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Assessing the Causal Effect of Policies: An
Approach Based on Stochastic Interventions

Iván Dı́az and Mark J. van der Laan

Abstract

Stochastic interventions are a powerful tool to define parameters that measure
the causal effect of a realistic intervention that intends to alter the population dis-
tribution of an exposure. In this paper we follow the approach described in D\’iaz
and van der Laan (2011) to define and estimate the effect of an intervention that is
expected to cause a truncation in the population distribution of the exposure. The
observed data parameter that identifies the causal parameter of interest is estab-
lished, as well as its efficient influence function under the non parametric model.
Inverse probability of treatment weighted (IPTW), augmented IPTW and targeted
minimum loss based estimators (TMLE) are proposed, their consistency and effi-
ciency properties are determined. An extension to longitudinal data structures is
presented and its use is demonstrated with a real data example.



1 Introduction
Current approaches to causal inference Rubin (1974, 1978), Pearl (2000, 2009)
define causal parameters as functions of the distribution of random variables gen-
erated by a system in which the stochastic nature of a set of variables is intervened
on, leading to changes in the stochastic nature of the variables that depend causally
on them. Such interventions may be defined in various ways: static, dynamic or
stochastic. A static intervention is one in which the treatment is set to a given fixed
value deterministically, while a dynamic intervention allows such value to depend
on variables that precede it causally. Static interventions have also been called de-
terministic (Korb, Hope, Nicholson, and Axnick, 2004) or atomic (Pearl, 2000).

In spite of their wide use, deterministic interventions (whether static or dy-
namic) do not provide an appropriate framework to answer causal questions about
phenomena that are not subject to direct intervention. Feasible interventions often
interact with other factors (e.g., a medication has impact in several organs), fail to
put the exposure of interest into a deterministic state (e.g., it is unrealistic to set
an individuals’ exercising regime according to a deterministic function), or are the
result of implementing policies that target stochastic changes in the behavior of
a population (e.g., the use of mass media messages advertising condom use as a
means of prevention of HIV infection is a deterministic treatment at the community
level that renders a stochastic one at the individual level, because each individual
will react stochastically to the intervention depending upon exogenous observed or
non observed factors (McAlister, 1991)).

In general (Korb et al., 2004), an intervention can be simply defined as an
external manipulation of a causal system, whether that manipulation is deterministic
or stochastic. A static intervention corresponds to an alteration of the causal system
in which the density of the exposure is changed to a degenerate one. One can also
intervene in the exposure by changing its density in any arbitrary way, which leads
to a natural generalization of the counterfactual framework of (Rubin, 1978). This
general approach is perhaps of more interest from a policy making standpoint: if the
counterfactual distribution of the exposure reflects the expected changes induced by
a hypothetical intervention policy, the intervened model contains all the information
about the causal effect of the intervention in the distribution of the outcome.

Stochastic interventions also provide a new, natural way of non-parametrically
defining causal parameters for any type of exposure (e.g., continuous ones), regard-
less of its support and dominating measure. Thus far this was only possible through
the use of misspecified parametric models or the use of marginal structural models
(Neugebauer and van der Laan, 2007). Some advantages of stochastic interventions
with respect to marginal structural models include weakening the positivity assump-
tion and robustness with respect to misspecification of the model for the treatment
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mechanism.
Because stochastic interventions generalize static and dynamic interven-

tions, and since several intervention policies are not representable in terms of ei-
ther static or dynamic interventions, the development of methods for identification
and estimation of parameters defined in terms of stochastic interventions is of main
interest to the causal inference research community.

Among the few works dealing with the mathematical formalization of stochas-
tic interventions figure (Didelez, Dawid, and Geneletti, 2006) and (Dawid and
Didelez, 2010), who provide a systematic and comprehensive discussion of identifi-
cation of parameters of stochastic, dynamic and static interventions, studying them
from a decision-theoretic viewpoint, exploiting representations of causal systems
in terms of regime indicators and influence diagrams, and presenting a parallel be-
tween their theory and existing theory for dynamic, non-stochastic regimes. (Tian,
2008) shows that the identification of sequential intervention, whether stochastic
or not, can be reduced to identification of a specific set of sequential static inter-
ventions, for which there are complete identifications algorithms available in the
literature. It is therefore no surprise that identification of our parameter in section
2.2 requires no further assumptions than those required for identification of a static
intervention.

Stochastic interventions arise in applications either inspired by a determin-
istic intervention, or because they are of interest in themselves. The most popular
example of the former situation is given by the definition of natural direct effects,
in which the effect of A on Y is confounded by W and mediated by a variable Z.
If A and Z are binary, one can define the counterfactual Y1,Z0 (Robins and Green-
land, 1992, Pearl, 2001, Zheng and van der Laan, 2011, Hafeman and VanderWeele,
2011) as the outcome under a model in which A has been set to a = 1 with probabil-
ity one, and the distribution of Z has been changed to that of Z0, the latter being the
counterfactual of Z obtained when A is set to a = 0 with probability one. This set-
ting provides an example in which the intervention of interest is performed in two
nodes, using a static intervention for A, and a stochastic intervention for Z. (Didelez
et al., 2006) and (Robins and Richardson, 2010) discuss in detail the case in which
several direct and indirect effects are defined and studied in the context of stochastic
interventions. (Taubman, Robins, Mittleman, and Hernn, 2009) considered an in-
tervention in the BMI defined by a truncation of the original exposure distribution,
which, contrary to the truncation that we will use in this paper, relocates the mass
originally located above the threshold across all the values below the threshold. As
explained by (Stitelman, Hubbard, and Jewell, 2010), such intervention is usually
the result of dichotomizing a continous variable and considering a static interven-
tion in the dichotomous version of the treatment variable. This dichotomization
represents current common practice, in section 3 we will discuss the differences
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with the approach presented in this paper. (Cain, Robins, Lanoy, Logan, Costagli-
ola, and Hernán, 2010) briefly discuss a stochastic intervention in the context of
comparing dynamic treatment regimes for HIV infected patients. The regimes they
discuss are of the type “initiate treatment within m months after the recorded CD4
cell count first falls below x”, and they are interested in an atomic intervention in
the CD4 cell count X , and a discrete uniform {0,m} post-intervention distribution
for the number of months before treatment M. Such intervention is discussed in
more detail by (Young, Cain, Robins, OReilly, and Hernn, 2011).

Among the applications in which stochastic interventions arise as an in-
terest in themselves, (Diaz and van der Laan, 2011) considered the effect of an
intervention in a population of people over 55 years of age that aimed to change the
distribution of the amount of energy spent in leisure time physical activity on all
cause mortality. In the present manuscript we will analyze the effect of an interven-
tion that intends to reduce air pollution levels below a certain threshold, but allows
a stochastic distribution of air pollutants below such threshold. The claims about
identifiability and properties of the estimators presented in this paper are valid only
for this stochastic intervention, although they can be generalized to a broader class
of interventions.

Consistent and efficient estimation of statistical parameters in semi para-
metric models has been studied by Bickel, Klaassen, Ritov, and Wellner (1997),
van der Laan and Robins (2003), Rose and van der Laan (2011), Tsiatis (2006),
among others. In particular Rose and van der Laan (2011) provide a very valu-
able link between efficient estimation theory in semiparametric models and causal
inference, empowering researchers with tools to define a causal parameter of in-
terest, truthfully propose a model for the distribution of the data, and compute an
efficient, targeted estimate of the parameter of interest under that model. By a truth-
ful definition of the statistical model we mean that the start point is a completely
non parametric model, that can only be reduced in size if real knowledge about
the distribution of the data is obtained. Parametric and other assumptions often
made for the sake of computational convenience are not allowed: they do not rep-
resent knowledge about the phenomena under study and therefore result in biased
estimates.

In this article we use efficiency theory in semiparametric models, and in par-
ticular the targeted minimum loss based estimation road map as described by Rose
and van der Laan (2011) to assess the effect of a (hypothetical) law that enforces
pollution levels below a certain cutoff point.

The paper is organized as follows. In Section 2 we define the observed
and counterfactual data, as well as the causal and statistical parameter and its ef-
ficient influence function. In Section 3 we discuss how this problem would be
tackled with existing methods, and argue that the conclussions of such methods are
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misleading. In Section 4 we present three estimators of the statistical parameter
of interested: an inverse probability of treatment weighted estimator (IPTW), an
augmented IPTW that solves the efficient influence curve equation, and a targeted
minimum loss based estimator (TMLE). Section 5 provides an extension to longitu-
dinal data settings and illustrates its use to measure the effect of NO2 concentrations
in the air on asthma symptoms in children between 6 and 11 years of age. Finally,
Section 6 provides some concluding remarks and directions of future research.

2 Observed data, counterfactuals and parameter of
interest

2.1 Causal and Statistical Models

Consider an experiment in which an exposure variable A, a continuous or binary
outcome Y and a set of covariates W are measured for n randomly sampled subjects,
and the outcome is measured subject to an indicator of missingness denoted by
C. Let O = (W,A,C,CY ) represent a random variable with distribution P0, and
O1, . . . ,On represent n i.i.d. observations of O. Assume that the following non
parametric structural equation model (Pearl, 2000, NPSEM) holds:

W = fW (UW ); A = fA(W,UA); C = fC(A,W,UC); CY =C fY (A,W,UY ), (1)

where UW , UA, UC and UY are exogenous random variables assumed to satisfy the
randomization assumption (UC,UA)⊥⊥UY |W . The true distribution of O can be
factorized as

P0(O) = P0(W )P0(A|W )P0(C|A,W ){P0(Y |A,W,C)}C{I(CY = 0)}1−C, (2)

and we denote g0(A|W )≡P0(A|W ), φ0(A,W )≡P0(C = 1|A,W ), and Q̄0(A,W,C)≡
E0(Y |A,W,C).

In the next subsections we will use this data structure to define a causal
and statistical parameter of interest, find its efficient influence curve (Bickel et al.,
1997, van der Laan and Robins, 2003), and establish the asymptotic properties of
estimators that solve the efficient curve equation.

2.2 Causal and statistical parameters

Assume that the interest of the researcher relies in estimating the effect of a policy
that will cause a truncation on the exposure, relocating the probability mass origi-
nally located above certain threshold δ2 in an interval (δ1,δ2), where δ1 = δ2− ε
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for some small ε . Formally put within the causal framework of Pearl (2000), such
policy can be described by considering the modified system

W = fW (UW ); APδ
= T (gI){ fA(W,UA),W}; CPδ

= 1; YPδ ,1 = fY (APδ
,W,UY ),

(3)
where gI denotes a user-given (but possibly unknown, e.g. one could set gI = g0)
conditional distribution of A given W ,

T (gI)(A,W ) =

G−1
I {G0(A)} if A < δ1

G−1
I

{
GI(A|W )−GI(δ1|W )

K(gI)(W )
+GI(δ1|W )

∣∣∣∣W} if A≥ δ1,
(4)

and GI denotes the distribution function corresponding to gI . The distribution of
APδ

is given by

Pδ (gI)(APδ
= a|W ) =


gI(a|W ) if a < δ1

gI(a|W )K(gI)(W ) if δ1 ≤ a≤ δ2

0 otherwise ,

(5)

where

K(g)(W ) =
1−G{δ1|W}
G{δ1,δ2|W}

,

and in an abuse of notation G{δ1,δ2|W} ≡
∫

δ1≤a≤δ2
g(a|W )dµ(a). This interven-

tion has two consequences on the distribution of the exposure: (1) it changes the
distribution of values of A below δ1 from g0 to gI; and (2) it relocates the values of
A above δ1 between δ1 and δ2 according to distribution (5). As special case we will
consider the case gI = g0, which is of particular interest when we weant to assess the
effect of policies that enforce the value of certain exposure below a pre-specified
level. In such cases the distribution of the set of individuals that already comply
with the enforced cut-off is expected to remain unchanged, making consequence
(1) void.

Under the randomization assumption, the expectation of the outcome YPδ ,1
is identified as a function of the observed data generating mechanism P0 as

Ψ(P0) = E(YPδ ,1) = EgI ,QW

{
Q̄0(A,W,1)×M(gI)(A,W )

}
, (6)

where M(g)(A,W )= Iδ1(A)+Iδ1,δ2(A)×K(g)(W ), Iδ1(A)= I(A< δ1) and Iδ1,δ2(A)=
I(δ1≤ A≤ δ2). This identification result follows from the following argument. The
usual consistency assumption (A= a,C = 1)⇒Ya,1 =Y implies (APδ

= a,C = 1)⇒
YPδ ,1 =Ya,1, therefore P(YPδ ,1 = y|APδ

= a,C = 1,W =w) =P(Ya,1 = y|APδ
= a,C =

1,W = w). It is easy to verify that (UA,UC)⊥⊥UY |W implies (APδ
,C)⊥⊥Ya,c|W for
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all a, c. Thus P(Ya,1 = y|APδ
= a,C = 1,W = w) = P(Ya,1 = y|W = w), which from

standard arguments for identification of static interventions (see for example Pearl
(2000)) can be shown to be identified by P(Y = y|A = a,C = 1,W = w). This re-
sult can also be derived using the “G-recursion” formula, presented by Dawid and
Didelez (2010), which generalizes the G-computation formula for dynamic regimes
(Robins, 1986). It can also be shown that the assumptions stated here are equiva-
lent to the assumption of “simple stability” as defined by Dawid and Didelez (2010),
which generalizes the (sequential) randomization assumption to the case of stochas-
tic interventions.

The parameter in (6) is a weighted mean of Q̄0(A,W,1) (with respect to the
joint distribution of A and W ), in which values of Q̄0(A,W,1) for which A < δ1
receive weight one, values for which δ1 ≤ A ≤ δ2 receive weight K(gI)(W ), and
values for which A > δ2 receive weight 0. This makes intuitive sense; if the portion
of the population whose exposure is originally above δ2 is relocated in exposure lev-
els in [δ1,δ2], the expected outcome of individuals in [δ1,δ2] should be reweighed
by K(gI)(W ), and the portion above δ2 should be reweighed by zero, given that no
portion of the population will fall in that region after the intervention.

As a consequence of the formal equivalence between the counterfactual
and the non-parametric structural equation model frameworks (Pearl, 2000, section
7.4.4.), all the results presented in this paper can be derived under either paradigm.
Furthermore, parameter (6) is a purely statistical parameter defined as the expecta-
tion of the outcome under a different distribution of A given W , and can therefore
be of interest in itself, without any underlying causal assumption or interpretation.
In the following subsections we deal with estimation of (6) under a non-parametric
model.

2.3 Efficient Influence Curve

The efficient influence curve is a key element in semi-parametric efficient estima-
tion, since it defines the linear approximation of any efficient and regular asymptot-
ically linear estimator, and therefore provides an asymptotic bound for the variance
of all regular asymptotically linear estimators (Bickel et al., 1997). We limit the
discussion to efficient estimation of parameter (6) when gI = g0; the case of a user
given function gI is easier and can be studied using similar arguments.
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Lemma 1. The efficient influence curve of parameter (6) when gI = g0 is given by

D(P0)(O) =
C

φ0(A,W )
M(g0)(A,W ){Y − Q̄0(A,W,1)} (7)

+0 (8)

+M(g0)(A,W )

{
Q0(A,W,1)−

EP0{Q̄0(A,W,1)Iδ1,δ2(A)|W}
G0{δ1,δ2|W}

}
+

EP0{Q̄0(A,W,1)Iδ1,δ2(A)|W}
G0{δ1,δ2|W}

−EP0{Q̄0(A,W,1)M(g0)(A,W )|W} (9)

+EP0{Q̄0(A,W,1)M(g0)(A,W )|W}−Ψ(P0). (10)

where the terms (7)-(10) are denoted by D1(P0), D2(P0), D3(P0), and D4(P0); re-
spectively, and correspond to the orthogonal decomposition of the efficient influence
curve implied by the factorization of the likelihood in (2).

This decomposition of the score is going to be useful later on during the
construction of a targeted maximum likelihood estimator of ψ0, to define the correct
parametric fluctuations. The following lemma provides the conditions under which
an estimator that solves the efficient influence curve equation is consistent.

Lemma 2. Let D(O|Q̄,g,φ ,ψ0) be the estimating equation implied by the efficient
influence function of Lemma 1:

D(O|Q̄,g,φ ,ψ0) =
C

φ(A,W )
M(g)(A,W )

{
Y − Q̄(A,W,1)

}
+M(g)(A,W )×{

Q̄(A,W,1)−
EP{Q̄(A,W,1)Iδ1,δ2(A)|W}

G{δ1,δ2|W}

}
+

EP{Q̄(A,W,1)Iδ1,δ2(A)|W}
G{δ1,δ2|W}

−ψ0. (11)

We have that EP0D(O|Q̄,g,φ ,ψ0) = 0 if and only if K(g) = K(g0) and either Q̄ =
Q̄0 or φ = φ0.

As a consequence of Lemma 2, a substitution estimator of Ψ(P0) that solves
the efficient influence curve equation will be consistent if and only if K(g0) and
either Q̄0 or φ0 are estimated consistently, and it will be efficient if and only if all of
the estimators for K(g0), Q̄0 and φ0 are consistent. The robustness of this estimating
equation is then tied to robustness of the estimator for K(g0). This consistency
condition on the initial estimator gn is weaker than the conditions needed for other
methods for continuous exposures (e.g., marginal structural models (Neugebauer
and van der Laan, 2007)); we only need an estimator gn that is consistent in the
sense that K(gn)→ K(g0), which is much weaker than the condition of gn → g0
required for marginal structural models. This is because K(g0) only depends on
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the conditional probabilities G{δ1|W} and G{δ1,δ2|W}, which can be consistently
estimated by a misspecified estimator of the density.

An additional advantage with respect to marginal structural models and
other methods for continuous variables (Petersen, Porter, Gruber, Wang, and van der
Laan, 2010) is given by the positivity assumption needed to identify and estimate
the parameter of interest. The positivity assumption required to estimate marginal
structural models is

sup
a∈A

h(a)
g0(a|W )

< ∞,− a.e.,

for a user-specified weight function h. The function h(a) = 1 is commonly used,
since it implies giving equal weights to all the possible treatment values. The posi-
tivity assumption needed to identify and estimate our parameter of interest is given
by

G0{δ1,δ2|W}> 0,− a.e.,

which is a condition that depends on the choice of the interval (δ1,δ2) and its prob-
ability under G0, and is thus more likely to be true than positivity of the density g0
for all the values a ∈A .

3 Common Practice
An alternative formulation of the causal problem of assessing the effect of a trunca-
tion in the exposure, which is the current standard in applications of causal inference
methods (e.g., Brotman, Klebanoff, Nansel, Andrews, Schwebke, Zhang, Yu, Ze-
nilman, and Scharfstein (2008), Bryan, Yu, and van der Laan (2004), Joffe, Have,
Feldman, and Kimmel (2004), Tager, Haight, Sternfeld, Yu, and Laan (2004)), is
given by the use of a dichotomous version A∗ = I(A < δ2) of the continuous treat-
ment variable. The effect of a truncation of A is evaluated in terms of the static
intervention A∗ = 1, and the parameter is defined as E{E(Y |A∗ = 1,W )}, which
corresponds (as proven by Stitelman et al. (2010)) with a stochastic intervention on
A in which g0 is changed to

Pδ (g0)(APδ
= a|W ) =

{
g0(a|W )/G{δ2|W} if a < δ2

0 otherwise ,
, (12)

which is equal to (5) only if G{δ1|W} = 0. This means that E{E(Y |A∗ = 1,W )}
measures the effect of a policy that will cause a truncation in the exposure, but will
relocate the mass of the non-compliers (i.e., G{δ2|W}) across all the values below
δ2. As a consequence, the two parameters assess policies with different hypothetical
effects on the density of the exposure; it is the researcher’s responsibility to judge
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which option is a more likely post-intervention distribution for the policy that is
being evaluated.

For instance, in section 5.2 we estimate the effect of a policy that enforces
pollutant levels below a predefined threshold. Under such a policy, individuals
polluting above the threshold will only have an incentive to reduce their pollution
levels to a value that is in accordance with the policy, having no further incentive to
go below the enforced cut-off point once they have reached it. Therefore, the most
likely post intervention distribution for this policy is one that locates the probability
mass associated to the non-compliers around the cut-off point, i.e., intervention (5).
The use of intervention (12) in this example could lead to misleading conclusions.
As an example, consider the following data generating mechanism

W1 ∼U{0,1}; W2 ∼ Ber{0.7}; W3 ∼ N{W1, .25exp(2W1)}
A∼ Beta{S1(W ),S2(W )}

Q̄(A,W ) = expit{1+W1 +1.5A+2AW1 + .5AW2−2W1W2 + .2W1W3},

where we consider four different values for S1 and S2: (1) S1(W ) = S2(W ) =
S(W ), (2) S1(W ) = S(W ) and S2(W ) = expit{S(W )}, (3) S1(W ) = expit{S(W )}
and S2(W ) = S(W ); and (4) S1(W ) = expit{S(W )} and S2(W ) = expit{S(W )}; for
S(W )= 2.5+ .6W1+ .3W2W3− .2W1W3− .1(1−W2)W3. This four scenarios provide
four different shapes of the beta distribution: (1) symmetric bell-shaped, (2) skewed
to the left, (3) skewed to the right; and (4) symmetric U-shaped. For these four sce-
narios, table 3 shows the parameter E(YPδ

−Y ) under interventions (5) and (12) for
(δ1,δ2) = (0.8,0.9), providing a situation in which the conclusions obtained from

Intervention (1) (2) (3) (4)
(5) -0.0001 -0.0001 -0.0019 -0.0009

(12) -0.0009 -0.0002 -0.0112 -0.0111

the two analysis are very different. In this example the two effects are fairly similar
when G{δ2|W} ≈ 1, i.e., models (1) and (2). The use of the standard practice of di-
chotomizing the exposure would lead to misleading results, particularly for models
(3) and (4).
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4 Estimators

4.1 Initial Estimators

In this section we present three estimators for the parameter defined in (6). The
TMLE and the A-IPTW estimators solve the efficient influence curve equation and
inherit the properties derived from Lemma 2. The IPTW is inefficient, and will
be consistent only if the estimator of φ0 is consistent. The TMLE is expected to
perform better than the A-IPTW if the positivity assumption supa∈A φ0(A,W ) >
0,− a.e. is violated.The finite sample properties of these estimators have been stud-
ied elsewhere (Porter, Gruber, van der Laan, and Sekhon, 2011, Diaz and van der
Laan, 2011, Rose and van der Laan, 2011).

The estimators presented in this section require initial estimates of Q̄0, g0
and φ0, which can be obtained through machine learning techniques, parametric
or semi-parametric models. The consistency of these initial estimators will deter-
mine the consistency and efficiency of the estimators of ψ0, as discussed previously.
Parametric models are commonly used for the sole sake of their convenient analyt-
ical properties, but they encode assumptions on the distribution of the data that are
not legitimate knowledge about the phenomenon under study and usually cause a
large amount of bias in the estimated parameter. As an alternative, we recommend
the use of machine learning techniques such as the super learner (van der Laan, Pol-
ley, and Hubbard, 2007). Super learner is a methodology that uses cross-validated
risks to find an optimal estimator among a library defined by the convex hull of
a user-supplied list of candidate estimators. One of its most important theoretical
properties is that its solution converges to the oracle estimator (i.e., the candidate in
the library that minimizes the loss function with respect to the true probability dis-
tribution). Proofs and simulations regarding these and other asymptotic properties
of the super learner can be found in van der Laan, Dudoit, and Keles (2004) and
van der Laan and Dudoit (2003). We will assume that g0 is estimated consistently
in the sense that K(gn)→ K(g0).

Influence curve based variance estimators are provided for these three esti-
mators. Consistency of the variance estimators also depends on the consistency of
the initial estimators of Q̄0, and φ0. These dependency can be avoided at the cost of
computational time and effort by using bootstrapped estimates of the variance.
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4.2 IPTW

Given an estimator g0
n of the exposure density g0, and an estimator φ 0

n of the missing
mechanism, the IPTW estimator of ψ0 is defined as

ψn,1 =
1
n

n

∑
i=1

Ci

φ 0
n (Ai,Wi)

M(g0
n)(Ai,Wi)Yi.

The IPTW is an asymptotically linear estimator with influence curve

DIPTW (O|g0,φ0,ψ0) =
C

φ0(A,W )
M(g0)(A,W )Y −ψ0,

therefore the variable
√

n(ψn,1−ψ0) converges in distribution to N(0,P0D2
IPTW (g0)),

whose variance can be estimated as the empirical variance of D2
IPTW (O|g0

n,φ
0
n ,ψn,1).

This is a conservative estimator of the variance of the IPTW, as proven in van der
Laan and Robins (2003).

4.3 Augmented IPTW

The augmented IPTW is the value ψn,2 that solves the equation ∑
n
i=1 D(Oi|Q̄0

n,g
0
n,φ

0
n ,ψ0)=

0, for initial estimates Q̄0
n, g0

n and φ 0
n of Q̄0, g0 and φ0.

ψn,2 =
1
n

n

∑
i=1

[
Ci

φ 0
n (Ai,Wi)

M(g0
n)(Ai,Wi)

{
Yi− Q̄0

n(Ai,Wi,1)
}
+M(g0

n)(Ai,Wi)×{
Q̄0

n(Ai,Wi,1)−
Eg0

n
{Q̄0

n(A,W,1)Iδ1,δ2(A)|Wi}
G0

n{δ1,δ2|Wi}

}
+

Eg0
n
{Q̄(A,W,1)Iδ1,δ2(A)|Wi}

G0
n{δ1,δ2|Wi}

]
.

(13)

If the initial estimators are consistent, the A-IPTW is an asymptotically linear es-
timator with influence curve D(O|Q̄0,g0,φ0,ψ0). As in the case of the IPTW, the
variable

√
n(ψn,2−ψ0) converges in law to a random variable with distribution

N{0,P0D2(·|Q̄0,g0,φ0,ψ0,)}, whose variance can be estimated as the empirical
variance of D2(O|Q̄0

n,g
0
n,φ

0
n ,ψn,2). (Rose and van der Laan, 2011, Appendix 18)

show that inference based on this variance estimator is valid only if φ 0
n is consis-

tent, providing exact inference when Q̄0
n is consistent, and conservative inference

when Q̄0
n is inconsistent.
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4.4 Targeted Minimum Loss Based Estimator

Targeted maximum likelihood estimation (van der Laan and Rubin, 2006) is a loss-
based semiparametric estimation method that yields a substitution estimator of a
target parameter of the probability distribution of the data that solves the efficient
influence curve estimating equation, and thereby yields a double robust locally ef-
ficient estimator of the parameter of interest, under regularity conditions.

In order to define a targeted maximum likelihood estimator for ψ0, we need
first to define three elements: (1) A loss function L(Q) for the relevant part of the
likelihood required to evaluate Ψ(P), which in this case is Q = (Q̄,g,QW ). This
function must satisfy Q0 = argminQ EP0L(Q)(O), where Q0 denotes the true value
of Q; (2) An initial estimator Q0

n of Q0; (3) A parametric fluctuation Q(ε) through
Q0

n such that the linear span of d
dε

L{Q(ε)}|ε=0 contains the efficient influence curve
D(P) defined in Lemma (1). These elements are defined below:

Loss Function
As loss function for Q, we will consider L(Q) = LY (Q̄)+LA(g)+LW (QW ), where
for continuous Y we set LY (Q̄) = {Y − Q̄(A,W,C)}2, for binary Y we set LY (Q̄) =
Y log{Q̄(A,W,C)}+(1−Y ) log{1−Q̄(A,W,C)}, LA(g)=− logg(A|W ), and LW (QW )=
− logQW (W ). It can be easily verified that this function satisfies Q0 = argminQ EP0L(Q)(O).

Parametric Fluctuation
Given an initial estimator Qk

n of Q0, with components (Q̄k
n,g

k
n,Q

k
W,n), and an initial

estimator φ 0
n of φ0, we define the (k+1)th fluctuation of Qk

n as follows:

m{Q̄k+1
n (ε1)(A,W )}= m{Q̄k

n(A,W )}+ ε1Hk
1(A,W )

gk+1
n (ε1)(A|W ) ∝ exp{ε1Hk

3(A,W )}gk
n(A|W )

Qk+1
W,n (ε2)(W ) ∝ exp{ε2Hk

4(W )}Qk
W,n(W ),

where

Hk
1(A,W )=

C
φ 0

n (A,W )
M(gk

n)(A,W ), Hk
3(A,W )=D3(Pk)(O), and H4(W )=D4(Pk)(O),

with D3 and D4 defined as in Lemma 1, and m is the identity or logit function
depending on whether the outcome is continuous or binary. Note that this fluctua-
tion satisfies the condition D(P) ∈< d

dε
L{Q(ε)}|ε=0 >, which is a key element of

targeted minimum loss based estimation.
Targeted Maximum Likelihood Estimator

The TMLE is defined by the following iterative process:
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1. Initialize k = 0.
2. Estimate ε as εk

n = argminε PnL{Qk
n(ε)}.

3. Compute Qk+1
n = Qk

n(ε
k
n).

4. Update k = k+ 1 and iterate steps 2 through 4 until convergence (i.e., until
εk

n = 0)

First of all, note that the value of ε2 that minimizes the part of the loss function cor-
responding to the marginal distribution of W in the first step (i.e.,−Pn logQ1

W,n(ε2))
is ε1

2 = 0. Therefore, the iterative estimation of ε only involves the estimation of ε1.
The kth step estimation of ε1 is obtained by numerically minimizing Pn(LY (Q̄k

n(ε1))+
LA(gk

n(ε1))).
The TMLE of ψ0 is defined as ψn,3 ≡ limk→∞ Ψ(Pk

n ), assuming this limit
exists. In practice, the iteration process is carried out until convergence in the values
of εk is achieved, and an estimator Q∗n is obtained. The variance of ψn,3 can be
estimated by the empirical variance of D2(O|Q̄∗n,g∗n,φ 0

n ,ψn,3), which is a consistent
estimator only if both φ 0

n and Q̄∗n are consistent, is conservative if φ 0
n is consistent

but Q̄∗n is not, and is inconsistent in any other case.

5 Extension to Longitudinal Data and Application

5.1 Longitudinal Interventions

Assume now that the observed data structure is the same presented in Section 2,
but now we have repeated measures in the sense that for each subject the observed
variables were recorded at time points t = 1, . . . ,T . That is, the observed data in
this case can be described as a vector O = (Wt ,At ,Ct ,CtYt : t = 1, . . . ,T ) = (Ot :
t = 1, . . . ,T ). We can now define a time specific counterfactual outcome given by
Yt,Pt,δ , where the stochastic intervention of interest is performed by changing each
time-specific exposure mechanism gt,0 to Pt,δ , with Pt,δ analogous to Pδ in (5). The
parameter of interest can be defined now as a causal effect based on a Marginal
Structural Model (Neugebauer and van der Laan, 2007) with only intercept:

β0 = argmin
β

T

∑
t=1
{E0(Yt,Pt,δ )−mβ (t)}2w(t),

where we set mβ (t) = β , and w(t) is a weight function initially set to 1/T . For this
case (usually called intercept only model), our parameter of interest reduces to

β0 =
T

∑
t=1

w(t)E0(Yt,Pδ
), (14)
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which is the weighted average of the time specific causal effects. We acknowledge
that this parameter does not provide a measure of the trend in the counterfactual
process, and that any trend due to accumulated effects of the application of the pol-
icy will be hidden in this effect. However, this parameter does provide a measure of
the overall effect of a policy when applied repetitively at every time point. Another
parameter that may be of interest is given by the expectation of the counterfactual
outcome at the last time point in the study, which will provide a measure of the final
effect of implementing a given policy during T units of time. Parameters given by
more complex marginal structural models can also be defined and estimated this
way.

The efficient influence curve of parameter (14) is given by the weighted
average of the time point specific influence curves:

Dβ (O|Q̄,g,φ ,β0) =
T

∑
t=1

w(t)D(Ot |Q̄t ,gt ,φt ,ψt,0), (15)

where D is defined in (11) and Q̄t ,gt ,φt and ψt,0 denote the conditional expectation
of the outcome, exposure mechanism, missingness mechanism and expectation of
the counterfactual outcome for each time specific data structure. Estimators that
solve the efficient influence curve equation

n

∑
i=1

T

∑
t=1

w(t)D(Oit |Q̄t ,gt ,φt ,ψt,0), (16)

inherit the consistency and efficiency properties of estimators mentioned in Lemma
2, where the consistency conditions are now replaced by consistency in the estima-
tion of all the time specific mechanisms Q̄t,0,gt,0 and φt,0. To estimate each of these
initial parameters we can choose to fit different estimators for each time point, or
we can also choose to do smoothing over t, by including it as a covariate in each of
the conditional expectations and probabilities involved.

Estimation of the parameter in (14) can now be performed by applying the
estimators presented in section 4 to a pooled dataset in which time has been added as
a covariate and each row corresponds to a specific subject time point combination.
The IPTW estimator, for example, would now be given by

ψn,1 =
1

nT

n

∑
i=1

T

∑
t=1

Cit

φ 0
n,t(Ait ,Wit)

M(g0
n,t)(Ait ,Wit)Yit ,
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and the augmented IPTW by

ψn,2 =
1

nT

n

∑
i=1

T

∑
i=1

[
Cit

φ 0
n (Ait ,Wit)

M(g0
n,t)(Ait ,Wit)

{
Yit − Q̄0

n,t(Ait ,Wit ,1)
}
+M(g0

n,t)(Ait ,Wit)×{
Q̄0

n,t(Ait ,Wit ,1)−
Eg0

n,t
{Q̄0

n,t(A,W,1)Iδ1,δ2(A)|Wit}
G0

n,t{Iδ1,δ2(A)|Wit}

}
+

Eg0
n,t
{Q̄(A,W,1)Iδ1,δ2(A)|Wit}
G0

n,t{Iδ1,δ2(A)|Wit}

]
, (17)

which can be seen to solve equation (16). The TML estimator is defined analogous
to the definition given in the previous section, with Q̄k

n, Hk
1 , φ k

n , Hk
3 , Qk

W , and Hk
4

replaced by their t-dependent counterparts. However, the same parameters ε1 and
ε2 are used to fluctuate all these t-dependent estimates. Estimation of ε in step
2 of the iterative process that defines the TMLE is performed now with respect
to the empirical distribution PnT given by the pooled dataset, and the estimating
equation in Lemma (2) is replaced by its counterpart summing also over t and with
t-dependent estimated values of Q̄k

n, Hk
1 , φ k

n , Hk
3 , Qk

W , and Hk
4 . The estimators of the

variance of these estimators presented in the previous section can also be adapted to
these longitudinal estimators. Remarks about consistency of the variance estimators
of section 4 carry on to these variance estimators.

5.2 Application

In this section we present the results of applying the method for longitudinal data
described in the previous section to assess the effect of a program that constrains
air pollution levels on wheezing in children with asthma. These data were origi-
nally analyzed by Mann, Balmes, Bruckner, Mortimer, Margolis, Pratt, Hammond,
Lurmann, and Tager (2010) as part of the Fresno Asthmatic Childrens Environ-
ment Study (FACES). In the original paper whose objective was to evaluate whether
exposure to ambient pollution is associated with increased respiratory symptoms,
wheeze was found to be associated with short-terms exposures to NO2 with an odds
ratio of 1.10 (C.I. (1.02, 1.20)) for a 8.7 parts per billion increase. The data con-
sisted of a sample of 315 children between 6 and 11 years of age who have active
asthma. Reports of morning wheeze were collected for 14 days, up to three times
a year, from December 2000 through March 2005, which lead to approximately
12 data panels for each child. For a comprehensive description of the study, the
interested reader is referred to the original paper.

We are interested in investigating the effect of NO2 concentrations measured
24 hours before each visit on the current presence of wheezing. The confounders
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we considered (i.e., W variables) are: gender, age, race, height, low birth weight,
born prematurely, atopy, presence of eczema, rhinitis, mother smoked during preg-
nancy, whether child was ever breastfed, presence of asthma in father and mother,
no smoking policy in the house, anyone smokes in the house, relative humidity,
temperature, season of the year, whether the house is rented or owned and income.

We estimated the effect of a policy that enforces NO2 levels below 28.15
ppb. We assume that such intervention will produce a change in the population
distribution of the exposure corresponding to a relocation of the probability mass
originally above 28.15 ppb between 26.05 and 28.15 ppb in the intervened popula-
tion. The values 28.15 and 26.05 ppb correspond with the 85th and 80th percentile
of the distribution of NO2, respectively.

If the objective is to perform a comparison of the prevalence of wheezing
in the hypothetical intervened population with the prevalence in the current popula-
tion, we can define a population intervention parameter ψ1

0 as ψ1
0 = ψ0−µ0, where

µ0 = EP0(Y ). This parameter compares the expectation of the outcome under the
policy of interest with its current expectation, and therefore provides a measure of
the gain obtained by implementing the policy.

Since we observed a coarsened version of Y , we cannot use the empirical
mean as an estimator of µ0. Because estimation of this expectation is equivalent
to estimation of the expectation of the outcome under the intervention C = 1, we
suggest the use of the TMLE for static interventions as described in (Rose and
van der Laan, 2011, chapter 4). Such estimator also utilizes initial estimators of
φ0(A,W ) and Q̄0(A,W,C), and is double robust under misspecification of either
model. For further details about the properties and implementation the TMLE for
µ0, the reader is referred to the original sources.

For a given estimator ψn of ψ0, and an asymptotically linear estimator µn
of EP0(Y ) with influence curve Dµ(P), an asymptotically linear estimator of ψ1

0
is given by ψ1

n = ψn− µn. Its influence curve can be computed as Dψ1(P)(O) =
Dψ(P)(O)−Dµ(P)(O), and its variance can be estimated through the sample vari-
ance of Dψ1(P)(O). Here Dψ(P)(O) represents the influence curve of each of the
estimators defined in Section 4. The estimates of ψ1

0 and their standard errors are
presented in Table 1. Confidence intervals and p-values for hypothesis testing can
be computed based on the normal approximations for asymptotically linear estima-
tors described in Section 4. In light of the theoretical properties of these estimators,
we rely on the TMLE and A-IPTW to measure the effect of the intervention of in-
terest. The estimated value of ψ1

n means that under a policy that enforces places
with NO2 levels above 28.15 to decrease their levels to some value in the inter-
val (26.05,28.15), the prevalence of wheezing in children with asthma between 6
and 11 years of age would be reduced by 0.50%. However, our estimated effect
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Table 1: Estimates of ψ1
0 and ψ0 (in %).

TMLE A-IPTW IPTW
ψ1

0 0.50 (0.40) 0.15 (0.89) 0.99 (1.04)
ψ0 13.53 (0.56) 13.17 (0.99) 14.63 (1.14)

is not significant at a 95% confidence level, which does not mean that the effect is
inexistent or epidemiologically irrelevant.

6 Conclusion
In this paper we propose a specific type of causal parameter defined by a stochastic
intervention in terms of a truncation of the original distribution of the exposure. We
present an application example in which the effect of a potential policy enforcing
pollution levels under certain threshold is measured. Our approach allows the esti-
mation of the effect of potential policies that result in stochastic interventions (for
example because they fail to put every subject in a predefined exposure level). We
argue that our parameter makes more sense from a policy– and decision–making
point of view as compared to current practice.

The stochastic interventions framework allowed us to naturally define an
effect for a continuous exposure, which is a topic that has received little attention
in the causal inference literature. Assumptions like the positivity assumption and
the consistency of an initial estimator for the exposure mechanism are weakened as
compared to those required for estimating other causal parameters for continuous
or categorical exposures. Two consistent and efficient estimators for the parameter
of interest were proposed, and their use was illustrated with an example.
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