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Abstract

The authors present the use of targeted learning methods for medical research, prepared
as a chapter for the upcoming book Statistics: Discovering Your Future Power. The targeted
learning framework involves the explicit specification of the data, model, and parameter. The
estimators are double robust and efficient, and can incorporate machine learning procedures
such as the super learner.

What is Targeted Learning?
When we ask scientific questions, we frequently collect data in an attempt to answer these ques-
tions. In the many areas of medical research, we are often interested in so-called causal effects.
That is to say, we prefer not to merely conclude that there is an association or correlation between
two variables. Instead, we want to know that variable X causes variable Y .

Let’s introduce a tangible example. Suppose we are studying the causal effect of treatment
noncompliance on intestinal cancer among patients with celiac disease in the United States. Celiac
disease is an autoimmune disorder characterized by the body’s inability to digest the protein gluten,
which is found in certain grains (wheat, barley, and rye). Gluten causes significant damage to the
small intestines in people with celiac disease, and can cause intestinal cancer over time. The only
available treatment for celiac disease is a completely gluten-free diet. Noncompliance on the diet
is nontrivial, with an estimated 30% of those diagnosed with the disease purposely noncompliant.
For simplicity, let’s define the treatment as binary and either compliant (always follows the diet)
or not compliant (sometimes or never follows the diet).

We’ve identified our population of interest, persons with celiac disease in the United States, and
now we must decide how to design our study to answer the question of interest. It’s not feasible
for us to collect information about each person in the United States who has celiac disease. Thus,
we must take a sample from our population of interest in order to make inferences about the
population. Experimental studies in human populations regularly occur under the umbrella of
randomized controlled trials (RCTs). Here, we assign a treatment or exposure in the experiment
based on randomization.

In a randomized study of diet noncompliance in celiac disease on intestinal cancer where each
subject was assigned to treatment based on tossing a fair coin, the differences between the compli-
ant and noncompliant groups would be due only to the treatment since other factors are balanced,
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up to random error. This would be a causal effect. However, in practice, randomization does not
occur perfectly, and certain covariates may be predictive of the outcome. It is also important to
note that treatment or exposure assignment can have varying degrees of complexity, and occur over
time or at one intervention.

Just as in a hypothetical RCT studying smoking exposure, it would not be ethical to require
celiac disease patients to ingest significant amounts of gluten for any lengthy period of time. The
outcome (intestinal cancer) also takes many years to develop and an RCT would be cost prohibitive.
Thus, many studies are “observational,” where the treatment or exposure is not randomized, and
we observe and record the subjects’ behavior without assignment. Since our observational study
of celiac disease does not involve randomization, differences between groups will be biased due to
various issues such as confounding, informative missingness, and censoring.

Traditional analysis methods for observational studies involve assuming restrictive parametric
statistical models and using maximum likelihood estimation. There are many problems with this
nontargeted approach. A key issue is that we are estimating many coefficients (parameters) in a
parametric statistical model, and we use a criterion that is focused on the fit of the entire probabil-
ity distribution. However, we are truly interested in the causal effect of treatment noncompliance
on intestinal cancer, not multiple coefficients in a statistical model. This is then clearly not ideal
as we have spread the error across the whole distribution. If the statistical model is correct, the
effect of the treatment is a conditional effect, and not necessarily the parameter we are interest in
estimating. Additionally, when the statistical model is misspecified, the parameters in the statisti-
cal model are not interpretable. In most medical applications, we have many covariates and this
bias can be substantial. With targeted learning, we isolate the parameter of interest directly in less
restrictive and more realistic models. Our estimator has important statistical properties that im-
prove on standard methods, and also allows the incorporation of aggressive and flexible machine
learning approaches.

Defining the Research Question
The first step in targeted learning is accurately defining the question of interest. This includes a
clear description of the data, statistical model, and parameter. Our study is an experiment where
we draw a random variable (an individual subject) from our celiac population n times. The data we
observe are realizations of these n random variables, and the random variables have an underlying
probability distribution. Now remember: a statistical model need not be a parametric statistical
model! A statistical model in general represents the set of possible probability distributions of the
data. Our statistical model should represent our knowledge about the data. In our celiac disease
study, we will assume a nonparametric statistical model. We are assuming that we know the
data are comprised of observations on n independent and identically distributed random variables,
which is a real assumption, but we make no other assumptions. A parametric statistical model
would assume that the probability distribution underlying the data is known (up to a certain number
of parameters). Our statistical model makes no such assumption, as, in practice, it is widely known
that nonsaturated parametric statistical models are wrong.

Now, we’ve made only those assumptions in our nonparametric model that are supported by
the data. But there is nothing about this statistical model that allows us to interpret our parame-
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ter as causal...yet. We can make additional causal assumptions, and these assumptions combined
with our statistical model are referred to simply as the model for the observed data. These causal
assumptions allow us set up a system where we can intervene and “set” an individual to be compli-
ant or not compliant on their gluten-free diet. It is this system, that we will define more formally
shortly, that will enable us to define the causal effect of diet compliance on intestinal cancer among
celiac patients in the United States.

We’ve just described in words what we are interested in: we want to estimate this causal effect.
We now need to establish its identifiability. If the assumptions we have made based on background
knowledge are enough to express the causal parameter as a parameter of the probability distribution
of the observed data, and thereby prove its identifiability, we need not make additional causal
assumptions. However, if this is not the case, we need additional assumptions for establishing
identifiability of the desired causal effect. The identifiability result will allow us to define an
estimand (i.e., statistical target parameter) as a function of the data generating distribution, which
can be interpreted purely as a statistical target parameter, and, under these additional assumptions,
it can also be interpreted as a causal effect. Either way, the definition of the statistical model and
statistical target parameter defines our estimation problem, while the possible additional causal
assumptions required to interpret the statistical target parameter as a causal effect only concern the
interpretability of the statistical output.

Data and Statistical Model

Let us formalize these concepts with some notation. The data consists of n i.i.d. copies of random
variable O ∼ P0, where P0 is the true underlying probability distribution for O. In this chapter
we will explore a simple case, where O is defined as: O = (W,A,Y ) ∼ P0. This data structure
has baseline covariates W , exposure variable (gluten-free diet compliance) A, and outcome (in-
testinal cancer within 10 years of baseline) Y . The variable W is a vector that includes age, sex,
concomitant health risks, and other important potential confounding variables. This simplified
example ignores issues of censoring, missingness, and that our exposure of interest might be time-
dependent depending on our scientific question. The statistical model M is the set of possible
probability distributions for P0, is nonparametric, and incorporates our subject matter knowledge
about P0.

Model with Causal Assumptions

The model includes additional causal assumptions, which allows us to interpret the parameter of
interest as a causal effect. The causal assumptions are nontestable assumptions, as we cannot
use the data to verify their accuracy. We will assume a so-called structural causal model (SCM),
comprised of endogenous variables X = (X j : j) and exogenous variables U = (UX j : j). The SCM
describes that each X j is a deterministic function of other endogenous variables and an exogenous
error U j. The errors U are never observed. For each X j we characterize its parents from among X
with Pa(X j). For example, in our celiac study, X = (W,A,Y ), and Pa(A) =W . We know this due
to the time ordering of the variables. Thus we can now write:

X j = fX j(Pa(X j),UX j), j = 1 . . . ,J,
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and the functional form of fX j is often unspecified. An SCM can be fully parametric, but it is not
recommended as our background knowledge does not support the assumptions involved. The joint
distribution of U and the collection of functions fX j indexed by the complete set of all endogenous
variables f = ( fX j : j) described the data-generating distribution of (U,X).

There is a corresponding SCM for O, and this involves defining the relationship between O and
(U,X) so that the SCM for the full data suggests a parameterization of the probability distribution
of O in terms of the distribution PU of U and f . The SCM for the observed data suggests a statistical
model for the probability distribution of O.

To summarize, the causal assumptions we make with our SCM for the full data are that (1)
each endogenous variable depends on other endogenous variables only through its parents and (2)
our exogenous variables have a certain joint distribution PU . The SCM for the observed data addi-
tionally assumes that the probability distribution of O is suggested by the probability distribution
of (U,X).

Let’s demonstrate these concepts in our celiac disease study. We have the functions f =
( fW , fA, fY ) and exogenous variables U = (UW ,UA,UY ). Our structural equation models, based
on subject matter knowledge, are given as:

W = fW (UW ),

A = fA(W,UA),

Y = fY (W,A,UY ). (1)

We have not made any assumptions about the form of the functions f . We do now make the as-
sumption that the observed data structure O= (W,A,Y ) is a realization of the endogenous variables
(W,A,Y ) produced by this system, which defines the SCM for the observed data.

We can also present a causal graph based on our SCM, which is a common graphic to describe
some of the causal assumptions made by our SCM. Figure 1 displays two possible causal graphs
that could be drawn based on the SCM given in equation (1), they have different assumptions about
the distribution of PU . Often we know nothing about this distribution, but for the identifiability of
our causal parameter, we may be required to make additional assumptions. For example, we may
need to assume in our SCM that UA is independent of UY , given W in order for our causal effect to
be identifiable. This is equivalent to assuming there are no unmeasured confounders.

We can then write Ya = fY (W,a,UY ), which is as a random variable corresponding to interven-
tion A= a and the marginal probability distribution of Ya is given by PU,X(Ya = y)=PU,X( fY (W,a,UY )=
y). The causal effect the risk difference in our study of diet compliance on intestinal cancer in celiac
patients can now be defined as a parameter of the distribution of (U,X) given by

Ψ
F(PU,X) = EU,XY1−EU,XY0.

This causal quantity is the difference in marginal means of counterfactuals Y1 and Y0.

Target Parameter

We’ve already described what we are interested in learning in our study of celiac disease subjects
in the United States: we want to understand the causal effect of gluten-free diet noncompliance
on intestinal cancer. This difference can be measured on an additive scale in the form of a risk
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Figure 1: a) A causal graph for (1) with no assumptions on the distribution of PU . b) A possible
causal graph for (1) with all U j independent.

difference or on a multiplicative scale, such as a the familiar relative risk or odds ratio. There are
also more complicated parameters that may be of interest depending on your research question.
Perhaps you’d like to stratify by gender, for example. We will present the risk difference for our
study.

Suppose now we’ve made enough assumptions in our model that our causal quantity is identi-
fiable, therefore we can write the causal parameter ΨF(PU,X) as a parameter Ψ(P) of an observed
data probability distribution P = PPU,X of O implied by a distribution PU,X of the underlying U,X .
Ψ maps the true data distribution P0 into our feature of interest. That is, the parameter Ψ(P0) is a
function of the unknown distribution P0. Remember, we are not simply grabbing a coefficient from
a parametric model, we need to think carefully about the feature of the probability distribution we
are interested in understanding.

Under the randomization assumption UA⊥UY , conditional on W , and the positivity assumption
0 < P0(A = 1 |W )< 1, the causal additive risk difference can be defined as the following function
of P0 of O:

Ψ(P0) = EW,0[E0(Y | A = 1,W )−E0(Y | A = 0,W )], (2)

where E0(Y | A = a,W ) is the conditional mean of Y given A = a and W . Recall that A, diet
compliance, is binary. Ψ(P0) can also be written as:

Ψ(P0) = ∑
w

[
∑
y

yP0(Y = y | A = 1,W = w)

−∑
y

yP0(Y = y | A = 0,W = w)
]

P0(W = w),

where

P0(Y = y | A = a,W = w) =
P0(W = w,A = a,Y = y)

∑y P0(W = w,A = a,Y = y)
.

We will use a targeted maximum likelihood estimator (TMLE) to produce an estimate of Ψ(P0).
A confidence interval will also be generated using either influence curve based methods. Interpre-
tation is the last step, and we have two options. One is as a purely statistical parameter of P0, and
one as a causal parameter under additional (causal) assumptions (i.e, randomization and positivity
assumption).
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Super Machine Learning
The first step in estimating our parameter of interest, given in (2), using TMLE, is a starting es-
timate of the piece of P0 necessary to evaluate our target parameter. We want to use an estimator
that respects our nonparametric model, one that acknowledges that P0 is known only as an ele-
ment of our nonparametric model. Our parameter depends on P0 through the conditional mean
Q̄0(A,W ) = E0(Y | A,W ) and the marginal distribution QW,0 of W . Thus, we can also denote our
parameter as Ψ(Q0), where Q0 = (Q̄0,QW,0). We will estimate the expectation over our covariates
W with the empirical mean over Wi, i = 1, . . . ,n. Therefore, Q̄0(A,W ) = E0(Y | A,W ) is the object
we still need a flexible nonparametric way to estimate. Our task is then clear, the first step of the
TMLE for the risk difference is to obtain an estimate of the conditional mean function Q̄0(A,W ).
Our “plug-in” TMLE is of the type

ψn = Ψ(Qn) =
1
n

n

∑
i=1
{Q̄n(1,Wi)− Q̄n(0,Wi)}. (3)

The estimate is produced by plugging Qn = (Q̄n,QW,n) into the parameter mapping Ψ.
The main knowledge we have about P0 is that the data are n i.i.d. realizations o1, . . . ,on on

n i.i.d. copies O1, . . . ,On of O ∼ P0. Since our outcome (intestinal cancer) is binary, our we
are interested in estimating Q̄0(A,W ) = P0(Y = 1 | A,W ) as the first step of our TMLE. We do
not merely want to use a parametric regression to estimate Q̄0(A,W ) as it makes very restrictive
assumptions we cannot support with our background knowledge. This would lead to bias, bias we
cannot remove by increasing our sample size. We want to use very flexible methods to produced an
automated algorithm to estimate Q̄0(A,W ). Machine learning, or data-adaptive, methods also aim
to “smooth” our data, but they do so less rigidly than a parametric regression. But which algorithm
do we use? The literature has demonstrated that some methods will work best in certain data, while
others will perform better in the next data set. It’s unpredictable. How do we handle the problem
of many algorithms and varied performance?

Loss Function

Before we can figure out what estimator is the best estimator of Q̄0(A,W ), we must have a met-
ric to define what we mean by “best.” A loss function is the way we do this. A loss function
L assigns a performance measure to a candidate function Q̄ applied to an observation O: L :
(O, Q̄)→ L(O, Q̄)∈R. For our study, we can use the L2 squared error loss function L(O, Q̄) = (Y−
Q̄(A,W ))2. or the log-likelihood loss L(O, Q̄) = −{Y log Q̄(A,W ) + (1−Y ) log(1− Q̄(A,W ))}.
Since we have a binary Y , the L2 loss indeed targets the function Q̄0(A,W ) = P0(Y = 1 | A,W ).

Our parameter of interest Q̄0(A,W ) = E0(Y | A,W ) is therefore the minimizer of the expected
squared error loss or expected log-likelihood loss: Q̄0 = arg minQ̄E0L(O, Q̄). E0L(O, Q̄) evaluates
Q̄, and it is minimized at the optimal Q̄0. The expected loss is also referred to as the risk. This is the
metric we will use to select the optimal algorithm, we want the estimator of the function Q̄0 with the
realized value that minimizes the risk. The next question is: how do we know which algorithm from
our collection of algorithms has the best performance with respect to this dissimilarity measure?
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Super Learner

We know there are many different algorithms available to produce an estimate of Q̄0. We want the
best algorithm that minimizes our risk, but how to we use many algorithms honestly to generate
the best algorithm? In summary, ensembling allows us to use many algorithms to generate an ideal
prediction function that is a weighted average of all the algorithms. Our final choice of weighted
average is based on our a priori-selected criterion and we will use cross-validation methods to avoid
a biased final prediction function. We will describe the use of ensembling in the super learner.

First, let’s input our fictional celiac data set and a collection of potential algorithms. This col-
lection could include multiple different regressions, random forests, support vector machines, or
other algorithms. Let’s divide our fictional celiac data set into V mutually exclusive and exhaustive
sets of size ∼n/V . A common choice of V is 10, and we will perform 10-fold cross-validation
within our ensembling super learner algorithm. Within each fold, 1 block is designated the “val-
idation” set and we fit each of the algorithms on the remaining data called the training set. For
example, in Fold 1, Block 1 is the validation set and we fit each algorithm on Blocks 2 through 10.
In Fold 2, Block 2 is the validation set and we fit each algorithm on Block 1 and Blocks 3 through
10. This is done for each of the 10 folds such that we have 10 fits for each algorithm, one for every
fold.

The next step involves generating predicted probabilities of intestinal cancer for each algorithm
using the validation sets, based on the corresponding training set fit. Since each subject appears in
only one validation set, at the end of this step we have one predicted probability for each subject per
algorithm. An estimated risk is then calculated for each algorithm using the predicted probabilities
generated with the cross-validation. This leaves us with one estimated cross-validated risk for each
algorithm. We could stop here, and simply choose the algorithm with the smallest risk, but we can
actually improve on the algorithm (called the discrete super learner) that does this.

A super learner builds a library of algorithms that consists of all possible weighted averages
of the algorithms we input at the start of our super learner. This is now an augmented library, an
even larger collection of algorithms, and one of the weighted averages may perform better any of
the single algorithms alone. We apply the same cross-validation selector we used in the discrete
super learner to this augmented set of candidate algorithms to produce the super learner. While we
are minimizing the cross-validated risk over this infinite set of weighted averages, this procedure
is actually not computationally infeasible, and requires a comparatively trivial calculation of an
optimal weight vector.

We left our algorithm where we had cross-validated risks for each algorithm in our original
collection of algorithms. We now propose a family of weighted combinations of these algorithms,
which is indexed by a weight vector α . We limit the vector α to include only those vectors that
sum to one and where each weight is ≥ 0. The optimal weight vector is selected in a simple
minimization problem: a regression of Y on the predicted probabilities of intestinal cancer. The
weight vector selected is the one that minimizes the estimated expected squared error loss function.
The last step involves fitting each algorithm on the complete celiac data set and combining these
fits with the optimal weight vector. This is the super learner predictor function is a new estimator
which can be used to generate predicted values for Q̄0(A,W ). To calculate an estimated risk for
the super learner, the entire super learner algorithm is cross-validated.

In realistic scenarios (where a correctly specified parametric regression is not among the candi-
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date algorithms), as long as our loss function is bounded, the super learner will perform as well as
the so-called oracle selector, for large samples. The oracle is the algorithm in the library that is the
closest to Q̄0, and recall that with the super learner, our algorithm library is the family of weighted
combinations of estimators. When the library does include a correctly specified parametric regres-
sion, the super learner approximates the truth as fast as the parametric regression, but it is more
variable.

Targeted Maximum Likelihood Estimator
We have an initial super learner estimate of the relevant part of the data-generating distribution
obtained, thus we can present the remainder of the TMLE procedure. This second stage updates
our initial fit in a step targeted towards making an optimal bias–variance tradeoff for the parameter
of interest, instead of the overall probability distribution. This leads to a targeted estimator of Q0,
and thereby in the corresponding substitution estimator of Ψ(Q0).

TMLE has several key statistical properties. The first is double robustness. TMLE removes the
asymptotic bias of the initial estimator if it uses a consistent estimator of the treatment mechanism
P0(A |W ). Even when the initial estimator is consistent for the target parameter, the consistency
property is conserved through the targeting step. This additional step may even remove finite
sample bias. Another desirable property is efficiency. When both the initial estimator and the
estimator of the treatment mechanism are consistent, then the TMLE will also be asymptotically
efficient. Since TMLEs incorporate machine learning procedures, we make every effort in practice
to achieve minimal bias and the asymptotic semiparametric efficiency bound for the variance. The
TMLE for (2) is also a substitution estimator, which means it takes an estimator of Q0 and plugs it
into Ψ(). Substitution estimators are more robust to data sparsity and outliers than nonsubstitution
estimators.

The TMLE procedure can be summarized succinctly as follows: We take our initial estimator
of Q0 and then create a one-dimensional parametric statistical model with parameter ε through
the initial estimator whose score at ε = 0 spans the efficient influence curve of the parameter
of interest at the initial estimator. ε is estimated with maximum likelihood estimation in this
parametric statistical model and we update the new estimator as the corresponding fluctuation of
the initial estimator. The algorithm is iterated until convergence, although in our case for the risk
difference, as in many others, it converges in one step. We use our celiac study with its simplified
basic data structure and our risk difference target parameter to illustrate the TMLE. However, we
note that the TMLE can estimate many varied target parameters.

Implementation

1. Estimating Q̄0. In the previous section, we generated a super learner function for our celiac
study. Therefore we used the super learner procedure to generate an initial estimate of Q̄0,
denoted Q̄0

n.

2. Estimating g0. Our targeting step required an estimate of the conditional distribution of diet
compliance given covariates W . This estimate of P0(A |W ) ≡ g0 is denoted gn and was
obtained using super learning.
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3. Determining a parametric working model to fluctuate the initial estimator. We use the es-
timate gn in a clever covariate to define a parametric working model coding fluctuations of
the initial estimator. The clever covariate H∗n (A,W ) is given by

H∗n (A,W )≡
(

I(A = 1)
gn(1 |W )

− I(A = 0)
gn(0 |W )

)
.

4. Updating Q̄0
n. We ran a logistic regression of Y on H∗n (A,W ) using the offset logitQ̄0

n(A,W ) as
the intercept in order to obtain εn, which is the estimated coefficient for H∗n (A,W ). In order
to update the estimate Q̄0

n into a new (and final) estimate Q̄1
n we calculated:

logit Q̄1
n(A,W ) = logit Q̄0

n(A,W )+ εnH∗n (A,W ).

This step would be iterated if necessary, however, for this TMLE it converges in one step.

The TMLE of Q0 was therefore given by Q∗n = (Q̄1
n,Q

0
W,n).

5. Targeted substitution estimator of the target parameter. The plug-in TMLE using updated
estimates Q̄1

n(1,W ) and Q̄1
n(0,W ) and the empirical distribution of W was calculated. Our

formula (3) became

ψT MLE,n = Ψ(Q∗n) =
1
n

n

∑
i=1
{Q̄1

n(1,Wi)− Q̄1
n(0,Wi)}.

6. Inference. The influence curve of our estimator, defined as:

ICn(Oi)=

(
I(Ai = 1)
gn(1 |Wi)

− I(Ai = 0)
gn(0 |Wi)

)
(Y−Q̄1

n(Ai,Wi))+Q̄1
n(1,Wi)−Q̄1

n(0,Wi)−ψT MLE,n,

is used to calculate standard errors. With the influence curve, one can go forward with
statistical inference as if the estimator minus its estimand equals the empirical mean of
the influence curve. The sample mean of the estimated influence curve values was ¯ICn =
1
n ∑

n
i=1 ICn(oi). For our TMLE we have ¯ICn = 0. We then calculated the sample variance of

the estimated influence curve values:

S2(ICn) =
1
n ∑

n
i=1
(
ICn(oi)− ¯ICn

)2
,

and the standard error of our estimator was given by σn =
√

S2(ICn)/n. With these standard
errors, we calculated confidence intervals and p-values in the standard fashion. A 95%
Wald-type confidence interval was given by ψT MLE,n± z0.975σn/

√
n, where zα denoted the

α-quantile of the standard normal density N(0,1). The p-value for ψT MLE,n was constructed
as:

2
[

1−Φ

(∣∣∣∣ψT MLE,n

σn/
√

n

∣∣∣∣)] ,
where Φ denotes the standard normal cumulative distribution function.
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7. Interpretation. The interpretation of our estimate ψT MLE,n, under causal assumptions, would
be that noncompliance on a gluten-free diet causally increases/decreases (depending on the
estimate and confidence interval) 10-year intestinal cancer risk in the United States celiac
population. If our causal effect was not identifiable, perhaps due to unmeasured confound-
ing, then we would interpret our estimate ψT MLE,n purely statistically. For example, the ad-
ditive effect of noncompliance on a gluten-free diet, controlling for measured confounders
only, increases/decreases 10-year intestinal cancer risk in the United States celiac population
by ψT MLE,n.

Targeted Learning Framework
While we focused in this chapter on a simplified study of diet compliance on intestinal cancer in
celiac disease subjects and a marginal risk difference parameter, targeted learning methodology is
truly a framework for an algorithm that can be applied and developed for other study designs and
data structures (van der Laan and Rubin 2006; van der Laan and Rose 2011). These problems can
be attacked with the roadmap we have described in this chapter: 1) define the data, 2) state the
model, 3) identify the target parameter, and 4) implement (and possibly develop a new) TMLE
incorporating super learner providing inference with influence curves or bootstrapping.

One common issue found in practice is a right-censored outcome. In our fictional study of
intestinal cancer, we are likely to have subjects drop-out, since follow-up occurs over a 10 year time
frame. Drop-out may occur before the final 10 year endpoint due to death, relocation, disinterest
in continuation, and other reasons. We can apply targeted learning to this data structure, which
we write as O = (W,A, T̃ ,∆) ∼ P0, where we now additionally have T for time to event Y , C as
censoring time, T̃ = min(T,C), ∆ = I(T ≤ T̃ ) = I(C≥ T ), with Y , A, and W as defined previously.
See, for example, Moore and van der Laan (2009a,c).

This leads us to another type of study design. In the study of rare diseases, such as intestinal
cancer, researchers often use a so-called case-control design that samples diseased subjects from
the celiac population of individuals with intestinal cancer, and then samples nondiseased subjects
from the celiac population of individuals without intestinal cancer. This design eliminates the need
to sample subjects and then follow them for extended periods. Case-control studies are biased
designs, as the distribution of cases in the sample is not the same as in the target population.
These designs also vary in complexity, and can include matching, incidence-density sampling, and
other variations. Targeted learning methods can be applied with use of the known or estimated
prevalence probability in case-control-weighted TMLE (van der Laan 2008; Rose and van der
Laan 2008, 2009). A related design, often referred to as a nested case-control study, is a two-stage
design, where one first samples a cohort from the population of interest, and then samples cases
and controls from the cohort. An inverse probability weighted TMLE has been developed for use
in these designs (Rose and van der Laan 2011).

Another design we highlight, is that of a community RCTs. This involves very carefully de-
scribing the observational unit, since interventions are assigned to communities and not individ-
uals. These studies may also involve matching and follow subjects over time. Certain questions
of interest are the causal effect of the community level intervention, and the direct effect of the
community level intervention on the individual versus the indirect effect through other individuals
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(van der Laan 2010).
Longitudinal studies are quite common, and often studies analyzed at two time points (baseline

and endpoint) actually collect data at multiple time points, and this information is ignored. But
what if we care about the effect of diet over these many time points? One cannot even define
a coefficient in a parametric model that targets this effect. Suppose we observe n i.i.d. copies
of the longitudinal data structure O = (L0,A0, . . . ,LK,AK,Y = LK+1), with A j a discrete valued
intervention node, L j an intermediate covariate that occurs after A j−1 and before A j, j = 0, . . . ,K,
and Y is the final outcome of interest. For example, the TMLE for the intervention specific mean
outcome will be a targeted plug-in estimator of: EPaY a =E . . .E(E(Y a | L̄a

K) | La
K−1) . . . | L0), where

Pa is the post-intervention distribution setting ĀK = (A0,A1, . . . ,AK) equal to āK = (a0,a1, . . . ,aK)
and La = (L0,La

1, . . . ,Y
a = La

K+1) is the random variable with probability distribution Pa. Other
target parameters can also be estimated (van der Laan and Gruber 2012).

Practical Implications
Many of the concepts presented in this chapter may be new and challenging, and the reader may
wonder, “Is all this effort worth it? Why can’t I just use standard methods as others have done for
many decades?” The reality is that, all other arguments aside, conventional methods cannot accom-
modate the new era of “Big Data.” They cannot effectively incorporate hundreds of covariates or
multiple time point interventions. It has never been more important to accurately define your data,
a realistic model, and target parameter, and then use flexible nonparametric (or semiparametric)
methods to estimate your parameter of interest.

We motivated this chapter using the example of celiac disease. Experts studying this disease
right now are exploring new areas, such as the timing of gluten introduction in young infants and
their microbial environment, in order to understand why certain people with a genetic predisposi-
tion develop the disorder, but others with the genetic predisposition do not (Sellitto et al. 2012).
These studies produce vast amounts of data, incredibly high-dimensional data sets, requiring novel
flexible nonparametric statistical methods. If we specified a parametric statistical model in these
studies, we would have more unknown parameters in the model than actual observations! Celiac
disease is just one example. Brain imaging data is another area where researchers are inundated
with vast amounts of data. Most of these data sets are comprised of groupings of 3 dimensional
arrays over time, which leads to a 4 dimensional array for each individual in the study. Again,
off-the-shelf parametric methods are not be able to handle the complexity of neuroimaging data.
Comprehensive medical databases, such as the U.S. Food and Drug Administration’s Sentinel Ini-
tiative, are another example of “Big Data.” The Sentinel Initiative’s goal is to monitor drugs and
devices for safety over time. In order to do this, they are building a national electronic system
which already has access to 100 million subjects. It is very unlikely that parametric modeling
assumptions will be supported by subject matter knowledge, and there are many additional com-
plications in data of this type: missingness, censoring, and time-dependent confounding are just a
few (Rose 2012b).

Thus, the TMLE has increasingly important implications, both in the analysis of RCTs and
observational studies. In RCTs, the TMLE often results in both bias and efficiency gains when
compared to unadjusted and other ad hoc estimators frequently used in RCT data. This is due
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to the fact that TMLE naturally exploits information in baseline and time-dependent covariates,
reducing bias due to empirical confounding, as well as “drop out.” We need not assume that this
drop out is non informative, as in many cases it is informative (e.g., subjects experiencing toxicity
side effects are more likely to drop out than those who do not).

Because we lack randomization in observational studies, efficient and maximally unbiased
estimators are critical. Consider an observational study where people take a high dose or low dose
of a medication. Further suppose the high dose is taken by sicker people. An unadjusted estimator
and a misspecified parametric regression will be biased. A targeted learning approach gives us a
robust and semiparametric efficient substitution estimator, while we maintain an appropriate loss
function as the primary criterion.

Some Philosophical and Methodological Implications
In the previous sections we pointed out that targeted maximum likelihood estimation and super
learning framework (TMLE/SL) is not yet another set or collection of analytical tools to be added
to the toolkit of the data-analyst, empirical research worker, or statistical consultant. Rather than
this, it establishes a new methodology in several ways. From a technical point of view it of-
fers an integrative approach to data-analysis or statistical learning by combining mathematical
statistics with techniques from the field of computational intelligence (machine learning, data min-
ing, knowledge discovery in databases). From a conceptual or methodological point of view, it
sheds new lights on several “stages” of the research process, including such items as the research
question, assumptions and background knowledge, modeling, causal inference, and validation, by
anchoring these stages or elements of the research process in statistical theory. All these elements
should be related to or defined in terms of (properties of) the data-generating distribution, and to
this aim TMLE/SL provides both clear heuristics and formal underpinnings. Among other things,
this means that the concept of a statistical model is reestablished in a parsimonious way, allowing
humans to include only their true, realistic knowledge in the model. In addition, the scientific ques-
tion and background knowledge are to be translated into a formal causal model and target causal
parameter using the causal graphs and counterfactual (potential outcome) frameworks, including
specifying a working marginal structural model. And, even more significantly, TMLE/SL reas-
signs to the very concept of estimation, canonical as it has always been in statistical inference, the
pivotal role in any theory of/approach to “learning from data,” whether it deals with establishing
causal relations, classifying, clustering, multiple testing, or time series forecasting. This remark
may seem rather obvious or even trivial from a statistical perspective, but appears to be crucial in
understanding the situation in research practice today.

However, the relevance of TMLE/SL exceeds the realms of statistics in a strict sense and even
those of research methodology. It has also several important philosophical implications, more
specifically in the field of philosophy of science and epistemology. Some of these implications
have been treated in some detail in Starmans (2011a) where the present state of statistical data
analysis was put in a historical and philosophical perspective with the purpose to clarify, un-
derstand, and account for the current situation in statistical data analysis and to underline the
relevance of topics addressed by TMLE for both philosophy of statistics and current issues in
epistemology/philosophy of science. In this respect the current situation in data analysis is rather
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paradoxical and inconvenient. From a foundational perspective the field consists of several com-
peting schools with sometimes incompatible principles, approaches or viewpoints. Some can be
traced back to Karl Pearson’s approach to data-analysis, the Fisherian tradition of estimation, the
Neyman–Pearson school of hypothesis testing, or the Bayesian paradigm. Simultaneously, the
market for statistical textbooks offers many elementary and even advanced studies, raising the
false impression of a uniform and united field with foundations that are fixed, and on which full
agreement has been reached. It offers a toolkit that wrongly suggest the unification of ideas and
methods derived from the aforementioned traditions. From a philosophical point of view this situ-
ation is rather inconvenient for two related reasons.

First, nearly all scientific disciplines have experienced a probabilistic revolution since the late
19th century. Increasingly, their key notions are probabilistic, their research methods, entire the-
ories are probabilistic, if not the underlying worldview is probabilistic, i.e., dominated by and
rooted in probability theory and statistics. When the probabilistic revolution emerged in the late
19th century, we observed this transition in renowned sciences like physics (kinetic gas theory,
statistical mechanics), but especially in new emerging disciplines like the social sciences, biology
(evolution, genetics, zoology), agricultural science, and psychology. Biology even came to matu-
rity due to close interaction with statistics. Today, this trend has only further strengthened, and as
a result there is a plethora of fields of application of statistics ranging from biostatistics, geostatis-
tics, epidemiology, and econometrics to actuarial science, statistical finance, quality control and
operational research in industrial engineering, and management science. Probabilistic approaches
have also intruded several branches of computer science; most noticeably they dominate artificial
intelligence.

Secondly, at a more abstract level, probabilistic approaches also dominate epistemology, the
branch of philosophy committed to classical questions like: What is reality? Does it exist mind-
independent? Do we have access to it? If yes, how? Can we make true statements about it? If
yes, what is truth and how is it connected to reality? The analyses conducted to analyze these
issues are usually intrinsically probabilistic. As a result these approaches dominate key-issues
and controversies in epistemology, such as the scientific realism debate, the structure of scientific
theories, Bayesian confirmation theory, causality, models of explanation and the status of natural
laws. All too often scientific reasoning seems nearly synonymous with probabilistic reasoning.
Considering the fact that scientific inference more and more depends on probabilistic reasoning and
that statistical data analysis is not as well-founded as might be expected, the issue addressed in this
chapter is of major importance for epistemology. If one views TMLE/SL against this background
several philosophical implications become apparent. We confine ourselves to three salient issues:
the erosion of models, the problem of causality, and the scope of the Bayesian paradigm.

Regarding the status of models it is obvious that they are ubiquitous in science and in everyday
life. They are primarily commonsense notions or natural categories, that we constantly use to
interpret reality, to understand ourselves, our situatedness and experiences. Despite many types
of models and levels of abstraction the general idea is clear: they represent, describe or build
up (a part or aspect of) reality for the purpose of interpreting, understanding or predicting this
reality. In epistemology, the model theoretic tradition was adopted after successful application in
mathematics. In this semantical tradition models are true interpretations of theories, and notions
like logical consequence and validity are essentially semantical or model-based. As we pointed
out in a previous section the notion of model in statistics fits this tradition. Models are essentially
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sets of distributions including the approximation of the true data generating distribution. However,
currently the concept of models seems to some extent eroded and there appears to be a tension
between truth and models, both in epistemology and in research practice (Starmans 2011b). In
epistemology, no doubt, pragmatic and postmodern approaches to science have contributed to the
erosion of the concept of models. The most radical critic of the outlined representation might be
Richard Rorty in his influential “Philosophy and the Mirror of Nature” (Rorty 1979). Emanating
from the pragmatic tradition of Peirce, James, and Dewey and building on such diverse thinkers
as Quine and Kuhn, he rejected the view that modern science is capable of an objective picture
or representation of reality and contended that the postulated correspondence between language,
mental image, and reality is a misconception. Even the famous transition from mythos to logos,
which according to tradition, started about 2600 years ago, is unsustainable and the search for
truth and the foundations of knowledge is, according to Rorty, illusory. But also in the sciences,
models are often used instrumentally, making truth an obsolete and unnecessary notion. Although
these ideas are also pervasive in the natural sciences, we confine ourselves here to statistics. This
last idea culminates in particular in the work of the British statistician George Box, who in an
infamous quote from 1987 states that “Essentially, all models are wrong, but some are useful”
(Box and Draper 1987). With this passage, he refers to a research practice that even today is
manifest in many sciences and in professional practice. Statistical data analysis usually takes place
by means of (parametric) statistical models, which rely heavily on various assumptions about the
population to which the analyzed data were derived. These assumptions are generally false, but
the models are still widely used, supported by widely available and increasingly cheap computing
power. By using parsimonious models, TMLE may contribute to the much needed reconciliation
between the notions of models and truth.

Next, we refer to the issue of causality, which is principally a commonsense notion or natu-
ral category in the Aristotelian or Kantian sense of the word. Despite the major role of causality
in both human action and in the history of philosophy and science, the notion proved problem-
atic in the course of the history of ideas and sometimes even received a pejorative interpretation.
Several attempts were made to ban the concept from scientific vocabulary, most noticeably by
the philosopher and mathematician Bertrand Russell and leading 19th century statistician Karl
Pearson. Thanks to fundamental research in computer science and artificial intelligence in the last
decades, a computational turn took place in thinking about causality, which gave scientists increas-
ingly a firm grip on this formerly unruly concept. In 2012, the American computer scientist and AI
scientist Judea Pearl received the most prestigious scientific award in computer science, the Turing
Award, for his work in the field of probabilistic networks and causal modeling. His 2000 publica-
tion and 2009 revised study “Causality: Models, Reasoning and Inference” (Pearl 2009) may be
regarded as a highlight in modern thinking about causality. TMLE/SL uses the graphical methods
pioneered by Pearl, but moves a step further and anchors it in statistical theory on estimation by
relating the causal interpretation to the statistical model in the way we outlined in this chapter.

Thirdly, we briefly mention Bayesianism. Today, many philosophers of science to a greater
or lesser extent embrace the Bayesian confirmation theory, in particular those who still pursue a
rational reconstruction of science, after the failures or shortcomings of the inductive logic of the
logical positivists and after the limitations of Karl Poppers falsificationism became apparent. The
central question is how we put our faith in scientific theories or hypotheses, and especially how
we can justify our faith in these theories on the basis of new empirical data. In statistics, computer
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science, and Artificial Intelligence, Bayesianism appears as a leading paradigm. However, despite
its intuitive appeal, the Bayesian approach suffers from the same drawbacks we outlined in this
chapter, mainly because the approach is generally not targeted. Neither does it anchor the different
“steps” of the research process, nor does it provide the empirical researcher with a constructive
methodology. In view of all these aspects it is certainly not fully evident to identify Bayesianism
as the canonical model for scientific knowledge and reasoning.

Notes and Further Reading
Targeted learning methods are further expanded in van der Laan and Rose (2011), and portions of
the introductory material in this chapter were adapted from Chapters 1-5 of that textbook as well as
Starmans (2011a). Detailed references concerning related work can also be found in those chapters,
as this section is not exhaustive. The general TMLE algorithm was published in van der Laan and
Rubin (2006), and additional papers on TMLE include Bembom and van der Laan (2007), van der
Laan (2008), Rose and van der Laan (2008, 2009, 2011), Moore and van der Laan (2009a,b,c),
Bembom et al. (2009), Polley and van der Laan (2009), Rosenblum et al. (2009), van der Laan and
Gruber (2010, 2012), Gruber and van der Laan (2010), Rosenblum and van der Laan (2010), and
Wang et al. (2010).

The super learner was published in van der Laan et al. (2007). An introductory implemen-
tation article using an application in an elderly population can be found in Rose (2012a). There
is significant related work on ensembling that predated the original super learner paper, and we
refer to Chapter 3 of van der Laan and Rose (2011) for more complete references. We do note
here that the super learner is a generalization of the stacking algorithm (Wolpert 1992; Breiman
1996; LeBlanc and Tibshirani 1996) and the name “super learner” was coined due to the theoretical
oracle property and its ramifications described in van der Laan and Dudoit (2003).

There are other estimators in the literature that can estimate our described parameter. The origi-
nal maximum-likelihood-based substitution estimator of the g-formula parameter was published in
Robins (1986). An introductory implementation of this estimator was recently published (Snowden
et al. 2011; Rose et al. 2011). A thorough bibliographic review of estimating equation methods,
which includes inverse probability weighting (Robins 1999; Hernan et al. 2000) and augmented
inverse probability weighting (Robins et al. 2000b; Robins 2000; Robins and Rotnitzky 2001), is
covered in Chapter 1 of van der Laan and Robins (2003). Introductory implementations of inverse
probability weighting are described in Robins et al. (2000a), Mortimer et al. (2005), and Cole and
Hernan (2008). These estimators lack the complete statistical properties of TMLE, as described in
Chapter 6 of van der Laan and Rose (2011).

The SCM framework discussed in this chapter is given a thorough treatment in Pearl (2009). An
alternative causal framework is the Neyman–Rubin causal model (Neyman 1923; Rubin 1974). We
motivated this chapter using an example from celiac disease research. Celiac disease is a common
autoimmune disorder, and currently the only autoimmune disorder with a known treatment: the
gluten-free diet. Pertinent references include Green et al. (2001) and Fasano et al. (2003).
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