Rubin (1991); Jacobsen and Keiding (1995); Gill et al.
(1997)). This assumption allows for dependence between A1, . . . , An, as long
as it can be explained by covariate vector W n. One important class of exam-
ples covered by such treatment mechanisms gn0 are studies that first partitions
the sample {1, . . . , n} into groups based on the covariate vector W n and sub-
sequently randomly assign treatment within the resulting group. For exam-
ple, cluster randomized trials are commonly implemented by first partitioning
the sample {1, . . . , n} into n/2 pairs based on some metric of similarity in
baseline covariates W n, and then randomly assigning a treatment and a con-
trol condition to the two members of each pair. More formally, gn0 in such
a design can be defined as follows: given W n and thereby the disjoint pairs
Cj(W

n) = {j1, j2} ⊂ {1, . . . , n} with C1(W n) ∪ . . . ∪ Cn/2(W n) = {1, . . . , n},
within each pair Cj(W

n) assign (1,0) or (0,1) with a flip of a fair coin (i.e.
with probability 0.5).

Instead of using the Neyman-Rubin counterfactual formulation above, this
observed data generating distribution can also be described in terms of an
non-parametric structural equation model (NPSEM) (Pearl (1995, 2009)) as
follows. Let Wi = fW (UWi

), UW,i, i = 1, . . . , n, are i.i.d., An = fAn(W n, UAn),
Yi = fY (Wi, Ai, UY,i), with UY,i, i = 1, . . . , n, i.i.d. The analogue of the coars-
ening at random assumption in terms of this NPSEM is that UAn is inde-
pendent of (UY,i : i = 1, . . . , n), given W n. The functions fY and fW are
unspecified, but the function fAn and the distribution of UAn might be known.
For example, the sample might be partitioned into groups according to some
known algorithm applied to the baseline characteristics of the sample, and the
intervention A randomly assigned within each group.

2.2 Likelihood and statistical model.

Under both formulations of the data generating experiment, the observed data
is Oi = (Wi, Ai, Yi), i = 1, . . . , n, and the likelihood of the observed data

7

Hosted by The Berkeley Electronic Press



On = (O1, . . . , On), under distribution P n, is given by

P n(O1, . . . , On) =
n∏
i=1

QW (Wi)QY (Yi | Wi, Ai)g
n(An | W n),

where QW = QW (P n) and QY = QY (P n) denote the common marginal dis-
tribution of W and the common conditional distribution of Y , given A,W ,
respectively. We put no constraints on the sets of possible QY and QW , which
corresponds with putting no constraints on the common full data distribution
PX,0 (or no constraints on the NPSEM specified above beyond assumptions
on the equation for An). Regarding the treatment mechanism gn0 , we assume
that

gn0 (An | W n) =
J∏
j=1

g0,j(A(j) : j ∈ Cj(W n) | W n), (1)

where C1(W n), . . . , CJ(W n) is a partitioning of the sample {1, . . . , n} into J
groups deterministically implied by W n. Thus, it is assumed that, conditional
on W n, the treatment labels within a group are independently assigned from
treatment labels in another group. It is assumed that lim infn→∞ J(n)/n > 0
so that the asymptotics will still be driven by n. Let gni be the conditional
distribution of Ai, given W n. Although not necessary for deriving the desired
asymptotics, we assume that this distribution gni of Ai, given W n is non-
deterministic, i = 1, . . . , n. The set of possible gn0 will be denoted with Gn.
The set of all possible data distributions P n implied by the nonparametric
model on PX,0 and the model Gn for gn0 represents a statistical model Mn

for the true data distribution P n
0 . This general model will be referred to as

Mn. (Generalization of our results to general J(n) with rates of convergence
1/
√
J(n) should be possible as well, but is not pursued here.)

2.2.1 Special models of interest for the treatment mechanism.

A special choice for Gn consists of distributions satisfying gn(An | W n) =∏
i gi(Ai | W n). In this particular model it is assumed that, given W n,

A1, . . . , An are independent with conditional distributions gni of Ai, given W n,
i = 1, . . . , n. This choice, which corresponds to partitions of size 1, allows
treatment to be assigned to each unit in the sample according to a distinct
unit-specific mechanism that are allowed to depend on the baseline covari-
ates of the entire sample. Such a data generating process might arise in a
study, such as the weight loss example presented in the introduction, in which
a randomly sampled cohort of individuals is allowed to interact before each
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assigning themselves to the treatment or control condition. Then the baseline
covariates of the full cohort influence individual treatment decisions but these
decisions are still made independently given the baseline covariates of the co-
hort. We refer to this choice of Gn as Gn1 and refer to corresponding statistical
model, implied by the nonparametric model on PX,0 and Gn1 as Mn

1 .
A second special choice for Gn consists of distributions satisfying gn(An |

W n) =
∏n/2

j=1 g(A(j) : j ∈ Cj(W
n) | W n), where Cj(W

n) = {j1, j2}, j =
1, . . . , n/2, represents a partitioning of the sample {1, . . . , n} into n/2 disjoint
pairs Cj(W

n). This class of treatment assignment mechanisms describes ran-
domized trials with adaptive pair matching. We refer to this choice of Gn as
Gn2 and refer to corresponding statistical model, implied by the nonparametric
model on PX,0 and Gn2 as Mn

2 .

2.3 Target statistical parameter.

We focus on the target quantity ΨF (PX) = E{Y (1)− Y (0)}, a particular pa-
rameter of the full-data distribution PX or, equivalently, a parameter of the
distribution of the counterfactuals (Y (0), Y (1)) defined by the NPSEM. This
quantity is often referred to as the average treatment effect, and corresponds
to the causal quantity typically targeted by randomized trials as well as many
observational studies. Under coarsening at random, EQY

(Y | A = a,W ) =
EPX

(Y (a)|W ), while the parameters (QY , QW ) of P n are identifiable param-
eters of P n. This target quantity is thus identified by the distribution of the
data P n as follows:

ΨF (PX) = Ψ(Q) = EQW
{EQY

(Y | A = 1,W )− EQY
(Y | A = 0,W )}

= EQW
{Q̄(1,W )− Q̄(0,W )},

where Q = (QW , Q̄) denotes the common distribution QW of Wi, and common
conditional mean Q̄ of Yi, given Ai,Wi. Here Q = Q(P n) is a parameter of
the observed data distribution P n. This identifiability result defines now a
target parameter Ψ : Mn → IR of the observed data distribution, defined as
Ψ(P n) = Ψ(Q) (where we abuse notation by using the same Ψ for two different
mappings.)

The estimation problem is now defined: we want to estimate Ψ(P n) based
on On = (O1, . . . , On) ∼ P n ∈ Mn, and we also want to provide asymptotic
inference in terms of confidence intervals and testing the null hypotheses.
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3 The canonical gradient of the pathwise deriva-

tive of the target parameter

In order to construct efficient asymptotically linear estimators, and in particu-
lar targeted minimum loss-based estimators (van der Laan and Rubin (2006);
van der Laan and Rose (2012)), of Ψ(P n), we first determine the tangent space
of the model and the canonical gradient of the pathwise derivative of the target
parameter.

Let

D∗(Q, g)(W,A, Y ) =
2A− 1

g(A | W )
(Y − Q̄(A,W )) + Q̄(1,W )− Q̄(0,W )−Ψ(Q),

which is the efficient influence curve of Ψ :M→ IR with Ψ(P ) = Ψ(Q) under
i.i.d. sampling from PQ,g, where g is a conditional distribution of A, given
W (van der Laan and Robins (2003); van der Laan and Rose (2012)). We
will also denote D∗(Q, g) with D∗(Q, g,Ψ(Q)) to stress its representation as
an estimating function in ψ. We note D∗(Q, g,Ψ(Q)) = D∗Y (Q̄, g) + D∗W (Q),
where

D∗Y (Q̄, g) =
2A− 1

g(A | W )
(Y − Q̄(A,W ))

D∗W (Q) = Q̄(1,W )− Q̄(0,W )−Ψ(Q).

The following theorem presents the canonical gradient of the pathwise
derivative of the parameter Ψ : Mn → IR. (For semiparametric efficiency
theory, see e.g., Bickel et al. (1997); van der Laan and Robins (2003); van der
Vaart (1998).) This canonical gradient is expressed in terms of the above
function D∗(Q, g).

Theorem 1 Let Oi = (Wi, Ai, Yi), On = (O1, . . . , On) ∼ P n, with

P n(O1, . . . , On) =
n∏
i=1

QW (Wi)QY (Yi | Wi, Ai)g
n(An | W n),

where QW is an unspecified marginal distribution, QY is an unspecified con-
ditional distribution of Y , given A,W , and gn is a conditional distribution of
An = (A1, . . . , An), given W n = (W1, . . . ,Wn), known to be an element of a set
Gn consisting of distributions satisfying (1). LetMn be the resulting statistical
model for P n. Let Mn(gn) be the model if gn is known.

Let Ψ :Mn → IR be defined by Ψ(P n) = EQW
{Q̄(1,W )− Q̄(0,W )}, where

Q̄(A,W ) = EQY
(Y | A,W ).
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The tangent space at P n in model Mn is given by:

T (P n) =

{
n∑
i=1

φ(Wi) : φ ∈ TW

}
+

{
n∑
i=1

φ(Yi | Ai,Wi) : φ ∈ TY

}
+

J∑
j=1

TCj
,

(2)
where TW = {h(W ) : Eh(W ) = 0},

TY = {h(Y | A,W ) : EQY
(h(Y | A,W ) | A,W ) = 0},

and
TCj

= {S((Aj : j ∈ Cj(W n)) | W n) : E(S | W n) = 0}.
The tangent space at P n in model Mn(gn) is given by

T (Q) =

{
n∑
i=1

φ(Wi) : φ ∈ TW

}
+

{
n∑
i=1

φ(Yi | Ai,Wi) : φ ∈ TY

}
.

The statistical parameter Ψ is pathwise differentiable and its canonical gradient
at P n is given by

Dn,∗(P n) =
1

n

n∑
i=1

D∗(Q, ḡn)(Oi) =
1

n

n∑
i=1

{D∗W (Q)(Wi) +D∗Y (Q, ḡn)(Oi)},

where gi is the conditional distribution of Ai, given Wi, and

ḡn(a | W ) =
1

n

n∑
i=1

gi(a | W ).

We note that

gi(1 | Wi) =
∑

(wj :j 6=i)

gi(1 | (wj : j 6= i),Wi)
∏
j 6=i

QW (wj) (3)

is a function of gi(Ai | W n) and the common marginal distribution QW .
Double robustness of canonical gradient: We have

E0D
n,∗(Q̄, ḡn, ψ0) = 0 if Q̄ = Q̄0 or ḡn = ḡn,0, (4)

assuming that for all i, 0 < gi(1 | W ) < 1 a.e. More generally, if QW = QW,0,
then for any Q̄, ḡ, we have

E0D
n,∗(Q̄, ḡ,Ψ(Q)) = ψ0 −Ψ(Q) + E0

(
ḡ0
ḡ

(1 | W )− 1
)

(Q̄0 − Q̄)(1,W )

−E0

(
ḡ0
ḡ

(0 | W )− 1
)

(Q̄0 − Q̄)(0,W ).

The proof is presented in the Appendix.
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4 A targeted minimum loss-based estimator

(TMLE)

Derivation of the canonical gradient of the pathwise derivative of the target
parameter Ψ allows us to construct a targeted minimum loss based estimator
(TMLE). In this section we present a TMLE for Ψ for the general statisti-
cal model Mn, in which gn0 (An|W n) =

∏J
j=1 g0,j(A(j) : j ∈ Cj(W

n)|W n) is
unknown. This TMLE is thus applicable to studies, such as the example pre-
sented in the introduction, in which a cohort of individuals is partitioned into
subgroups and individuals within subgroups are allowed to interact in deter-
mining their treatment assignment according to some unknown mechanism.
It further covers the special cases in which the sample is partitioned into n
singletons and in which gn0 is known (as in a adaptively pair matched trial).
Section 6 considers the latter special case in greater detail.

We recall from the literature on TMLE (van der Laan and Rose (2012)) that
the main ingredients for a TMLE of a target parameter Ψ(Q0) is to determine
a loss function L(Q) and sub-model {Q(ε) : ε} through a Q at ε = 0, possibly
indexed by nuisance parameter (in our case, ḡ), so that d

dε
L(Q(ε))

∣∣
ε=0

spans

the canonical gradient (in our case, Dn,∗(Q, ḡ)). Since Q = (QW , Q̄) and QW,n

is already a nonparametric maximum likelihood estimator, the TMLE will only
involve fluctuating Q̄.
Loss function and initial estimator for Q̄0: Let Y ∈ {0, 1} be binary or
continuous in (0, 1). Let Q̄0

n be an initial estimator of Q̄0, which can be based
on the loss-function

−Li(Q̄)(Oi) =
{
Yi log Q̄(Wi, Ai) + (1− Yi) log(1− Q̄(Wi, Ai))

}
. (5)

To understand the validity of this loss, note that

−E0Li(Q̄)(Oi)
= EQW,0,g0,i

Q̄0(Ai,Wi) log Q̄(Ai,Wi) + (1− Q̄0)(Ai,Wi) log(1− Q̄)(Ai,Wi),

which is indeed minimized at Q̄ = Q̄0. This demonstrates that Li(Q̄) is
a valid loss function for Q̄0. Specifically, one could fit Q̄0 by minimizing∑n

i=1 Li(Q̄θ)(Oi) over a parametric or semiparametric working model {Q̄θ :
θ ∈ Θ}. Furthermore, to select among estimators such as different choices
of working models or different algorithms, we can also use this loss to carry
out cross-validation based estimator selection. Since conditional on An,W n,
the outcomes Yi, i = 1, . . . , n, are independent, a cross-validation selector that
uses (5) as loss function and treats i = 1, . . . , n as the index of the independent
units when splitting the sample into training and validation sets will satisfy
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an oracle type inequality analogue to the ones developed and presented in-
van der Laan and Dudoit (2003); van der Laan et al. (2006); van der Vaart
et al. (2006). Thus an initial estimator of Q̄0 can be based on applying a
data-adaptive loss-based learning approach such as super learning, ignoring
the dependence between the treatment labels (van der Laan et al. (2007); Pol-
ley and van der Laan (2010) and Chapter 3 by Polley, Rose, van der Laan in
van der Laan and Rose (2012)).
Least favorable sub-model through initial estimator: Let ḡ0 = 1/n

∑
i g0,i,

where g0,i is the true conditional distribution of Ai, given Wi. As sub-model
for fluctuating Q̄0

n we use

LogitQ̄0
n(ε) = LogitQ̄0

n + εH∗ḡn
,

where H∗ḡn
(A,W ) = (2A − 1)/ḡn(A | W ), and ḡn is an estimator of ḡ0. Let

QW,n be the empirical distribution, and Q0
n = (QW,n, Q̄

0
n). We note that

d

dε

∑
i

Li(Q̄
0
n(ε))(Oi)

∣∣∣∣∣
ε=0

=
∑
i

D∗Y (Q0
n, ḡn)(Oi)

so that this loss function and sub-model indeed generates the crucial com-
ponent of the canonical gradient of the target parameter, a requirement for
the construction of efficient TMLE. The component corresponding with D∗W
is generated by a sub-model QW,n(ε) through QW,n at ε = 0 with score D∗W ,
but since QW,n is already an NPMLE, the estimated amount of fluctuation
according to this sub-model would be zero, so that this sub-model plays no
role in the TMLE.
Computing the update of initial estimator: The amount of fluctuation
εn is estimated as

εn = arg min
ε

n∑
i=1

Li(Q̄
0
n(ε))(Oi).

This provides the update Q̄∗n = Q̄0
n(εn). Let Q∗n = (QW,n, Q̄

∗
n).

TMLE of target parameter: The TMLE of ψ0 is the corresponding plug-in
estimator

Ψ(Q∗n) =
1

n

n∑
i=1

{Q̄∗n(1,Wi)− Q̄∗n(0,Wi)}.

TMLE solves efficient influence curve equation: By construction, the
TMLE solves

0 = Dn,∗(Q̄∗n, ḡn, ψ
∗
n) =

1

n

n∑
i=1

D∗(Q̄∗n, ḡn, ψ
∗
n)(Oi).
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In other words, the TMLE solves the efficient influence curve equation for the
modelMn. This equation will form a crucial ingredient for establishing double
robustness and asymptotic normality of the TMLE Ψ(Q∗n).

4.1 Estimation of ḡ0

In general ḡ0 is not known and must be estimated. In this section we sometimes
suppress the n in ḡn when referring to an estimator of ḡ0 = 1/n

∑
i g0,i .

Estimation of ḡ0 can be based on the pooled log-likelihood L(ḡ)(W n, An) =∑
i log ḡ(Ai | Wi), as if we observe a sample of n i.i.d. (Wi, Ai). Let ḡn be the

resulting estimator. The above TMLE is then applied with ḡn as an estimator
of ḡ0. Indeed, L(ḡ) is a valid loss function for ḡ0 since

E0L(ḡ)(W n, An) = E0

n∑
i=1

log ḡ(a | Wi)g0,i(a | Wi) = EQW,0,ḡ0 log ḡ(A | W ),

which is minimized at ḡ0. Conditional on W n, the groups (Ai : i ∈ Cj(W n)) of
treatment nodes are independent. Thus, ḡ0 can be estimated using loss-based
learning and cross-validation, but the cross-validation should, in contrast to
estimation of Q̄0, treat the groups indexed by j as the independent units.

In a randomized controlled trial, g0(Ai | W n) is known by design, while
g0,i(Ai | Wi) and thus ḡ0(Ai | Wi) are not and must thus still be estimated. In
such cases, knowledge of the true design gn0 can be used to get a more accurate
estimate of ḡ0. Specifically, we have

gi(1 | Wi) =
∑

(wj :j 6=i)

gi(1 | (wj : j 6= i),Wi)
∏
j 6=i

QW (wj).

Thus, if gn0 is known, we can estimate QW with the empirical distribution,
giving the estimator

gi,n(1 | Wi) =
∑
wj :j 6=i

g0,i(1 | (wj : j 6= i),Wi)
∏
j 6=i

QW,n(wj),

and corresponding ḡn = 1/n
∑

i gi,n of ḡ0.

4.2 Statistical inference

In our main Theorem 2 below we assume that the design gn = P (An | W n)
is known, but, as mentioned above, this still requires estimation of ḡ0 through
estimation of QW,0. The asymptotics of Theorem 2 below proves that, under
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appropriate conditions, the standardized TMLE
√
n(ψ∗n − ψ0) converges to a

normal distribution with variance σ2
W + σ2

Y , where σ2
Y is consistently approxi-

mated with

σ2
Y,n =

1

n

J∑
j=1

{fj,n(Q̄∗n)(Oi : i ∈ Cj(W n))}2,

with fj,n(Q̄) =
∑

i∈Cj(Wn) f
1
i,n(Q̄)(Oi), and

f 1
i,n(Q̄) ≡ 2Ai−1

ḡn(Ai|Wi)
(Yi − Q̄(Ai,Wi))

−
{
gi(1|Wn)
ḡn(1|Wi)

(Q̄0 − Q̄)(1,Wi)− gi(0|Wn)
ḡn(1|Wi)

(Q̄0 − Q̄)(0,Wi)
}
.

Estimation of the asymptotic variance σ2
Y appears to rely on a consistent

estimator of Q̄0. In addition, σ2
W is the variance of a function ICW of W , which

can thus be consistently estimated with 1/n
∑n

i=1 ICW,n(Wi)
2, if ICW,n is a

consistent estimate of this unknown function ICW . Specifically, ICW is a sum
of three functions, one of them being D∗W (Q̄∗, QW,0) = Q̄∗(W )−QW,0Q̄

∗, where
Q̄(W ) = Q̄(1,W )−Q̄(0,W ), and QW,0Q̄

∗ =
∫
w
Q̄∗(w)dQW,0(w). This function

D∗W is trivially consistently estimated by plugging in Q̄∗n and the empirical
distribution QW,n. If Q̄∗n converges to Q̄0, then the other two components of
ICW are equal to zero. If the conditional distribution gn0,i of Ai, given W n is
equal to the conditional distribution g0,i, given Wi, and the latter is constant
in i, then these other two components of ICW are also equal to zero, even if
Q̄∗n is inconsistent.

In general, one of these two components of ICW is generated by the contri-
bution of ḡn as an estimator of ḡ0, assuming a plug-in estimator is used utilizing
that the distribution gni of Ai, given W n, is known. The influence curve of this
contribution can be straightforwardly determined and is presented in the The-
orem 2. The other component concerns an average of differences gn0,i − ḡn,
indicating that, g0,i(· | W n) has to converge for n going to infinity to a fixed
g0,i(· | Wi): thus, the dependence on the covariates of the other individuals
l 6= i has to be asymptotically negligible. If this convergence occurs fast enough
this contribution may be equal to zero, but, in general, we allow for a contri-
bution. This “asymptotic stability of the design” (i.e, gni converging to a fixed
gi) condition is analogue to the condition on the adaptive allocation proba-
bilities in adaptive group sequential designs to establish asymptotic normality
of the TMLE, as studied in van der Laan (2008); Chambaz and van der Laan
(2010)). Either way, consistent estimation of σ2

W is possible without relying on
a consistent estimator of Q̄0. On the other hand, if gn0,i(1 | W n) = g0,i(1 | Wi),
then the influence curve is easily derived and is specified in Theorem 2, and,
if g0,i is constant in i, then the contribution equals zero.
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If gni = gi, and ḡn = ḡ0, and Cj(W
n) are singletons, then it can be shown

that the asymptotic variance is consistently estimated as

σ2
I,n =

1

n

n∑
i=1

{
D∗(Q̄∗n, ḡn, ψ

∗
n)(Oi)

}2
, (6)

which does thus not rely on a consistent estimator of Q̄0 anymore. Note that
this latter variance estimator is the estimator one would have used if one treats
the sample as n independent observations, and one ignores the adaptivity of
the design.

In the special case of adaptive pair matching designs (and thus ḡn = ḡ0 and
ICW = D∗W ), we prove below that, under a mild condition, this same estimator
(6) of the asymptotic variance remains conservative if Q̄∗n is inconsistent for
true Q̄0. It remains to be determined if this result also applies to other group
sizes.

Finally, we remark that, if the design gn0 is actually unknown and thus also
needs to be estimated, and if we assume that this design is consistently esti-
mated, then we conjecture that the asymptotic limit variance described above
will be conservative, due to the general result that estimation of an orthogonal
factor in the likelihood (i.e., the tangent space of the treatment mechanism
is orthogonal to tangent space of relevant Q-factors) generally improves the
asymptotic variance (Theorem 2.3 van der Laan and Robins (2003)).

5 Theorem establishing asymptotic normality.

We have the following theorem establishing the asymptotic normality of the
TMLE presented in Section 4 and thereby in particular the basis for the vari-
ance estimator presented in Section 4.2.

Theorem 2 Let PQ0,gn
0
fi represents a conditional expectation of a function,

given W n, which is thus still random through W n. In this theorem gn0 =
P0(An | W n) is considered known. Let F be a set of multivariate real valued
functions so that Q̄∗n is an element of F with probability 1. Define

f 1
i,n(Q̄) ≡ 2Ai−1

ḡn(Ai|Wi)
(Yi − Q̄(Ai,Wi))

−
{
g0,i(1|Wn)

ḡn(1|Wi)
(Q̄0 − Q̄)(1,Wi)− g0,i(0|Wn)

ḡn(0|Wi)
(Q̄0 − Q̄)(0,Wi)

}
.

Define Xn(Q̄) = 1/
√
n
∑J

j=1{
∑

i∈Cj(Wn) f
1
i,n(Q̄)(Oi)}, and note that, condi-

tional on W n, this is a sum of J = Jn independent mean zero random vari-
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ables. Let
fj,n ≡

∑
i∈Cj(Wn)

f 1
i,n(Oi).

We can represent Xn(Q̄) as Xn(Q̄) ≡ 1/
√
n
∑J

j=1 fj,n(Oi : i ∈ Cj(W n)). Let

D∗W (Q0) = Q̄0(W )− ψ0.

Uniform bound: Assume maxi∈{1,...,n} supQ̄∈F supWn,O | fi,n(Q̄)(W n, O) |<
M <∞, where the second supremum is over a support of (W n, Ai, Yi).

Asymptotic linearity of function of ḡn: Assume that for a function ICW,i,ḡ
of W with mean zero and finite variance (uniformly in i)

ZW,n,ḡn ≡ 1√
n

∑
i PQ0,g0,i

{D∗(Q̄∗n, ḡn, ψ∗n)− PQ0,g0,i
D∗(Q̄∗n, ḡ0, ψ

∗
n)}

= 1√
n

∑n
i=1 ICW,i,ḡ(Wi) + oP (1).

Note that if gn0,i = P n
0 (Ai | W n) equals g0,i = P0(Ai | Wi) and is thus

known, then ḡn = ḡ0 so that ZW,n,ḡn = 0. In general, under the required
regularity conditions, we have

ZW,ḡn,n ≈ 1√
n

∑n
k=1 IC(Wk)− E0IC(Wk),

where

IC(Wk) =
∫
w

(
1
n

∑n
i=1

∑n
l 6=i gi(1 | Wi = w,Wl = Wk)

)
Q̄0−Q̄
ḡ0

(1, w)dQ0(w)

−
∫
w

(
1
n

∑n
i=1

∑n
l 6=i gi(0 | Wi = w,Wl = Wk)

)
Q̄0−Q̄
ḡ0

(0, w)dQ0(w).

and gi,0(1 | Wi,Wl) is the conditional distribution of Ai = 1, given
Wi,Wl.

Asymptotic stability of treatment mechanism as function of covariates:
Let

ZW,n,gn = Z1,gn + ZW,n,

where
Z1,gn = 1√

n

∑n
i=1

gi(1|Wn)−ḡn(1|Wi)
ḡn(1|Wi)

(Q̄0 − Q̄∗n)(1,Wi)

− 1√
n

∑n
i=1

gi(0|Wn)−ḡn(0|Wi)
ḡn(1|Wi)

(Q̄0 − Q̄∗n)(0,Wi),

and

ZW,n =
1√
n

n∑
i=1

{Q̄0(Wi)− ψ0}.
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Assume, for a function ICW,i,gn of W with mean zero and finite vari-
ance, Z1,gn = 1√

n

∑n
i=1 ICW,i,gn(Wi) + oP (1). Note that, if gn0,i = g0,i and

constant in i, then Z1,gn = 0. If gn0,i = g0,i, so that ḡn = ḡ0, then

ICW,i,gn(Wi) =
g0,i(1|Wi)−ḡ0(1|Wi)

ḡ0(1|Wi)
(Q̄0 − Q̄)(1,Wi)

−g0,i(0|Wi)−ḡ0(0|Wi)

ḡ0(0|Wi)
(Q̄0 − Q̄)(0,Wi).

Convergence of variances: Assume that for a specified {Σ0(Q̄1, Q̄2) : Q̄1, Q̄2 ∈
F}, for any Q̄1, Q̄2 ∈ F , 1

n

∑J
j=1 PQ0,gn

0
fj,n(Q̄1)2 → Σ0(Q̄1, Q̄1) a.s (i.e,

for almost every (W n, n ≥ 1)), and

1

n

J∑
j=1

PQ0,gnfj,n(Q̄1)fj,n(Q̄2)→ Σ0(Q̄1, Q̄2) a.s. (7)

For example, if Cj(W
n) are singletons, the first condition holds if

1
n

∑n
i=1

g0,i(0|Wn)

ḡ2n(0|Wi)
E0((Y − Q̄(0,Wi))

2 | Ai = 0,Wi)

+ 1
n

∑n
i=1

g0,i(1|Wn)

ḡ2n(0|Wi)
E0((Y − Q̄(1,Wi))

2 | Ai = 1,Wi)

→ Σ0(Q̄, Q̄) a.s.

Similarly, for the convergence of covariance. Note that this holds trivially
if g0,i(1 | W n) = g0,i(1 | Wi).

Convergence of Q̄∗n to some limit: For any Q̄1, Q̄2 ∈ F , we define

σ2
n(Q̄1 − Q̄2) =

1

n

J∑
j=1

PQ0,gn
0
{fj,n(Q̄1)− fj,n(Q̄2)}2,

where we note that the right-hand side indeed only depends on Q̄1, Q̄2

through its difference Q̄1 − Q̄2.

Assume that for a particular Q̄∗ ∈ F , σ2
n(Q̄∗n− Q̄∗)→ 0 in probability as

n→∞.

Entropy condition: Let Fd = {f1− f2 : f1, f2 ∈ F}. Let N(ε, σn,Fd) be the
covering number of the class Fd w.r.t norm/dissimilarity ‖ f ‖= σn(f).
Assume that the class F satisfies

lim
δn→0

∫ δn

0

√
logN(ε, σn,Fd)dε = 0
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Asymptotic equicontinuity of process: Then,

Xn(Q̄∗n)−Xn(Q̄∗) converges to zero in probability, as n→∞.

First order linear approximation: As a consequence,

√
n(ψ∗n − ψ0) = XW,n +Xn(Q̄∗) + oP (1),

where XW,n = 1/
√
n
∑n

i=1 ICW,i(Wi), and ICW,i = ICW,i,ḡ+ICW,i,gn+D∗W (Q0).
Asymptotic normality: In addition, XW,n converges in distribution to N(0, σ2

W ),
where

σ2
W = lim

n→∞

1

n

n∑
i=1

P0IC
2
W,i,

and Xn(Q̄) converges to an independent N(0,Σ0(Q̄∗, Q̄∗)), so that

√
n(ψ∗n − ψ0) converges in distribution to N(0, σ2

0 ≡ σ2
W + Σ0(Q̄∗, Q̄∗)).

The asymptotic variance Σ0(Q̄∗, Q̄∗) equals the limit of

Σn =
1

n

n∑
j=1

{fj,n(Q̄∗n)(Oi : i ∈ Cj(W n))}2.

Under certain treatment allocation mechanisms gn0,i, one might have that
the contributions captured by XW,n in this theorem require a more general
representation XW,n = 1/

√
n
∑n

i=1 fi(W ), where fi(W ) has weak enough de-
pendence on Wj with j 6= i, so that such a process still converges weakly to
a normal distribution. Depending on applications of interest, we can pursue
such a more general representation of this theorem with little extra work.

Note that fj,n in Σn still depends on Q̄0, while Q̄∗n estimates the possibly
misspecified limit Q̄. Thus Σn is not an estimator. In the special case that
Cj(W

n) are singletons, it follows that σ2
0 can be consistently approximated

with 1/n
∑

i{ICW (Q∗n)(Wi) + fi,n(Q̄∗n)(Oi)}2 which equals

σ2
n =

1

n

n∑
i=1

{D∗(Q̄∗n, ḡn, ψ∗n)(Oi)}2,

if gn0,i = g0,i and ḡn = ḡ0 so that ICW = D∗W (Q̄∗, QW,0).
Some of the conditions were discussed in the previous section 4 under

statistical inference. The entropy condition corresponds with assuming that
F is a Donsker class and is thus a natural condition that puts (minimal)
restrictions on the size of the class F . For example, one can define F as
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the class of multivariate real valued functions that have a uniform sectional
variation norm bounded by a universal M < ∞ (van der Laan (1996); Gill
et al. (1995)).

In order to demonstrate the condition (7), we consider the special case that
Cj(W

n) are singletons j = 1, . . . , n, and that gi(Ai | W n) = gi(Ai | Wi). We
wish to show that σ2

n = 1/n
∑n

i=1 σ
2
i → σ2, where

σ2
i = PQ0,gn

i
{(2A− 1)/gi(Ai | Wi)(Yi − Q̄(Ai,Wi))}2 − (Q̄(Wi)− Q̄0(Wi))

2

= PQ0,gn
i
1/g2

i (Ai | Wi)(Yi − Q̄(Ai,Wi))
2 − (Q̄(Wi)− Q̄0(Wi))

2

=
∫
a,y

1
g2i (a|Wi)

(y − Q̄(a,Wi))
2gi(a | W n)QY,0(y | a,Wi)− (Q̄(Wi)− Q̄0(Wi))

2

=
∫
a,y

1
gi(a|Wi)

(y − Q̄(a,Wi))
2QY,0(y | a,Wi)− (Q̄(Wi)− Q̄0(Wi))

2

= 1
gi(0|Wi)

E0((Y − Q̄(0,Wi))
2 | Ai = 0,Wi)

+ 1
gi(1|Wi)

E0((Y − Q̄(1,Wi))
2 | Ai = 1,Wi)− (Q̄(Wi)− Q̄0(Wi))

2.

So we need that
1
n

∑n
i=1

1
gi(0|Wi)

E0((Y − Q̄(0,Wi))
2 | Ai = 0,Wi)

+ 1
n

∑n
i=1

1
gi(1|Wi)

E0((Y − Q̄(1,Wi))
2 | Ai = 1,Wi)

− 1
n

∑n
i=1(Q̄(Wi)− Q̄0(Wi))

2 → σ2 a.s.

By the law of large numbers, both empirical means converge.

6 Randomized trials with adaptive pair match-

ing

Theorem 2 and the corresponding TMLE of the average treatment effect and
variance estimator have important implications for the design and analysis of
individual and cluster randomized trials with adaptive pair matching. In par-
ticular, previous literature on pair matched trials considered the pair as the
unit of independence (Freedman et al. (1990); Campbell et al. (2007); Hayes
and Moulton (2009); Imai et al. (2009); Imai (2008); Donner and Klar (2000);
Murray (1998); Donner and Klar (2000); Raudenbush et al. (2007); Klar and
Donner (1997); Balzer et al. (2012)). This leaves open a number of key ques-
tions regarding the design and analysis of trials in which matched pairs are
constructed based on applying some algorithm to the baseline characteristics
of the entire sample (adaptive pair matching). What is the most efficient esti-
mator of the intervention’s effect in such studies? How should the variance of
this estimator be estimated, given dependence induced between units? And
finally, under what conditions will adaptive pair matching provide a more effi-
cient estimator than that provided by an non-matched design? In this section
we consider the implication of Theorem (2) for each of these questions in turn.
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6.1 Estimation of the average treatment effect.

In a randomized trial with adaptive pair matching, an unadjusted difference of
the mean outcome in the treated and untreated units will provide an unbiased
estimate of the average treatment effect. However, adjustment for baseline
covariates W that predict the outcome Y will result in efficiency gains. This
raises the issue of how best to accomplish such adjustment in adaptively pair
matched designs, with the dual goals of minimizing the variance of the resulting
estimator and ensuring that it remains unbiased. Our theorem 2 and the
corresponding TMLE presented in Section (4) establish such an efficient and
unbiased estimator of the average treatment effect.

Specifically, in such trials, g0,i(Ai | W n) = g0,i(Ai | Wi) = ḡ0(Ai | Wi) is
known to be equal to a constant (typically 0.5 for a trial with two arms) and
need not be estimated (although estimation of may improve efficiency). The
clever covariate in the TMLE thus reduces to a simple (2Ai − 1)/0.5. Thus, a
TMLE for the average treatment effect in such a trial can be implemented by
treating the data as if they were a sample of n i.i.d. units. Implementation of
this estimator is described in detail in van der Laan and Rose (2012). Further,
because A is randomized, as long as the initial estimator of Q̄0 (the conditional
mean of the unit-specific outcome given unit-specific covariates and treatment)
is a least squares regression or logistic maximum likelihood regression that
includes an intercept and the treatment A as a main term (still allowing for
additional interaction terms between A and covariates W ), no further update
step is needed (the initial estimator is already a TMLE) (Rosenblum and
van der Laan (2010); van der Laan and Rose (2012)).

6.2 Statistical inference.

Again, we note that in a randomized trial with adaptive pair matching, we
have ḡn = ḡ0 = g0. Our theorem 2 shows that, under regularity conditions,
the standardized TMLE with Q̄∗n converging to Q̄∗ is asymptotically consistent
and normally distributed,

√
n(ψ∗n − ψ0) ⇒d N(0, σ2), where σ2 = σ2

W + σ2
Y ,

σ2
W = E(Q̄0(W )− ψ0)2 and σ2

Y is the limit of

1
n

∑
j PQ0,gn

0
{fj,n(Q̄∗, Q̄0)}2

= 1
n

∑
j PQ0,gn

0

(∑
i∈Cj(Wn) Hḡ0(Ai,Wi)(Yi − Q̄∗)

)2

− 1
n

∑
j

(∑
i∈Cj(Wn)(Q̄0 − Q̄∗)(Wi)

)2

.

Given a consistent estimator σ2
n of σ2, ψ∗n± 1.96σn/

√
n is an asymptotic 0.95-

confidence interval. A null hypothesis H0 : ψ0 = ψ0 can be based on the test
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statistic Tn =
√
n(ψ∗n−ψ0)/σn and that Tn is approximately standard normal

under H0.
In order to implement an estimator of σn, σ2

W can be estimated as 1
n

∑n
i=1{Q̄n(Wi)−

ψ∗n}2. Estimation of σ2
Y can be based on Theorem 2, which shows that σ2

Y is
consistently approximated by 1/n

∑
j{fj,n(Q̄∗n, Q̄0)}2. In implementing a sub-

stitution estimator of σ2
Y , we naturally replace Q̄∗ by Q̄∗n (the updated fit

of Q̄0 on which the TMLE substitution estimator of ψ0 is based). However,
fj,n(Q̄∗n, Q̄0) still depends on Q̄0. When implementing a consistent estimator
of the asymptotic variance σ2, one may need to estimate Q̄0 with a super
learner in order to make it maximally unbiased (van der Laan et al. (2007)).
In particular, even if a simple parametric regression based estimator was used
as initial estimator of Q̄0 when implementing the TMLE for ψ0, a more flex-
ible approach to estimating Q̄0 is warranted when estimating σ2 in order to
minimize bias in the resulting variance estimator.

A substitution estimator of this asymptotic variance σ2 is now given by

σ2
n = σ2

W,n + σ2
Y,n

σ2
W,n =

1

n

n∑
i=1

{Q̄n(Wi)− ψ∗n}2

σ2
Y,n =

1

n

∑
j

 ∑
i∈Cj(Wn)

Hḡ0(Ai,Wi)(Yi − Q̄∗n(Ai,Wi))−
∑

i∈Cj(Wn)

(Q̄n − Q̄∗n)(Wi)

2

.

Interestingly, even though we constructed an estimator of ψ0 that is guar-
anteed consistent and asymptotically normally distributed at misspecified Q̄∗n,
as long as gn0,i is known or well estimated, it seems that in general no such
robust estimator of the asymptotic variance σ2 is available. Fortunately, be-
low we will construct conservative variance estimators that do not rely on a
consistent estimator of Q̄0.

6.3 Robust conservative estimation of the variance.

In the special case of an adaptively pair matched design, we have the follow-
ing theorem, which establishes a simpler (but) conservative estimate of the
asymptotic variance σ2. The proof is analogue that of Theorem 4 below.

Theorem 3 Suppose g0
n ∈ Gn2 , in which case Cj(W

n) are pairs. As above,
assume that g0,i(Ai | W n) = g0(Ai | Wi) is known, so that ḡ0 = g0 is known as
well. The asymptotic variance σ2 of the TMLE for Q̄∗n converging to Q̄∗, i.e.,
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σ2 = σ2
W + σ2

Y in Theorem 2, can be represented as follows:

σ2 = PQ0,g0{D∗(Q̄∗, g0, ψ0)}2 − C,

where

C ≡ E0
1

J

n/2∑
j=1

(Q̄0 − Q̄∗)(1,W1j)(Q̄0 − Q̄∗)(0,W2j)

+E0
1

J

n/2∑
j=1

(Q̄0 − Q̄∗)(0,W1j)(Q̄0 − Q̄∗)(1,W2j)

+E0
1

J

n/2∑
j=1

(Q̄0 − Q̄∗)(1,W1j)(Q̄0 − Q̄∗)(1,W2j)

+E0
1

J

n/2∑
j=1

(Q̄0 − Q̄∗)(0,W1j)(Q̄0 − Q̄∗)(0,W2j). (8)

Under the assumption that the covariance-term C is positive, a conservative
estimate of σ2 is thus given by:

σ2
I,n =

1

n

n∑
i=1

{D∗(Q̄∗n, g0, ψ
∗
n)(Oi)}2.

This theorem, together with Theorem 2, imply that randomized trials with
adaptive pair matching can be analyzed ignoring the matching process, both
in order to generate an efficient and unbiased point estimator of the treatment
effect and for inference on this estimator. Under the assumption that the
last covariance-term is positive, as would be expected if units were effectively
matched on predictors of the outcome, a variance estimator that treats the
data as if they were i.i.d. will be conservative if Q̄∗n is inconsistent for Q̄0,
while it remains asymptotically consistent if Q̄∗n is consistent.

In general, one can aim to construct a target Cl for which it is known that
Cl ≤ C, and estimate the variance with σ2

I,n − Cl,n, where Cl,n is a consistent
estimator of Cl. In this case, one aims to find such a Cl that can be consistently
estimated without relying on a consistent estimator of Q̄0. This will be carried
out in the next two subsections resulting in a possibly much less conservative
variance estimator.
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6.4 Comparison of the “naive” variance estimator with
the true variance.

Let us consider the case that we use the unadjusted regression of Y on A as
initial estimator so that Q̄∗n(a,W ) = Q̄∗n(a), a ∈ {0, 1}, does not depend on
W , and the TMLE ψ∗n = Q̄∗n(1) − Q̄∗n(0) equals the mean outcome over the
n/2 pairs Cj(W

n) of
∑

i∈Cj(Wn) AiYi − (1− Ai)Yi, j = 1, . . . , n/2:

ψ∗n =
1

n/2

n/2∑
j=1

∑
i∈Cj(Wn)

(AiYi − (1− Ai)Yi).

Above we presented an expression (8) for the true asymptotic variance of the
standardized TMLE,

√
n(ψ∗n−ψ0), which can be applied to this simple sample

average ψ∗n. This expression σ2 was represented as the asymptotic variance σ2
I

of this TMLE under i.i.d sampling from PQ0,g0 , i.e. σ2
I = PQ0,g0D

∗(Q̄∗, g0, ψ0)2,
minus a sum of four terms defined as

C ≡ E0
1
J

∑n/2
j=1(Q̄0 − Q̄∗)(1,W1j)(Q̄0 − Q̄∗)(0,W2j)

+E0
1
J

∑n/2
j=1(Q̄0 − Q̄∗)(0,W1j)(Q̄0 − Q̄∗)(1,W2j)

+E0
1
J

∑n/2
j=1(Q̄0 − Q̄∗)(1,W1j)(Q̄0 − Q̄∗)(1,W2j)

+E0
1
J

∑n/2
j=1(Q̄0 − Q̄∗)(0,W1j)(Q̄0 − Q̄∗)(0,W2j).

Recall the notation (W1, A1, Y1), (W2, A2, Y2) for the observations in the two
units in a pair, where either (A1, A2) = (1, 0) or (A1, A2) = (0, 1). For nota-
tional convenience, we will denote this term C as

C ≡ E0(Q̄0 − Q̄∗)(1,W1)(Q̄0 − Q̄∗)(0,W2)
+E0(Q̄0 − Q̄∗)(0,W1)(Q̄0 − Q̄∗)(1,W2)
+E0(Q̄0 − Q̄∗)(1,W1)(Q̄0 − Q̄∗)(1,W2)
+E0(Q̄0 − Q̄∗)(0,W1)(Q̄0 − Q̄∗)(0,W2).

Since we use the unadjusted estimator so that D∗(Q̄∗, g0, ψ0)(W,A, Y ) = (2A−
1)/g0(Y − Q̄∗(A)), and g0(A) = 0.5, we have

PQ0,g0D
∗(Q̄∗, g0, ψ0)2 = 2

{
σ2

1 + σ2
0

}
,

where σ2
1 = E0(Y (1)−ψ0(1))2 and σ2

0 = E0(Y (0)−ψ0(0))2. We conclude that
the true asymptotic variance of

√
n(ψ∗n − ψ0) is given by

σ2 = 2{σ2
1 + σ2

0} − C.
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Let us compare this true asymptotic variance σ2/n of the unadjusted esti-
mator with the variance estimate used in current practice, which we will refer
to as the “naive” variance estimator. Current practice assumes that the n/2
pairs are i.i.d. and estimates the asymptotic variance of

√
n/2(ψ∗n − ψ0) with

the sample variance of the average of the difference across the pairs:

0.5σ2
n,naive = 1

n/2

∑n/2
j=1(Y1jA1j + Y2jA2j − Y1j(1− A1j)− Y2j(1− A2j)− ψ∗n)2.

This converges for n→∞ to

0.5σ2
naive = σ2

0 + σ2
1 − (ρ1 + ρ2),

where
ρ1 = E0(Q̄0(1,W1)− ψ0(1))(Q̄0(0,W2)− ψ0(0))
ρ2 = E0(Q̄0(0,W1)− ψ0(0))(Q̄0(1,W2)− ψ0(1)).

The true asymptotic variance and the naive asymptotic variance are given by
σ2/n and (0.5σ2

naive)/(n/2) = σ2
naive/n, respectively. As a consequence, the

relevant comparison is the comparison of σ2 with σ2
naive, where

σ2 = 2{σ2
1 + σ2

0} − C
σ2
naive = 2{σ2

1 + σ2
0} − 2(ρ1 + ρ2).

To show that naive variance estimator represents a conservative variance esti-
mator we would need to show that

2(ρ1 + ρ2) ≤ C.

Notice that C = ρ1 + ρ2 + C1, where

C1 = E0(Q̄0−Q̄∗)(1,W1)(Q̄0−Q̄∗)(1,W2)+E0(Q̄0−Q̄∗)(0,W1)(Q̄0−Q̄∗)(0,W2).

Thus, the naive variance estimator would be conservative if ρ1 + ρ2 ≤ C1.
Note that we can also represent this as:

C1 − ρ1 − ρ2 = Cov(Q̃0(1,W1), (Q̃0(1,W2)) + Cov(Q̃0(0,W1), Q̃0(0,W2))

−Cov(Q̃0(1,W1), Q̃0(0,W2))− Cov(Q̃0(0,W1), Q̃0(1,W2))

= Cov(Q̃0(W1), Q̃0(W2)),

where Cov(X, Y ) = E(XY ) denotes the standard covariance between two
mean zero random variablesX and Y , and we introduced the notation Q̃0(W ) =
(Q̃0(1,W ) − Q̃0)(0,W ) and Q̃0(a,W ) = (Q̄0 − Q̄∗)(a,W ). Thus, if the latter
covariance-term Cov(Q̃0(W1), Q̃0(W2)) is non-negative, then the naive vari-
ance estimator is conservative. This is a very reasonable condition certainly
expected to hold. Thus, we can conclude that in great generality the naive
variance estimator is a conservative estimator. We also note that if in truth
there is no treatment effect, conditional on covariates, then this covariance
term equals zero, so that the naive variance estimator is unbiased.
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6.5 A general conservative estimator of the asymptotic
variance of TMLE.

Above we presented the naive variance estimator of the unadjusted estima-
tor and showed that it is conservative in great generality. In this subsection
we propose a generalization of this estimator to obtain a conservative estima-
tor of the asymptotic variance of the general TMLE (using a general initial
estimator).

Recall that C = (ρ1+ρ2)+C1, and note that ρ̄ = ρ1+ρ2 can be consistently
estimated with ρ̄n = 2/J

∑J
j=1(Y1j−Q̄∗n(A1j,W1j))(Y2j−Q̄∗n(A2j,W2j)). Above

we showed that we can obtain a conservative bound for C by replacing C1 by ρ̄.
Thus, we can conservatively estimate C by 2ρ̄n. Thus, a general conservative
estimator of the asymptotic variance σ2 of

√
n(ψ∗n − ψ0) is given by

σ2
n = σ2

I,n − 2ρ̄n,

where
σ2
I,n = 1

n

∑n
i=1D

∗(Q̄∗n, g0, ψ
∗
n)(Oi)

2.

This estimator can be viewed as the generalization of the “naive” variance
estimator for the unadjusted estimator of ψ0, analyzed in the previous subsec-
tion.

6.6 A simulation confirming the variance formula for
the unadjusted estimator.

To confirm our conclusions regarding the asymptotic variance of the unad-
justed estimator, consider the following simple simulations. For n units, the
baseline covariates W1 and W2 were independently drawn from N(0, 0.22) and
U(−1, 1), respectively. Then the following adaptive matching algorithm was
employed. First units were classified into a matching category M , representing
the 16 quartile combinations of W1 and W2. Within each strata of M , units
were randomly paired. If there were an odd number of units in a given strata,
the remaining unit was set aside. The leftovers were then ordered according
to M and pairs created. Next the treatment was randomized within the n/2
matched pairs. Finally, the binary outcome Y was drawn independently for
each unit with probability

p = expit[β0 + β1A+ β2W1 + β3W1∗A+ β4W22] (9)

where expit is the inverse logistic function and the coefficients were set as
β0 = −1, β1 = −0.5, β2 = 3, β3 = −2 and β4 = 2. The target causal
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parameter is the average treatment effect and was ψ0 = −0.11 in this data
generating experiment (“Scenario 1”). The coefficients were also varied to
examine the asymptotic variance of the unadjusted estimator in different data
generating experiments. Scenario 2 explored when there is no treatment effect:
β1 = β3 = 0. Scenario 3 explored when the baseline covariates (used for
matching) have no effect on the outcome. Specifically, β2, β3 and β4 were set
to zero to yield an average treatment effect of -0.08.

For each scenario, the true finite sample variance V ar(ψ∗n) was the variance
of unadjusted estimator over R = 10, 000 trials, each of sample size n = 500
units. Table 6.6 compares the true finite sample variance with the asymptotic
variance σ2 = σ2

I −C according to Theorem 3, the naive variance treating the
pairs as independent σ2

naive, and the estimate of the naive variance σ2
n,naive. The

asymptotic variances were computed with Monte Carlo simulation of 50,000
units. All statistical computing was done in R version 2.15.1. In addition,
recall our claims that C−2ρ̄ ≥ 0, which makes an estimate of σ2

naive = σ2
I −2ρ̄

conservative.

Scenario 1 Scenario 2 Scenario 3
nV ar(ψ∗n) 0.8408 0.8708 0.6833
σ2 0.8523 0.8729 0.6915
σ2
naive 0.8591 0.8729 0.6915
σ2
n,naive 0.8656 0.8780 0.6934

C 0.0712 0.1060 0.0000
2ρ̄ 0.0643 0.1060 -0.0000

Table 1: Comparing the true finite sample variance of the unadjusted estimator
nV ar(ψ∗n), the asymptotic variance σ2 according to Theorem 3, the naive
variance treating the pairs as independent σ2

naive and the estimate of the naive
variance σ2

n,naive. Scenario 1 corresponds to the setting β0 = −1, β1 = −0.5,
β2 = 3, β3 = −2 and β4 = 2 in Eq. 9. Scenario 2 corresponds setting β = 1
and β3 to zero in order to examine the asymptotic variance if the intervention
has no effect on the outcome. Scenario 3 corresponds to setting β2, β3 and β4

to zero in order to examine the asymptotic variance if the baseline covariates
(used for matching) have no effect on the outcome. For each scenario, the
correction factor C and 2ρ̄ are also given.

In all scenarios, the true asymptotic variance of the TMLE and our claimed
true asymptotic variance are in agreement. The simulation for scenario 1
also confirms that σ2

naive = σ2
I − 2ρ̄ is indeed conservative, but close to the

true asymptotic variance. In Scenario 2 the correction factors C and 2ρ̄ are
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equal when there is no treatment effect: C = 2ρ̄, and in Scenario 3 we have
C = 2ρ̄ = 0. Indeed, in both of these scenarios we see perfect agreement
between σ2

naive and the true asymptotic variance σ2.

6.7 Efficiency gains due to adaptive pair matching.

In this section we compare two design choices regarding gn0 . In the first, we
simply assume that gn0 (An | Xn) =

∏n
i=1 g0(Ai | Wi) for a common g0. In

this case, (Wi, Ai, Yi), i = 1, . . . , n, are i.i.d. This design includes classic non-
matched randomized trials in which treatment is randomly assigned with some
known probability, possibly conditional on unit-specific covariates.

We compare this design to a design employing adaptive pair matching.
In other words, in the second design we assume gn0 ∈ Gn2 with gn0,i = g0,

so that gn0 (An | Xn) =
∏n/2

j=1 g0(Ai : i ∈ Cj(W
n) | W n) and the marginal

P (Ai = a | W n) = g0(a | Wi), i = 1, . . . , n.
We compare the asymptotic variance of the TMLEs under these two designs

when Q̄∗n converges to a possibly misspecified Q̄∗. This provides insight into
the efficiency gains made possible by adaptive pair matching. We assume that
g0 is known, so that ḡn = g0, as would be the case in both an non-matched
and adaptively matched randomized trial.

Theorem 4 Under the i.i.d. design, the TMLE is asymptotically linear with
influence curve D∗(Q̄∗, g0, ψ0), so that its asymptotic variance is given by
σ2
I (Q̄

∗) = P0{D∗(Q̄∗, g0, ψ0)}2. This variance can be represented as

σ2
I (Q̄

∗) = E0{Q̄0(W )− ψ0}2

+E0E0

(
H2
g0

(A,W )(Y − Q̄∗(A,W ))2 | W
)
− E0{Q̄0(W )− Q̄∗(W )}2.

For the adaptive paired matching design the asymptotic variance σ2(Q̄∗) of the
TMLE is given by the limit of

E0{Q̄0(W )− ψ0)}2

+E0
1
n

∑n/2
j=1 PQ0,gn

{∑
i∈Cj(Wn) Hg0(Ai,Wi)(Yi − Q̄∗(Ai,Wi))

}2

−E0
1
n

∑n/2
j=1

{∑
i∈Cj(Wn){Q̄0(Wi)− Q̄∗(Wi)}

}2

This can be represented as:

σ2(Q̄∗) = E0{Q̄0(W )− ψ0}2

+E0E0

(
H2
g0

(A,W )(Y − Q̄∗(A,W ))2 | W
)
− E0{Q̄0(W )− Q̄∗(W )}2

−C,
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where C = (ρ1 + ρ2) + C1 was defined above as sum of four terms, with

C1 = E0
1
J

∑J
j=1(Q̄0 − Q̄∗)(1,W1j)(Q̄0 − Q̄∗)(1,W2j)

+E0
1
J

∑J
j=1(Q̄0 − Q̄∗)(0,W1j)(Q̄0 − Q̄∗)(0,W2j).

The difference between the two asymptotic variances is thus given by:

σ2
I (Q̄

∗)− σ2(Q̄∗) = C.

If Q̄∗ = Q̄0, the two asymptotic variances are equal. If Q̄∗(A,W ) = E0(Y | A),
then the difference is the sum C of the four covariances.

This theorem teaches us that, while the information bound for the two
designs is the same, the TMLE under adaptive pair matching at misspecified
Q̄∗ will outperform the TMLE under i.i.d. sampling, as long as C > 0. This
theorem further suggests that pair matching will result in efficiency gains over
the i.i.d. design to the extent that there are baseline covariates W that are
predictive of Y which cannot be adjusted for in the outcome regression. Such
a scenario might occur in finite samples due to lack of support in the data. For
example, in a cluster randomized trial of an HIV prevention intervention, the
sample of communities might include only two communities in proximity to a
major trucking route, a community characteristic known to predict higher HIV
transmission levels. If by chance in the i.i.d. design both of these communities
were assigned to the treatment arm of the trial, lack of data support would
preclude adjustment for this community-level covariate and thus pair matching
on this covariate would result in efficiency gains.

7 Augmenting the data structure with miss-

ingness

Consider the following data generating experiment. Firstly, we sample n i.i.d.
(W1, Y1(0), Y1(1)), . . ., (Wn, Yn(0), Yn(1)), giving us the vector Xn and vector
of baseline covariates W n. Based on W n, we run a partitioning algorithm
generating pairs Cj(W

n), j = 1, . . . , J . However, suppose that the designer
does not want to accept pairs that are not similar enough with respect to
some metric. Therefore, one applies an algorithm that involves assigning
an indicator ∆i(W

n), i = 1, . . . , n and applying the partitioning algorithm
among the units {i : ∆i(W

n) = 1} resulting in Cj(W
n), j = 1, . . . , J . Thus

∪jCj(W n) = {i : ∆i(W
n) = 1}. We also note that ∆i(W

n) is a determinis-
tic function of W n. Let n1 be the number of observations with ∆i(W

n) = 1.
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Given W n, the ∆i(W
n) and the pairs Cj(W

n), we draw An1 from a conditional
distribution of

gn0 (An1 | Xn) = gn0 (An1 | W n) =
J∏
j=1

gn0 ((Ai : i ∈ Cj(W n)) | W n).

We now collect the data Oi = (Wi,∆i(W
n),∆i(W

n)Ai,∆i(W
n)Yi(Ai)), i =

1, . . . , n, giving the observed data On = (O1, . . . , On).
The target quantity of interest remains the average treatment effect ΨF (PX,0) =

E0Y (1)−E0Y (0). We have ψF0 = EW{Q̄0(1,W )−Q̄0(0,W )}, where Q̄0(a, w) =
E(Y (a) | W = w) = E0(Y | A = a,W = W ). We note that Yi, given W n, An1 ,
is independent across i = 1, . . . , n, and this conditional distribution equals the
conditional distribution of Yi, given Wi, Ai. Therefore,

E(Yi | Ai,Wi,∆i(W
n) = 1) = E(E(Yi | Ai,Wi,W

n) | Ai,Wi,∆i(W
n) = 1)

= E(E(Yi | Ai,Wi) | Ai,Wi,∆i(W
n) = 1)

= E(Yi | Ai,Wi).

This proves that Q̄0(a, w) = E(Yi | Ai = a,Wi = w,∆i(W
n) = 1) and is thus

identifiable from the distribution of On. This proves the desired identifiability
of ψF0 :

ΨF (PX,0) = EW,0{Q̄0(1,W )− Q̄0(0,W )} = Ψ(P n
0 ).

The average is with respect to the marginal distribution of W (not conditional
on ∆i(W

n) = 1), so that also the observations with ∆i(W
n) = 0 are used to

identify this target quantity.
This also demonstrates that E0

∑n
i=1 I(∆i(W

n) = 1)(Yi − Q̄(Ai,Wi))
2 is

minimized over Q̄ by Q̄0, and thus represents a valid loss function for loss-
based learning of Q̄0 based on On. Similarly, we can use a log-likelihood loss∑n

i=1 I(∆i(W
n) = 1)L(Q̄)(Wi, Ai, Yi), where−L(Q̄)(W,A, Y ) = Y log Q̄(A,W )+

(1− Y ) log(1− Q̄(A,W )).
In order to present a TMLE we first need to derive the canonical gradient,

which is presented in the following theorem.

Theorem 5 Consider the data generating experiment described above. Let
Oi = (Wi,∆i(W

n)Ai,∆i(W
n)Yi), the observed data is On = (O1, . . . , On) ∼

P n with

P n(On) =
n∏
i=1

QW (Wi){QY (Yi | Wi, Ai)}∆i(W
n)gn((Ai : ∆i(W

n) = 1) | W n),
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where QW is an unspecified marginal distribution, QY is an unspecified con-
ditional distribution of Y , given A,W , and gn is a conditional distribution of
An1 = (Ai : ∆i(W

n) = 1), given W n = (W1, . . . ,Wn), known to be an element
of a set Gn consisting of distributions satisfying (1). Let Mn be the resulting
statistical model for P n. Let Mn(gn) be the model if gn is known.

Let Ψ :Mn → IR be defined by Ψ(P n) = EQW
{Q̄(1,W )− Q̄(0,W )}, where

Q̄(A,W ) = EQY
(Y | A,W ).

The tangent space at P n in model Mn is given by:

T (P n) =

{
n∑
i=1

φ(Wi) : φ ∈ TW

}
+

{
n∑
i=1

∆i(W
n)φ(Yi | Ai,Wi) : φ ∈ TY

}
+

J∑
j=1

TCj
,

(10)
where TW = {h(W ) : Eh(W ) = 0},

TY = {h(Y | A,W ) : EQY
(h(Y | A,W ) | A,W ) = 0},

and
TCj

= {S((Ai : i ∈ Cj(W n)) | W n) : E(S | W n) = 0}.

The tangent space at P n in model Mn(gn) is given by

T (Q) =

{
n∑
i=1

φ(Wi) : φ ∈ TW

}
+

{
n∑
i=1

φ(Yi | Ai,Wi) : φ ∈ TY

}
.

Let

D∗(Q̄, g, ψ)(W,∆,∆A,∆Y ) = D∗W (Q̄, ψ)(W ) +
∆(2A− 1)

g(A, 1 | W )
(Y − Q̄(A,W )),

where g denotes a distribution of g(a, 1 | W ) = P (A = a,∆ = 1 | W ). The
statistical parameter Ψ is pathwise differentiable and its canonical gradient at
P n is given by

Dn,∗(P n) =
1

n

n∑
i=1

D∗(Q̄, ḡn,Ψ(Q))(Oi),

where gi(a, 1 | Wi) = Πi(1 | Wi)gi(a | Wi) is the conditional probability that
Ai = a, ∆i(W

n) = 1, given Wi, which can be factored into Πi(1 | Wi) =
P (∆i(W

n) = 1 | Wi) and gi(a | Wi) = P (Ai = a | Wi,∆i(W
n) = 1), and

ḡn(a, 1 | W ) =
1

n

n∑
i=1

gi(a, 1 | W ).
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We note that

gi(a, 1 | Wi) =
∑

(wj :j 6=i)

∆i((wj : j 6= i),Wi)gi(a | (wj : j 6= i),Wi)
∏
j 6=i

QW (wj)

(11)
is a function of gi(Ai | W n) and the common marginal distribution QW . We
have

E0D
n,∗(Q̄, ḡn, , ψ0) = 0 if Q̄ = Q̄0 or ḡn = ḡn,0, (12)

assuming that for all i, 0 < gi(1, 1 | Wi) < 1 a.e.

The TMLE of Q̄0 is analogue to the TMLE presented in Section 4, with the
modification that the clever covariate is now given by (2Ai − 1)I(∆i(W

n) =
1)/ḡn(Ai, 1 | Wi), only the complete observations are used for fitting Q̄0, but
the empirical distribution over all W1, . . . ,Wn is plugged in the target pa-
rameter mapping. The same asymptotics can be applied and the formulas
for the asymptotic variance are the same as presented earlier, with the only
modification that gi(a | Wi) is now replaced by gi(a, 1 | Wi).

8 Summary

This article has investigated efficient estimation and inference for the additive
causal effect E0{Y (1) − Y (0)} of treatment on the outcome under a class of
designs based on sampling n i.i.d. (Wi, Yi(0), Yi(1)) ∼ PX,0, sampling An, given
W n, and collecting (Wi, Ai, Yi), i = 1, . . . , n. We considered a general class
of dependent treatment assignment mechanisms gn satisfying the assumption
that (Ai : i ∈ Cj(W n)), j = 1, . . . , J , are independent across j, conditionally
on W n, where Cj(W

n), j = 1, . . . , J , is a partitioning of the sample {1, . . . , n}
into groups implied by W n. The number of partitions J was assumed to be
proportional to n.

We computed the efficient influence curve of the target parameter for the
statistical model implied by this design without making additional assump-
tions about the common full-data distribution PX,0. We defined a correspond-
ing TMLE that is consistent and asymptotically normally distributed under
correct specification of gn0 , and is also efficient if the outcome regression Q̄0

is consistently estimated. This TMLE can be implemented by ignoring the
dependency created by the treatment allocation process, with the exception
that if cross validation is used to estimate the average ḡn of g0,i(Ai | Wi) across
i = 1, . . . , n, the group rather than the unit should be used when partition-
ing the data into training and validation sets. Thus, construction of training

32

http://biostats.bepress.com/ucbbiostat/paper296



and validation sets for data adaptive estimation of Q̄0 can be based on the
sampling unit. We further suggested an alternative plug-in approach to esti-
mating the unit specific treatment mechanism g0,i that makes use of design
based knowledge of gn0 , thus potentially improving estimator robustness and
efficiency.

Due to the dependency introduced by the treatment allocation process,
no asymptotically consistent bootstrap method appears to be available for
the general class of dependent gn-designs presented in this paper. Further,
when groups are size 2 or larger, the asymptotic variance of the TMLE under
the dependent sampling relies on a consistent estimator of Q̄0 even when gn0
is known. In contrast, the asymptotic variance of the TMLE under i.i.d.
sampling is fully robust to misspecification of Q̄∗n in randomized controlled
trials.

We further considered adaptively pair matched trials as an important spe-
cial case of the general dependent treatment allocation design. We formally
compared the asymptotic variance of the TMLE under this design with that of
the TMLE under i.i.d. sampling. While the information bound for the adap-
tively pair matched design with gni = gi = g0 equals the information bound
for i.i.d. sampling of (Wi, Ai, Yi) with P (A = a | W ) = g0(a | W ), we showed
that the TMLE under adaptive pair matching and misspecified Q̄∗ will out-
perform the TMLE under i.i.d. sampling as long as the (Q̄0 − Q̄∗)(1, ·) and
(Q̄0− Q̄∗)(0, ·) of the baseline covariates within the groups Cj(W

n) are indeed
positively correlated. We also showed that under the paired matching design
and the positive correlation condition, an estimate of the variance that treats
the n observations as i.i.d. is conservative if Q̄∗n is inconsistent for Q̄0 and is
asymptotically consistent if Q̄∗n is consistent. We also presented a less conser-
vative variance estimator that relies on an additional reasonable assumption
(similar to the above positive correlation assumption). We demonstrated that
the estimator of the variance for the unadjusted estimator as currently used
by practitioners is valid as well, and our above mentioned less conservative
variance estimator is just a generalization of this estimator.

Taken together, these finding teach us that the use of an adaptively pair
matched design will generally result in a more efficient estimator of the treat-
ment effect, while one can still obtain robust conservative variance estimators.
However, the complications resulting from the adaptive pair matching require
advanced empirical process theory, and even makes the analysis of the unad-
justed estimator a serious challenge, which was addressed by our more general
results for the TMLE in this article.
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A Appendix: Proof of Theorem 1

Firstly, we note that

E0D
∗(Q̄, ḡn, ψ0)(On) = E0

1
n

∑n
i=1{Q̄(Wi)− ψ0}+

E0
1
n

∑n
i=1

gi,0(1|Wi)

ḡn(1|Wi)
(Q̄0 − Q̄)(1,Wi)− gi,0(0|Wi)

ḡn(0|Wi)
(Q̄0 − Q̄)(0,Wi)

= Ψ(Q)− ψ0 + 1
n

∑
i

∫
w
QW,0(w)

gi,0(1|w)

ḡn(1|w)
(Q̄0 − Q̄)(1, w)

− 1
n

∑
i

∫
w
QW,0(w)

gi,0(0|w)

ḡn(0|w)
(Q̄0 − Q̄)(0, w)

= Ψ(Q)− ψ0 + E0
ḡ0,n(1|W )

ḡn(1|W )
(Q̄0 − Q̄)(1,W )

−E0
ḡn,0(0|W )

ḡn(0|W )
(Q̄0 − Q̄)(0,W ).

Thus, if ḡn,0 = ḡ0, then this equals Ψ(Q) − ψ0 + ψ0 − Ψ(Q) = 0. If Q0 = Q,
then we also obtain 0. This proves (4). We also note that Dn,∗(Q0, ḡ0) is an
element of the tangent space TQ. In addition, for each Q, Dn,∗(Q, ḡ0, ψ0) is a
gradient in the model M(gn0 ) with gn0 known, which shows that Dn,∗(Q0, ḡ0)
is the canonical gradient of Ψ : Mn(gn) → IR at P n

0 . By factorization of the
likelihood, it is also the canonical gradient for any model Mn that instead
assumes that gn0 ∈ Gn for a model Gn. 2
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B Appendix: Proof of Theorem 2

Recall the notation Pf = EPf . We have

P n
0 D

n,∗(Q̄∗n, ḡ0, ψ
∗
n) ≡ 1

n

n∑
i=1

PQ0,g0,i
D∗(Q̄∗n, ḡ0, ψ

∗
n) = ψ0 − ψ∗n.

Here we remind the reader that ḡ0 = 1/n
∑

i g0,i and g0,i(a | w) = P0(Ai = a |
Wi = w). We also have Dn,∗(Q̄∗n, ḡn, ψ

∗
n) = 0.

Thus,

ψ∗n − ψ0 = 1
n

∑
i{D∗(Q̄∗n, ḡn, ψ∗n)(Oi)− PQ0,g0,i

D∗(Q̄∗n, ḡn, ψ
∗
n)}

+ 1
n

∑
i PQ0,g0,i

{D∗(Q̄∗n, ḡn, ψ∗n)− PQ0,g0,i
D∗(Q̄∗n, ḡ0, ψ

∗
n)}

≡ 1
n

∑
i{D∗(Q̄∗n, ḡn, ψ∗n)(Oi)− P0,g0,i

D∗(Q̄∗n, ḡn, ψ
∗
n)}+ 1√

n
ZW,ḡn,n.

We note that, using some straightforward algebra,

ZW,ḡn,n =
√
n
∫
w
ḡ0−ḡn

ḡn
(1 | w)(Q̄0 − Q̄)(1, w)dQW,0(w)

−
√
n
∫
w
ḡ0−ḡn

ḡn
(0 | w)(Q̄0 − Q̄)(0, w)dQW,0(w)

=
√
n
∫
w
ḡ0−ḡn

ḡ0
(1 | w)(Q̄0 − Q̄)(1, w)dQW,0(w)

−
√
n
∫
w
ḡ0−ḡn

ḡ0
(0 | w)(Q̄0 − Q̄)(0, w)dQW,0(w) +R(ḡn, ḡ0)

where
R(ḡn, ḡ0) =

√
n
∫ (ḡ0−ḡn)2

ḡnḡ0
(1 | w)(Q̄0 − Q̄)(1, w)dQ0(w)

−
√
n
∫ (ḡ0−ḡn)2

ḡnḡ0
(1 | w)(Q̄0 − Q̄)(1, w)dQ0(w).

We assume that the latter is oP (1). Thus to establish the asymptotic linearity
of ZW,ḡn,n we need to study terms of form

√
n
∫
f(w)(ḡn− ḡ0)(1|w)dQ(w). We

now note that

(ḡn − ḡ(1 | w) = 1
n

∑n
i=1(gi,n − gi)(1 | w)

1
n

∑n
i=1

∫
gi(1 | (Wj : j 6= i),Wi = w)

(∏
j 6=iQW,n(wj)−

∏
j 6=iQW (wj)

)
= 1

n

∑n
i=1

∫
gi(1 | W−i,Wi = w)

∑n
l=1,l 6=i(QW,n(wl)−QW (wl))∏l−1

m=1,m6=iQW,n(wm)
∏n

m=l+1,m6=iQW (wm)

≈ 1
n

∑n
i=1

∑
l 6=i
∫
gi(1 | Wi = w,Wl = wl)(QW,n(wl)−QW (wl))

= 1
n

∑n
k=1

1
n

∑n
i=1

∑n
l 6=i{gi(1 | Wi = w,Wl = Wk)− gi(1 | Wi = w)},

where we suppressed the second order term a formal analysis would have to
take into account. Therefore, we can write
√
n
∫

(ḡn − ḡ0)(1 | w)f(w)dQ(w) = 1√
n

∑n
k=1

1
n

∑n
i=1

∑n
l 6=i∫

w
{gi(1 | Wi = w,Wl = Wk)− E0,Wk

gi(1 | Wi = w,Wl = Wk)} f(w)dQ(w)
≡ 1√

n

∑n
k=1{Φ(Wk)− E0Φ(Wk)},
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where we defined

Φ(Wk) =
1

n

n∑
i=1

n∑
l 6=i

∫
w

gi(1 | Wi = w,Wl = Wk)f(w)dQ(w).

Thus such integrals are standardized sums of independent random variables
Φl(Wk) − E0Φl(Wk) with mean zero. Such terms will converge to a normal
distribution if the variance of Φ(Wk) is bounded (uniformly in n, since Φ is
really indexed by n as well). This demonstrates that one will need that the∑

l 6=i should essentially only contribute a finite number of terms.
To conclude, under regularity conditions, we might have

ZW,ḡn,n ≈ 1√
n

∑n
k=1 IC(Wk)− E0IC(Wk),

where

IC(Wk) =
∫
w

(
1
n

∑n
i=1

∑n
l 6=i gi(1 | Wi = w,Wl = Wk)

)
Q̄0−Q̄
ḡ0

(1, w)dQ0(w)

−
∫
w

(
1
n

∑n
i=1

∑n
l 6=i gi(0 | Wi = w,Wl = Wk)

)
Q̄0−Q̄
ḡ0

(0, w)dQ0(w).

A crucial assumption we made in the theorem is that the variance of IC(Wk) is
finite. We will now show that under a reasonable typical assumption we will, in
fact, have that IC(Wk)−E0IC(Wk) = 0. For i ∈ Cj(W n), in a typical design
one will have that gi(a | Wi = wi,W−i) only depends on Wi = wi. Thus, in
that case, for i ∈ Cj(W n) we have gi(a | W n) = gi(a | Wi) for some conditional
density gi(a | w). This provides us with the following representation:

gi(a | W n) =
J∑
j=1

I(i ∈ Cj(W n))gi(a | Wi).

This yields the following derivation of gi(a | Wi,Wl):

gi(a | Wi,Wl) =
∫
gi(a | Wi,Wl,W (−i,−l))P (W (−i,−l))

=
∫ ∑J

j=1 I(i ∈ Cj(Wi,Wl,W (−i,−l))gi(a | Wi)P (W (−i,−l))
=
∑J

j=1 gi(a | Wi)
∫
I(i ∈ Cj(Wi,Wl,W (−i,−l)))P (W (−i,−l))

= gi(a | Wi)
∑J

j=1 P (i ∈ Cj(W n) | Wi,Wl)

= gi(a | Wi).

Thus, in this case, we have IC(Wk) is constant in Wk so that IC(Wk) −
E0IC(Wk) = 0.
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We now proceed as follows:

ψ∗n − ψ0 =
1

n

n∑
i=1

{D∗(Q∗n, ḡn, ψ∗n)(Oi)− PQ0,gi
D∗(Q∗n, ḡn, ψ

∗
n)}+

1√
n
ZW,ḡn,n

=
1

n

n∑
i=1

{D∗(Q̄∗n, ḡn, ψ∗n)(Oi)− PQ0,gn
i
D∗(Q̄∗n, ḡn, ψ

∗
n)}

+
1

n

n∑
i=1

{(PQ0,gn
i
− PQ0,gi

)D∗(Q̄∗n, ḡn, ψ
∗
n)}+

1√
n
ZW,ḡn,n

=
1

n

n∑
i=1

{D∗Y (Q̄∗n, ḡn)(Oi)− PQ0,gn
i
D∗Y (Q̄∗n, ḡn)}

+
1

n

n∑
i=1

{(PQ0,gn
i
− PQ0,gi

)D∗(Q̄∗n, ḡn, ψ
∗
n)}+

1√
n
ZW,ḡn,n

≡ 1√
n
Xn(Q̄∗n) +

1√
n
ZW,n,gn +

1√
n
ZW,ḡn,n.

Here we used at the third equality that PQ0,gn
0,i

is a conditional expectation,
given W n, so that the empirical process of D∗W cancels out in the first term. We
defined the process only as a function of Q̄∗n, not as a function of ḡn, because
ḡn is only a function of W n. Note, that

D∗Y (Q̄, ḡn)(Oi)− PQ0,gn
0,i
D∗Y (Q̄, ḡn) = 2Ai−1

ḡn(Ai|Wi)
(Yi − Q̄(Ai,Wi))

−
{
gn
0,i(1|Wn)

ḡn(1|Wi)
(Q̄0 − Q̄)(1,Wi)−

gn
0,i(0|Wn)

ḡn(0|Wi)
(Q̄0 − Q̄)(0,Wi)

}
≡ f 1

i,n(Q̄)(Oi).

Note that f 1
i,n(Q̄) is a random function of Oi through W n, while, given W n, it

is a fixed function of Oi. In the special case that gn0,i = g0,i is constant in i, we
have f 1

i,n(Q̄)(Oi) = D∗Y (Q̄, g0,i)(Oi)−{Q̄0− Q̄}(Wi). We can represent Xn(Q̄)
as Xn(Q̄) = 1/

√
n
∑n

i=1 f
1
i,n(Q̄)(Oi), where PQ0,gn

0,i
fi,n(Q̄) = 0.

Let’s now determine the form of ZW,n,gn . We have

1/n
∑

i PQ0,gn
0,i
D∗Y (Q̄∗n, ḡn)

= 1/n
∑

i
g0,i(1|Wn)

ḡn(1|Wi)
(Q̄0 − Q̄∗n)(1,Wi)−

gn
0,i(0|Wn)

ḡn(0|Wi)
(Q̄0 − Q̄∗n)(0,Wi)

= 1/n
∑

i

(
g0,i(1|Wn)

ḡn(1|Wi)
− 1
)

(Q̄0 − Q̄∗n)(1,Wi)−
(
gn
0,i(0|Wn)

ḡn(0|Wi)
− 1
)

(Q̄0 − Q̄∗n)(0,Wi)

+1/n
∑

i Q̄0(Wi)− Q̄∗n(Wi)
1/n

∑
i PQ0,g0,i

D∗Y (Q̄∗n, ḡn) =
∫
w

(Q̄0 − Q̄∗n)(w)QW,0(w)
1/n

∑
i PQ0,gn

i
− PQ0,gi

D∗W (Q̄∗n, ψ
∗
n) = 1/n

∑
i Q̄
∗
n(Wi)− P0Q̄

∗
n
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Thus,

1/n
∑

i(PQ0,gn
0,i
− PQ0,g0,i

)(D∗Y +D∗W )(Q̄∗n, ḡ
∗
n, ψ

∗
n)

= 1/n
∑

i

(
g0,i(1|Wn)

ḡn(1|Wi)
− 1
)

(Q̄0 − Q̄∗n)(1,Wi)−
(
gn
0,i(0|Wn)

ḡn(0|Wi)
− 1
)

(Q̄0 − Q̄∗n)(0,Wi)

+1/n
∑

i Q̄0(Wi)− Q̄∗n(Wi) +
∫
w

(Q̄0 − Q̄∗n)(w)QW,0(w)
+1/n

∑
i Q̄
∗
n(Wi)− P0Q̄

∗
n

= 1/n
∑

i

(
g0,i(1|Wn)

ḡn(1|Wi)
− 1
)

(Q̄0 − Q̄∗n)(1,Wi)−
(
gn
0,i(0|Wn)

ḡn(0|Wi)
− 1
)

(Q̄0 − Q̄∗n)(0,Wi)

+1/n
∑

i{Q̄0(Wi)− ψ0}.

Thus,

ZW,n,gn = 1√
n

∑n
i=1

{
Q̄0(Wi)− ψ0

}
+ 1√

n

∑n
i=1

{
gn
0,i(1|Wn)−ḡn(1|Wi)

ḡn(1|Wi)
(Q̄0 − Q̄∗n)(1,Wi)−

gn
0,i(0|Wn)−ḡn(0|Wi)

ḡn(0|Wi)
(Q̄0 − Q̄∗n)(0,Wi)

}
.

In the special case that gn0,i = g0,i and constant in i, we have that

ZW,n,gn = ZW,n ≡
1√
n

n∑
i=1

{Q̄0(Wi)− ψ0}.

In the general case, one can decompose

ZW,n,gn = Z1,gn + ZW,n,

where
Z1,gn = 1√

n

∑n
i=1

gn
0,i(1|Wn)−ḡn(1|Wi)

ḡn(1|Wi)
(Q̄0 − Q̄∗n)(1,Wi)

− 1√
n

∑n
i=1

gn
0,i(0|Wn)−ḡn(0|Wi)

ḡn(0|Wi)
(Q̄0 − Q̄∗n)(0,Wi).

Suppose now that gn0,i = g0,i. Then ḡn = ḡ0. Notice that for a function f , we
have

1√
n

∑n
i=1 E0

(
g0,i(1|Wi)

ḡ0(1|Wi)
− 1
)
f(Wi)

= 1√
n

∑n
i=1

∫
w

(
g0,i(1|w)

ḡ0(1|w)
− 1
)
f(w)dQW,0(w)

= 1√
n

∫ (
ḡ0
ḡ0

(1 | w)− 1
)
f(w)dQW,0(w)

= 0.

This proves that, Z1,gn(Q̄), defined as the process above with Q̄∗n replaced by
Q̄, is a standard empirical process Z1,gn(Q̄) = 1/

√
n
∑

i fi(Q̄)(Wi) of mean
zero and independent random variables

fi(Q̄)(Wi) =
g0,i(1|Wi)−ḡ0(1|Wi)

ḡ0(1|Wi)
(Q̄0 − Q̄)(1,Wi)

−g0,i(0|Wi)−ḡ0(0|Wi)

ḡ0(0|Wi)
(Q̄0 − Q̄)(0,Wi).
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Such a process can be analyzed with methods we use below, showing that
Z1,gn(Q̄∗n) = Z1,gn(Q̄∗) +oP (1), and Z1,gn(Q̄∗) = 1/

√
n
∑

i IC1,gn,i(Wi) +oP (1),
where IC1,gn,i = fi(Q̄

∗). We conclude that

√
n(ψ∗n − ψ0) = Xn(Q̄∗n) + ZW,n + Z1,gn + ZW,ḡn,n,

where our assumptions guarantee that ZW,n+Z1,gn+ZW,ḡn,n = 1/
√
n
∑

i ICW,i(Wi)+
oP (1). So we showed that

√
n(ψ∗n − ψ0) = XW,n + Xn(Q̄∗n), where XW,n =

1/
√
n
∑

i ICW,i(Wi) + op(1) for some influence curve ICW,i. Thus XW,n is un-
derstood and converges to a normal distribution with mean zero and variance
σ2
W = limn

1
n

∑n
i=1 P0IC

2
W,i, if the variance of ICW,i is bounded uniformly in i.

Below we establish that, conditional on W n, Xn(Q̄∗n) converges in distri-
bution to a Gaussian random variable. The separate weak convergence of
XW,n and Xn(Q̄∗n) implies the desired weak convergence of XW,n and Xn(Q̄∗n)
jointly as follows. For notational convenience, let Xn denote Xn(Q̄∗n) and
X denotes its limit in distribution. Let W∞ = (W n : n = 1, . . . , ). Note
that P (XW,n ∈ A,Xn ∈ B) = EW∞I(XW,n ∈ A)P (Xn ∈ B | W∞). Since
P (Xn ∈ B | W∞) converges to P (X ∈ B) for almost every W∞, we obtain

P (X ∈ B)EW∞I(XW,n ∈ A)→ P (X ∈ B)P (XW ∈ A)

plus a term EW∞I(XW,n ∈ A)(P (Xn ∈ B) | W∞) − P (X ∈ B)). The latter
term converges to zero by the dominated convergence theorem. The joint
convergence implies the weak convergence of the sum XW,n+Xn(Q̄∗n) to XW +
X.

So it remains to study Xn(Q̄∗n). By application of a CLT for sums of in-
dependent random variables, under the stated conditions, one can show that,
conditional on W n, (Xn(Q̄j) : j) for fixed Q̄j ∈ F converges to a multivariate
normal distribution with covariance matrix defined by (Q̄1, Q̄2)→ Σ0(Q̄1, Q̄2).
Weak convergence of Xn(Q̄) for a fixed Q̄ or finite collection of Q̄’s is not
enough for establishing the desired asymptotic linearity. In order to under-
stand terms such asXn(Q̄∗n)−Xn(Q̄) (and that our proposed variance estimator
is consistent) we need to understand the process (Xn(Q̄) : Q̄ ∈ F) with respect
to supremum norm over a set F that contains Q̄∗n with probability tending to
1. Again, we will study this process conditional on (W n : n ≥ 1).

Let d2
n(Q̄1, Q̄2) = 1/n

∑
j PQ0,gn{fj,n(Q̄1)−fj,n(Q̄2)}2. We note thatXn(Q̄1)−

Xn(Q̄2) = X ′n(Q̄1−Q̄2) for a slightly different process X ′n. Thus, d2
n(Q̄1, Q̄2) =

1/n
∑

j PQ0,gn{f ′j,n(Q̄1−Q̄2)}2 for a specified f ′j,n(Q̄1−Q̄2) =
∑

i∈Cj(Wn){fi,n(Q̄1)−
fi,n(Q̄2)}(Oi). Note that d2

n(Q̄1, Q̄2) is the conditional variance of Xn(Q̄1) −
Xn(Q̄2), conditional on W n, or equivalently, it is the conditional variance of
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X ′n(Q̄1−Q̄2). We will denote this conditional variance also with σ2
n(Q̄1−Q̄2) =

d2
n(Q̄1, Q̄2).

Recall that Fd = {f1 − f2 : f1, f2 ∈ F}. Given the entropy condition on
F , we will prove asymptotic equicontinuity of (Xn(Q̄) : Q̄ ∈ Fd) with respect
to this semi-metric dn: for each ε > 0 and sequence δn → 0,

P

(
sup

dn(f,g)≤δn
| Xn(f)−Xn(g) |> ε

)
→ 0 as n→∞.

This is equivalent with establishing the following asymptotic equicontinuity of
(X ′n(f) : f ∈ Fd) w.r.t semi-metric σn: for each ε > 0 and sequence δn → 0,

P

(
sup

σn(f)≤δn
| X ′n(f) |> ε

)
→ 0 as n→∞.

If dn(Q̄∗n, Q̄) → 0 in probability, and Q̄∗n − Q̄ ∈ Fd with probability tend-
ing to 1, then this asymptotic equicontinuity proves that Xn(Q̄∗n) − XnQ̄) =
X ′n(Q̄∗n − Q̄) converges to zero in probability, as n→∞.

To establish the asymptotic equicontinuity result, we use a number of fun-
damental building blocks. Note that X ′n(f)/σn(f) is a sum of J independent
mean zero bounded random variables and the variance of this sum equals 1.

Bernstein’s inequality states that P (|
∑

j Yj |> x) ≤ 2 exp
(
−1

2
x2

v+Mx/3

)
, where

v ≥ VAR
∑

j Yj. Thus, by Bernstein’s inequality, conditional on W n, we have

P

(
| X ′n(f) |
σn(f)

> x

)
≤ 2 exp

(
−1

2

x2

1 +Mx/3

)
≤ K exp(−Cx2),

for a universal K and C.
As stated in our review section, this implies ‖ X ′n(f)/σn(f) ‖ψ2≤ (1 +

K/C)0.5, where for a given convex function ψ with ψ(0) = 0, ‖ X ‖ψ≡ inf{C >
0 : Eψ(| X | /C) ≤ 1} is the so called Orlics norm, and ψ2(x) = exp(x2)− 1.
Thus ‖ X ′n(f) ‖ψ2≤ C1σn(f) for f ∈ Fd. This result allows us to apply
Theorem 2.2.4 in van der Vaart and Wellner (1996) (this theorem is copied
below in the appendix): for each δ > 0 and η > 0, we now have

‖ sup
σn(f)≤δ

| X ′n(f) |‖ψ2≤ K

{∫ η

0

ψ−1
2 (N(ε, σn,Fd)dε+ δψ−1

2 (N2(η, σn,Fd))
}
,

(13)
Convergence to zero with respect to ψ2-orlics norm implies convergence in

expectation to zero and thereby convergence to zero in probability. Let δn
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be a sequence converging to zero, and let ηn also converge to zero but slowly
enough so that the term δnψ

−1
2 (N2(ηn, σn,Fd)) converges to zero as n → ∞.

By assumption,
∫ δn

0
ψ−1

2 (N(ε, σn,Fd)dε converges to zero. Thus,

lim
δn→0

{∫ δn

0

ψ−1
2 (N(ε, σn,Fd)dε+ δnψ

−1
2 (N2(ηn, σn,Fd))

}
= 0.

This proves that

E

(
sup

σn(f)≤δn
| X ′n(f) |

)
→ 0,

and thereby the asymptotic equicontinuity of X ′n.
We now prove the convergence to the limit variance: If σn(Q̄∗n− Q̄)→ 0 in

probability, then

1

n

J∑
j=1

{fj,n(Q̄∗n)(Oi)}2 − 1

n

J∑
j=1

PQ0,gn{fj,n(Q̄)}2 → 0 in probability.

We can write this difference as a sum of the following two differences:

1
n

∑J
j=1{fj,n(Q̄∗n)(Ōj)}2 − 1

n

∑J
j=1 PQ0,gnfj,n(Q̄∗n)2

1
n

∑J
j=1 PQ0,gnfj,n(Q̄∗n)2 − 1

n

∑n
j=1 PQ0,gnfj,n(Q̄)2

= 1
n

∑J
j=1 PQ0,gn

{
fj,n(Q̄∗n)2 − fj,n(Q̄)2

}
= 1

n

∑J
j=1 PQ0,gn

{
f ′j,n(Q̄∗n − Q̄)

}{
fj,n(Q̄∗n) + fj,n(Q̄)

}
≤
(

1
n

∑J
j=1 PQ0,gn

{
f ′j,n(Q̄∗n − Q̄)

}2
)0.5 (

1
n

∑J
j=1 PQ0,gn

{
fj,n(Q̄∗n) + fj,n(Q̄)

}2
)0.5

,

where we used Cauchy-Schwarz inequality at the last inequality. The last
term can thus be bounded by Mdn(Q̄∗n, Q̄), so that it converges to zero in
probability, since dn(Q̄∗n), Q̄) converges to zero in probability.

We now consider the first term, which can be represented as

1

n

J∑
j=1

hj,n(Q̄∗n),

where
hj,n(Q̄) ≡ f 2

j,n(Q̄)(Oi)− PQ0,gnfj,n(Q̄)2.

Define the process Yn(Q̄) = 1/n
∑

j hj,n(Q̄). Note that hj,n(Q̄) has conditional

mean zero given W n. Thus, conditional on W n, Yn(Q̄) is a sum of independent
mean zero random variables. The process

√
nYn(Q̄) has exactly same structure

as process Xn(Q̄) we analyzed above. Therefore, under our conditions, we have
supQ̄∈F | Yn(Q̄) = OP (1/

√
n). This implies, in particular, that the first term

converges to zero in probability. This proves the convergence to the desired
limit.
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C Appendix: Proof of Theorem 4

We can decompose D∗(Q̄∗, g0, ψ0) orthogonally in a function of W and a func-
tion of Y , A,W , which has conditional mean zero, given W , as follows:

D∗(Q̄∗, g0, ψ0) = Q̄0(W )− ψ0

+Hg0(A,W )(Y − Q̄∗(A,W ))− {Q̄0(W )− Q̄∗(W )}.
Thus, the variance is given by:

P0{D∗(Q̄∗, g0, ψ0)}2 = E0{Q̄0(W )− ψ0}2

+E0E0

(
H2
g0

(A,W )(Y − Q̄∗(A,W ))2 | W
)
− E0{Q̄0(W )− Q̄∗(W )}2.

Note that

E0E0(H2
g0

(A,W )(Y − Q̄∗(A,W ))2 | W )

= E0E0

(
1

g20(A|W )
E0((Y − Q̄∗(A,W ))2 | A,W ) | W

)
= E0

∑
a

1
g0(a|W )

σ2
0(Q̄∗)(a,W ),

where σ2
0(Q̄∗)(a,W ) ≡ E0((Y − Q̄∗(A,W ))2 | A = a,W ). Thus, we have

obtained the following expression:

σ2
I (Q̄

∗) = E0{Q̄0(W )− ψ0}2

+E0

∑
a

1
g0(a|W )

σ2(Q̄∗)(a,W )− E0{Q̄0(W )− Q̄∗(W )}2.

For the paired matching design the asymptotic variance σ2 of the TMLE
is given by the limit of

E0{Q̄0(W )− ψ0)}2 + E0
1
n

∑n/2
j=1 PQ0,gn

{∑
i∈Cj(Wn) Hg0(Ai,Wi)(Yi − Q̄∗(Ai,Wi))

}2

−E0
1
n

∑n/2
j=1

{∑
i∈Cj(Wn){Q̄0(Wi)− Q̄∗(Wi)}

}2

Each
∑

i∈Cj(Wn) is a sum over two terms. We use that (a+ b)2 = a2 + b2 + 2ab.

The contribution a2 + b2 from the square terms yields:

E0
1
n

∑n
i=1

{
PQ0,gn

{
Hg0(Ai,Wi)(Yi − Q̄∗(Ai,Wi))

}2 − {Q̄0(Wi)− Q̄∗(Wi)}2
}

= E0

∑
a

1
g0(a|W )

σ2
0(Q̄∗)(a,W )− E0{Q̄0(W )− Q̄∗(W )}2.

This equals the corresponding expression we have for σ2
I (Q̄

∗). The contribution
2ab from the cross-terms yields:

2E0
1
n

∑n/2
j=1 PQ0,gnHg0,1j(Y1j − Q̄∗(A1j,W1j))Hg0,2j(Y2j − Q̄∗(A2j,W2j))

−2E0
1
n

∑n/2
j=1{Q̄0(W1j)− Q̄∗(W1j)}{Q̄0(W2j)− Q̄∗(W2j)}

= −4E0
1
n

∑n/2
j=1

{
(Y1j(1)− Q̄∗(1,W1j))(Y2j(0)− Q̄∗(0,W2j))

}
−4E0

1
n

∑n/2
j=1

{
(Y1j(0)− Q̄∗(0,W1j))(Y2j(1)− Q̄∗(1,W2j))

}
−2E 1

n

∑n/2
j=1{Q̄0(W1j)− Q̄∗(W1j)}{Q̄0(W2j)− Q̄∗(W2j)}.
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To conclude, the asymptotic variance under the paired matching design is
given by:

σ2(Q̄∗) = E0{Q̄0(W )− ψ0)}2 + E0

∑
a

1
g0(a|W )

σ2(Q̄∗)(a,W )

−E0{Q̄0(W )− Q̄∗(W )}2

−4E0
1
n

∑n/2
j=1

{
(Y1j(1)− Q̄∗(1,W1j))(Y2j(0)− Q̄∗(0,W2j))

}
−4E0

1
n

∑n/2
j=1

{
(Y1j(0)− Q̄∗(0,W1j))(Y2j(1)− Q̄∗(1,W2j))

}
−2E 1

n

∑n/2
j=1{Q̄0(W1j)− Q̄∗(W1j)}{Q̄0(W2j)− Q̄∗(W2j)}

Thus, the difference between the two asymptotic variances is given by:

σ2
I − σ2 = 4E0

1
n

∑n/2
j=1

{
(Y1j(1)− Q̄∗(1,W1j))(Y2j(0)− Q̄∗(0,W2j))

}
+4E0

1
n

∑n/2
j=1

{
(Y1j(0)− Q̄∗(0,W1j))(Y2j(1)− Q̄∗(1,W2j))

}
+2E 1

n

∑n/2
j=1{Q̄0(W1j)− Q̄∗(W1j)}{Q̄0(W2j)− Q̄∗(W2j)}

= 2E0
1
J

∑n/2
j=1

{
(Q̄0(1,W1j)− Q̄∗(1,W1j))(Q̄0(0,W2j)− Q̄∗(0,W2j))

}
+2E0

1
J

∑n/2
j=1

{
(Q̄0(0,W1j)− Q̄∗(0,W1j))(Q̄0(1,W2j)− Q̄∗(1,W2j))

}
+E 1

J

∑n/2
j=1{Q̄0(W1j)− Q̄∗(W1j)}{Q̄0(W2j)− Q̄∗(W2j)}

= E0
1
J

∑n/2
j=1(Q̄0 − Q̄∗)(1,W1j)(Q̄0 − Q̄∗)(0,W2j)

+E0
1
J

∑n/2
j=1(Q̄0 − Q̄∗)(0,W1j)(Q̄0 − Q̄∗)(1,W2j)

+E0
1
J

∑n/2
j=1(Q̄0 − Q̄∗)(1,W1j)(Q̄0 − Q̄∗)(1,W2j)

+E0
1
J

∑n/2
j=1(Q̄0 − Q̄∗)(0,W1j)(Q̄0 − Q̄∗)(0,W2j)

≡ C,

and σ2 = σ2
I − C. 2

D Appendix: Proof of Theorem 5.

The proof is analogue to the proof of Theorem 1. Therefore, we suffice with
proving (12). Firstly, we note that

E0D
n,∗(Q̄, ḡ, Π̄, ψ0)(On) = E0

1
n

∑n
i=1{Q̄(Wi)− ψ0}+

E0
1
n

∑n
i=1

gi,0(1,1|Wi)

ḡn(1,1|Wi)
(Q̄0 − Q̄)(1,Wi)− gi,0(0,1|Wi)

ḡn(0,1|Wi)
(Q̄0 − Q̄)(0,Wi)

= Ψ(Q)− ψ0 + 1
n

∑
i

∫
w
QW,0(w)

gi,0(1,1|w)

ḡn(1,1|w)
(Q̄0 − Q̄)(1, w)

− 1
n

∑
i

∫
w
QW,0(w)

gi,0(0,1|w)

ḡn(0,1|w)
(Q̄0 − Q̄)(0, w)

= Ψ(Q)− ψ0 + E0
ḡ0,n(1,1|W )

ḡn(1,1|W )
(Q̄0 − Q̄)(1,W )

−E0
ḡn,0(0,1|W )

ḡn(0,1|W )
(Q̄0 − Q̄)(0,W ).

Thus, if ḡn,0 = ḡ0, then this equals Ψ(Q) − ψ0 + ψ0 − Ψ(Q) = 0. If Q0 = Q,
then we also obtain 0. This proves (4). 2
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E Appendix: Review of relevant empirical pro-

cess/weak convergence theory.

We refer to van der Vaart and Wellner (1996), Section 2.2. on maximal in-
equalities and covering numbers. For a real valued random variable X and
convex function ψ with ψ(0) = 0, the Orlics norm is defined as ‖ X ‖ψ≡
inf{C > 0 : Eψ(| X | /C) ≤ 1}. Setting ψ(x) = xp gives the Lp-norms
‖ X ‖p= E(| X |p)1/p, p ≥ 1. Another important choice for empirical pro-
cesses is ψp(x) = exp(xp)−1. Sums of independent bounded random variables
and Gaussian random variables have bounded ψ2-norm. There is an important
relation between the orlics norm and a bound on the tail probability of the
random variable. In particular, we have (page 96 in van der Vaart and Wellner
(1996))

P (| X |> x) ≤ 1

ψ(x/ ‖ X ‖ψ)
.

For ψp(x) this leads to tail estimates exp(−Cxp) for any random variable with
a finite ψp norm. Conversely, an exponential tail bound of this type shows that
‖ X ‖ψp is finite: Lemma 2.2.1 states that if P (| X |> x) ≤ K exp(−Cxp) for
every x, for constants K and C, and for p ≥ 1, then its orlics norm satisfies
‖ X ‖ψp≤ ((1 + K)/C)1/p. So if we have an exponential tail probability for
Xn(f), then we can translate this into a bound on the ψp-orlics norm.

Given a sequence of random variables Xi, we have (page 96)

‖ max
i≤m

Xi ‖ψ≤ Kψ−1(m) max
i
‖ Xi ‖ψ .

Thus, if we can bound the orlics norm of Xn(f) in terms of a norm on f , then
this result allows us to bound the orlics norm of a maximum over m functions.
This bound combined with chaining gives the typical entropy type bounds. As
we will see one of the main things we will need is a bound on ‖ Xn(f) ‖ψ in
terms of d(f, f) for a semi-metric d on F .

Bounding orlics norm: Let (T, d) be an arbitrary semi-metric space.
The covering number N(ε, d) is the minimal number of balls of radius ε needed
to cover T . Call a collection of points ε-separated if the distance between
each pair of points is strictly larger than ε. The packing number D(ε, d) is
the maximum number of ε-separated points in T . Entropy numbers are the
logarithms of the covering or packing number. Since N(ε, d) ≤ D(ε, d) ≤
N(0.5ε, d), bounds in packing number map into a bound in covering number
and vice versa.

For our purpose, we will need Theorem 2.2.4 in van der Vaart and Wellner
(1996), which is stated here for completeness.

48

http://biostats.bepress.com/ucbbiostat/paper296



Theorem 6 (Theorem 2.2.4, van der Vaart and Wellner, 96) Let ψ be a con-
vex non-decreasing non zero function with ψ(0) = 0 and lim supx,y→∞ ψ(x)ψ(y)/ψ(cxy) <
∞ for some constant c. Let (Xt : t ∈ T ) be a separable stochastic process (that
is, supd(s,t)<δ | Xs −Xt | remains almost surely the same if the index set T is
replaced by a suitable countable subset) with

‖ Xs −Xt ‖ψ≤ Cd(s, t) for every s, t,

for some semimetric d on T and a constant C. Then, for any η, δ > 0,

‖ sup
d(s,t)≤δ

| Xs −Xt |‖ψ≤ K

{∫ η

0

ψ−1(D(ε, d))dε+ δψ−1(D2(η, d))

}
for a constant K depending on ψ and C only. In particular, the constant K
can be chosen so that

‖ sup
s,t
| Xs −Xt |‖ψ≤ K

∫ diamT

0

ψ−1(D(ε, d))dε,

where diam(T ) is the diameter of T . This result also gives

‖ sup
t
| Xt |‖ψ≤‖ Xt0 ‖ψ +

∫ diam(T )

0

ψ−1(D(ε, d))dε.

The bound shows that the sample paths of X are uniformly continuous in
ψ-norm, whenever the covering integral

∫ η
0
ψ−1(D(ε, d))dε is finite/exists for

some η > 0. In order to have that this integral is bounded for classes T with
covering numbers that behave as ε−p, one will need to use an Orlics norm with
ψ(x) = xp, and if one wants the integral to be bounded for any p, then one
needs ψ(x) = exp(xq)− 1 for some q.

If one can prove that ‖ Xn(s) − Xn(t) ‖ψ≤ Cd(s, t) for a constant C
independent of n, and each Xn is a separable stochastic process, then this
theorem teaches us that for any sequence δn, and ηn > 0, we have that there
exists a constant K depending on ψ, C only (not dependent on n!) so that

‖ sup
d(s,t)≤δn

| Xn(s)−Xn(t) |‖ψ≤ K

{∫ η

0

ψ−1(D(ε, d))dε+ δnψ
−1(D2(η, d))

}
.

We can now apply this inequality for a sequence δn → 0 for n → ∞. Since
η can be chosen arbitrary small, it follows that, if

∫ η
0
ψ−1(D(ε, d))dε < ∞ for

some η > 0, then

‖ sup
d(s,t)≤δn

| Xn(s)−Xn(t) |‖ψ→ 0 as n→∞.

So we can state the following useful corollary:
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Corollary 1 Suppose there exists a η > 0 so that
∫ η

0
ψ−1(D(ε, d))dε <∞. In

addition, assume
‖ Xn(s)−Xn(t) ‖ψ≤ Cd(s, t)

for a constant C independent of n, and each Xn is a separable stochastic process
with respect to d. Then for any sequence δn → 0, we have

‖ sup
d(s,t)≤δn

| Xn(s)−Xn(t) |‖ψ→ 0 as n→∞.

This corollary provides us with conditions under which Xn is asymptot-
ically uniformly d-equicontinuous in probability. Theorem 1.5.7. in van der
Vaart and Wellner (1996) now states that Xn is asymptotically tight in `∞(T )
if Xn(t) is asymptotically tight for every t, (T, d) is totally bounded, and Xn

is asymptotically d-equicontinuous in probability. In addition, Theorem 1.5.4
states that if Xn is asymptotically tight and its marginals converge weakly
to the marginals X(t1), . . . , X(tk) of a stochastic process X, then there is a
version of X with uniformly bounded sample paths and Xn converges weakly
to X. Thus, we can state the following result:

Lemma 1 Let ψ be one of the following functions: ψ(x) = xp for some p,
or ψ(x) = exp(x1) − 1, ψ(x) = exp(x2) − 1. Let d be a semi-metric on
T so that (`∞(T ), d) is totally bounded, and there exists a η > 0 so that∫ η

0
ψ−1(D(ε, d))dε <∞. In addition, assume

‖ Xn(s)−Xn(t) ‖ψ≤ Cd(s, t)

for a constant C independent of n, and each Xn is a separable stochastic process
with respect to d. Then for any sequence δn → 0, we have for each x > 0

Pr

(
sup

d(s,t)≤δn
| Xn(s)−Xn(t) |> x

)
→ 0 as n→∞, (14)

and Xn is asymptotically tight.
If Xn(t1), . . . , Xn(tk) converges weakly to (X(t1), . . . , X(tk), then there ex-

ists a version X with uniformly bounded sample paths and Xn ⇒d X.
If X is Gaussian process X in `∞(T ), and d(s, t) = ρp(s, t) ≡‖ (X(f) −

X(g)) ‖p, then there exists a version of X which is tight Borel measurable map
into `∞(T ).

Actually (page 41), if X is Gaussian, then Xn converges weakly to X in
`∞(T ) if and only if for some p (and then for all p) (i) the marginals of
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Xn converge to the corresponding marginals of X, (ii) Xn is asymptotically
equicontinuous in probability with respect to

d(s, t) = ρp(s, t) ≡‖ X(s)−X(t) ‖p,

as defined in (14), and (iii) T is totally bounded for d = ρp.
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