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Causal Inference for Networks

Mark J. van der Laan

Abstract

Suppose that we observe a population of causally connected units according to
a network. On each unit we observe a set of potentially connected units that con-
tains the true connections, and a longitudinal data structure, which includes time-
dependent exposure or treatment, time-dependent covariates, a final outcome of
interest. The target quantity of interest is defined as the mean outcome for this
group of units if the exposures of the units would be probabilistically assigned
according to a known specified mechanism, where the latter is called a stochas-
tic intervention. Causal effects of interest are defined as contrasts of the mean of
the unit specific outcomes under different stochastic interventions one wishes to
evaluate. By varying the network structure, this covers a large range of estima-
tion problems ranging from independent units, independent clusters of units, anda
single cluster of units in which each unit has a limited number of connections to
other units. We present a few motivating classes of examples, propose a struc-
tural causal model, define the desired causal quantities, address the identification
of these quantities from the observed data, and define maximum likelihood based
estimators based on cross-validation.

Such smoothed/regularized maximum likelihood estimators are not targeted and
will thereby be overly bias w.r.t. the target parameter, and, as a consequence, gen-
erally not result in asymptotically normally distributed estimators of the statistical
target parameter. Therefore, we formulated targeted maximum likelihood esti-
mators of this estimand, and showed that the robustness of the efficient influence
curve implies that the bias of the TMLE will be a second order term involving
squared differences of two nuisance parameters. In order to deal with the curse
of dimensionality, we present super-learning based on cross-validation, and we
develop targeted maximum likelihood estimators, which are less biased than max-
imum likelihood estimators due to a targeted bias reduction step. Due to the causal
dependencies between units, the data set may correspond with the realization of



a single experiment, so that establishing a (e.g., normal) limit distribution for the
estimators, and corresponding statistical inference, is a challenging topic. In order
to establish a formal theorem, we focus on the point-treatment longitudinal data
structure, thereby also putting down a foundation for its generalization to the gen-
eral longitudinal data structure, which we reserve for future research.We conclude
with a discussion.



1 Introduction and motivation

Most of the literature on causal inference has focussed on assessing the causal
effect of a single or multiple time-point intervention on some outcome based
on observing n longitudinal data structures on n independent units that are
not causally connected. For literature reviews we refer to a number of books
on this topic: Rubin (2006), Pearl (2009), van der Laan and Robins (2003),
Tsiatis (2006), Hernán and Robins (2012), van der Laan and Rose (2012).

Such a causal effect is defined as an expectation of the direct effect of the
intervention assigned to the unit on the unit’s outcome, since indirect causal
effects on the unit’s outcome through other units are assumed non-existent. As
a consequence, causal models only have to be concerned about the modeling
of causal relations between the components of the unit-specific data structure.
Statistical inference is based on the assumption that the n data structures can
be viewed as n independent realizations of a random variable, so that central
limit theorems for sums of independent random variables can be employed.
The latter requires that the sample size n is large enough so that statistical
inference based on the normal limit distributions is indeed appropriate.

In many applications one may define the unit as a group of causally con-
nected individuals, often called a community or cluster. It is then assumed
that the communities are not causally connected, and that the community
specific data structures can be represented as n independent random vari-
ables. One can then define a community specific outcome, and assess the
causal effect of the community level intervention/exposure on this commu-
nity specific outcome with methods from the causal inference literature. Such
causal effects incorporate indirect as well as direct effects of the community
level intervention, where the indirect effects of the community level exposure
on an individual in a community occur through other individuals in that same
community. We refer to Halloran and Struchiner (1995); Hudgens and Hallo-
ran (2008); VanderWeele et al. (2012); Tchetgen Tchetgen and VanderWeele
(2012) for defining different types of causal effects in the presence of causal in-
terference between units. We also refer to Donner and Klar (2000), Hayes and
Moulton (2009), Campbell et al. (2007b) for reviews on cluster randomized
trials and cluster level observational studies.

In many such community randomized trials or observational studies the
number of communities is very small (e.g., around 10 or so), so that the num-
ber of independent units itself is not large enough for statistical inference based
on limit distributions. In the extreme, but not uncommon, case, one may ob-
serve a single community of causally connected individuals. Can one now still
statistically evaluate a causal effect of an intervention assigned at the com-
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munity level on a community level outcome, such as the average of individual
outcomes? Clearly, causal models incorporating all units are needed in order
to define the desired causal quantity, and identifiability of these causal quan-
tities under (minimal) assumptions need to be established without relying on
asymptotics in a number of independent units.

An important ingredient of our modeling approach carried out in this article
is the incorporation of network information that describes for each unit (in
a finite population of N units) a set of other units this unit is potentially
connected to. The more precise network information will be available, the
larger the effective sample size will be for targeting the desired quantity. We
will also assume sequential conditional independence of the units at time t,
conditional on the past of all units at time t. That is, conditional on the most
recent past on all units, including the recent network information, the data on
the units at the next time point are independent across units. Even though
this network information allows the units to depend on each other in complex
ways, we will demonstrate that the likelihood of the data on all N units allows
statistical inference driven by the number of units instead of driven by the
number of communities (e.g., 1).

We will apply the roadmap for targeted learning of a causal effect (e.g.,
van der Laan and Rose (2012), Pearl (2009), Petersen and van der Laan
(2012)), which starts out with defining a structural causal model, defining
the causal quantity of interest, and defining the observed data and its link
to the data generated by the causal system. Subsequently, we then estab-
lish the identifiability of the causal quantity from the data distribution under
transparent additional (often non-testable) assumptions. This identifiability
result allows us to define a statistical model that contains the true probability
distribution of the data, and an estimand (i.e. a target parameter mapping
applied to true data distribution) that reduces to this causal quantity if the
required causal assumptions hold. This statistical model, and the target pa-
rameter mapping that maps data distributions in this statistical model into
the parameter values, defines the estimation problem. Finally, we have to
develop targeted estimators of the target parameter and develop the theory
for statistical inference. The statistical model needs to contain the true data
distribution, so that the statistical estimand can be interpreted as a pure sta-
tistical target parameter, while under the stated additional causal conditions
that were needed to identify the causal effect, it can be interpreted as the causal
quantity of interest. To understand the deviation between the estimand and
the causal quantity under a variety of violations of these causal assumptions,
one may carry out a sensitivity type analysis.

Since the statistical model does not assume that the data generating ex-
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periment involves the repetition of independent experiments, the development
of targeted estimators and inference represents novel and new challenges in
estimation and inference that, to the best of our knowledge, have not been
earlier attacked by the current causal inference literature. Targeted mini-
mum loss-based estimation was developed for estimation in semi-parametric
models for i.i.d. data (van der Laan and Rubin, 2006; van der Laan, 2008;
van der Laan and Rose, 2012), and extended to a particular form of depen-
dent treatment/censoring allocation as present in group sequential adaptive
designs (van der Laan, 2008; Chambaz and van der Laan, 2011a,b; van der
Laan and Petersen, 2012). In this article we need to generalize targeted min-
imum loss based estimation to the complex semiparametric statistical model
presented in this article, and we also need to develop corresponding statistical
inference.

Our models generalize the models in the causal inference literature for in-
dependent units, and thus avoid assumptions that would not be needed when
applying the methods to observing data on units that are causally and sta-
tistically independent. In particular, our models include causal inference for
community based interventions based on observing a number of independent
communities/clusters. In addition, our models also incorporate group sequen-
tial adaptive designs in which treatment allocation to an individual can be
based on what has been observed on previously recruited individuals in the
trial (Hu and Rosenberger, 2006; van der Laan, 2008; Chambaz and van der
Laan, 2011a,b; van der Laan and Petersen, 2012). Our models also allow that
the outcome of an individual is a function of the treatments other individuals
received The latter is referred to as interference in the causal inference litera-
ture. Thus the causal models proposed in this article do not only generalize the
existing causal models for independent units, but they also generalize causal
models that incorporate previously studied causal dependencies between units.
Finally, we note that our models and corresponding methodology can be used
to establish a methodology for assessing causal effects of interventions on the
network on the average of the unit specific outcomes. For example, one might
want to know how the community level outcome changes if we change the net-
work structure of the community through some intervention, such as increasing
the connectivity between certain units in the community?

1.1 Organization of article

The organization of this article is as follows.
Section 2: We formulate a counterfactual causal model that can be viewed as
an analogue of the structural causal model actually used in this article. This
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section provides a perspective of the contribution of this article in the con-
text of the causal inference literature that relies on the Neyman-Rubin model,
demonstrating that in essence it corresponds with simultaneously allowing for
causal interference between the units and that interventions assigned to a unit
are informed by other units in the population.
Section 3: We present our structural causal model, stochastic interventions
and corresponding counterfactual outcomes, causal quantity defined in terms
of the mean of the intervention specific counterfactuals, identifiability of causal
quantity from data distribution P0 of data O = (O1, . . . , ON) on the N units,
statistical model M for the probability distribution of O, statistical target
parameter mapping Ψ :M→ IR that defines the estimand Ψ(P0), where the
latter reduces to the causal quantity under the additional assumptions that
were needed to establish the identifiability. The statistical estimation problem
is now defined by the data O ∼ P0 ∈ M, the statistical model M and target
parameter Ψ :M→ IR. The likelihood of O factorizes as P = Qg and Ψ(P )
only depends on P through the Q-factor. Therefore, we also use the notation
Ψ(Q) to denote this target parameter Ψ(P ).
Section 4: We present some general classes of examples covered by our causal
models and causal quantities.
Section 5: We discuss maximum likelihood estimation (MLE), unified loss-
based cross-validation (van der Laan and Dudoit, 2003; van der Vaart et al.,
2006; van der Laan et al., 2006), and likelihood based super learning (van der
Laan et al., 2007; Polley et al., 2012). Such smoothed/regularized maximum
likelihood estimators are not targeted and will thereby be overly bias w.r.t.
the target parameter, and, as a consequence, generally not result in asymptoti-
cally normally distributed estimators of the statistical target parameter. Thus
there is a need for targeted learning (targeting the fit towards ψ0) instead of
MLE in order to deal with the curse of dimensionality.
Section 6: We derive the efficient influence curve, also called the canonical
gradient of the pathwise derivative of the statistical target parameter (Bickel
et al. (1997); van der Vaart (1998)). We also establish that the expectation of
the efficient influence curve D∗(Q, g) under misspecified parameters (Q, g) of
the data distribution P = Q ∗ g can be represented as Ψ(Q0) − Ψ(Q) plus a
sum of two second order terms, one involving square differences between Q and
Q0, and another a product of differences of Q and Q0 and a specified h(Q, g)
and h(Q0, g0). This result provides a fundamental ingredient in establishing a
first order expansion of the targeted maximum likelihood estimator (TMLE)
under conditions that make these second order terms negligible relative to the
first order term, while a separate analysis of the first order term (which is a
sum of dependent random variables) establishes the asymptotic normality of
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the TMLE.
Section 7: Our heuristic arguments demonstrate that the log-likelihood of O
will satisfy a local asymptotic normality condition (Bickel et al. (1997); van der
Vaart (1998)) so that efficiency theory can be applied to path wise differen-
tiable target parameters of the data distribution. As demonstrated in van der
Vaart (1998), under local asymptotic normality the normal limit distribution
of the MLE (ignoring all regularity conditions that would be needed to es-
tablish the asymptotic normality of the MLE) is optimal in the sense of the
convolution theorem. In this section 7 we demonstrate that the variance of the
efficient influence curve (i.e., the canonical gradient of the pathwise derivative
of the target parameter) corresponds with the asymptotic variance of a max-
imum likelihood estimator of the target parameter. From this we learn that
our goal should be to construct estimators that are asymptotically normally
distributed with variance equal to the standardized variance of the efficient
influence curve (and thus asymptotically equivalent with a MLE), while ap-
propriately dealing with the curse of dimensionality through super learning
and targeted maximum likelihood estimation (TMLE).
Section 8: We present a general TMLE based on least-favorable submodels
implied by the efficient influence curve, analogue to the TMLE for i.i.d. data
(van der Laan and Rubin (2006)).
Section 9: We present the TMLE for the causal effect of a single time point
intervention on an outcome, controlling for the baseline covariates across the
units, an important special case. This TMLE generalizes the TMLE of the
causal effect of a single time point intervention under causal and statistical
independence of the units (Gruber and van der Laan (2010); Rosenblum and
van der Laan (2010); van der Laan and Rose (2012). It is shown that the effi-
cient influence curve satisfies a double robustness property, which implies the
double robustness of the TMLE. Interestingly, it is demonstrated that defining
the estimator as the solution of the efficient influence curve estimating equa-
tion fails as a method, by not being able to utilize the double robustness of the
efficient influence curve, while the TMLE still inherits the double robustness
of the efficient influence curve. This provides another demonstration of the
importance of TMLE relative to estimating equation methodology Robins and
Rotnitzky (1992); van der Laan and Robins (2003) that defines the estimator
as a solution of an estimating equation.
Section 10: We present a theorem establishing asymptotic normality of this
TMLE for the causal effect of a single time point intervention, and discuss
statistical inference based on its normal limit distribution. The theorem relies
on modern advances in weak convergence of processes as presented in van der
Vaart and Wellner (1996); van der Vaart (1998). The proof of the theorem
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is deferred to the Appendix. The generalization of the formal asymptotics
results for this TMLE to the TMLE for general longitudinal data structures
is also discussed in the final subsection of the Appendix.
Section 11: We extend the latter TMLE and inference under a larger model
that weakens the sequential conditional independence assumption. Section
12: We discuss the extension of our results to the case that our observed data
corresponds with a random sample of individuals from the complete network
of individuals.
Section 13: We conclude with a summary and some concluding remarks.

2 Possible formulation of estimation problem

in terms of counterfactuals

The estimation problem defined in the next section in terms of a semi-parametric
structural equation model corresponds with the following counterfactual miss-
ing data problem formulation also called the Neyman-Rubin causal model
(Neyman (1990); Rubin (1974, 2006); Holland (1986); Robins (1987a,b)).

Let XF
i = (Li,a : a ∈ A) be the full-data structure consisting of all static

regimen specific counterfactuals for unit i, where a = (a1, . . . , aN) represents
the static regimens for all N units, Li,a = (Li,a(0), Li,a(1), . . . , Li,a(τ + 1)) is
a time-dependent process up till time τ + 1, and Li,a(t) only depends on a
through (āj(t−1) = (aj(0), . . . , aj(t−1)) : j = 1, . . . , N). We assume XF

i , i =
1, . . . , N , are independent and identically distributed, or, most importantly,
independently distributed.

Let P F
0 be the probability distribution of XF and letMF be the full-data

model, i.e., the collection of possible distributions of XF . This full data model
will thus incorporate additional assumptions such as that the counterfactuals of
unit i only depend on the regimens of a subset of theN individuals. We observe
the missing data structure O = (Oi : i = 1, . . . , N), Oi = (A,Li = Li,A) on
the full data XF

i , i = 1, . . . , N . We view O = (O1, . . . , ON) as a missing
data structure on the full-data XF = (XF

1 , . . . , X
F
N). We assume that the

conditional density g0 of A = (A1, . . . , AN), given XF , satisfies g0(A | XF ) =∏τ
t=0

∏N
i=1 g0,t,i(Ai(t) | cAt,i), where cAt,i is a function of (Āj(t − 1), L̄j(t) : j =

1, . . . , N), so that the missingness mechanism satisfies coarsening at random.
Note that g0(A | XF ) = h0(O) is a function of O so that this assumption
indeed implies the coarsening at random assumption. Due to this coarsening
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at random assumption, the likelihood of O factorizes:

P0(A,Li : i = 1, . . . , N) =
N∏
i=1

PPF0 (Li,a = li)

∣∣∣∣∣
a=A,li=Li

g0(A | XF ).

Note that the full-data distribution factor equals the likelihood of (Li,a :
i = 1, . . . , N) (i.e., vector of independent counterfactuals) at set regimen
a = (a1, . . . , aN) at value A = (A1, . . . , AN), and is thus identified by the
full-data distribution P F

0 .
Our target parameter is a parameter ΨF :MF → IRd defined on the full-

data model. The factorization of the likelihood of O due to CAR establishes
the identifiability of ψF0 = ΨF (P F

0 ) as a parameter of the distribution P0 of O,
under the assumption that ΨF (P F

0 ) only depends on P F
0 through the relevant

factor of the likelihood. As a consequence, we can now define a statistical
target parameter Ψ : M → IRd so that ψF0 = ψ0 = Ψ(P0). We need to
construct an estimator of ψ0 based on this single draw of O ∼ P0 ∈ M,
and we need to establish a limit distribution of this standardized estimator√
N(ψN − ψ0)⇒d Z for some limit distribution Z.

The fact that the counterfactual outcomes of subject i can be a function of
the treatments of other subjects is often referred to as interference in the causal
inference literature. In addition, the above formulation allows that treatment
allocation for unit i depends on data collected on other units. The above
formulation can thus be viewed as the causal inference estimation problem
when interference and adaptive treatment allocation is allowed. Our structural
equation model defined in next section implies restrictions on the distribution
of the counterfactuals, and thus defines a particular full-data model MF .

3 Formulation of estimation problem.

Suppose we have a population of interconnected units that evolves over time.
Let (Xi(t) : t ∈ {0, 1, . . . , τ + 1}), i = 1, . . . , N , be the time-dependent pro-
cesses associated with each of N units. For a unit i, we define Ai(t) ⊂ Xi(t)
as an action at time t, which will play the role of intervention node in the
structural equation model below. The process on individual i at time t, Xi(t)
consists of measurements Li(t), possibly including an outcome process Yi(t),
the intervention node Ai(t), while Li(τ + 1) = Yi denotes a final outcome. Let
Fi(t) ⊂ Li(t) denote the network of friends individual i is potentially connected
to at time t, t = 0, . . . , τ + 1.

In our causal model we will assume that each unit’s Xi(t) can only be a
function of the past X̄(t − 1) ≡ (X̄j(t − 1) : j = 1, . . . , N), of all subjects,
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where X̄j(t − 1) = (Xj(s) : s ≤ t − 1): i.e., the units X1(t), . . . , XN(t) are
conditionally independent, given X̄(t − 1). Below, we make some remarks
regarding weakening this assumption.

If we define L(t) = (Li(t) : i = 1, . . . , N), and similarly we define A(t),
then the ordered single data structure can be represented as

(L(0), A(0), . . . , L(τ), A(τ), Y = L(τ + 1)).

The latter ordering is the only causally relevant ordering, and the ordering
of units within a time-point is user supplied but inconsequential. We define
Pa(A(t)) = (L̄(t), Ā(t − 1)), Pa(L(t)) = (L̄(t − 1), Ā(t − 1)), as the parent
nodes of A(t) and L(t), respectively, w.r.t. this ordering. Note that the parent
nodes of Ai(t), denoted with Pa(Ai(t)), equal Pa(A(t)), and, the parent nodes
of Li(t), denoted with Pa(Li(t)), equal Pa(L(t)), t = 0, . . . , τ+1, i = 1, . . . , N .

This ordered sequence for X = (X1, . . . , XN) and the specification of the
parent-nodes implies a corresponding set of structural equations: first generate
UN = (Ui : i = 1, . . . , N) where

Ui = (ULi(0), UAi(0), . . . , ULi(τ), UAi(τ), UYi), i = 1, . . . , N,

and then generate X deterministically as follows:

Li(t) = fLi(t)(Pa(Li(t)), ULi(t))
Ai(t) = fAi(t)(Pa(Ai(t)), UAi(t))
i = 1, . . . , N, t = 0, . . . , τ
Yi = fYi(Pa(Yi(τ + 1)), UYi(τ+1))
i = 1, . . . , N.

Since Pa(Li(t)) = (Ā(t− 1), L̄(t− 1)) and Pa(Ai(t)) = (Ā(t− 1), L̄(t)), an
alternative succinct way to represent this structural equation model is:

L(t) = fL(t)(Pa(L(t)), UL(t))
A(t) = fA(t)(Pa(A(t)), UA(t))
t = 0, . . . , τ
Y = L(τ + 1) = fY (Pa(Y ), UY ).

Counterfactuals and stochastic interventions: This structural equation
model for

(L(0), A(0), . . . , L(τ), A(τ), Y = L(τ + 1)),

allows us to define counterfactuals Yd(τ + 1) corresponding with an dynamic
intervention d on A (Robins (1987b,b, 1997, 1999); Gill and Robins (2001);
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Yu and van der Laan (2003). For example, one could define Ai(t) at time t as
a particular deterministic function di,t of the parents Pa(Ai(t)) of subject i =
1, . . . , N . Such an intervention corresponds with replacing the equations for
A(t) by this deterministic equation dt(Pa(A(t)), t = 0, . . . , τ . More generally,
we can replace the equations for A(t) that describe a degenerate distribution
for drawing A(t), given U = u, and Pa(A(t)), by a user supplied conditional
distribution of an A∗(t), given Pa(A∗(t)). Such a conditional distribution
defines a so called stochastic intervention Dawid and Didelez (2010); Didelez
et al. (2006); Diaz and van der Laan (2012).

Let g∗ = (g∗t : t = 0, . . . , τ) denote our selection of a stochastic interven-
tion identified by a set of conditional distributions of A∗(t), given Pa(A∗(t)),
t = 0, . . . , τ . For convenience, we represent the stochastic intervention with
equations A∗(t) = fA∗(t)(Pa(A∗(t)), UA∗(t)) in terms of random errors UA∗(t).
This implies the following modified system of structural equations:

L(t) = fL(t)(Pa(L(t)), UL(t))
A∗(t) = fA∗(t)(Pa(A∗(t)), UA∗(t))
t = 0, . . . , τ
Y = L(τ + 1) = fY (Pa(Y ), UY ).

Let Yi,g∗ , or short-hand Yi,∗, denote the corresponding counterfactual outcome
for unit i. A causal effect at the unit level could now be defined as a contrast
such as Yi,g∗1 − Yi,g∗2 for two interventions g∗1 and g∗2. Note that, for a given
g∗, Yi,g∗ = Yi,g∗(U

∗) is a deterministic function of the error-term U∗ = (U,U∗A)
that are inputted in the structural equations. In particular, for deterministic
interventions g∗ Yi,g∗ is a deterministic function of the error terms U .
Post-intervention distribution, and sequential randomization assump-
tion: If we assume the sequential randomization assumption on U , i.e., A(t)
is independent of Lg∗ , given Pa(A(t)), and U∗ is externally generated so that
U∗ ⊥ U , then the probability distribution Pg∗ of (A∗, Lg∗) is given by the
so called G-computation formula (Robins (1987a); Gill and Robins (2001);
Yu and van der Laan (2003); Didelez et al. (2006); Zheng and van der Laan
(2012))

Pg∗(A
∗, L) =

τ+1∏
t=0

N∏
i=1

PLi(t)(Li(t) | Pa∗(Li(t)))g∗t (A∗i (t) | Pa(A∗i (t))),

where PLi(t) is the conditional distribution of Li(t), given Pa(Li(t)), and
Pa∗(Li(t)) = (L̄(t−1), Ā∗(t−1)). Thus, the post-intervention distribution Pg∗
is identified from the distribution of X = (A,L) generated by the structural
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equation model. We will assume this sequential randomization assumption.
The distribution of Yi,g∗ corresponds now with a marginal distribution of PLg∗ .

Average causal effect (ACE): One might now define an average causal
effect as the following target parameter of this distribution of Pg∗ :

ψF = EPg∗1

{
1

N

N∑
i=1

Yi,g∗1

}
− EPg∗2

{
1

N

N∑
i=1

Yi,g∗2

}
.

Let Ȳ = 1
N

∑N
i=1 Yi. Since the distribution Pg∗ is indexed by N , the parameter

ψF can depend on N .

Iterative conditional expectation representation of ACE: The param-
eter EȲg∗ can be represented as an iterative conditional expectation w.r.t. the
probability distribution Pg∗ of (A∗, Lg∗) (Bang and Robins (2005); van der
Laan and Gruber (2012)):

Ȳ = 1
N

∑N
i=1 Yi(τ + 1)

Q̄g∗

τ+1,1 = E(Ȳ | L̄(τ), Ā(τ))

Q̄g∗

τ+1 = Eg∗τ (Q̄
g∗

τ+1,1 | L̄(τ), Ā(τ − 1))

Q̄g∗

τ,1 = E(Q̄g∗

τ+1 | L̄(τ − 1), Ā(τ − 1))

Q̄g∗
τ = Eg∗τ−1

(Q̄g∗

τ,1 | L̄(τ − 1), Ā(τ − 2))

Iterate

Q̄g∗

1,1 = E(Q̄g∗

2 | L̄(0), Ā(0))

Q̄g∗

1 = Eg∗0 (Q̄g∗

1,1 | L̄(0))

Q̄g∗

0 = EL(0)Q̄
g∗

1 (L(0)),

where EYg∗ = Q̄g∗

0 . Thus, this mapping involves iteratively integrating w.r.t.
the observed data distribution of L(t), given its parents, and the conditional
distribution g∗t of A∗(t), given Pa(A∗(t)), respectively, starting at t = τ + 1,
till t = 0.

Dimension reduction and exchangeability across units: We will also
assume that for each node Ai(t), Li(t), we can define functions, Pa(Ai(t))→
cAt,i(Pa(Ai(t))), Pa(Li(t))→ cLt,i(Pa(Li(t))), that map into IRd for a d that does
not depend on N , and corresponding common (in i) functions fL(t), fA(t), fY ,
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so that
Li(t) = fL(t)(c

L
t,i(Pa(Li(t))), ULi(t))

Ai(t) = fA(t)(c
A
t,i(Pa(Ai(t))), UAi(t))

i = 1, . . . , N, t = 0, . . . , τ
Yi = fY (cYτ+1,i(Pa(Yi)), UYi)
i = 1, . . . , N.

Examples of such dimension reductions are cLt,i(Pa(Li(t))) = (L̄j(t−1), Āj(t−
1) : j ∈ Fi(t− 1)), i.e., the observed past of unit i itself and the observed past
of its current friends Fi(t− 1), and, similarly, we can define cAt,i(Pa(Ai(t))) =
(L̄j(t), Āj(t − 1) : j ∈ Fi(t − 1)). By augmenting these reductions to data on
maximally K friends, filling up the empty cells for units with fewer than K
friends with a missing value, these dimension reductions have a fixed dimension
(say) d, and include the information on the number of friends. This structural
equation model assumes that, across all units i, the data on unit i at the next
time point t is a common function of its own past and past of its friends. We
will also assume that ULi(0), i = 1, . . . , N , are independent, so that Li(0), i =
1, . . . , N , are independent, and we will assume that all the other components
of Ui are not only independent across i, but are also identically distributed.

Thus all the dependence between units is not due to the dependence of
the errors, but only due to the interdependence between units as described
by the system that allows that the unit’s data at time t is a function of the
data of its friends. In addition, each unit i satisfies the same laws as functions
of the i-specific past (representing the unit’s past and past of its friends) for
generating their future data points, with the exception of Li(0), which we only
require to be independently distributed across the N units.

Identifiability: G-computation formula for stochastic intervention.
For notational convenience, let cLt,i = cLt (Pa(Li(t))), and let cL,∗t,i be defined
accordingly with A replaced by A∗. Due to the exchangeability and dimension
reduction assumptions, the probability distribution Pg∗ of Lg∗ = (Li,g∗ : i =
1, . . . , N) now simplifies:

Pg∗(L,A
∗) =

N∏
i=1

PLi(0)(Li(0))
N∏
i=1

τ+1∏
t=0

PL(t)(Li(t) | cL,∗t,i ))g∗t (A
∗
i (t) | Pa(A∗i (t)))(1)

≡ P g∗(L,A∗), (2)

where PL(t) are the above defined conditional distributions of Li(t), given
Pa(Li(t)), and these i-specific conditional densities are constant in i = 1, . . . , N ,
as functions of cLt,i, t = 1, . . . , τ +1. We also use the notation P g∗ for the right-
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hand side in (1) which thus represents an expression in terms of the distribu-
tion of the data under the assumption that the conditional densities of Li(t),
given Pa(Li(t)), are constant in i as functions of cLt,i, indexed by the choice of
stochastic intervention g∗, while one needs the causal model and randomiza-
tion assumption in order to have that the right-hand side actually models the
counterfactual post-intervention distribution Pg∗ . This shows that ψF0 = Ψ(P0)
for a mapping Ψ from the distribution of O to the real line. Strictly speaking
this does not establish a desired identifiability result yet. To start with, we
need to realize that PN

0 , ψF,N0 , ψN0 are indexed by N , and we only observed
one draw from PN

0 . Therefore, we still need to show that we can construct an
estimator based on ON that is consistent for ψN0 as N →∞. For that purpose,
we note that the distribution P g∗ is identified by the common conditional dis-
tributions PL(t), t = 1, . . . , τ + 1, and PL(0) with L(0) = (Li(0) : i = 1, . . . , N).
We can construct estimators of these common conditional distributions PL(t)

based on MLE that are consistent as N →∞, which follows from our presen-
tation of estimators and theory. This demonstrates the identifiability of PL(t)

as N →∞. In addition, our target parameter involves an average w.r.t. PL(0)

which can be consistently estimated by a sample mean over Li(0), i = 1, . . . , N .
This demonstrates the desired identifiability of ψF,N0 from the observed data
as N →∞.

Likelihood and statistical model: The likelihood of the data
O = (L(0), A(0), . . . , L(τ), A(τ), Y = L(τ + 1)) is given by:

PQ,g(L,A) =
N∏
i=1

PLi(0)(Li(0))

N∏
i=1

τ+1∏
t=1

PL(t)(Li(t) | cLt,i))gt(Ai(t) | cAt,i)

=
N∏
i=1

τ+1∏
t=0

QL(t)(Li(t) | cLt,i)gt(Ai(t) | cAt,i).

We denote the factors representing the conditional distributions of Li(t) with
QL(t), where these conditional densities at Li(t), given Pa(Li(t)), are constant
in i, as functions of Li(t) and cLt,i. Similarly, we model the g-factor. Let
Q = (Qt : t = 0, . . . , τ + 1) represent the collection of all these factors, and
g = (gt : t = 0, . . . , τ), so that the distribution of O is defined by (Q, g). The
conditional distributions QL(t)(L(t) | cLt ) are unspecified functions of L(t) and
cLt , beyond that for each value of cLt it is a conditional density. Similarly, the
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conditional distributions gt are unspecified conditional densities. This defines
now a statistical parameterization of the distribution of O in terms of Q, g,
and a corresponding statistical model M = {PQ,g : Q ∈ Q, g ∈ G}, where Q
and G denote the parameter spaces for Q and g, respectively.

Statistical Target Parameter: Suppose that our target parameter is EȲ g∗

which is a function of the intervention-specific distribution P g∗ . Thus EȲ g∗ =
Ψ(PQ,g) = Ψ(Q) depends on the distribution P of the data O through the Q-
factor. Note that Q is determined by QL(0), . . . , QL(τ+1), i.e., the conditional
distributions of Li(t), given (Ā(t− 1), L̄(t− 1)), which, by assumption, equal
a common function QL(t)(Li(t) | cLt,i). We can represent this statistical target
parameter also as an iterative conditional expectation involving the iterative
integration w.r.t. QL(t), g

∗
A(t−1), starting at t = τ + 1 and moving backwards

till the expectation over L(0):

Q̄τ+2 ≡ Ȳ
Q̄τ+1,1 = EQτ+1(Q̄τ+2 | Ā(τ), L̄(τ))
Q̄τ+1 = Eg∗τ (Q̄τ+1,1 | Ā(τ − 1), L̄(τ))
Iterate, t = τ, . . . , 0
Q̄t+1,1 = EQt+1(Q̄t+1 | Ā(t), L̄(t))
Q̄t+1 = Eg∗t (Q̄t+1,1 | Ā(t− 1), L̄(t))
Q̄t=0 = EL(0)Q̄1

= EȲ ∗

This representation allows the effective evaluation of Ψ(Q) by first eval-
uating a conditional expectation w.r.t conditional distribution of L(τ + 1),
and thus w.r.t.

∏N
i=1QL(τ+1)(Li(τ + 1) | cLτ+1,i), then the conditional mean of

the previous conditional expectation w.r.t. conditional distribution of A∗(τ),
and iterating this process of taking a conditional expectation w.r.t. L(t) and
A∗(t−1) till we end up with a conditional expectation over A∗(0), given L(0),
and finally we take the marginal expectation w.r.t. the distribution of L(0).
Note that each conditional expectation involves an expectation over vector
(Li(t) : i = 1, . . . , N) or (A∗i (t − 1) : i = 1, . . . , N) w.r.t. product measure
of common conditional distributions Qt(Li(t) | cLt,i) or g∗t−1(A∗i (t − 1) | cA∗t−1,i),
t = 1, . . . , τ + 1.

Statistical estimation problem: We have now defined a statistical
model M for the distribution of O, and a statistical target parameter map-
ping Ψ :M→ IR for which Ψ(PQ,g) only depends on Q. We will also denote
this target parameter with Ψ(Q), with some abuse of notation by letting Ψ
represent these two mappings. Given a single draw O ∼ PQ0,g0 , we want to
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estimate Ψ(Q0). In addition, we want to construct an asymptotically valid
confidence interval. Note that our notation suppressed the dependence on N
of the data distribution PQ,g, statistical model M, and target parameter Ψ.

Weakening of the sequential conditional independence assumption:
Consider an ordering of the units, and factorize the likelihood of the data O
accordingly:

P n(O) =
∏N

i=1

∏τ+1
t=0 P (Li(t) | Pa(Li(t)))

∏τ
t=0 P (Ai(t) | Pa(Ai(t))),

where Pa(Li(t)) = (L̄(t − 1), Ā(t − 1), L1(t), . . . , Li−1(t)), and Pa(Ai(t)) =
(L̄(t), Ā(t − 1), A1(t), . . . , Ai−1(t)). This corresponds with the likelihood of
the observed data under the causal model that does not make the sequential
conditional independence assumption. However, obviously, some conditional
independence structure will be needed. A reasonable assumption is that Li(t)
and Lj(t) are conditionally independent, given L̄(t − 1), Ā(t − 1), if Fi(t) ∩
Fj(t) = ∅, which corresponds with the following parent-set definitions:

Pa(Li(t)) = (L̄(t− 1), Ā(t− 1), Lj(t) : j ∈ {1, . . . , i− 1}, Fj(t) ∩ Fi(t) = ∅)
Pa(Ai(t)) = (L̄(t), Ā(t− 1), Aj(t) : j ∈ {1, . . . , i− 1}, Fj(t) ∩ Fi(t) = ∅).

Such a conditional independence assumption still only allows a unit i at time
t to be dependent on a limited universally bounded number of other units at
time t, conditional on the past, so that our formal analysis tools as used in
this article will still be applicable to establish a central limit theorem. We
return to this extended semi parametric model in our sections at the end of
the article dealing with the special case that τ = 0.

4 Motivating examples covered by the general

estimation problem studied in this article

Independent units: By defining the parent sets of Li(t) and Ai(t) as only the
past of unit i, the estimation problem includes estimation of a causal effect of
time-dependent treatment on an outcome based on observing N independent
units. If one observes multiple independent clusters of units over time, then
the parent sets for unit i only include the data on units in the same cluster as
unit i.

A small number of clusters with network information: If one only
observes a single cluster or very small number of clusters of units, then it will
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be crucial for dealing with the curse of dimensionality that each unit i is only
affected by a known low dimensional summary measures of the observed past
on all N units: in particular, one might know the collection of current ”friends”
for unit i. For example, we may wish to determine if early treatment of HIV-
infected patients improves the overall outcome (e.g., proportion of death) for a
network of individuals, in which case the early treatment of an individual will
both have a direct effect on the individual outcome, as well an indirect effect
on other individuals by being less infectious or engaged in less risky sexual
behaviors. In such a study one might observe the sexual or social networks of
the individuals or be able to specify sets that will contain these networks.

Cluster level interventions: If one observes multiple clusters and one
is interested in evaluating the effect of a cluster level intervention, then one
defines Ai(0) as the cluster level intervention assigned to the cluster unit i
belongs to, where Ai(0) is constant across i in that cluster. One can also define
Li(0) as constant across units in a cluster, so that Li(0) represents cluster level
baseline covariates. One might be interested in the joint effect of a cluster level
intervention and a unit level exposure. In that case, one can define Li(0) as
a cluster-level baseline covariate, Ai(0) as a cluster-level intervention, Li(1)
as unit level baseline covariates, Ai(1) as unit level exposure, and Li(2) as a
unit level outcome. Of course, this can be generalized to joint interventions
of a single time point community level intervention and multiple time point
unit level exposure. In this manner, our general formulation incorporates
hierarchical two level data structures, and estimation of causal effects of joint
cluster level and unit level interventions.

Current practice for assessing effects of community level interventions is
heavily dominated by the use of parametric regression models, in which the
coefficient in front of a treatment or exposure represents the estimand of in-
terest. A helpful article is Oakes (2004), which reviews methods for causal
inference for neighborhood effects in social epidemiology up till 2004. We
refer to this article as an overview article putting this causal inference prob-
lem in context of the social epidemiology and some of the causal inference
literature. Overall, from his article one concludes that the causal inference
literature up till 2004 has not focussed much at all on community based in-
terventions, and generalized mixed linear regression models, incorporating the
hierarchical structure, have dominated this literature instead. The literature
for assessing community level interventions involves both observational stud-
ies and randomized controlled trials. Randomized community trials involve
randomly assigning an intervention among a set of possible interventions to
a collection of communities/neighborhoods. Some reviews of the literature
on community randomized trials are given by Donner and Klar (2000), Hayes
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and Moulton (2009), Campbell et al. (2007a)). Examples of randomized com-
munity trials, such as mass-media campaigns to improve health knowledge,
the repair of bad sidewalks, or community policing initiatives, are provided in
(Charlton et al. (1985), Meyer et al. (1991), Shipley et al. (1995), Holder et al.
(1997), Feldman et al. (1998), LeFort et al. (1998), Persky et al. (1999), Biglan
et al. (2000), Luepker et al. (2000)). Other examples of recent cluster random-
ized trials include the SPACE Study of a school level intervention to improve
physical activity in Denmark(Toftager et al., 2011), a cluster randomized trial
of routine HIV-1 viral load monitoring in Zambia (Koethe et al., 2010), and
the PRISM trial of a community level intervention to prevent post-partum
depression in Australia (Watson et al., 2004).

Examples involving the observational study of contexts such as neigbor-
hoods are presented in Cassel (1976), McMichael (1999), Susser (1999), Berk-
man et al. (2000), Krieger (2001), Parsons (1951), Starr (1982), Rose (1985),
Clark et al. (1991), Barr (1995), McKinlay (1996), Feldman et al. (1997)). So-
cial epidemiology concerns the study of effects of social forces and relationships
on health, and is thus a field that is primarily interested in assessing effects of
community level interventions.

Oakes states, after having stressed the enormous literature on contextual
effects: ”Yet due largely to persistent and complex methodological obstacles,
along with a lack of attention to them, the causal effect of neighborhood
contexts on health continues to confuse and elude us (see Hook (2001)). There
appear to be no multilevel neighborhood effect studies with observational data,
including those cited above, that directly confront causal inference.”

Oakes proceeds to motivate causal models for the mean counterfactual out-
come of an individual under set neighborhood interventions, thereby defining
a causal effect of a neighborhood intervention on an individual outcome. He
presents mixed linear models for the counterfactual mean outcome as a func-
tion of an individual and neighborhood specific covariates. He considers the
required randomization assumption and experimental treatment assignment
assumption, well known in the causal inference literature, under which the co-
efficients in the mixed linear model can be interpreted as a conditional causal
effect, within strata of the covariates that entered the model.

Oakes presents the following comment on the enormous use (and abuse)
of mixed linear models. We quote from Oakes review ”The theoretical foun-
dation of multilevel models lies in variance component methodology, which
in its modern form dates back to Fishers work circa 1925 (Draper (1995)).
A ground-breaking advance came when Lindley and Smith (1972) formulated
their empirical Bayes regression model, but it was not until the introduction of
the EM algorithm (Dempster et al. (1977)) that computational feasibility was
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obtained. Laird and Ware (1982) popularized the model for biostatisticians,
Bryk, Raudenbush, Goldstein and Mason for social scientists (Mason et al.
(1984), Goldstein (1987), Bryk and Raudenbush (1992)). From our perspec-
tive, the widespread (ab)use of the model is due to the recent introduction of
user- friendly software, especially HLM and MlWin, and an accessible transla-
tion for SAS users by Verbeke and Molenbergs (1997) and Singer (1998). See
also Kreft et al. (1994), Leeuw and Kreft (2001). ”

Oakes also states: ”Understandably, none of the more recent and rigorous
discussions of causal inference in either epidemiology or social science (Susser
(1973),Greenland (1990), Greenland (2001), Greenland (2002), Manski (1993),
Halloran and Struchiner (1995), Morgenstern (1995), M.E.Sobel (1995), Kauf-
man and Cooper (1995), Kaufman and Poole (2000), Kaufman and Kaufman
(2001), Robins (2001), Maldonado and Greenland (2002)) addressed multilevel
neighborhood effects research directly. Finally, none of the many noteworthy
general discussions on causal inference with observational data (e.g. Camp-
bell and Stanley (1963), Cochran (1965), McKinlay (1975), Heckman (1979),
Leamer (1983), Smith (1990), Rubin (1991), Clogg and Haritou (1997), Copas
and Li (1997), Freedman (1997), Winship and Morgan (1999), Pearl (2000),
Rosenbaum (2002)) address neighborhood effects or multilevel mod- els, which
appear to present some unique issues.”

Multiple connected clusters: Suppose that one observes multiple clus-
ters of units, but that neighboring clusters interfere with each other. As above,
one can define Li(0) as a cluster level covariate, Ai(0) as a cluster level treat-
ment, and Li(t), Ai(t), as unit level covariates and exposure, t = 1, . . . , τ , and
Yi = Li(τ + 1) as the unit level outcome of interest. In this case, the parents
of the unit level exposures Ai(t) and covariates Li(t) can now include units
from neighboring clusters as well. If no network information is available, these
friends would be defined as all units in the neighboring clusters, including its
own cluster. The cluster level treatment Ai(0) could not only depend on Li(0),
but also be a function of the cluster level covariate values of the neighboring
clusters. Again, to deal with the curse of dimensionality, one will either need
to observe many clusters, or one needs network information at the unit level.

Group sequential adaptive designs involving adaptive randomiza-
tion: Suppose that a subject i enters the study at a random time ti, baseline
covariates are collected, the subject is subsequently randomized to a treatment,
and is then followed up for K time-points at which time point an outcome is
collected. Suppose that the probability of receiving one of the available treat-
ments is a function of the data measured on any of the subjects that has
entered the study before time ti, while baseline covariates and outcomes are
generated independently across the subjects. This includes a group sequential
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design with adaptive randomization of treatment as analyzed in van der Laan
(2008); Chambaz and van der Laan (2010b, 2011a,b), Bai et al. (2002); An-
dersen et al. (1994); Flournoy and Rosenberger (1995); Hu and Rosenberger
(2000); Rosenberger (1996); Rosenberger et al. (1997); Rosenberger and Grill
(1997); Rosenberger and Shiram (1997); Tamura et al. (1994); Wei (1979); Wei
and Durham (1978); Wei et al. (1990); Zelen (1969); Cheng and Shen (2005);
van der Laan (2008); Chambaz and van der Laan (2010a); van der Laan and
Rose (2012) In this case we define τ + 1 as the total length of the study from
the start t = 0 of the study at which the first subject entered. At each time
point 0 ≤ t < ti, we can define Ai(t) = 0, and at t = ti Ai(t) is defined as the
treatment Ai the subject received, while for t > ti, Ai(t) = Ai is degenerate.
At each time point 0 ≤ t < ti, Li(t) is defined as the process I(ti ≤ t), at t = ti,
Li(ti) includes the baseline covariates Wi and it also includes observing that ti
occurred, at ti < t < ti+K, Li(t) is defined constant, at time t = ti+K, Li(t)
is defined as the outcome Yi, and Li(t) remains constant for ti+K < t < τ+1.
This defines now Li(0), Ai(0), Li(1), . . . , Li(τ), Ai(τ), Li(τ + 1). Our interven-
tion on the time-dependent treatment Ai(t) is a dynamic intervention that
only intervenes on the Ai-nodes at time ti at which it sets the value of Ai
equal to a specific treatment. This is indeed a dynamic intervention that re-
sponds to the indicator process I(ti ≤ t) ⊂ Li(t) that jumps when ti occurs.
Our model allows us to extend the group sequential adaptive designs to al-
low for outcomes of the subjects to be affected by what has been observed on
previously recruited subjects.

5 Maximum Likelihood Estimation, Cross-Validation,

Super-Learning, and Targeted Maximum Like-

lihood Estimation

We could estimate the distribution of L(0) with the empirical distribution that
puts mass 1 on (Li(0) : i = 1, . . . , N). In general, we estimate the distribution
of L(0) with the NPMLE that maximizes the log-likelihood

∑
i logQLi(0)(Li(0))

over all possible distributions of L(0) that the statistical model M allows. In
particular, if it is known that Li(0) are i.i.d., then we would estimate the com-
mon distribution Q0 of Li(0) with the empirical distribution that puts mass
1/N on Li(0), i = 1, . . . , N .

Regarding estimation of Qt = QL(t) for t = 1, . . . , τ + 1, we consider the
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log-likelihood loss function for Qt:

Lt(Q) = −
N∑
i=1

logQt(Li(t) | cLi,t).

We can use loss-based cross-validation and super-learning to fit this functionQt

of (l(t), cLt ), utilizing that Li(t), i = 1, . . . , N , are conditionally independent,
given Ā(t− 1), L̄(t− 1). If Li(t) is continuous and/or multi-dimensional, one
could code it in terms of binary variables I(Li(t) = l), and model the condi-
tional distribution/hazard of I(Li(t) = l), given Li(t) ≥ l and Ā(t−1), L̄(t−1),
as a function of cLt,i and l, as in van der Laan (2010a,b). This allows one to
utilize estimators of predictors of binary variables in the machine learning lit-
erature, including standard logistic regression software for fitting parametric
models.

We could fit each Qt separately for t = 1, . . . , τ + 1, but it is also possible
to pool across t based on the sum loss function

L(Q) =
∑
t

Lt(Q).

Similarly, we can use the log-likelihood loss-function for gt:

Lt(g) =
N∑
i=1

log gt(Ai(t) | cAt,i),

and use loss-based cross-validation and super-learning to fit gt.
Given the resulting estimator QN of Q0, one can evaluate Ψ(QN) as estima-

tor of ψ0 = Ψ(Q0), according to the iterative conditional expectation mapping
presented earlier. Since QN is optimized to fit Q0, such a plug-in estimator is
overly biased for Ψ(Q0).

Targeted Maximum Likelihood Estimation (TMLE): TMLE will in-
volve modifying Qt,N into a targeted version Q∗t,N , t = 0, . . . , τ + 1, through
utilization of an estimator gn of g0, and a least favorable submodel through
QN , and the resulting estimator of ψ0 is defined accordingly as Ψ(Q∗N). Thus,
a TMLE will also involve estimation of the intervention mechanism g0 = (g0,t :
t = 0, . . . , τ). To define and understand the asymptotic behavior of such a
TMLE we need to determine the efficient influence curve of the statistical tar-
get parameter, and understand the expectation of the efficient influence curve
under misspecified nuisance parameters. We provide the TMLE in detail in
Section 8.
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6 Efficient influence curve of target parameter

In order to define a targeted maximum likelihood estimator we derive the ef-
ficient influence curve of Ψ : M → IR defined on our model M in which
the distribution of O is parameterized by Q = (Qt : t = 0, . . . , τ + 1) and
g = (gt : t = 0, . . . , τ). In order to solve this problem we first determine the
efficient influence curve for other general statistical models implied by statisti-
cal graphs, before tackling our actual model that has additional structure due
to having common conditional distributions across i.

6.1 Efficient influence curve and its robustness for gen-
eral nonparametric statistical graphs.

We start out with determining the efficient influence curve for a general non-
parametric statistical graph.

Theorem 1 Consider longitudinal data structure O = (L(0), A(0), . . . , L(τ), A(τ), Y =
L(τ + 1)) ∼ P . Let g =

∏τ
t=0 gt, gt = P (A(t) | L̄(t), Ā(t− 1)), Q =

∏τ+1
t=0 Qt,

Qt = P (L(t) | L̄(t− 1), Ā(t− 1)), so that the density P factorizes as P = Qg.
Consider the statistical model M that assumes gt(A(t) | Ā(t − 1), L̄(t)) =
gt(A(t) | cAt ), and Qt(L(t) | L̄(t − 1), Ā(t − 1)) = Qt(L(t) | cLt ) for some
specified functions CA

t = cAt (Ā(t − 1), L̄(t)) and CL
t = cLt (Ā(t − 1), L̄(t − 1)),

respectively, t = 1, . . . , τ + 1. For notational convenience, let cL0 be a constant
so that conditioning on this can be ignored. Let Ψ : M → IR be defined as
EQ,g∗Y , where PQ,g∗ = Qg∗ is the G-computation formula for the distribution
of O under stochastic intervention g∗. The efficient influence curve D∗(Q, g)
of Ψ at PQ,g is given by

D∗(Q, g) =
τ+1∑
t=0

{
EQ,g(Y g

∗/g | L(t), CL
t )− EQ,g(Y g∗/g | CL

t )
}
.

Define

ht,Q,g(ct) = PQ,g(C
L
t = ct) and ht,Q,g∗(ct) = PQ,g∗(C

L
t = ct).

For t = 0, we define ht,Q,g = ht,Q,g∗ = 1. The efficient influence curve can be
represented as:

D∗(Q, g)(L(t), CL
t ) =∑τ+1

t=0

∫
EQ,g∗(Y | L(t), Ā(t− 1), L̄(t− 1))

I(CLt (Ā(t−1),L̄(t−1))=cLt )

ht,Q,g(cLt )

∏t−1
l=0 g

∗
lQl

−
∑τ+1

t=0

∫
EQ,g∗(Y | Ā(t− 1), L̄(t− 1))

I(CLt (Ā(t−1),L̄(t−1))=cLt )

ht,Q,g(cLt )

∏t−1
l=0 g

∗
lQl

=
∑τ+1

t=0

{
EQ,g∗(Y | L(t), CL

t )− EQ,g∗(Y | CL
t )
} ht,Q,g∗ (CLt )

ht,Q,g(CLt )
.
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Thus, if EQ,g∗(Y | L(t), Ā(t− 1), L̄(t− 1)) only depends on L(t), CL
t , then this

reduces to

D∗(Q, g) =
∑τ+1

t=0

ht,Q,g∗ (CLt )

ht,Q,g(CLt ){
EQ,g∗(Y | L(t), Ā(t− 1), L̄(t− 1))− EQ,g∗(Y | Ā(t− 1), L̄(t− 1))

}
.

Robustness of efficient influence curve: Let P0 = Q0g0. If ht,Q,g = ht,Q0,g0

and Qt = Q0,t, then P0D
∗
t (Q, g) = 0, t = 0, . . . , τ + 1. Also, if ht,Q,g = ht,Q0,g0

and P0D
∗
t (Q, g) = 0, then EQ−t,Q0,t,g∗Y − EQ,g∗Y = 0, where we use notation

Q−t = (Qs : s 6= t).
If ht,Q,g = ht,Q0,g0 for all t, then

P0D
∗(Q, g) =

τ+1∑
t=0

{EQ−t,Q0,t,g∗Y − EQ,g∗Y }.

Define

R(Q,Q0) ≡
τ+1∑
t=0

EQ0:t−1−Q0:0:t−1,Q0,t−Qt,Qt+1:τ+1,g∗Y,

where we used notation Ql:m = (Qs : l ≤ s ≤ m). Note that R(Q,Q0) is a
second order term involving square differences between Q and Q0. This implies
that, if ht,Q,g = ht,Q0,g0 for all t, then

P0D
∗(Q, g) = Ψ(Q0)−Ψ(Q) +R(Q0, Q).

Define

Rt((ht, ht,0), (Q,Q0))

= P0

{
EQ,g∗(Y | L(t), CL

t )− EQ,g∗(Y | CL
t )
} ht,Q,g∗ (ht,Q,g−ht,Q0,g0

)

ht,Q,ght,Q0,g0
.

Since the conditional expectation w.r.t. Q0,t of the difference of the two condi-
tional expectations equals zero if Qt = Q0,t, it follows that the right-hand side
also involves a difference Q0,t −Qt, and thereby a product (Q0,t −Qt)(ht,Q,g −
ht,Q0,g0). Let R((h, h0), (Q,Q0)) =

∑τ+1
t=0 Rt((ht, ht,0), (Q,Q0)). In general, we

have

P0D
∗(Q, g) = Ψ(Q0)−Ψ(Q) +R((h, h0), (Q,Q0)) +R(Q,Q0).

In particular, for all g, P0D
∗(Q0, g) = 0.
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Proof. The efficient influence curve is not affected by the choice of model
on g, since the target parameter is only a function of the Q-factor, and the
likelihood factorizes as PQ,g = Qg. The efficient influence curve is given by∑

tE(Y g∗/g | L(t), CL
t )− E(Y g∗/g | CL

t ). Firstly, we use that

E(Y g∗/g | L(t), CL
t ) = E(E(Y g∗/g | L(t), Ā(t− 1), L̄(t− 1)) | L(t), CL

t ).

The inner conditional expectation is given by∫
Y

Qτ
l=0 g

∗
lQτ

l=0 gl

∏τ+1
l=t gl

∏τ+1
l=t+1Ql =

∫
Y
∏t−1

l=0 g
∗
l /gl

∏τ+1
l=t g

∗
l

∏τ+1
l=t+1Ql

=
∏t−1

l=0 g
∗
l /glEQ,g∗(Y | L(t), Ā(t− 1), L̄(t− 1)).

The conditional distribution of (L(t), Ā(t− 1), L̄(t− 1)), given L(t), CL
t = cLt ,

can be written as

I(cLt (Ā(t− 1), L̄(t− 1)) = cLt )P (L̄(t),Ā(t−1))

P (L(t),cLt )

= I(cLt (Ā(t− 1), L̄(t− 1)) = cLt )P (L̄(t− 1), Ā(t− 1))/P (CL
t = cLt )

= I(cLt (Ā(t− 1), L̄(t− 1)) = cLt )
Qt−1
l=0 gl

Qt−1
l=0 Ql

ht,Q,g(cLt )
.

Let Pa(L(t)) = (Ā(t− 1), L̄(t− 1)). This proves that

EQ,g(Y g
∗/g | L(t), CL

t = cLt )

=
∫
EQ,g∗(Y | L(t), Pa(L(t)))I(cLt (Pa(L(t))) = cLt )

Qt−1
l=0 g

∗
l

Qt−1
l=0 Ql

ht,Q,g(cLt )

=
∫
EQ,g∗(Y | L(t), CL

t = cLt )
ht,Q,g∗ (cLt )

ht,Q,g(cLt )
,

where we integrated over all (Ā(t− 1), L̄(t− 1)) for which CL
t = cLt to obtain

the last expression. This proves the representation of the efficient influence
curve (2). The representation under the condition that EQ,g∗(Y | L(t), Ā(t −
1), L̄(t− 1)) only depends on L(t), cLt is an immediate consequence.

We now wish to establish the expectation of efficient influence curve w.r.t.
P0. The expectation w.r.t. P0 of D∗t (Q, g) corresponds with integration w.r.t.
Qt,0ht,Q0,g0 . So if ht,Q,g = ht,Q0,g0 , and ht,Q,g∗ = ht,Q0,g∗ , then we have

P0EQ,g(Y g
∗/g | L(t), cLt )

=
∫
ct

∫
L(t)

∫
Ā(t−1),L̄(t−1)

EQ,g∗(Y | L(t), Pa(L(t)))I(cLt (Pa(L(t))) = ct)∏t−1
l=0 g

∗
l

∏t−1
l=0 QlQ0,t(L(t) | cLt )

=
∫
L(t)

∫
Ā(t−1),L̄(t−1)

EQ,g∗(Y | L(t), Pa(L(t)))∏t−1
l=0 g

∗
l

∏t−1
l=0 QlQ0,t(L(t) | cLt (Pa(L(t)))

= EQ−t,Q0,t,g∗Y,
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where we used notation Q−t = (Ql : l 6= t). Note that we used Fubini’s
theorem to first integrate out ct, using that the indicator will only be non-zero
at ct = cLt (Pa(L(t))). As a consequence of the disappearing of the indicator,
we end up with a pure marginal expectation w.r.t. PQ−t,Q0,t,g∗Y . Similarly, we
obtain at a Q with ht,Q,g = ht,Q0,g0 ,

P0EQ,g(Y g
∗/g | L(t), cLt ) = EQ,g∗Y.

Thus,
P0D

∗
t (Q, g) = EQ−t,Q0,t,g∗Y − EQ,g∗Y.

Thus, this proves that if ht,Q,g = ht,Q0,g0 and Qt = Q0,t, then P0D
∗
t (Q, g) = 0,

t = 0, . . . , τ + 1. Or, equivalently, if ht,Q,g = ht,Q0,g0 and P0D
∗
t (Q, g) = 0, then

EQ−t,Q0,t,g∗Y − EQ,g∗Y = 0.
If ht,Q,g = ht,Q0,g0 for all t, then

P0D
∗(Q, g) =

τ+1∑
t=0

{EQ−t,Q0,t,g∗Y − EQ,g∗Y }.

On the other hand, we have

Ψ(Q0)−Ψ(Q) =
τ+1∑
t=0

EQ0,0:t−1,Q0,t,Qt+1:τ+1,g∗Y − EQ0,0:t−1,Qt,Qt+1:τ+1,g∗Y.

We have ∑τ+1
t=0 {EQ−t,Q0,t,g∗Y − EQ,g∗Y }−∑τ+1
t=0 {EQ0,0:t−1,Q0,t,Qt+1:τ+1,g∗Y − EQ0,0:t−1,Qt,Qt+1:τ+1,g∗Y }

=
∑τ+1

t=0 EQ0:t−1−Q0:0:t−1,Q0,t−Qt,Qt+1:τ+1,g∗Y
≡ R(Q0, Q)

We note that R(Q,Q0) is a second order term involving square differences
between Q and Q0. This proves that if ht,Q,g = ht,Q0,g0 for all t, then

P0D
∗(Q, g) = Ψ(Q0)−Ψ(Q) +R(Q0, Q).

It also follows that P0D
∗(Q, g) = R((h, h0), (Q,Q0)) + R(Q,Q0) + Ψ(Q0) −

Ψ(Q), where R((h, h0), (Q,Q0)) is involves product differences of (h−h0) and
Q−Q0, which is thus also a second order term. Specifically,

Rt((ht, ht,0), (Q,Q0)) = P0

{
EQ,g∗(Y | L(t), CL

t )− EQ,g∗(Y | CL
t )
} ht,Q,g∗ (ht,Q,g−ht,Q0,g0

)

ht,Q,ght,Q0,g0
.
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Since the conditional expectation w.r.t. Q0,t of the difference of the two condi-
tional expectations equals zero if Qt = Q0,t, it follows that the right-hand side
also involves a difference Q0,t−Qt, and thereby a product (Q0,t−Qt)(ht,Q,g −
ht,Q0,g0).

This proof also shows that P0D
∗(Q0, g) = 0 for all g. More explicitly,

P0EQ0,g(Y g
∗/g | L(t), cLt )

=
∫
ct

∫
L(t)

∫
Ā(t−1),L̄(t−1)

EQ0,g∗(Y | L(t), Pa(L(t)))I(cLt (Pa(L(t))) = ct)∏t−1
l=0 g

∗
l

∏t−1
l=0 Ql,0Q0,t(L(t) | ct) ht,0(ct)

ht,Q0,g
(ct)
.

We now use Fubini’s theorem to first integrate over L(t) w.r.t. Q0,t. Since
only the conditional expectation depends on L(t), this yields

P0EQ0,g(Y g
∗/g | L(t), cLt )

=
∫
ct

∫
Ā(t−1),L̄(t−1)

EQ0,g∗(Y | Pa(L(t)))I(cLt (Pa(L(t))) = ct)∏t−1
l=0 g

∗
l

∏t−1
l=0 Ql,0

ht,0(ct)

ht,Q0,g
(ct)
.

Thus, this provides another explicit proof that P0D
∗
t (Q0, g) = 0. This com-

pletes the proof of the theorem. 2

The following theorem extends this result in a straightforward manner to
determine the representation of the efficient influence curve corresponding with
the orthogonal decomposition implied by a more general factorized likelihood.
This theorem still assumes that the different factors of the likelihood are vari-
ation independent and nonparametrically modeled.

Theorem 2 Consider longitudinal data structure O = (L(0), A(0), . . . , L(τ), A(τ), Y =
L(τ + 1) ∼ P , and let L(t) = (L(t, j) : j = 1, . . . , nt), t = 1, . . . , τ + 1,
while L(0) is not further decomposed. For notational convenience, let n0 = 1,
and L(0, 1) = L(0). Let g =

∏τ
t=0 gt, gt = P (A(t) | L̄(t), Ā(t − 1)), Q =∏τ+1

t=0

∏nt
j=1Qt,j, Qt,j = P (L(t, j) | L(t, 1), . . . , L(t, j − 1), L̄(t − 1), Ā(t − 1)),

so that P = Qg. Consider the statistical model M that assumes a model on
gt(A(t) | Ā(t− 1), L̄(t)) (such as = gt(A(t) | cAt )), and

Qt,j(L(t, j) | L(t : 1 : j − 1), L̄(t− 1), Ā(t− 1)) = Qt,j(L(t, j) | cLt,j)

for some specified functions cAt = cAt (Ā(t − 1), L̄(t)) and cLt,j(L(t : 1 : j −
1), Ā(t − 1), L̄(t − 1)), respectively, j = 1, . . . , nt,t = 1, . . . , τ + 1. The same
results below apply for any statistical model on g.

For notational convenience, let cL(0) be a constant so that conditioning on
this can be ignored. Let Ψ : M → IR be defined as EQ,g∗Y , where PQ,g∗ =
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Qg∗ is the G-computation formula for the distribution of O under stochastic
intervention g∗. The efficient influence curve D∗(Q, g) of Ψ :M→ IR at PQ,g
is given by

D∗(Q, g) =
τ+1∑
t=0

nt∑
j=1

{
EQ,g(Y g

∗/g | L(t, j), cLt,j)− EQ,g(Y g∗/g | cLt,j)
}
.

Let S(t, j) = {(s, k) : s ∈ {0, . . . , t− 1}, k} ∪ {(t, k) : k = 1, . . . , j − 1}. Define

ht,j,Q,g(ct,j) = PQ,g(C
L
t,j = ct,j) and ht,j,Q,g∗(ct,j) = PQ,g∗(C

L
t,j = ct,j).

If t = 0, we define ht=0,Q,g = ht=0,Q,g∗ = 1.
The efficient influence curve can be represented as:

D∗(Q, g) =
∑τ+1

t=0

∑nt
j=1

∫
EQ,g∗(Y | L(t, j), L(t, 1 : j − 1), Ā(t− 1), L̄(t− 1))
I(Ck,j(Ā(t−1),L̄(t−1),L(t,1:j−1))=CLt,j)

ht,j,Q,g(CLt,j)

∏k−1
l=0 g

∗
l

∏
l∈S(t,j) Ql

−
∑τ+1

t=0

∑nt
j=1

∫
EQ,g∗(Y | L(t, 1 : j − 1), Ā(t− 1), L̄(t− 1))

I(Ck,j(Ā(t−1),L̄(t−1),L(t,1:j−1))=CLt,j)

ht,j,Q,g(CLt,j)

∏k−1
l=0 g

∗
l

∏
l∈S(t,j) Ql

=
∑τ+1

t=0

∑nt
j=1

ht,j,Q,g∗ (CLt,j)

ht,j,Q,g(CLt,j)

{
EQ,g∗(Y | L(t, j), CL

t,j)− EQ,g∗(Y | CL
t,j)
}
.

In particular, if EQ,g∗(Y | L(t, j), L(t, 1 : j−1), Ā(t−1), L̄(t−1)) only depends
on L(t, j), CL

t,j, then

D∗(Q, g) =
∑τ+1

t=0

∑nt
j=1

ht,j,Q,g∗ (CLt,j)

ht,j,Q,g(CLt,j)

{EQ,g∗(Y | L(t, j), Pa(L(t, j)))− EQ,g∗(Y | Pa(L(t, j)))} .

where we used the notation Pa(L(t, j)) = (L(t, 1 : j − 1), Ā(t− 1), L̄(t− 1)).
Robustness of efficient influence curve: Let P0 = Q0g0. If ht,j,Q,g =
ht,j,Q0,g0 and Qt,j = Q0,t,j, then P0D

∗
t,j(Q, g) = 0. Also, if ht,j,Q,g = ht,j,Q0,g0

and P0D
∗
t (Q, g) = 0, then EQ−(t,j),Q0,(t,j),g

∗Y − EQ,g∗Y = 0.
If ht,j,Q,g = ht,j,Q0,g0 for all t, j, then

P0D
∗(Q, g) =

τ+1∑
t=0

nt∑
j=1

{EQ−(t,j),Q0,(t,j),g
∗Y − EQ,g∗Y }.

Define

R(Q,Q0) ≡
τ+1∑
t=0

nt∑
j=1

{EQ(t,j)−−Q0,(t,j)−,Q0,t,j−Qt,j ,Q(t,j)+,g
∗Y,
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where Q(t,j)− represents all factors before (t, j) in the ordering (by column so
that time-ordering is respected), and Q(t,j)+ represents all factors after (t, j)
in the ordering. Note that R(Q,Q0) is a second order term involving square
differences between Q and Q0. This implies that, if ht,j,Q,g = ht,j,Q0,g0 for all
t, j, then

P0D
∗(Q, g) = Ψ(Q0)−Ψ(Q) +R(Q0, Q).

Define

Rt,j((ht,j, ht,j,0), (Q,Q0))

= P0

{
EQ,g∗(Y | L(t, j), CL

t,j)− EQ,g∗(Y | CL
t,j)
} ht,j,Q,g∗ (ht,j,Q,g−ht,j,Q0,g0

)

ht,j,Q,ght,j,Q0,g0
.

Since the conditional expectation w.r.t. Q0,t,j of the difference of the two con-
ditional expectations equals zero if Qt,j = Q0,t,j, it follows that the right-hand
side also involves a difference Q0,t,j − Qt,j, and thereby a product (Q0,t,j −
Qt,j)(ht,jQ,g−ht,j,Q0,g0). Let R((h, h0), (Q,Q0)) =

∑
t

∑
j Rt,j((ht, ht,0), (Q,Q0)).

In general, we have

P0D
∗(Q, g) = Ψ(Q0)−Ψ(Q) +R((h, h0), (Q,Q0)) +R(Q,Q0).

In particular, for all g, P0D
∗(Q0, g) = 0.

Proof. The efficient influence curve is not affected by the choice of model
on g, since the target parameter is only a function of the Q-factor, and the
likelihood factorizes as PQ,g = Qg. The efficient influence curve is given by∑

t,j E(Y g∗/g | L(t, j), CL
t,j)− E(Y g∗/g | CL

t,j). Firstly, we use that

E(Y g∗/g | L(t, j), CL
t,j)

= E(E(Y g∗/g | L(t, j), L(t, 1 : j − 1), Ā(t− 1), L̄(t− 1)) | L(t, j), CL
t,j).

The inner conditional expectation is given by∫
Y

Qτ
l=0 g

∗
lQτ

l=0 gl

∏τ+1
l=t gl

∏
l∈S(t,j)c,l 6=(t,j) Ql

=
∫
Y
∏t−1

l=0 g
∗
l /gl

∏τ+1
l=t g

∗
l

∏
l∈S(t,j)c,l 6=(t,j) Ql

=
∏t−1

l=0 g
∗
l /glEQ,g∗(Y | L(t, j), L(t, 1 : j − 1), Ā(t− 1), L̄(t− 1)).

The conditional distribution of (L(t, j), L(t, 1 : j − 1), Ā(t− 1), L̄(t− 1), cLt,j),
given L(t, j), CL

t,j = cLt,j, can be written as

I(cLt,j(Ā(t− 1), L̄(t− 1), L(t, 1 : j − 1)) = cLt,j)
P (L(t,1:j),L̄(t−1),Ā(t−1))

P (L(t,j),cLt,j)

= I(cLt,j(Ā(t− 1), L̄(t− 1), L(t, 1 : j − 1)) = cLt,j)
P (L(t,1:j−1),L̄(t−1),Ā(t−1))

P (cLt,j=c
L
t,j)

= I(cLt,j(Ā(t− 1), L̄(t− 1), L(t, 1 : j − 1)) = cLt,j)
Qk−1
l=0 gl

Q
l∈S(t,j)Ql

ht,j,Q,g(cLt,j)
.
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This proves that

EQ,g(Y g
∗/g | L(t, j), CL

t,j = cLt,j)
=
∫
EQ,g∗(Y | L(t, j), Pa(L(t, j)))I(cLt,j(Pa(L(t, j))) = cLt,j)Qk−1

l=0 g
∗
l

Q
l∈S(t,j)Ql

ht,j,Q,g(ct,j)
.

Further integration over Pa(L(t, j)) satisfying cLt,j(Pa(L(t, j)) = cLt,j yields the
last representation, and thereby the proof of the representation of the efficient
influence curve (2).

We now wish to establish the robustness w.r.t. P0. Let S(t, j)+ = S(t, j)∪
{t, j}. The expectation w.r.t. P0 of D∗t,j(Q, g) corresponds with integration
w.r.t. Qt,j,0ht,j,Q0,g0 . So if ht,j,Q,g = ht,j,Q0,g0 , we have

P0EQ,g(Y g
∗/g | L(t, j), CL

t,j)
=
∫
ct,j

∫
L(t,j)

∫
Ā(t−1),L̄(t−1),L(t,1:j−1)

EQ,g∗(Y | L(t, j), Pa(L(t, j)))

I(cLt,j(Pa(L(t, j))) = ct,j)
∏t−1

l=0 g
∗
l

∏
l∈S(t,j) QlQ0,t,j(L(t, j) | ct,j)

=
∫
L(t,j)

∫
Ā(t−1),L̄(t−1),L(t,1:j−1)

EQ,g∗(Y | L(t, j), Pa(L(t, j)))∏t−1
l=0 g

∗
l

∏
l∈S(t,j) QlQ0,t,j(L(t, j) | cLt,j(Pa(L(t, j)))

= EQ−(t,j),Q0,t,j ,g∗Y.

Here we used Fubini’s theorem to first integrate out ct,j, noting that the indica-
tor will only be non-zero at ct,j = cLt,j(L̄(t−1), Ā(t−1), L(t, 1 : j−1)). As a con-
sequence of the disappearing of the indicator, we end up with a pure marginal
expectation w.r.t. PQ−(t,j),Q0,t,j ,g∗Y . Similarly, we obtain P0EQ,g(Y g

∗/g |
CL
t,j) = EQ,g∗Y . So we obtain at a Q, g for which ht,j,Q,g = ht,j,Q0,g0 for all

(t, j),

P0D
∗(Q, g) =

τ+1∑
t=0

nt∑
j=1

EQ−(t,j),Q0,t,j−Qt,j ,g∗Y.

As shown in the previous theorem, this reduces to Ψ(Q0)−Ψ(Q) plus second
order terms R(Q,Q0) The other statements are analogue to the proof of the
previous theorem. This completes the proof of the theorem. 2

6.2 Efficient influence curve and its robustness for our
statistical model

We now present the efficient influence curve for our actual statistical model.

Theorem 3 Consider the longitudinal data structure O = (L(0), A(0), . . . , L(τ), A(τ), Y =
L(τ + 1)) ∼ P , and let L(t) = (L(t, j) : j = 1, . . . , N), t = 0, . . . , τ + 1.
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Let g =
∏τ

t=0 gt, gt = P (A(t) | L̄(t), Ā(t − 1)), Q =
∏τ+1

t=0

∏N
j=1Qt,j, Qt,j =

P (L(t, j) | L(t, 1), . . . , L(t, j−1), L̄(t−1), Ā(t−1)), so that P = Qg. Consider
the statistical modelM that assumes a model on gt(A(t) | Ā(t−1), L̄(t))), and

Qt,j(L(t, j) | L(t : 1 : j − 1), L̄(t− 1), Ā(t− 1)) = Qt(L(t, j) | cLt,j)

for a common (in j) Qt, and some specified functions CL
t,j = cLt,j(Ā(t−1), L̄(t−

1)) (with common range), respectively, j = 1, . . . , n, t = 1, . . . , τ + 1. Note
that this corresponds with assuming that the components of (L(t, j) : j =
1, . . . , n) are conditionally independent given L̄(t−1), Ā(t−1), with conditional
distributions described by a common Qt. In addition, it is assumed that cLt,j be
a d-dimensional function of L(1 : t − 1, j) = (L(l, j) : l = 1, . . . , t − 1) and
L̄(t − 1)/{L(1 : t − 1, j) for j = 1, . . . , N with d not depending on N . For
notational convenience, let cL0 be a constant so that conditioning on this can
be ignored. Let Ψ : M → IR be defined as EQ,g∗Y , where PQ,g∗ = Qg∗ is the
G-computation formula for the distribution of O under stochastic intervention
g∗, and Y = 1/N

∑N
j=1 Yj.

Define

ht,j,Q,g(ct,j) = PQ,g(C
L
t,j = ct,j) and ht,j,Q,g∗(ct,j) = PQ,g∗(C

L
t,j = ct,j).

Sometimes, we use short-hand notation ht,j for ht,j,Q,g and h∗t,j for ht,j,Q,g∗. If
t = 0, we define ht=0,j,Q,g = ht=0,j,Q,g∗ = 1. Define, for each t = 1, . . . , τ + 1,

D̄t(l(t), c(t)) =∑N
j=1

{
EQ,g(Y g

∗/g | L(t, j) = l(t), cLt,j = c(t))− EQ,g(Y g∗/g | cLt,j = c(t))
} ht,j

h̄t
(c(t)),

where h̄t =
∑

j ht,j, j = 1, . . . , N . If one assumes a common (in j) marginal

distribution for L(0, j), then D∗t=0(Q, g) =
∑N

j=1 D̄0(L(0, j)), using same for-

mula for D̄0 as above, with
ht,j
h̄t

(c(t)) = 1/N . If we only assume independence
of L(0, j) across j, then we define

D∗0(Q, g) =
N∑
j=1

{EQ,g((Y g∗/g | L(0, j))− EQ,g(Y g∗/g)}.

The efficient influence curve D∗(Q, g) of Ψ :M→ IR at PQ,g is given by

D∗(Q, g) = D∗0(Q, g) +
∑τ+1

t=1

∑N
j=1 D̄t(L(t, j), CL

t,j).

We have for t = 1, . . . , τ + 1,

EQ,g(Y g
∗/g | L(t, j), CL

t,j)− EQ,g(Y g∗/g | CL
t,j) =

ht,j,Q,g∗

ht,j,Q,g
(CL

t,j)
{
EQ,g∗(Y | L(t, j), CL

t,j)− EQ,g∗(Y | CL
t,j)
}
.
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Thus, for t = 1, . . . , τ + 1,

D̄t(l(t), c(t)) =∑N
j=1

h∗t,j
h̄t

(c(t))
{
EQ,g∗(Y | L(t, j) = l(t), CL

t,j = c(t))− EQ,g∗(Y | CL
t,j = c(t))

}
,

so that we can represent the efficient influence curve also as:

D∗(Q, g) = D∗0(Q, g) +
∑τ+1

t=1

∑N
j=1

∑N
m=1

h∗t,m
h̄t

(cLt,j){
EQ,g∗(Y | L(t,m) = L(t, j), CL

t,m = cLt,j)− EQ,g∗(Y | CL
t,m = cLt,j)

}
.

In particular, if EQ,g∗(Y | L(t, j) = l(t), CL
t,j = c(t))−EQ,g∗(Y | CL

t,j = c(t))
is a function of l(t), c(t) that is constant in j, then

D̄t(l(t), c(t))

=
P
j ht,j,Q,g∗P
j ht,j,Q,g

(c(t))
{
EQ,g∗(Y | L(t, j) = l(t), CL

t,j = c(t))− EQ,g∗(Y | CL
t,j = c(t))

}
=

h̄t,Q,g∗

h̄t,Q,g
(c(t))

{
EQ,g∗(Y | L(t, j) = l(t), CL

t,j = c(t))− EQ,g∗(Y | CL
t,j = c(t))

}
,

where h̄t,Q,g ≡
∑N

j=1 ht,j,Q,g.
Robustness of efficient influence curve: Let P0 = Q0g0. If ht,j,Q,g =

ht,j,Q0,g0 for j = 1, . . . , N , and Qt = Q0,t, then P0D
∗
t,j(Q, g) = 0. Specifically,

if ht,j,Q,g = ht,j,Q0,g0 for all j = 1, . . . , N , then P0D
∗
t,j(Q, g) = EQ−t,Q0,t,g∗Y −

EQ,g∗Y = 0.
If ht,j,Q,g = ht,j,Q0,g0 for all t, j, then

P0D
∗(Q, g) = EQ0,0,Q,g∗Y − EQ,g∗Y +

τ+1∑
t=1

N∑
j=1

{EQ−t,Q0,t,g∗Y − EQ,g∗Y }.

Define

R(Q,Q0) ≡
τ+1∑
t=0

N∑
j=1

{EQ0:t−1−Q0,0:t−1,Q0,t−Qt,Qt+1:τ+1,g∗Y.

Note that R(Q,Q0) is a second order term involving square differences between
Q and Q0. This implies that, if ht,j,Q,g = ht,j,Q0,g0 for all t, j, then

P0D
∗(Q, g) = Ψ(Q0)−Ψ(Q) +R(Q0, Q).

Define

R((h, h0), (Q,Q0)) ≡
∑

t

∑
m

∫
l(t),c(t)

h∗t,mQ0,t
(h̄t,0−h̄t)

h̄t{
EQ,g∗(Y | L(t,m) = l(t), CL

t,m = c(t))− EQ,g∗(Y | CL
t,m = c(t)

}
29

Hosted by The Berkeley Electronic Press



Since the conditional expectation w.r.t. Q0,t of the difference of the two condi-
tional expectations equals zero if Qt = Q0,t, it follows that the t-specific term
on the right-hand side involves a difference Q0,t − Qt, and thereby a product
(Q0,t −Qt)(h̄t − h̄0,t). In general, we have

P0D
∗(Q, g) = Ψ(Q0)−Ψ(Q) +R((h, h0), (Q,Q0)) +R(Q,Q0).

In particular, for all g, P0D
∗(Q0, g) = 0.

Proof. The proof is analogue to the proof of the previous theorem and uses
the following additional lemma. 2

Lemma 1 Let TQk = {
∑

j S(L(k, j) | cLk,j) :
∫
S(l | c)Qk(l | c) = 0} be the

tangent space of Qk. Recall that the marginal density of CL
k,j is given by hj,

j = 1, . . . , N . Let D be an element of L2
0(P ). The projection of D onto TQk is

given by

Π(D | TQk) =
N∑
j=1

D̄k(L(k, j) | CL
k,j),

where

D̄k(l | c) =
1∑

j hj(c)

∑
j

{E(D | L(k, j) = l, CL
k,j = c)−E(D | CL

k,j = c)}hj(c).

Proof Lemma: The proof of this lemma consists of two steps. Firstly, one
notes that the conjectured projection is indeed an element of the desired tan-
gent space. Secondly, one shows that D minus the conjectured projection
is orthogonal to any element in TQk . Define Dj(L(k, j) | cLk,j) = E(D |
L(k, j), cLk,j)− E(D | cLk,j).

We note that TQk is embedded in the larger sub-Hilbert space {
∑

j Sj(L(k, j) |
CL
k,j) :

∫
Sj(l | c)Qk(l | c) = 0}. The projection of D onto this larger

space is given by
∑

j Dj. Thus, the projection of D onto TQk is given by
Π(
∑

j Dj | TQk).
Let the conjectured projection be

∑
j D̄k(L(k, j) | cLk,j). In the remainder

of the proof we suppress the index k which plays no role. The orthogonality
requirement states that for each f

E

{∑
j

Dj −
∑
j

D̄

}∑
j

f = 0.

Thus, for all functions f we have∫
l,c
{
∑

j Dj(l, c)−
∑

j D̄(l, c)}
∑

j f(l, c)Q(l | c)hj(c) = 0.
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This can be rewritten as:∫
l,c

{∑
j

Dj(l, c)hj(c)

}
f(l, c)Q(l, c) =

∫
l,c

D̄(l, c)
∑
j

hj(c)f(l, c)Q(l | c).

Since this equality needs to hold for all functions f , it follows that∑
j

Dj(l, c)hj(c) = D̄(l, c)
∑
j

hj(c),

and thus
D̄(l, c) =

∑
j

Dj(l, c)hj(c)/
∑
j

hj(c).

This completes the proof of the lemma. 2

The second order terms We note that the second order terms will only
be second order if E(Yj | L(t,m), CL

t,m)−E(Yj | CL
t,m) = 0 for most m (or very

small for most m), so that substituting Y = 1/N
∑

j Yj in the second order
expressions indeed results in a stable average of second order differences.

6.3 Generalization of case that the individuals are in-
dependent

We demonstrate that the last theorem generalizes the efficient influence curve
for i.i.d. data in which case the statistical graph does not make any more con-
ditional independence assumptions than implied by the time-ordering, beyond
the independence of all units.

Corollary 1 Consider longitudinal data structure O = (L(0), A(0), . . . , L(τ), A(τ), L(τ+
1)) ∼ P , and let L(t) = (L(t, j) : j = 1, . . . , N), A(t) = (A(t, j) : j =
1, . . . , N), k = 0, . . . , τ + 1. Let Y = 1

N

∑
j L(τ + 1, j). Let g =

∏τ
t=0 gt, gt =

P (A(t) | L̄(t), Ā(t−1)), Q =
∏τ+1

t=0

∏N
j=1 Qt,j, Qt,j = P (L(t, j) | L(t, 1), . . . , L(t, j−

1), L̄(t− 1), Ā(t− 1)), so that P = Qg. Consider the statistical model M that
assumes

gt(A(t) | Ā(t− 1), L̄(t− 1)) =
∏
j

gt(A(t, j) | Āj(t− 1), L̄j(t− 1)),

and

Qt,j(L(t, j) | L(t : 1 : j−1), L̄(t−1), Ā(t−1)) = Qt(L(t, j) | L̄j(t−1), Āj(t−1))
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for a common (in j) Qt, j = 1, . . . , n, t = 1, . . . , τ + 1. Thus, we now have
CL
t,j = (Āj(t − 1), L̄j(t − 1)), CA

t,j = (Āj(t − 1), L̄j(t)), only includes the his-
tory of the j-th individual. The above model corresponds with assuming that
O = (O1, . . . , ON), Oj = (Lj(0), Aj(0), . . . , Lj(τ), Aj(τ), Yj), and Oj are inde-
pendent and identically distributed with common distribution

∏
t gt
∏

tQt.
For notational convenience, let cL0 be a constant so that conditioning on this

can be ignored. Let Ψ :M→ IR be defined as EQ,g∗Y , where PQ,g∗ = Qg∗ is the
G-computation formula for the distribution of O under stochastic intervention
g∗, and Y = 1/N

∑N
j=1 Yj.

Define

ht,j,Q,g(ct,j) = PQ,g(C
L
t,j = ct,j) and ht,j,Q,g∗(ct,j) = PQ,g∗(C

L
t,j = ct,j).

Define, for each t = 0, . . . , τ + 1,

D̄t(l(t), c(t)) =∑N
j=1

{
EQ,g(Y g

∗/g | L(t, j) = l(t), CL
t,j = c(t))− EQ,g(Y g∗/g | CL

t,j = c(t))
} ht,j

h̄t
(c(t)),

where h̄t =
∑

j ht,j, and ht,j(c) = P (CL
t,j = c) is the marginal density of CL

t,j,
j = 1, . . . , N . The previous theorem establishes that the efficient influence
curve D∗(Q, g) of Ψ :M→ IR at PQ,g is given by

D∗(Q, g) =
τ+1∑
t=0

N∑
j=1

D̄t(L(t, j), CL
t,j),

where

D̄t(l(t), c(t))

=
P
j ht,j,Q,g∗P
j ht,j,Q,g

(c(t))
{
EQ,g∗(Y | L(t, j) = l(t), CL

t,j = c(t))− EQ,g∗(Y | CL
t,j = c(t))

}
=

h̄t,Q,g∗

h̄t,Q,g
(c(t))

{
EQ,g∗(Y | L(t, j) = l(t), CL

t,j = c(t))− EQ,g∗(Y | CL
t,j = c(t))

}
,

and h̄t,Q,g ≡
∑N

j=1 ht,j,Q,g.

We have ht,j,Q,g(āj(t − 1), l̄j(t − 1)) = Qg(āj(t − 1), l̄j(t − 1)), so that
ht,j,Q,g∗/ht,j,Q,g(c

L
t,j) =

∏
s≤t g

∗
s(aj(s) | āj(s − 1), l̄j(s))/

∏
s≤t gs(aj(s) | āj(s −

1), l̄j(s)). In addition,

EQ,g∗(Y | L(t, j), CL
t,j)− EQ,g∗(Y | CL

t,j)
= 1

N

{
EQ,g∗(Y (j) | L(t, j), L̄j(t− 1), Āj(t− 1))− EQ,g∗(Y (j) | L̄j(t− 1), Āj(t− 1))

}
is constant in j. Thus, the efficient influence curve reduces to

D∗(Q, g)(O) =
1

N

τ+1∑
t=0

N∑
j=1

D̄t(L(t, j), CL
t,j),
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where

D̄t(L(t, j), CL
t,j) =

g∗

g
(Āj(t−1), L̄j(t−1)){EQ,g∗(Y (j) | L(t, j), CL

t,j)−EQ,g∗(Y (j) | CL
t,j)}.

7 Characterizing the optimal asymptotic vari-

ance of the MLE in terms of efficient influ-

ence curve.

Due to our sequential conditional independence assumption, the log-likelihood
can be represented as a sum over time-points t and units i, and for each t,
the sum over i consists of independent random variables, conditional on the
past. As a consequence, under regularity conditions, one can show that the
log-likelihood is asymptotically normally distributed. Therefore, we conjec-
ture that we can establish so called local asymptotic normality of our statisti-
cal model, which involves establishing asymptotic normality of log-likelihood
under sampling from fluctuations/submodels Pε=1/

√
N ⊂ M of a fixed data

distribution P across all possible fluctuations. As shown in van der Vaart
(1998), for models satisfying the local asymptotic normality condition, the
normal limit distribution of an MLE is an optimal limit distribution based on
the convolution theorem. In this section we informally demonstrate the im-
portance of the efficient influence curve as the random variable whose variance
characterizes the normal limit distribution of an MLE of the target parameter
for our semiparametric network model for N →∞, and thereby characterizes
the normal limit distribution of optimal estimators. As part of this we use a
template for establishing the normal limit distribution of the MLE, which can
be equally well applied to the TMLE in the next section using the true g0.

Even though it is well known that a regular estimator based on sample of
n i.i.d observations is efficient if and only if it is asymptotically linear with
influence curve equal to the efficient influence curve, here we are not interested
in asymptotics when we observe n of our data structures that are indexed by
this parameter N (like observing n networks of size N individuals), but we are
interested in the asymptotics in N based on a single draw of O. Therefore, we
think it is important to point out that the asymptotic behavior of the MLE
based on such a single O when N →∞, showing that the asymptotic variance
is still characterized by the efficient influence curve. Our lesson is that our
goal should still be to construct an estimator that is asymptotically normally
distributed with variance equal to the variance of the efficient influence curve,
appropriately normalized.
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Specifically, we show that, under appropriate regularity conditions, the
asymptotic variance of a standardized MLE

√
N(ψN − ψ0) of the target pa-

rameter (assuming it is well defined asymptotically) equals the limit in N of
NP0{D∗(Q0, g0)}2, where P0{D∗(Q0, g0)}2 is the variance of the efficient influ-
ence curve D∗(Q0, g0). The formal analysis of an MLE is almost as hard as a
formal analysis of the TMLE since it requires understanding an empirical pro-
cess ZN(Q) specified below uniformly in Q, which is challenging due to the fact
that, contrary to ZN(Q0), at misspecified Q, the time-specific components of
ZN(Q) cannot be represented as sums of independent random variables, con-
ditional on the history at that time. Since the TMLE is tailored to deal with
the curse of dimensionality (and MLE is a special case of TMLE by defining
the initial estimator for the TMLE as the MLE, assuming this MLE is well
defined estimator), we consider the analysis of a TMLE more important. Such
a formal analysis is presented for the point-treatment K = 0-case in a later
section and much can be learned from that analysis for the purpose of analyz-
ing the TMLE or MLE for general K. Nonetheless, the template below can be
used to establish the asymptotic normality for both the MLE and the TMLE.

Let QN be an MLE, assuming it is well defined (i.e., all covariates are
discrete and of low dimension relative to N). We wish to analyze the plug-in
MLE Ψ(QN) of ψ0. We represent the efficient influence curve as D∗(Q, g) =
D∗(Q, h(Q, g),Ψ(Q)). Recall P0D

∗(QN , h(g0, QN),Ψ(QN)) = (ψ0−Ψ(QN)) +
RN , where RN is a second order term defined as sum of two terms RN(QN , Q0)
and RN((hN , h0), (QN , Q0)). The first involves square differences of QN , Q0,
while the second involves the product of differences h(g0, QN) − h(g0, Q0)
and QN − Q0. We will assume that a separate analysis establishes that
RN = oP (1/

√
N). Since QN is an MLE, and D∗(QN , h(g0, QN),Ψ(QN)) is

a score at Pg0,QN , we have that is solves the efficient influence curve equation,
D∗(QN , h(g0, QN),Ψ(QN)) = 0. We also have P0D

∗(Q0, h, ψ0) = 0 for any h.
This allows us to establish a first order expansion of the standardized MLE:

(Ψ(QN)− ψ0) = −P0D
∗(QN , h(g0, QN),Ψ(QN)) +RN

= D∗(QN , h(g0, QN),Ψ(QN))− P0D
∗(QN , h(g0, QN),Ψ(QN)) +RN .

Thus under the assumption that RN = oP (1/
√
N), it follows that the asymp-

totic distribution of
√
N(Ψ(QN)−Ψ(Q0)) equals the limit distribution of

ZN(QN) =
√
N(D∗(QN , h(g0, QN),Ψ(QN))− P0D

∗(QN , h(g0, QN),Ψ(QN))).

A non-trivial analysis as carried out for the case τ = 1, and using appropri-
ate conditions, can be used to establish that ZN(QN) − ZN(Q0) = oP (1), so
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that ZN(QN) behaves as ZN(Q0) = 1√
N

(D∗(Q0, h0, ψ0)−P0D
∗(Q0, h0, ψ0)). It

remains to investigate weak convergence of ZN(Q0) as N converges to infinity.
For notational convenience, let D∗(Q0) = D∗(Q0, h0, ψ0). We have the

following representation from Theorem 3:

D∗(Q0, g0) = 1
N

∑
t

∑
j

∑
m

h∗t,m
h̄t

(CL
t,j)
∑

lDl,t,m(L(t, j), CL
t,j),

where

Dl,t,m = E(Y (l) | L(t,m) = L(t, j), CL
t,m = CL

t,j)− E(Y (l) | CL
t,m = CL

t,j).

We can represent this as

D∗(Q0, g0) =
1

N

∑
t

∑
j

D∗t (Q0, g0)(Lt,j, C
L
t,j),

where we defined

D∗t (Q0, g0)(L(t, j), CL
t,j) =

{∑
m

h∗t,m
h̄t

(CL
t,j)
∑
l

Dl,t,m(L(t, j), CL
t,j)

}

Note that D∗t (Q0, g0) has conditional mean zero, given CL
t,j. In order to claim

that D∗t (Q0, g0) has finite variance one needs that the summation over l reduces
essentially to a finite sum due to L(t,m) being conditionally independent of
Y (l), given CL

t,m, for most m.
This yields the following representation:

ZN(Q0) =
1√
N

∑
t,i

D∗t (Q0)(L(t, i), CL
t,i)),

where D∗t is a function of L(t, i) and CL
t,i with conditional mean zero, given

CL
t,i. Due to factorization of the likelihood as Q =

∏
t,iQLi(t)|CLt,i , it follows

that the variance of ZN(Q0) is given by

VARZN(Q0) =
1

N

∑
t,i

P0{D∗t (Q0)(L(t, i), CL
t,i)}2.

We have

P0{D∗t (Q0)(L(t, i), CL
t,i)}2 =

∫
l(t),c(t)

D∗t (Q0)(l(t), c(t))2Q0,t(l(t) | c(t))h0,t,i(c(t)).
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Thus, the asymptotic variance of ZN(Q0) is given by limit of

σ2
0 ≡ lim

N→∞

∑
t

∫
l(t),c(t)

{D∗t (Q0)(l(t), c(t))}2Q0,t(l(t) | c(t))
h̄0,t

N
(c(t)),

where h̄t =
∑

i ht,i. Note that we also have that σ2
0 = limN→∞NP0D

∗(Q0)2

equals N times the variance of the efficient influence curve D∗(Q0) for the
target parameter Ψ at P0.

In addition, we note that ZN(Q0) =
∑

t ZN,t(Q0), where ZN,t(Q0) =

1/
√
N
∑

iD
∗
t,i(Q0), with D∗t,i = D∗t (L(t, i), CL

t,i), is a sum of independent ran-
dom variables L(t, i), conditional on Ā(t−1), L̄(t−1). By using CLT theorems,
we can therefore establish that for each t = 0, . . . , τ + 1, ZN,t(Q0) converges
weakly to a normal distribution Zt(Q0). These t-specific limit random vari-
ables Zt(Q0) are pairwise independent, so that the sum across t converges to a
normal distribution with variance equal to the sum of the t-specific variances,
and thus σ2

0 as defined above. To conclude, under appropriate regularity con-
ditions, we will have that ZN(Q0) converges weakly to N(0, σ2

0)
This demonstrates that the efficient influence curve characterizes the limit

distribution of the maximum likelihood estimator, and thus indeed character-
izes asymptotically optimal mean zero normal limit distribution identified by
the asymptotic variance of ZN(Q0).

8 TMLE

Consider the likelihood L(Q) =
∏

t,j Qt,j and recall the representation of the

efficient influence curve D∗(Q, g) =
∑

t
1
N

∑
j D
∗
t,j(Q, g), where D∗t,j(Q, g) =

D∗t (Q, g)(L(t, j), CL
t,j). Let QN and gN be an initial estimator. Let Qt,j,N(ε)

be a fluctuation of Qt,j,N with score at ε = 0 equal to D∗t,j(QN , gN) such
as Qt,j,N(ε) = C(ε) exp(εD∗t,j(QN , gN))Qt,j,N . Recall that D∗t,j is a common
function of (L(t, j), CL

t,j) so that this submodel is indeed contained in our
model. Let εt,N be the maximum likelihood estimator, and let Qt,j(εt,j,N),
j = 1, . . . , N , be the update Q1

t,j, j = 1, . . . , N . Carry this update out for each
t, which provides a mapping from an initial Q0

N into an update Q1
N . Iterate this

updating process till convergence, denote the final updates with (Q∗t,j,N : t, j),
and let Q∗N be the corresponding TMLE of Q0. The TMLE of ψ0 is now the
plug-in estimator Ψ(Q∗N).

By construction, the TMLE solves the efficient influence curve equation
D∗(Q∗N , gN)(O) = 0. In the previous section we presented a template for the
analysis of MLE that can be equally well applied to this TMLE for the case
that gN = g0.
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8.1 External estimation of h0

The efficient influence curve depends on the data generating distribution P
through Q(P ), h(P ) only. Given estimators of QN , gN , one obtains a plug-in
estimator h(QN , gN) of h0 = h(P0). The second order term for the standard-
ized TMLE, and thereby the bias of the TMLE, involves square differences of
QN − Q0, and a product of differences hN − h0 and QN − Q0. This suggests
that the only goal in estimation of g0 is to construct a good estimator of h0.
The important advantage of this plug-in estimator h(QN , gN) of h0 is that it
fully utilizes the knowledge coded by the statistical model.

Nonetheless, it may be of interest to construct a direct estimator of h0

separate from an estimator QN of Q0. For that purpose we note that h̄t,0 is
a density of CL

t,j. We can estimate h̄t,0 by using a density estimator treating
CL
t,j, j = 1, . . . , N , as i.i.d. This corresponds with using as loss-function for

h̄t,0

L(h̄t)(O) = −
∑
j

log h̄t(C
L
t,j).

Ad hoc refinements based on recognizing that CL
t,j are dependent across j can

be based on utilizing the measured connectivity between the N individuals. It
remains to be investigated how these two methods of estimation of h̄0, plug-in
versus direct estimation, compare w.r.t. behavior of the resulting estimator of
ψ0.

8.2 TMLE relying on external estimator of h0.

Consider the likelihood L(Q) =
∏

t,j Qt,j and recall the representation of the

efficient influence curve D∗(Q, h) =
∑

t
1
N

∑
j D
∗
t,j(Q, h). We note that even if

h is not compatible with Q, D∗t,j(Q, h) is still a score of Qt,j (i.e., it is a function
of L(t, j) and CL

t,j with conditional mean zero, given CL
t,j). This suggests that

in our fluctuations of the TMLE we could use an external estimator hN of h0,
and not update hN in the TMLE updating algorithms. This results in the
following TMLE.

Let QN and hN be an initial estimator. Let Qt,j,N(ε) be a fluctuation
of Qt,j,N with score at ε = 0 equal to D∗t,j(QN , hN) such as Qt,j,N(ε) =
C(ε) exp(εD∗t,j(QN , hN))Qt,j,N . Recall thatD∗t,j is a common function of L(t, j), CL

t,j

so that this submodel is indeed contained in our model. Let εt,N be the max-
imum likelihood estimator, and let Qt,j(εt,j,N), j = 1, . . . , N , be the update
Q1
t,j, j = 1, . . . , N . Carry this update out for each t, which provides a map-

ping from an initial Q0
N into an update Q1

N . Iterate this updating process till
convergence and denote the final updates with (Q∗t,j,N : t, j), and let Q∗N be
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the corresponding TMLE of Q0. The TMLE of ψ0 is now the plug-in estima-
tor Ψ(Q∗N). By construction, the TMLE solves the efficient influence curve
equation D∗(Q∗N , hN)(O) = 0. Therefore the previously presented template
for analyzing the MLE and TMLE can be applied to this TMLE as well.

8.3 A simple TMLE

Consider the likelihood L(Q) =
∏

t,j Qt,j. Let QN and hN be an initial esti-

mator. Suppose that under QN L(t, j) is a deterministic function of CL
t,j for

all j = 1, . . . , N , t = 1, . . . , τ + 1. At such a QN we have that D∗t,j = 0 for all
t = 1, . . . , τ . Under the assumption that Li(0) are i.i.d. (note, h̄t=0 = N), we
also haveD∗t=0,j(Q, h)(L(0, j)) = 1

N

∑N
m=1 EQ,g∗(Y | L(0,m) = L(0, j))−Ψ(Q),

where Y = 1
N

∑N
i=1 L(τ + 1, i).

We have

D∗τ+1,j(Q, h) =
∑N

m=1

h∗τ+1,m

h̄τ+1
(cLτ+1,j)

∫
L(0),A

1
N
{Yj − Y ∗m(Q)(L(0), A)}

I(cLτ+1,m(Ā(τ),L̄(τ))=cLτ+1,j)

hτ+1,m,Q,g(cL
τ+1,j)

)

∏K
l=0 g

∗
l

∏
l∈S(τ+1,j) Ql

Let Qτ+1,j,N(ε) be a fluctuation of Qτ+1,j,N with score at ε = 0 equal to
D∗τ+1,j(QN , hN) such as Qτ+1,j,N(ε) = C(ε) exp(εD∗τ+1,j(QN , hN))Qτ+1,j,N . Let
ετ+1,N be the maximum likelihood estimator, and let Qτ+1,j,N(ετ+1,N) be the
update Q1

τ+1,j,N . Carry this update out for each t, which provides a mapping
from an initial Q0

τ+1,j,N , j = 1, . . . , N , into an update Q1
τ+1,j,N , j = 1, . . . , N .

Iterate this updating process for (Qτ+1,j : j) till convergence and denote the
final update with (Q∗τ+1,j,N : j), and let Q∗N be the corresponding TMLE of
Q0, which thus only updates Q0

τ+1,j,N , j = 1, . . . , N . The TMLE of ψ0 is now
the plug-in estimator Ψ(Q∗N). The TMLE solves D∗(Q∗N , hN)(O) = 0.

9 The TMLE of Causal Effect of Single Time

Point Intervention

We will present the TMLE for the point-treatment intervention case (i.e.,
τ = 0). This case is of great interest itself, extends estimation of a causal effect
of a single time point intervention to dependent data of the form studied in
this article, and thereby covers important applications. In the next section we
will formally analyze this TMLE. The tools of the proof will be generalizable
to the general τ case. In addition, the single time point case allows for a
TMLE that is actually double robust in the sense that it remains consistent if
either Q0 or h0 is consistently estimated.
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9.1 NPSEM

The NPSEM states:

Wi = Li(0) = fWi
(UWi

)
Ai = Ai(0) = fA(cAi (W ), UAi)
Yi = Li(1) = fY (cYi (W,A), UYi)
i = 1, . . . , N,

where cAi (W ) is determined by W = (W1, . . . ,WN), and cYi (W,A) is deter-
mined by W,A with A = (A1, . . . , AN). The ”friends” Fi of subject i may
be included in Wi: Fi ⊂ Wi. Sometimes, we denote the baseline covariates
explicitly with the notation (Fi,Wi) to stress the inclusion of Fi. The function
cAi (W ) includes Wi, beyond summary measures of (Wj : j ∈ Fi), and might
be defined as (Wi, (Wj : j ∈ Fi)), assuming that | Fi |≤ K < ∞ for some
fixed K, so that cAi (W ) can indeed be defined as a fixed multivariate dimen-
sional function not depending on N . Similarly, the function cYi (W,A) includes
(Wi, Ai), and might be defined as (Wi, Ai, ((Wj, Aj) : j ∈ Fi)). The above
structural equation model assumes that Ai and Yi are the same function of
this dimension reduction (Wi, (Wj : j ∈ Fi)) and (Wi, Ai, (Wj, Aj : j ∈ Fi))
for each i, so that two units with the same number of friends who have the
same individual covariate and treatment values, and also have the same val-
ues for the covariates and treatments of their friends, will be subjected to the
same conditional distribution for drawing their treatment and outcome. In our
asymptotics theorem in the next section we treat Fi, i = 1, . . . , N , as fixed,
so that also the probability distribution of O and the target parameter ψ0 are
indexed by the fixed values of (Fi : i = 1, . . . , N).

In addition, we assume that U1, . . . , UN are i.i.d: note that (since fWi

is allowed to be different for each i) this corresponds with assuming that
W1, . . . ,WN are independent, but not necessarily identically distributed. This
independence assumption on the Ui’s implies that 1) W1, . . . ,WN are indepen-
dent, 2) conditional on W = (W1, . . . ,WN), A1, . . . , AN are independent, and,
3) conditional on (W,A), Y1, . . . , YN are independent. Thus, all the depen-
dence between units is not due to the dependence of the errors, but only due
to the interdependence between units as described by the structural equations
that allow that an individual’s treatment and outcome are a function of the
baseline covariates and treatments of its friends.

Causal quantity: Let g∗ be a conditional distribution of A, given W . Our
goal is to estimate the mean of the counterfactual outcome of Y c = 1/N

∑N
i=1 Yi

under the stochastic intervention g∗. Let Yg∗ = (Yg∗,i : i = 1, . . . , N) be

39

Hosted by The Berkeley Electronic Press



the counterfactual indexed by a stochastic intervention g∗ on A, and Y c
g∗ =

1/N
∑N

i=1 Yg∗,i. The causal quantity of interest is defined as ΨF (PU,W,A,Y ) =
EY c

g∗ , which is a parameter of the distribution of (U,W,A, Y ).

Identifiability: We observe O = (O1, . . . , ON), where Oi = (Wi, Ai, Yi). Due
to the above assumptions, the probability distribution of O is given by:

P (O) =
N∏
i=1

PWi
(Wi)PA|CA(Ai | CA

i )PY |CY (Yi | CY
i ), (3)

where PA|cA(· | cA) is a common (in i) density for A for each cA, and PY |CY (· |
cY ) is a common density for Y for each cY . If we assume the randomization
assumption stating that A = (A1, . . . , AN) is independent of UY = (UYi : i =
1, . . . , N), given W = (W1, . . . ,WN), then the post-intervention probability
distribution Pg∗ of (W,Yg∗) = (Wi, Yi,g∗ : i = 1, . . . , N) is identified by the
following G-computation formula applied to the probability distribution P of
O:

Pg∗(W,A
∗, Y ) =

N∏
i=1

PWi
(Wi)PY (Yi | CY,∗

i )g∗i (A
∗
i | C

A,∗
i ) (4)

≡ P g∗(W,A∗, Y ), (5)

where Pg∗,Y is defined by the conditional distribution of Yi, given CY
i , which

is constant in i = 1, . . . , N , and where A in the parents CY
i (A,W ) is replaced

by A∗. Recall our notation CY
i = cYi (W,A), CA

i = cAi (W ). We denoted the
right-hand side in this G-computation formula with P g∗ , which is thus always
defined as a parameter of the data distribution P for a P in the statistical
model implied by our causal model. In most applications one will have that
the conditional distribution g∗i of Ai, given CA

i , is constant in i, and that under
g∗ (A1, . . . , AN) are conditionally independent, given W .
Statistical model and statistical target parameter: Let M be the
statistical model for the data distribution P defined by (3) in which PWi

,
i = 1, . . . , N , and the common PA|CA , PY |CY are unspecified. Let the statisti-
cal target parameter mapping Ψ : M → IR be defined as Ψ(P ) = EP g∗Y

g∗,c.
Under the stated causal model and identifiability assumptions under which
P = PPU,W,A,Y , we have Ψ(P ) = ΨF (PU,W,A,Y ), so that Ψ(P ) can be inter-
preted as the desired causal quantity. Our goal is to construct an estimator of
ψ0 = Ψ(P0) based on O = (O1, . . . , ON) ∼ P0 ∈M.

Let QWi
be the marginal distribution of Wi and let QY be the common

conditional distribution of Yi, given CY
i . The target parameter Ψ(P ) only
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depends on P through QWi
, i = 1, . . . , N , and QY . If we want to emphasize

that Ψ(P ) only depends on P through Q(P ) = ((QWi
: i = 1, . . . , N), QY ),

then we will also use (and abuse) the notation Ψ(Q) to indicate the mapping
from Q into the desired estimand.

9.2 Efficient influence curve

Recall the general representation of the efficient influence curve for the longi-
tudinal data structure:

D∗(Q, g) =
∑N

j=1 {EQ,g∗(Y c | L(0, j))− EQ,g∗Y c}
+
∑

t=1,j,m

h∗t,m
h̄t

(CLt,j)
{
EQ,g∗(Y c | L(t,m) = L(t, j), CLt,m = CLt,j)− EQ,g∗(Y c | CLt,m = CLt,j)

}
.

We now have τ = 0, giving the following two terms:

D∗(Q, g) =
∑N

j=1{EQ,g∗(Y c | L(0, j))− EQ,g∗Y c}
+
∑N

j=1

∑N
m=1

h∗m
h̄

(CYj )
{
EQ,g∗(Y c | Y (m) = Y (j), CYm = CYj )− EQ,g∗(Y c | CYm = CYj )

}
.

We have

E∗(Y c | Ym, CY
m) = 1

N

∑
j 6=mE

∗(Yj | Ym, CY
m) + 1/NYm

= 1
N

∑
j 6=mE

∗(E∗(Yj | Ym,W,A) | Ym, CY
m) + 1/NYm

= 1
N

∑
j 6=mE

∗E∗(Yj | W,A) | Ym, CY
m) + 1/NYm

= 1
N

∑
j 6=mE

∗(Q̄(CY
j (W,A)) | Ym, CY

m) + 1/NYm,

and
P (W,A | Ym, CY

m) = I(cYm(W,A) = CY
m)P (W,A,Ym)

P (Ym,CYm)

= I(cYm(W,A) = CY
m)P (Ym|W,A)P (W,A))

P (Ym|CYm)P (CYm)

= I(cYm(W,A) = CY
m)P (Ym|CYm)P (W,A))

P (Ym|CYm)P (CYm)

= P (W,A | CY
m),

and thereby

E∗(Y c | Ym, CY
m) =

1

N

∑
j 6=m

E∗(Q̄(cYj (W,A)) | CY
m) + 1/NYm.

Thus,

E∗(Y c | CY
m) =

1

N

∑
j 6=m

E∗(Q̄(cYj (W,A)) | CY
m) + 1/NQ̄(CY

m).

Therefore,{
EQ,g∗(Y c | Y (m) = Y (j), CYm = CYj )− EQ,g∗(Y c | CYm = CYj )

}
= 1

N {Yj − Q̄(CYj )},
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which does thus not depend on m.
This proves,

D∗(Q, g) =
∑N

j=1{EQ,g∗(Y c | L(0, j))− EQ,g∗Y c}
+ 1
N

∑N
j=1

h̄∗

h̄
(CY

j )
{
Yj − Q̄(CY

j )
}
.

Theorem 4 The efficient influence curve D∗(P ) at P ∈ M of target param-
eter Ψ :M→ IR is given by

D∗(P ) =
∑N

i=1

{
D∗Wi

(QW , Q̄)(Wi) + 1
N

h̄(g∗,QW )(CYi )

h̄(g,QW )(CYi )
(Yi − Q̄(CY

i ))
}

where

D∗Wi
(Wi) = EQ,g∗(Y

c | Wi)− EQ,g∗(Y c)

= 1
N

∑N
j=1

∫
a,w−i

g∗(a | w−i,Wi)Q̄(cYj (a, w−i,Wi)
∏

l 6=iQWl
(wl)− ψ

= 1
N

∑N
j=1{E(Y g∗

j | Wi)− EWi
E(Y g∗

j | Wi)},

and

hi(g,QW )(c) ≡
∫
a,w,cYi (a,w)=c

g(a | w)
N∏
l=1

QW (wl) = EWgi(c | W ),

where gi(c | W = w) = P0(cYi (A,W ) = c | W = w) is the conditional probabil-
ity that cYi (A,W ) equals c, given W = w, which is a probability determined by
g(A | W ). In addition, h̄ =

∑
i hi, and h̄∗ =

∑
i h
∗
i with h∗i = hi(g

∗, QW ).
Double robustness of efficient influence curve: Represent the effi-

cient influence curve as D∗(Q̄, QW , g). We have

P0D
∗(Q̄, QW,0, g0) = ψ0 −Ψ(Q̄, QW,0).

Since the efficient influence curve depends on g0 only through h̄(g0, QW,0), we
have that if h̄(g,QW,0) = h̄(g0, QW,0), then

P0D
∗(Q̄, QW,0, g) = ψ0 −Ψ(Q̄, QW,0).

We also have that for all g,

P0D
∗(Q̄Y,0, QW,0, g) = 0.

Explicit proof of double robustness: Even though our general theorem
can be applied to this single time-point case and this result follows by noting
that the second order term R(Q,Q0) = 0, here we provide an explicit proof of
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the double robustness for this single time point case. We wish to show that
P0D

∗(QW,0, Q̄, g0) = ψ0 − ψ. We have

E0D
∗
Wi

(QW,0, Q̄)(Wi) = 1
N

∑N
j=1

∫
a,w

g∗(a | w)Q̄(cYj (a, w))QW,0(w)−Ψ(Q̄, QW,0)

= 0.

We also have

E0

∑
iD
∗
Yi

(Q̄, QW,0, g0) = 1
N

∑
iE0

h̄∗0(CYi )

h̄0(CYi )
(Yi − Q̄(CY

i ))

= 1
N

∑
i

∫ h̄∗0(c)

h̄0(c)
(Q̄Y,0 − Q̄)(c)hi,0(c)dµ(c)

= 1
N

∫
h̄∗0(c)(Q̄Y,0 − Q̄)(c)dµ(c)

= ψ0 −Ψ(Q̄, QW,0).

This proves that with D∗i = D∗Wi
+D∗Yi , D

∗ =
∑

iD
∗
i , we have

E0

∑
i

D∗i (QW,0, Q̄, g0) = 0 + ψ0 −Ψ(Q̄, QW,0).

This proves the robustness w.r.t. misspecification of Q̄. In addition, E0D
∗(Q̄Y,0, QW,0, g0) =

0. 2

9.3 Estimating equation approach fails.

Consider the efficient influence curve and let’s represent it as an estimating
function in ψ:

D∗(Q, g, ψ) =
N∑
i=1

(D∗Wi
(Q)− ψ) +D∗Yi(Q, g0),

where now D∗Wi
= EQ(Y c,g∗ | Wi). We will represent it as D∗(Q, h, ψ). Given

an estimator hN and QN of h0 and Q0, respectively, based on the data O, we
can estimate ψ with the solution of

0 = D∗(QN , hN , ψ)(O).

Since D∗(Q, h, ψ) = D∗(Q, h)− ψ, this solution is given by

ψN = D∗(QN , hN)(O) =
N∑
i=1

D∗Wi
(QN) +D∗Yi(QN , hN).

Interestingly, this estimator would not be consistent if QN is inconsistent and
hN is consistent. This follows since we cannot apply our robustness result
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if ψN is not a substitution estimator Ψ(QN), and there is no reason why
ψN would be a substitution estimator. Indeed, we have E0D

∗(Q, h0, ψ) =
N(Ψ(Q) − ψ) + (ψ0 − Ψ(Q)) demonstrating that solving E0D

∗(Q, h0, ψ) = 0
does not imply ψ = ψ0. On the other hand, if ψ = Ψ(Q), then the contribution
of D∗Wi

equals zero, and we end up with only the contribution from the D∗Yi-
components, giving the desired ψ0 − Ψ(Q). This demonstrates that defining
the estimator as a solution of an estimating equation implied by this efficient
influence curve fails, while TMLE is able to exploit the actual robustness of
the efficient influence curve as a function of Q, g, instead of a robustness of a
particular estimating function representation of the efficient influence curve.

Remark regarding balancing the two contributions in the efficient
influence curve The factor 1/N in D∗Yi might come as a surprise in relation
to D∗Wi

, which is also the factor that completely throws of the estimating
equation approach as illustrated above. To intuitively understand that this
efficient influence curve does indeed represent a balance between these two
contributions, we note the following:∑

iD
∗
Wi

=
∑

i {EQ(Y c,∗ | Wi)−Ψ(Q)}
=
∑N

i=1

{
1
N

∑N
j=1EQ(Y ∗j | Wi)−Ψ(Q)

}
= 1

N

∑N
i=1

∑N
j=1

{
I(j ∈ Fi)(EQ(Y ∗j | Wi)−Ψj(Q))

}
,

where Ψ(Q) = 1/N
∑

j Ψj(Q), and Ψj(Q) = EQY
∗
j . Thus, indeed the con-

tribution
∑

iD
∗
Wi

is of the same size as function of N as
∑

iD
∗
Yi

, under the
assumption that | Fi |≤ K <∞ for some K <∞, which is indeed an assump-
tion we made to establish

√
N -asymptotics.

9.4 TMLE

Let g∗ be given. The target parameter is given by

ψ0 = E0Y
c,g∗ = Ψ(Q̄Y,0, QW,0)

= 1
N

∑N
j=1

∫
a,w

Q̄Y,0(cYj (a, w))g∗(a | w)QW,0(w).

Let Q̄N be an estimator of Q̄Y,0(c) = E0(Y (i) | CY
i = c). Suppose Y (i) ∈

{0, 1} or continuous in (0, 1). This estimator Q̄N could be based on the log-
likelihood loss function

−L(Q̄)(O) =
N∑
i=1

log Q̄Y (cYi )Yi(1− Q̄(cYi ))1−Yi .
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For example, it could be super-learner based on this loss-function. The esti-
mator could also be based on a squared error loss function

L2(Q̄)(O) =
N∑
i=1

(Yi − Q̄(cYi ))2.

Let Q̄W,N be a nonparametric maximum likelihood estimator of QW , thus
respecting the model for the joint distribution of W1, . . . ,WN . For example, if
Wi are i.i.d., then we would estimate this marginal distribution of Wi with the
empirical distribution of (W1, . . . ,WN). If W1, . . . ,WN are only known to be
independent, then we would estimate each marginal distribution of Wi with
the discrete distribution that puts mass 1 on the singleton Wi, i = 1, . . . , N :
note that this empirical distribution is equivalent with the joint distribution
that puts mass 1 on (W1, . . . ,WN). A plug-in estimator could now be defined
as Ψ(Q̄N , QW,N).

Let gN be an estimator of g0. Given the model assumption g(A | W ) =∏
i g(Ai | cAi (W )) for a common conditional density g, this estimator can be

based on the log-likelihood loss:

L(g)(O) = −
N∑
i=1

log g(Ai | cAi ).

Given gN , QW,N , Q̄N , let Q̄N(ε) be a target-parameter specific submodel
through Q̄N defined by

LogitQ̄N(ε) = LogitQ̄N + ε
h̄(g∗, QW,N)

h̄(gN , QW,N)
.

Let
εN = arg min

ε
L(Q̄N(ε))(O)

be the maximum likelihood estimator, which simply involves running uni-
variate logistic regression on a pooled data set with binary outcomes Yi and

covariate
h̄(g∗,QW,N )

h̄(gN ,QW,N )
(cYi ), using as off-set LogitQ̄N . This defines now an up-

date Q̄∗N = Q̄N(εN). The TMLE of ψ0 is defined as the corresponding plug-in
estimator

ψ∗N = Ψ(Q̄∗N , QW,N).

We note that this TMLE solves the efficient influence curve equation

D∗(Q̄∗N , QW,N , gN , ψ
∗
N)(O) = 0.

Specifically, by being a substitution estimator Ψ(Q∗N) and using an NPMLE
of QW,0 we have

∑
iD
∗
Wi

(Q∗N) = 0, while the targeted updating of Q̄N guar-
antees that

∑
iD
∗
Yi

(Q̄∗N , QW,N , gN) = 0.
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10 Asymptotics of TMLE of causal effect of

single time point intervention.

In this section we state a theorem establishing the asymptotics of the TMLE
of ψ0 under conditions. Subsequently, we will discuss the theorem shortly
and discuss statistical inference in terms of confidence intervals. The proof is
deferred to the Appendix. At the end of the Appendix we demonstrate that
our proof is generalizable to the general longitudinal data structures.

Theorem 5 Consider the statistical formulation of data O = (O1, . . . , ON) ∼
P0 ∈ M, statistical model M, and statistical target parameter Ψ : M → IR,
defined conditionally on the network-profile F = (F1, . . . , FN). Recall that this
network F implies that Yi only depends on (W,A) through (Wj, Aj : j ∈ Fi),
and that Ai depends on W through (Wj : j ∈ Fi). Suppose g0 is known, and
that W1, . . . ,WN are only known to be independent. A probability distribution
of O is thus parameterized as

P (O) =
N∏
i=1

PWi
(Wi)g0,Ai|W (Ai | W )PY |CY (Yi | CY

i ), (6)

where CY
i = CY

i (A,W ) ∈ CY ⊂ IRd, PY |CY (· | c) is a density for Y for
each possible c ∈ CY , but is otherwise unspecified, (g0,Ai|W : i = 1, . . . , N) is
known, and each of the marginal distributions PWi

is unspecified. This defines
the statistical model M. For a specified stochastic intervention, the target
parameter Ψ :M→ IR is defined by

Ψ(P ) = EPY
c,g∗ = Ψ(Q̄Y,0, QW,0)

= 1
N

∑N
j=1

∫
a,w

Q̄Y,0(cYj (a, w))g∗(a | w)QW,0(w),

where QW,0(w) = P0(W = w), and Q̄Y,0(cYj (A,W )) = E0(Yj | A,W ). Let
D∗(Q̄, QW , g0)(O) be the efficient influence curve of Ψ as defined in Theorem
4:

D∗(Q̄, QW , g0) =
∑N

i=1{D∗Wi
(QW , Q̄)(Wi) +D∗Yi(Q̄, QW )},

where

D∗Y,i(Q̄, QW ) =
1

N

h̄(g∗, QW )(CY
i )

h̄(g,QW )(CY
i )

(Yi − Q̄(CY
i )),

and D∗Wi
= E(Y c,∗ | Wi)−Ψ(P ).

Let QW,N be the distribution that puts mass 1 on (W1, . . . ,WN). Consider
the TMLE ψ∗N = Ψ(Q∗N) = Ψ(Q̄∗N , QW,N) defined above using the known g0 in
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h̄(g0, QW,N). As shown above, this TMLE solves

D∗(Q̄∗N , QW,N , g0)(O) = 0.

Recall the definitions of h̄0(c) =
∑N

i=1 h0,i(c), h̄∗0 =
∑N

i=1 h
∗
0,i, h0,i(c) = Pg0,QW,0(C

Y
i (A,W ) =

c), h∗0,i(c) = Pg∗,QW,0(C
Y
i (A,W ) = c), defined as densities w.r.t. dominating

measure µ, and let h̃0 = h̄∗0/h̄0. Also recall the plug-in estimator h̃N of h̃0

implied by g0 and QW,N .
We make the following assumptions:

Entropy condition: Consider a class FY of functions cY → Q̄(cY ) on a set
in CY ⊂ IRd that contains cY (A,W ) with probability 1. Assume that
Q̄∗N ∈ FY with probability 1. Consider a class Fh of functions cY →
h̄(cY ) on CY ⊂ IRd. Assume that h̃∗N ∈ Fh with probability 1. Define the
dissimilarity measure on the cartesian product of F = FY ×Fh:

d((h̃1, Q̄1), (h̃, Q̄)) = max

(
sup
c∈CY

| h̃1 − h̃ |, sup
c∈CY

| Q̄1 − Q̄ |
)
.

Assume that there exists some η > 0, so that
∫ η

0

√
log (N(ε,F , d))dε <

∞.

In particular, this assumption holds if supf∈FY ‖ f ‖
∗
v<∞ and supf∈Fh ‖

f ‖∗v<∞, where ‖ f ‖∗v is the uniform sectional variation norm as defined
in Gill, van der Laan, Wellner (1996) and van der Laan (1996).

Universal bound: Assume supf∈F ,O | f | (O) < ∞, where the supremum
of O is over a set that contains O with probability 1. This assumption
will typically be a consequence of the entropy condition, such as it is a
consequence of the uniform sectional variation norm condition above.

Consistency and rate condition: Assume d(h̃N , Q̄
∗
N), (h̃0, Q̄

∗))→ 0 in prob-
ability as N →∞,

RN,1 ≡ −P0

(
h̄∗N
h̄N
− h̄∗0
h̄0

)
(Q̄∗N − Q̄∗Y ) = oP (1/

√
N)

and

RN,4 =

∫
c

{
h̄∗N
h̄N
− h̄∗0

h̄

}
1

h̄0

(h̄N − h̄0)(Q̄Y,0 − Q̄∗Y )(c)h̄0dµ = oP

(
1√
N

)
.
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Positivity type condition: Assume

sup
c∈CY

h̄∗(g∗, QW,0)

h̄(g0, QW,0)
(c) <∞.

Network structure condition: Assume that there exists a K < ∞ so that
supi | Fi |< K for all i = 1, . . . , a.s.

Restriction on dependence of stochastic intervention: Assume that g∗((Aj :
j ∈ Fi) | W ) only depends on W through (Wj : j ∈ Si) for sets Si deter-
ministically implied by F with supi | Si |< K <∞ for some K <∞.

First order approximation: Then,

ψ∗N − ψ0 =
1

N

N∑
i=1

{fi(O)− P0fi}+ oP (1/
√
N),

where

fi = D∗Y,i(Q̄
∗, QW,0) + f 1

W,i + f 2
W,i

f 1
W,i(W ) =

∫
a

Q̄∗Y (cYi (a,W ))g∗(a | W )

f 2
W,i(W ) =

∫
c

{
h∗i,N
h̄0

− h̄∗0
h̄2

0

hi,N

}
(c)(Q̄Y,0 − Q̄∗Y )(c)h̄0(c)

h∗i,N(c) =

∫
a

I(cYi (a,W ) = c)g∗(a | W ) = g∗i (c | W )

hi,N(c) =

∫
a

I(cYi (a,W ) = c)g0(a | W ) = g0,i(c | W ).

Weak convergence of first order approximation: We can orthogo-
nally decompose

fi(O)− P0fi = fY,i(O) + fA,i(O) + fW,i(O),
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where

fY,i = D∗Y,i − E0(D∗Y,i | A,W )

=
h̄∗0
h̄0

(CY
i )(Yi − Q̄Y,0(CY

i ))

fA,i = E0(D∗Y,i | A,W )− E0(D∗Y,i | W )

=
h̄∗0
h̄0

(CY
i )(Q̄Y,0 − Q̄∗Y )(CY

i )

−
∫
c

h̄∗0
h̄0

(c)(Q̄Y,0 − Q̄∗Y )(c)g0,i(c | W )

E0(D∗Y,i | W ) =

∫
c

h̄∗0
h̄0

(Q̄Y,0 − Q̄∗Y )(c)g0,i(c | W )

fW,i = f 1
W,i + f 2

W,i + E0(D∗Y,i | W )− P0{f 1
W,i + f 2

W,i + E0(D∗Y,i | W )}

=

∫
a

Q̄Y,0(cYi (a,W ))g∗(a | W )−
∫
a

Q̄Y,0(cYi (a,W ))g∗(a | w)QW,0(w)

=

∫
c

Q̄Y,0(c)g∗i (c | W )−
∫
c,w

Q̄Y,0(c)g∗i (c | W )QW,0(w).

For (i, j) ∈ {1, . . . , N}2, define RW (i, j) = I(Si ∩ Sj 6= ∅), RA(i, j) =
I(Fi ∩ Fj 6= ∅), and R2(i, j) = I(RA(i, j) = 1 or RW (i, j) = 1). We have

1√
N

∑
i

{fi(O)− P0fi} ⇒d N(0, σ2), where σ2 = σ2
Y + σ2

A + σ2
W ,

and

σ2
Y = lim

N→∞

1

N

N∑
i=1

P0f
2
Y,i

σ2
A = lim

N→∞

1

N

∑
i1,i2

RA(i1, i2)P0fA,i1fA,i2

σ2
W = lim

N→∞

1

N

∑
i1,i2

RW (i1, i2)P0fW,i1fW,i2 ,

and P0f denotes the marginal expectation of f(O), given F. As a consequence,√
N(ψ∗N − ψ0)⇒d N(0, σ2).

Alternative expression of asymptotic variance: One can also repre-
sent σ2 as

σ2 = lim
N→∞

1

N

∑
i1,i2

R2(i1, i2)P0fi1fi2 .
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10.1 Statistical inference

One can estimate σ2 by plugging in estimators QW,N , Q̄
∗
N in the expressions

for fY,i, fW,i, fA,i. Given an estimator of σ2
N , one can then construct a confi-

dence interval ψ∗N ±1.96σN/
√
N . If σN is consistent for σ, then this will be an

asymptotically valid 0.95-confidence interval. The expression for σ2 suggests
that a consistent estimator of σ2 relies on consistent estimation of Q̄Y,0, even
though the consistency of ψ∗N only relies on a consistent estimator of h0 and
thus g0 (since the expectation w.r.t. W is consistently estimated). Therefore,
even if ψ∗N relied on a less nonparametric estimator of Q̄Y,0, we recommend us-
ing a super learner using flexible machine learning algorithms when estimating
this asymptotic variance σ2.

On the other hand, we know that in the i.i.d. setting, one can obtain a
consistent estimator of σ2 only relying on a consistent estimator of g0, thereby
allowing that Q̄∗N is inconsistent. It remains to be investigated till what de-
gree such robust (possibly conservative) estimation of σ2 is possible in greater
generality.

We claim that if g0 is unknown, and one uses an MLE gN according to
some model, then σ2 is a lower bound for the actual asymptotic variance of
the TMLE, based on a generalization of the result in van der Laan and Robins
(2003). This is due to the fact that g0 is an orthogonal nuisance parameter.
Such a result would then allow us to use this same plug-in estimator σ2

N (using
gN for g0) in the statistical modelM in which g0 is not known but a correctly
specified model for g0 is available. Again, such a result will need to be formally
established in future research.

11 TMLE of Causal Effect of Single Time Point

Intervention, when weakening the sequen-

tial conditional independence assumption

One of the fundamental assumptions of our general causal model was that
the Ui, i = 1, . . . , N , were independent, which implied that Li(t), Ai(t), i =
1, . . . , N , are conditionally independent, given L̄(t − 1), Ā(t − 1), for all t =
0, . . . , τ + 1. The latter property we referred to as the sequential conditional
independence assumption, and it implied our factorized likelihood, and al-
lowed us to establish a particular central limit theorem for our TMLE. We
might want to weaken this assumption by only assuming that (Li(t), Ai(t))
and (Lj(t), Aj(t)) are conditionally independent, given L̄(t − 1), Ā(t − 1), if
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Fi(t)∩Fj(t) = ∅. Returning to our τ = 0-case, this corresponds with assuming
that Ui and Uj are independent if Fi ∩ Fj = ∅. Specifically, this corresponds
with assuming that, if Fi ∩ Fj = ∅, then Wi and Wj are independent, Ai and
Aj are independent, given W , and Yi and Yj are independent, given A,W . As
a consequence, under this weaker assumption, the likelihood is given by:

P (O) = QW (W )gA(A | W )QY (Y | A,W ),

where the joint distribution QW , the joint conditional distribution gA and QY

satisfy these conditional independence assumption implied by the network (Fi :
i = 1, . . . , N). We still assume the randomization assumption stating that A is
independent of Yg∗ , given W . However, since Yi is affected by (Wj, Aj), j ∈ Fi,
and Aj is confounded by variables (Wl : l ∈ Fj) that have arrows towards Yi
through Yj, it does not suffice anymore to only adjust for (Wj, Aj : j ∈ Fi)
when identifying EYi,g∗ . That is, to identify the counterfactual mean EYi,g∗
we need to adjust for (Wl : l ∈ Ri), where Ri = ∪j∈FiFj. Let cYi (a, w) be
a summary measure of (Aj : j ∈ Fi) and (Wj : j ∈ Ri), and assume that
there exists a common function Q̄ so that E(Yi | A,W ) = Q̄(cYi (A,W )), i =
1, . . . , N . Thus, we assume a model on the conditional distributions of Yi, given
A,W , for each i = 1, . . . , N , but avoid modeling of the actual joint distribution
of the N -dimensional outcome Y beyond the stated conditional independence
assumption. This defines now the statistical modelM for the distribution ofO,
which is more nonparametric than our previous model covered in the previous
section relying on the sequential conditional independence assumption.

We have the following identifiability result for the counterfactual mean
E0Y

c
g∗ = E0(1/N

∑
i Yi,g∗):

EY c
g∗ =

1

N

N∑
i=1

∫
w,a

QW (w)g∗(a | w)Q̄(cYi (a, w)) ≡ Ψ(P ).

This defines now also our statistical target parameter Ψ :M→ IR. Consider
the following function:

D∗(P ) = D∗W (QW , Q̄)(W ) +
N∑
i=1

D∗Yi(Q̄, QW , g)(O),

where

D∗Yi(Q, g)(O) = 1/N h̄(g∗,QW )

h̄(g,QW )
(Yi − Q̄(CY

i )

D∗W (QW , Q̄)(W ) = 1/N
∑

i

∫
a
g∗(a | W )Q̄(cYi (a,W ))−Ψ(Q)

h̄(g,QW )(c) = 1/N
∑N

i=1 PQ,g(c
Y
i (A,W ) = c)

h̄(g∗, QW )(c) = 1/N
∑N

i=1 PQ,g∗(c
Y
i (A,W ) = c).
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We have the same double robustness results as before: E0D
∗(QW,0, Q̄, g0) =

ψ0 − Ψ(QW,0, Q̄) and E0D
∗(Q0, g) = 0 for all g. This is shown as before:

Firstly,

E0D
∗
W (QW,0, Q̄)(Wi) = 1

N

∑N
j=1

∫
a,w

g∗(a | w)Q̄(cYj (a, w))QW,0(w)−Ψ(Q̄, QW,0)

= 0.

We also have

E0

∑
iD
∗
Yi

(Q̄, QW,0, g0) = 1
N

∑
iE0

h̄∗0(CYi )

h̄0(CYi )
(Yi − Q̄(CY

i ))

= 1
N

∑
i

∫ h̄∗0(c)

h̄0(c)
(Q̄Y,0 − Q̄)(c)hi,0(c)dµ(c)

= 1
N

∫
h̄∗0(c)(Q̄Y,0 − Q̄)(c)dµ(c)

= ψ0 −Ψ(Q̄, QW,0).

This proves the robustness w.r.t. misspecification of Q̄:

E0

∑
i

D∗i (QW,0, Q̄, g0) = 0 + ψ0 −Ψ(Q̄, QW,0).

In addition, it follows trivially that E0D
∗(Q̄Y,0, QW,0, g0) = 0. Due to this fact

that our previous efficient influence curve is still a valid estimating function
satisfying the same double robustness, we propose to use the same TMLE
procedure to estimate ψ0. It might still be of interest to determine the actual
efficient influence curve and a corresponding TMLE, but we leave that for
possible future research.

11.1 TMLE

Let Q̄N be an estimator of Q̄Y,0(c) = E0(Yi | CY
i = c). Suppose Yi is binary in

{0, 1} or continuous with values in (0, 1). This estimator Q̄N could be based
on the log-likelihood loss function

−L(Q̄)(O) =
N∑
i=1

log Q̄Y (cYi )Yi(1− Q̄(cYi ))1−Yi .

For example, it could be a super learner based on this loss function. The
estimator could also be based on a squared error loss function

L2(Q̄)(O) =
N∑
i=1

(Yi − Q̄(cYi ))2.
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Let Q̄W,N be the empirical distribution that puts mass 1 onW = (W1, . . . ,WN).
A plug-in estimator could now be defined as Ψ(Q̄N , QW,N).

Let gN be an estimator of g0, respecting the statistical model for g0. For
example, one could factorize g0(A | W ) =

∏N
i=1 g0,i(Ai | A1, . . . , Ai−1,W ), and

utilizing the known conditional independencies of Ai with Aj, given W , and
assume a common model g0,i(Ai | A1, . . . , Ai−1,W ) = g0(Ai | CA

i ) for some
summary measure CA

i .
Given gN , QW,N , Q̄N , let Q̄N(ε) be a target-parameter specific submodel

through Q̄N defined by

LogitQ̄N(ε) = LogitQ̄N + ε
h̄(g∗, QW,N)

h̄(gN , QW,N)
.

Let
εN = arg min

ε
L(Q̄N(ε))(O)

be the maximum likelihood estimator, which simply involves running uni-
variate logistic regression on a pooled data set with binary outcomes Yi and

covariate
h̄(g∗,QW,N )

h̄(gN ,QW,N )
(cYi ), using as off-set LogitQ̄N . This defines now an up-

date Q̄∗N = Q̄N(εN). The TMLE of ψ0 is defined as the corresponding plug-in
estimator

ψ∗N = Ψ(Q̄∗N , QW,N).

We note that this TMLE solves the equation

D∗(Q̄∗N , QW,N , gN , ψ
∗
N)(O) = 0.

Specifically, by being a substitution estimator Ψ(Q∗N) and using an NPMLE
of QW,0 we have D∗W (QW,N , Q̄

∗
N)(O) = 0, while the targeted updating of Q̄N

guarantees that
∑

iD
∗
Yi

(Q̄∗N , QW,N , gN) = 0 as well.
Since the outcomes are not conditionally independent, given W,A, the

statistical properties of cross-validation to select among candidate estimators
of Q̄0 are not well understood yet. For example, would it be appropriate
to split the N observations randomly into a training and validation sample,
ignoring these dependencies (since it is not obvious how to divide up the sample
in an independent training and validation sample without discarding lots of
observations)? The same remark applies to the use of cross-validation to select
among candidate estimators of the conditional distribution of A, given W .
Here we suffice with the following remark. In order to study the properties of
such a cross-validation selector we will need to understand empirical processes
of the form

ZN(f) =
N∑
i=1

fi(f)(O),
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for a specified mapping f → fi(f) from a class of functions F into functions
of O. With each i there is an associated set Ri ⊂ {1, . . . , N}, and it is known
that fi(f) is independent of fj(f) if Ri ∩Rj = ∅. In the appendix we provide
general conditions under which this process ZN = (ZN(f) : f ∈ F) converges
weakly to a Gaussian process Z = (Z(f) : f ∈ F). For completeness, we
provide here the general theorem that is a corollary from the Appendix:

Theorem 6 Consider a process ZN = (ZN(f) : f ∈ F), with ZN(f) =
1/
√
N
∑N

i=1 fi(f)(O), where E0fi(f)(O) = 0, fi(f) is independent of fj(f)
if Ri∩Rj = ∅, where Ri ⊂ {1, . . . , N} is a subset of indices, i = 1, . . . , N , and
F is a set of multivariate uniformly bounded real valued functions f : IRd → IR.
We make the following assumptions:

• supi | Ri |< K for some universal K <∞.

• For all integers p > 0, {E0fi(f)(O)p}1/p ≤ C ‖ f ‖∞ for supremum
norm ‖ f ‖ on F , and universal C <∞.

• The entropy integral
∫ √

logN(ε,F , ‖ · ‖∞)dε < ∞ for F w.r.t. norm
‖ · ‖∞ is finite.

• The marginal distributions ZN(f) converge to a normal distribution Z(f)
for all f ∈ F .

Then ZN converges weakly to a Gaussian process Z identified by the covariance
operator Σ(f1, f2) defined by

Σ(f1, f2) = limN→∞
1
N

∑N
i=1

∑N
j=1 I(Ri ∩Rj 6= ∅)E0fi(f1)fj(f2).

We conjecture that, using these fundamental empirical process results, it
will be possible to establish certain types of oracle inequalities for the cross-
validation selector for Q̄0 that simply ignores the conditional dependencies
of the Yi’s, given A,W , between the N observations. Similarly, such results
would then also be obtained for more general conditional distributions such as
g0. This will be an area of interest for future research.

11.2 Asymptotic theorem

We can obtain a similar asymptotics theorem for this TMLE as the one pre-
sented in the previous section, due to the fact that it is defined as a similar
target parameter and uses the same TMLE algorithm. The only difference
is that the covariance functions are different due to having allowed for many
more dependencies.
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Theorem 7 Consider the statistical formulation of data O = (O1, . . . , ON) ∼
P0 ∈ M, statistical model M, and statistical target parameter Ψ : M → IR,
defined conditionally on the network-profile F = (F1, . . . , FN). Suppose g0 is
known. Specifically, the model corresponds with assuming that, if Fi ∩ Fj = ∅,
then Wi and Wj are independent, Ai and Aj are independent, given W , and
Yi and Yj are independent, given A,W . The likelihood is given by:

P (O) = QW (W )gA(A | W )QY (Y | A,W ),

where the joint distribution QW , the joint conditional distribution gA and QY

satisfy these conditional independence assumption implied by the network (Fi :
i = 1, . . . , N). Let Ri = ∪j∈FiFj. Let cYi (a, w) be a summary measure of (Aj :
j ∈ Fi) and (Wj : j ∈ Ri), and assume that there exists a common function
Q̄ so that E(Yi | A,W ) = Q̄(cYi (A,W )), i = 1, . . . , N . This defines the
statistical model M for the distribution of O. The statistical target parameter
Ψ :M→ IR is defined as:

Ψ(P ) =
1

N

N∑
i=1

∫
w,a

QW (w)g∗(a | w)Q̄(cYi (a, w)).

Consider the following function:

D∗(P ) = D∗W (QW , Q̄)(W ) +
N∑
i=1

D∗Yi(Q̄, QW , g)(O),

where

D∗Yi(Q, g)(O) = 1/N h̄(g∗,QW )

h̄(g,QW )
(Yi − Q̄(CY

i )

D∗W (QW , Q̄)(W ) = 1/N
∑

i

∫
a
g∗(a | W )Q̄(cYi (a,W ))−Ψ(Q)

h̄(g,QW )(c) = 1/N
∑N

i=1 PQ,g(c
Y
i (A,W ) = c)

h̄(g∗, QW )(c) = 1/N
∑N

i=1 PQ,g∗(c
Y
i (A,W ) = c).

Let QW,N be the distribution that puts mass 1 on (W1, . . . ,WN). Consider the
TMLE ψ∗N = Ψ(Q∗N) = Ψ(Q̄∗N , QW,N) defined above using the known g0 in
h̄(g0, QW,N). As shown above, this TMLE solves

D∗(Q̄∗N , QW,N , g0)(O) = 0.

Recall the definitions of h̄0(c) =
∑N

i=1 h0,i(c), h̄∗0 =
∑N

i=1 h
∗
0,i, h0,i(c) = Pg0,QW,0(C

Y
i (A,W ) =

c), h∗0,i(c) = Pg∗,QW,0(C
Y
i (A,W ) = c), defined as densities w.r.t. dominating

measure µ, and let h̃0 = h̄∗0/h̄0. Also recall the plug-in estimator h̃N of h̃0

implied by g0 and QW,N .
We make the following assumptions:
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Entropy condition: Consider a class FY of functions cY → Q̄(cY ) on a
set in CY ⊂ IRd that contains cY (A,W ) with probability 1. Assume
that Q̄∗N ∈ FY with probability 1. Consider a class Fh of functions
cY → h̄(cY ) on CY ⊂ IRd that contains cY (A,W ) with probability 1.
Assume that h̃∗N ∈ Fh with probability 1. Define the dissimilarity measure
on the cartesian product of F = FY ×Fh:

d((h̃1, Q̄1), (h̃, Q̄)) = max

(
sup
c∈CY

| h̃1 − h̃ |, sup
c∈CY

| Q̄1 − Q̄ |
)
.

Assume that there exists some η > 0, so that
∫ η

0

√
log (N(ε,F , d))dε <

∞.

In particular, this assumption holds if supf∈FY ‖ f ‖
∗
v<∞ and supf∈Fh ‖

f ‖∗v<∞, where ‖ f ‖∗v is the uniform sectional variation norm as defined
in Gill, van der Laan, Wellner (1996) and van der Laan (1996).

Universal bound: Assume supf∈F ,O | f | (O) < ∞, where the supremum
of O is over a set that contains O with probability 1. This assumption
will typically be a consequence of the entropy condition, such as it is a
consequence of the uniform sectional variation norm condition above.

Consistency and rate condition: Assume d(h̃N , Q̄
∗
N), (h̃0, Q̄

∗))→ 0 in prob-
ability as N →∞,

RN,1 ≡ −P0

(
h̄∗N
h̄N
− h̄∗0
h̄0

)
(Q̄∗N − Q̄∗Y ) = oP (1/

√
N)

and

RN,4 =

∫
c

{
h̄∗N
h̄N
− h̄∗0

h̄

}
1

h̄0

(h̄N− h̄0)(Q̄Y,0−Q̄∗Y )(c)h̄0dµ(c) = oP

(
1√
N

)
.

Positivity type condition: Assume

sup
c∈CY

h̄∗(g∗, QW,0)

h̄(g0, QW,0)
(c) <∞.

Network structure condition: Assume that there exists a K < ∞ so that
supi | Fi |< K for all i = 1, . . . , a.s.

Restriction on dependence of stochastic intervention: Assume that g∗((Aj :
j ∈ Fi) | W ) only depends on W through (Wj : j ∈ Si) for sets
Si ⊂ {1, . . . , N} with | Si |< K for some K <∞.
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First order approximation: Then,

ψ∗N − ψ0 =
1

N

N∑
i=1

{fi(O)− P0fi}+ oP (1/
√
N),

where

fi = D∗Y,i(Q̄
∗, QW,0) + f 1

W,i + f 2
W,i

f 1
W,i(W ) =

∫
a

Q̄∗Y (cYi (a,W ))g∗(a | W )

f 2
W,i(W ) =

∫
c

{
h∗i,N
h̄0

− h̄∗0
h̄2

0

hi,N

}
(c)(Q̄Y,0 − Q̄∗Y )(c)h̄0(c)dµ(c)

h∗i,N(c) =

∫
a

I(cYi (a,W ) = c)g∗(a | W ) = g∗i (c | W )

hi,N(c) =

∫
a

I(cYi (a,W ) = c)g0(a | W ) = g0,i(c | W ).

Weak convergence of first order approximation: We can orthogo-
nally decompose

fi(O) = fY,i(O) + fA,i(O) + fW,i(O),

where

fY,i = D∗Y,i − E0(D∗Y,i | A,W )

=
h̄∗0
h̄0

(CY
i )(Yi − Q̄Y,0(CY

i ))

fA,i = E0(D∗Y,i | A,W )− E0(D∗Y,i | W )

=
h̄∗0
h̄0

(CY
i )(Q̄Y,0 − Q̄∗Y )(CY

i )

−
∫
c

h̄∗0
h̄0

(c)(Q̄Y,0 − Q̄∗Y )(c)g0,i(c | W )

E0(D∗Y,i | W ) =

∫
c

h̄∗0
h̄0

(Q̄Y,0 − Q̄∗Y )(c)g0,i(c | W )

fW,i = f 1
W,i + f 2

W,i + E0(D∗Y,i | W )− P0{f 1
W,i + f 2

W,i + E0(D∗Y,i | W )}

=

∫
a

Q̄Y,0(cYi (a,W ))g∗(a | W )−
∫
a

Q̄Y,0(cYi (a,W ))g∗(a | w)QW,0(w)

=

∫
c

Q̄Y,0(c)g∗i (c | W )−
∫
c,w

Q̄Y,0(c)g∗i (c | w)QW,0(w).
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We make the following observations: 1) fY,i depends only on Yi, given
A,W , so that fY,i, fY,j are independent, given A,W , if Fi ∩ Fj = ∅, 2) fA,i is
a function of Aj, j ∈ Fi, so that fA,i and fA,j are independent, given W , if
F+
i ∩ F+

j = ∅, where F+
i = ∪l∈FiFl, 3) fW,i is a function of (Wj : j ∈ Si),

so that fW,i and fW,j are independent if S+
i ∩ S+

j = ∅, where S+
i = ∪l∈SiFl.

Define RY (i, j) = I(Fi ∩ Fj 6= ∅), RA(i, j) = I(F+
i ∩ F+

j 6= ∅), RW (i, j) =
I(S+

i ∩ S+
j 6= ∅) as corresponding indicators of not being independent. Let

R(i, j) = I(RY (i, j) = 1 or RA(i, j) = 1 or RW (i, j) = 1).
We have

1√
N

∑
i

{fi(O)− P0fi} ⇒d N(0, σ2), where σ2 = σ2
Y + σ2

A + σ2
W ,

and

σ2
Y = lim

N→∞

1

N

N∑
i1,i2

RY (i1, i2)P0fY,i1fY,i2

σ2
A = lim

N→∞

1

N

∑
i1,i2

RA(i1, i2)P0fA,i1fA,i2

σ2
W = lim

N→∞

1

N

∑
i1,i2

RW (i1, i2)P0fW,i1fW,i2 ,

and P0f denotes the marginal expectation of f(O), given F. As a consequence,√
N(ψ∗N − ψ0)⇒d N(0, σ2).

Alternative expression of asymptotic variance: One can also repre-
sent σ2 as

σ2 = lim
N→∞

1

N

∑
i1,i2

R(i1, i2)P0fi1fi2 .

12 When only, but carefully, observing a ran-

dom sample of the units in the network

We assume the same structural causal model and define the same causal quan-
tity of interest ψF0 = E0Y

c
g∗ , where Y c

g∗ = 1/N
∑N

i=1 Yi,g∗ . We already demon-
strated that ψF0 can be represented as a function Ψ evaluated at Q0, where

Q0 represents the collection of conditional distributions of Li(t), given C
L(t)
i ,

across t. However, we now consider the case that we do not observe the data
on all N individuals.
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Let

Oi = (Li(t), c
L
t (Pa(Li(t))), Ai(t), c

A
t (Pa(Ai(t)))) : t)

be the data structure for subject i augmented with the summary measures of
the parents of Li(t) and Ai(t) for all t. Note that the data Oi(t) on subject i
at time t potentially partially overlaps with data on another subject j due to
the parent-data for subject i at time t that includes information about subject
j. We assume that we observe a random sample of size n from {1, . . . , N},
and that for each of these individuals we observe this data structure Oi: thus,
our observed data is Oi, i = 1, . . . , n.

To summarize, we observe a random sample of size n of the N individuals
making up the population and network of interest for which we assumed our
posed structural causal model, and for each of the individuals in this random
sample we observe all relevant variables that are used by the structural equa-
tions for subject i to generate its realized process (Li, Ai). Just for clarity,
this does not mean that if subject i is observed, and subject i is connected to
subject j so that Oi includes data on subject j, that we observe all the data
on subject j.

Partial likelihood for random sample of individuals: Under our
causal model, a partial likelihood of O = (O1, . . . , On) (i.e., a likelihood that
only tracks the probabilities on Oi(t), conditional on its parents, and ignores
other factors of the likelihood) is given by:

P n(O1, . . . , On) =
n∏
i=1

τ+1∏
t=0

PL(t)(Li(t) | cLt (Pa(Li(t))))gt(Ait) | cAt (Pa(Ai(t)))).

Note that, even though subject i’s data might be affected by data of other
members of the target population of N subjects that are not included in the
sample, the (i, t)-specific factor on the right-hand side is indeed a function of
the observed data Oi(t), and, in particular, the i-specific factor involving the
product over time t is only a function of the observed data Oi, i = 1, . . . , n.
Recall that the likelihood for the full N individuals was given by

P (O) =
N∏
i=1

τ+1∏
t=0

PL(t)(Li(t) | cLt (Pa(Li(t))))gt(Ait) | cAt (Pa(Ai(t)))).

Thus, the partial likelihood corresponds with a random selection of factors
of the actual likelihood of the full network of N individuals. It follows that
the log-partial likelihood yields a valid loss function for the same conditional
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distributions of the full likelihood of the N individuals if the sample of n
individuals is a true random sample of the set of N individuals. This proves
that Q0 can be expressed as a function of this partial likelihood P n

0 , showing
the identifiability of Q0.

Statistical model for observed data distribution: Each of the condi-
tional distributions PL(t), PA(t) are unspecified beyond that they only depend
on parents through cLt (Pa(L(t))), cAt (Pa(A(t))), respectively. This defines now
a statistical model Mn for the partial likelihood P n of (O1, . . . , On) obtained
by varying the choice of these conditional distributions.

Identification of causal quantity and the statistical target param-
eter: The conditional distributions PL(t), and thereby Pg∗,L(t) are identified
by the observed data distribution through maximizing the partial likelihood
as n → ∞ (and also N → ∞), while we already established that ψF0 = EY c

g∗

can be represented as a Ψ(Q0). Since Q0 is identified by the partial likelihood
P n

0 , it follows that the counterfactual mean average outcome ψF0 = EY c
g∗ of

Y c = 1/N
∑

i Yi under a stochastic intervention g∗ is identified by the true
partial likelihood P n

0 of the observed data O = (O1, . . . , On) as n→∞. This
allows us to define a statistical target parameter Ψ :Mn → IR on all possible
partial likelihoods P n in the model Mn, where Ψ(P n

0 ) = ψF0 under our causal
model.

To summarize: We note that the distribution of the counterfactual Lg∗ de-
fined by (1) is a factor over N factors identified by the conditional distributions
of L(t) and g∗. This expresses EY c

g∗ as a function of these conditional distri-
butions Q0. Since we expressed these conditional distributions as a function
of P n

0 , by simply plugging in this expression for these conditional distributions
in (1) we obtain a mapping from P n

0 into Ψ(P n
0 ) defining our statistical target

parameter. This defines a statistical model for the partial likelihood and a
statistical target parameter as a feature of this partial likelihood, and thereby
the statistical estimation problem.

Targeted maximum partial likelihood estimation: Since maximum
partial likelihood estimation is completely analogue to the maximum likelihood
estimator based on the full data on all N individuals we suggest that by
replacing sums over i in the efficient influence curve for the case n = N by sums
over the actual n observed individuals we obtain the analogue of the efficient
influence curve for the statistical target parameter. By the same token, we
can define a similar TMLE as well, which we now call a targeted minimum
loss based estimator since we are not maximizing an actual likelihood during
the targeting step.
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13 Discussion

We formulated a general causal model for the longitudinal data generated by
a finite population of connected units. This allows us to define counterfactuals
indexed by interventions on the treatment nodes of the units, and correspond-
ing causal contrasts. We established identifiability of the causal quantities
from the data observed on the units when observing all units or a random
sample of the units, assuming that the size of the population converges to
infinity, under appropriate assumptions. Our causal assumptions implied con-
ditional independence across units at time t, conditional on the past of all
units, resulting in a factorized likelihood of the observed data (even though
the observed data is generated by a single experiment, not by a repetition
of independent experiments). To deal with the curse of dimensionality we
assumed that a unit’s dependence on the past of other units can be summa-
rized by a finite dimensional measure, and that this dependence is described
by a common function across the units. This describes now the statistical
model for the data distribution and thereby the statistical estimation prob-
lem. We demonstrated that we can use cross-validation and super-learning to
estimate the different factors of the likelihood. Given the statistical model and
statistical target parameter that identifies the counterfactual mean under an
intervention, we derived the efficient influence curve of the target parameter.
We showed that this efficient influence curve characterizes the normal limit
distribution of a maximum likelihood estimator, and thus still represents an
optimal asymptotic variance among estimators of the target parameter. How-
ever, due to the curse of dimensionality, maximum likelihood estimators will
be ill-defined for finite samples, and smoothing will be needed.

Such smoothed/regularized maximum likelihood estimators are not tar-
geted and will thereby be overly bias w.r.t. the target parameter, and, as a
consequence, generally not result in asymptotically normally distributed esti-
mators of the statistical target parameter. Therefore, we formulated targeted
maximum likelihood estimators of this estimand, and showed that the robust-
ness of the efficient influence curve implies that the bias of the TMLE will be
a second order term involving squared differences of two nuisance parameters.
Subsequently, we focussed on defining and analyzing the TMLE of causal ef-
fects of an intervention on a single treatment node on a future outcome. In this
special case we showed that the efficient influence curve is double robust w.r.t.
two nuisance parameters, one involving the intervention mechanism, and the
other involving the common conditional mean function for the outcome. We
established a formal asymptotic normality theorem under the assumption that
each unit is only connected to fewer than K other units for a universal K.
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In future work it will be of interest to extend this last theorem to the
case that a unit can depend on summary measures across a number of units
that can converge to infinity with sample size. It will also be of interest to
allow that K depends on N , and establish rates of convergence that are slower
than 1/

√
N and establish corresponding (e.g., normal) limit distributions. The

finite sample behavior of these estimators and confidence intervals will need
to be evaluated through simulation studies.

Overall, we believe that the statistical study of these causal models for
networks of units provides a fascinating and important area of future research,
relying on deep advances in empirical process and statistical estimation theory,
while raising new challenges. In the mean time, these advances will be needed
to move forward statistical practice.
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Appendix

Introduction to Appendix

We start out with presenting a general template of our proof of Theorem 4
which establishes the asymptotics of the TMLE for the case τ = 0. In this
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template we define the remaining ingredients (A1), (A2) and (A3) that will
need to be established in the remainder of the proof. Each of these three
ingredients is carried out in a separate section. These sections are themselves
organized by special tasks that need to be carried out. We conclude with
demonstrating how our template can be generalized to the analysis of the
TMLE for general longitudinal data structures (i.e., arbitrary integer values
τ).

A General template of proof of Theorem 4.

Recall that D∗ = 1/N
∑N

j=1D
∗
j (O) is a sum over the individuals j. We will use

the notation PND
∗ = 1/N

∑N
j=1D

∗
j (O), while P0D

∗ = 1/N
∑

j EP0D
∗
j (O) is its

expectation w.r.t. distribution P0. We haveD∗ = D∗W+D∗Y , P0D
∗
W (Q̄∗N , QW,0) =

0, P0D
∗
Y (Q̄∗N , QW,0) = ψ0−Ψ(Q̄∗N , QW,0), and PND

∗
W (Q̄∗N , QW,N) = PND

∗
Y (Q̄∗N , QW,N) =

0. In particular, this yields

P0D
∗(Q∗Y,N , QW,0) = ψ0 −Ψ(Q̄∗N , QW,0).

We now proceed as follows:

Ψ(Q̄∗N , QW,N)− ψ0 = Ψ(Q̄∗N , QW,N)−Ψ(Q̄∗N , QW,0) + Ψ(Q̄∗N , QW,0)− ψ0

= Ψ(Q̄∗N , QW,N)−Ψ(Q̄∗N , QW,0)− P0D
∗
Y (Q̄∗N , QW,0)

= Ψ(Q̄∗N , QW,N)−Ψ(Q̄∗N , QW,0) + (PN − P0)D∗Y (Q̄∗N , QW,0)
−PN{D∗Y (Q̄∗N , QW,0)−D∗Y (Q̄∗N , QW,N)}

= Ψ(Q̄∗N , QW,N)−Ψ(Q̄∗N , QW,0) + (PN − P0)D∗Y (Q̄∗N , QW,0)
+(PN − P0){D∗Y (Q̄∗N , QW,N)−D∗Y (Q̄∗N , QW,0)}

+P0{D∗Y (Q̄∗N , QW,N)−D∗Y (Q̄∗N , QW,0)}.

We note that

{D∗Y (Q̄∗N , QW,N)−D∗Y (Q̄∗N , QW,0)} =

(
h̄∗N
h̄N
− h̄∗0
h̄0

)
(Y − Q̄∗N),

where h̄∗N = h̄(g∗, QW,N), h̄∗0 = h̄(g∗, QW,0), and similarly for h̄∗0, h̄0. We also
note that

Ψ(Q̄∗N , QW,N)−Ψ(Q̄∗N , QW,0)

= 1
N

∑N
i=1

{∫
a
Q̄∗N(cYi (a,W ))g∗(a | W )−

∫
Q̄∗N(cYi (a, w))g∗(a | w)QW,0(w)

}
≡ 1

N

∑N
i=1{f 1

W,i(W )− P0f
1
W,i}+RN,0,

where

f 1
W,i =

∫
a

Q̄∗Y (cYi (a,W ))g∗(a | W ),

73

Hosted by The Berkeley Electronic Press



and

RN,0 =
1

N

N∑
i=1

{∫
a

(Q̄∗N − Q̄∗)(c)g∗i (c | W )−
∫

(Q̄∗N − Q̄∗)(c)g∗i (c | w)QW,0(w)

}
.

We used here that
∫
a
Q̄(cYi (a,W ))g∗(a | W ) =

∫
c
Q̄(c)g∗i (c | W ). Define

the process Z1
W,N(Q̄) = 1

N

∑N
i=1{f 1

W,i(Q̄) − P0f
1
W,i(Q̄)} indexed by Q̄, where

f 1
W,i(Q̄) =

∫
Q̄(c)g∗i (c | W ). Note that RN,0 = Z1

W,N(Q̄∗N − Q̄∗). As a con-

sequence, showing that RN,0 = oP (1/
√
N) corresponds with proving that

Z1
W,N(εN) = oP (1/

√
N) for a sequence εN that converges to zero w.r.t. some

norm. Therefore, our proof will involve studying this process Z1
W,N and es-

tablishing the required asymptotic equicontinuity. In this manner, we will
establish

RN,0 = oP (1/
√
N)(A2).

Thus, we have obtained the following expansion:

ψ∗N − ψ0 = 1
N

∑N
i=1{f 1

W,i(W )− P0fW,i}+ (PN − P0)D∗Y (Q̄∗N , QW,0)

+P0

(
h̄∗N
h̄N
− h̄∗0

h̄0

)
(Q̄Y,0 − Q̄∗Y ) +RN ,

where

RN = −P0

(
h̄∗N
h̄N
− h̄∗0
h̄0

)
(Q̄∗N − Q̄∗Y )

+(PN − P0)

(
h̄∗N
h̄N
− h̄∗0
h̄0

)
(Y − Q̄∗N)

≡ RN,1 +RN,2.

We assumed that the second order term RN,1 = oP (1/
√
N).

We have

(PN − P0)D∗Y (Q̄∗N , QW,0) = (PN − P0)D∗Y (Q̄∗, QW,0)
+(PN − P0){D∗Y (Q̄∗N , QW,0)−D∗Y (Q̄∗, QW,0)}
≡ (PN − P0)D∗Y (Q̄∗, QW,0) +RN,3.

We will show that

RN,2 = oP (1/
√
N) and RN,3 = oP (1/

√
N)(A3).

Define the process ZN(h̃, Q̄) = (PN − P0)h̃(Y − Q̄), which is a sum of the
form ZN(h̃, Q̄) =

∑
i fi(Q̄, h)(Oi) indexed by (h̃, Q̄), where h̃ plays role of

h̄∗/h̄. Showing that RN,3 = oP (1/
√
N) and that RN,2 = oP (1/

√
N) requires
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showing that ZN(εN) = oP (1/
√
N) for εN converging to zero w.r.t some norm.

Therefore our proof will involve studying this process, and establishing the re-
quired asymptotic equicontinuity. Specifically, we will decompose this process
in three orthogonal processes that can be represented as sums over functions
of conditionally independent random variables identified by the sets Fi (ana-
logue to orthogonal decomposition below of the first order approximation),
and establish this asymptotic equicontinuity for each of the three orthogonal
processes.

Consider now the term

P0

(
h̄∗N
h̄N
− h̄∗0
h̄0

)
(Q̄Y,0 − Q̄∗Y ). (7)

We have

P0
1
N

∑N
i=1

{
h̄(g∗,QW,N )(cYi )

h̄(g0,QW,N )(cYi )
− h̄(g∗,QW,0)(cYi )

h̄(g0,QW,0)(cYi )

}
(Q̄Y,0 − Q̄∗Y )(cYi )

=
∫
c

{
h̄(g∗,QW,N )(c)

h̄(g0,QW,N )(c)
− h̄(g∗,QW,0)(c)

h̄(g0,QW,0)(c)

}
(Q̄Y,0 − Q̄∗Y )(c)h̄0(c)

=
∫
c

{
h̄∗N−h̄

∗
0

h̄0
(c)− h̄∗0

h̄2
0
(h̄N − h̄0)(c)

}
(Q̄Y,0 − Q̄∗Y )(c)h̄0(c)

+RN,4,

where

RN,4 =

∫
c

{
h̄∗N
h̄N
− h̄∗0

h̄

}
1

h̄0

(h̄N − h̄0)(Q̄Y,0 − Q̄∗Y )(c)h̄0(c).

We assumed that RN,4 = oP (1/
√
N). We now note that

h̄0(c) =
∑N

i=1 P (cYi (A,W ) = c)

=
∑N

i=1

∫
I(cYi (a, w) = c)g0(a | w)QW,0(w)

=
∑N

i=1 hi(g0, QW,0)(c)

h̄N(c) =
∑N

i=1

∫
I(cYi (a, w) = c)g0(a | w)QW,N(w)

=
∑N

i=1

∫
I(cYi (a,W ) = c)g0(a | W )

=
∑N

i=1 hi(g0, QW,N)(c)

Thus, we can conclude that (7) reduces to

1
N

∑N
i=1

∫
c

{
hi(g

∗,QW,N )

h̄0
(c)− h̄∗0

h̄2
0
hi(g0, QW,N)

}
(Q̄Y,0 − Q̄∗Y )(c)h̄0(c)

+oP (1/
√
N)

≡ 1
N

∑N
i=1 f

2
W,i(W ) + oP (1/

√
N)

≡ Z2
W,N + oP (1/

√
N),
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where we note that P0f
2
W,i(W ) = 0. The term Z2

W,N = 1/N
∑

i{f 2
W,i(W ) −

P0f
2
W,i(W )} is included in the first order expansion and thus partly character-

izes the normal limit distribution of ψ∗N , so that its analysis will be part of the
analysis of the first order approximation.

Since hi(g,QW,N) only depends on (W1, . . . ,WN) through (Wj : j ∈ Fi),
where we condition on F1, . . . , FN , we will indeed be able to show that a
term Z2

W,N is itself a normally distributed random variable, even though each
i-specific term is correlated with the j-specific terms when Fi ∩ Fj 6= ∅.

Thus, if we prove (A2) and (A3), then we have obtained the following first
order expansion:

ψ∗N − ψ0 =
1

N

N∑
i=1

{f 1
W,i(W )− P0f

1
W,i}+

1

N

∑
i

{f 2
W,i(W )− P0f

2
W,i}

+(PN − P0)D∗Y (Q̄∗Y , QW,0) + oP (1/
√
N).

Analysis of first order approximation: Let f̄W,i = f 1
W,i + f 2

W,i. The
first order approximation equals

1/N
∑

i{D∗Y,i(Q̄∗, QW,0) + f̄W,i(W )− P0{D∗Y,i + f̄W,i}}
≡ 1/N

∑
i fi(O).

Using our notation, this thus equals (PN − P0)f . It remains to prove that
this first order expansion converges to a normal limit distribution. This proof
has its own outline. Firstly, we decompose 1/N

∑
i fi(O) by fi = fi,W +

fi,A + fi,Y , where fi,W = E0(fi | W ) − E0fi, fi,W = E0(fi | W ) − E0fi,
fi,A = E0(fi | A,W ) − E0(fi | W ), and fi,Y = fi − E0(fi | A,W ). Denote
the three corresponding terms with ZY,N + ZA,N + ZW,N . Note that ZW,N =
1/N

∑
i{fW,i − P0fW,i}, where fW,i = f̄W,i + E(D∗Y,i | W ). It follows that fW,i

simplifies to:

fW,i(W )− P0fW,i =

∫
a

Q̄Y,0(cYi (a,W ))g∗(a | W )

−
∫
a,w

Q̄Y,0(cYi (a,W ))g∗(a,W )QW,0(w)

=

∫
c

Q̄Y,0(c)g∗i (c | W )−
∫
c,w

Q̄Y,0(c)g∗i (c | W )QW,0(w).

We also note that, conditional on W,A, ZN
Y is a sum of independent mean

zero random variables fY,i(Yi) (functions of Yi), conditional on W , ZN
A =

1/
√
N
∑

i fA,i((Aj : j ∈ Fi)) − P0fA,i for some fA,i, where Ai, i = 1, . . . , N
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are pairwise (conditionally) independent, and ZN
W = 1/

√
N
∑

i fW,i(Wj : j ∈
Fi)− P0fW,i, Wi are pairwise independent.

We will show that
ZN
Y ⇒d N(0, σ2

Y )
ZN
A ⇒d N(0, σ2

A)
ZN
W ⇒d N(0, σ2

W ) (A1)

with the expressions for σ2
Y , σ2

A and σ2
W as specified in the Theorem. Here (A1)

represents all three convergence statements. Due to the orthogonality of the
three empirical processes, using moment generating functions, it also follows
that ZN

Y +ZN
A +ZN

W ⇒d N(0, σ2 = σ2
Y +σ2

A+σ2
W ). For example, we can analyze

E(ZN
Y +ZN

A )p =
∑

t c(p, k)E{ZN
Y }kE{ZN

A }p−k and use convergence of moments
of each process separately to establish convergence to E(ZY + ZA)p. Once we
have convergence of all moments, and we can bound E(ZN

Y + ZN
A )p ≤ Cp

for some C < ∞, which follows from our separate analysis, then we obtain
convergence in moment generating function, and thereby weak convergence.

This finishes the outline of the proof. It remains to establish (A1), (A2),
(A3).

B (A3)

B.1 (A3): Outline of Proof.

Let h̃ = h̄∗/h̄ and we will denote D∗Y with D∗Y (h̃, Q̄). Our goal is to prove that√
N(PN−P0){D∗Y (h̃0, Q̄

∗
N)−D∗(h̃0, Q̄

∗)} = oP (1) and
√
N(PN−P0){D∗Y (h̃N , Q̄

∗
N)−

D∗Y (h̃0, Q̄
∗
N)} = oP (1). Let P0,Y |A,Wf , P0,A|Wf , P0,Wf , denote the expectation

operators w.r.t their respective conditional distributions. We have

ZN(h̃, Q̄) =
√
N(PN − P0)D∗Y (h̃, Q̄) =

√
N(PN − P0,Y |A,W )D∗Y (h̃, Q̄)

+
√
N(PN − P0,A|W )P0,Y |A,WD

∗
Y (h̃, Q̄)

+
√
N(PN − P0,W )P0,A|WP0,Y |A,WD

∗
Y (h̃, Q̄)

= 1√
N

∑N
i=1 h̃(cYi )(Yi − Q̄Y,0(cYi ))

+ 1√
N

∑N
i=1 h̃(cYi )(Q̄Y,0 − Q̄)(cYi )−

∫
c
h̃(c)(Q̄Y,0 − Q̄)(c)g0,i(c | W )

+ 1√
N

∑N
i=1

∫
c
h̃(Q̄Y,0 − Q̄)(c)g0,i(c | W )− P0D

∗
Y (h̃, Q̄)

≡ ZN
Y (h̃) + ZN

A (h̃, Q̄) + ZN
W (h̃, Q̄).

We now note that, for a fixed (h̃, Q̄), conditional on W,A, ZN
Y is a sum of

independent mean zero random variables fY,i(Yi) (functions of Yi). We also
note that for a fixed (h̃, Q̄), conditional on W , ZN

A = 1/
√
N
∑

i fA,i((Aj : j ∈
Fi))−P0fA,i for some fA,i, where Ai, i = 1, . . . , N are pairwise (conditionally)
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independent. Finally, for a fixed (h̃, Q̄), ZN
W = 1/

√
N
∑

i fW,i(Wj : j ∈ Fi) −
P0fW,i, Wi are pairwise independent.

Let Q̄∗ be the limit of Q̄N , and let h̃0 = h̄∗0/h̄0 be the limit of h̃N . We will
use empirical process theory to establish that

ZN
Y (h̃N) = ZY

N (h̃0) + oP (1)

ZN
A (h̃N , Q̄

∗
N) = ZN

A (h̃0, Q̄
∗) + oP (1)

ZN
W (h̃N , Q̄

∗
N) = ZN

W (h̃0, Q̄
∗) + oP (1).

This then establishes RN,2 = oP (1/
√
N) and RN,3 = oP (1/

√
N).

B.2 (A3): Outline of establishing asymptotic equicon-
tinuity of a process

For that purpose, we will apply Lemma 5 in van der Vaart and Wellner (1996),
which concerns establishing weak convergence of a process (ZN(f) : f ∈ F),
indexed by a f = (h̃, Q̄) ∈ F . Given that F is a subset of some metric space
of functions with metric d, one defines N(ε,F , d) as the minimal number of
balls of size ε needed to cover F . In addition, let ‖ ZN(f) ‖ψ= inf{c0 : ψ(|
ZN(f) | /c0) ≤ 1} be the orlics norm of the random variable ZN(f).

For example, one can select the Lp-norm ‖ ZN(f) ‖p=
{∫

E{ZN(f)}p
}1/p

of
ZN(f) for arbitrary large p which correspond with the choice of orlics norm
defined by ψp(x) = xp. The orlics norm implied by ψ2,e(x) = exp(x2) − 1 is
the typical orlics norm pursued in the case of sums of independent random
variables, and this is the one we will also use.

This Lemma 5 states that, if 1) ‖ ZN(f1) − ZN(f2) ‖ψ is bounded by
cd(f1, f2) for some universal constant c and metric d(f1, f2), 2) F is totally
bounded w.r.t.. this metric d, 3) for some η > 0,

∫ η
0
ψ−1 (N(ε,F , d)) dε <∞, 4)

the marginal distributions ZN(f) converge to a normal distribution Z(f), then
ZN converges weakly to a Gaussian process Z in `∞(F). We assumed that our
parameter space F for (h̃0, Q̄Y,0) and its difference Fd = {f1− f2 : f1, f2 ∈ F}
consists of uniformly bounded functions on a set CY that contains CY

i (A,W )
with probability 1, so that 2) holds. We posed 3) as an entropy condition on
the parameter space F , which will thus hold by assumption. For example,
F could be the class of functions on CY ⊂ IRd that have uniform sectional
variation norm bounded by a M < ∞, in which case this entropy condition
holds. Under conditons 1-3 we have that the process ZN is asymptotically
tight, and, for any sequence δn → 0, we have for each x > 0,

P

(
sup

d(f1,f2)<δn

| ZN(f1)− ZN(f2) |> x

)
→ 0 as N →∞.

78

http://biostats.bepress.com/ucbbiostat/paper300



So once we have established the orlics-norm condition 1), then this tightness
can be used to establish that terms ZN(fN)− ZN(f) = oP (1) for random fN
converging to f w.r.t. metric d in probability.

B.3 Bounding the orlics norm of our empirical pro-
cesses.

The orlics norm ‖ · ‖ψ indexed by function ψ(x) = exp(x)− 1 is defined as

‖ X ‖ψ= inf {c > 0 : E exp(| X | /C)− 1 ≤ 1} .

Similarly, we define the orlics norm for function ψ2(x) = exp(x2) − 1. We
consider a stochastic process XN(f) indexed by f ∈ F for a class of functions
F . In our application we have that f = (Q̄, h̃) ∈ F represents two real valued
functions Q̄ and h̃ defined on a support CY ⊂ IRd of cY (A,W ). In addition,
our processes can be represented as Xn(f) = 1/

√
N
∑N

i=1 fi(f)(O), where
for each i there is an associated set Fi ⊂ {1, . . . , N}, and, if Fi ∩ Fj = ∅,
then fi(f)(O) and fj(f)(O) are independent. For some of our processes, these
independencies are conditional on some random variables. Therefore, we would
need to apply our general proof below conditional on these random variables,
and then take the expectation of the resulting bound, still providing us with
the desired marginal bound on the orlics norm. Thus, we need to bound
‖ XN(f) ‖ψ≤ C ‖ f ‖ for some universal (in N and f ∈ F) C < ∞. As
outlined in previous subsection, the choice of orlics norm and norm ‖ f ‖ for
f ∈ F is important, since the corresponding entropy requirement on F is that∫ η

0
ψ−1(N(ε, ‖ · ‖,F))dε < ∞. We will establish our results for the strongest

orlics norm which corresponds with ψ2(x), while we select the supremum norm
‖ f ‖= max(‖ Q̄ ‖∞, ‖ h̃ ‖∞) for the functions f .

Lemma 2 Let ‖ X ‖ψ be the orlics norm defined above w.r.t. ψ(x) = exp(x2)−
1. Suppose that for each p

E | XN(f) |p≤ C(N, p) ‖ f ‖p .

Let D(N) be a number so that

∞∑
p=1

C(N, 2p)D(N)2p/p! ≤ 1.

Then,

‖ Xn(f) ‖ψ≤
1

D(N)
‖ f ‖ .
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In particular, if C(N, p) can be bounded from above by C(p) constant in N ,
and one finds a D (constant in N) so that

∑∞
p=1 C(2p)D2p/p! ≤ 1, then follows

that ‖ Xn(f) ‖ψ≤ 1
D
‖ f ‖.

Proof. We first note

E exp{(XN(f)/C)}2 − 1 =
∑∞

p=1
E(|XN (f)|/C)2p

p!
=
∑∞

p=1
E|XN (f)|2p

C2pp!
.

Suppose that for each even p E | XN(f) |p≤ C(N, p) ‖ f ‖p. Then, we have

E exp(XN(f)/C)− 1 ≤
∞∑
p=1

C(N, 2p) ‖ f ‖2p

C2pp!
.

So ‖ Xn(f) ‖ψ is bounded by a C so that

∞∑
p=1

C(N, 2p)

p!

(
‖ f ‖
C

)2p

≤ 1.

Let D(N) be a number so that

∞∑
p=1

C(N, 2p)D(N)2p/p! ≤ 1.

Then, C can be selected so that ‖ f ‖ /C ≤ D(N), or equivalently, C ≥‖
f ‖ /D(N). Thus, we have shown that ‖ XN(f) ‖ψ≤ 1

D(N)
‖ f ‖. The last

statement is straightforwardly shown. This completes the proof. 2

Thus, apparently, it suffices to establish a bound of the type E | XN(f) |p≤
C(p) ‖ f ‖p for some C(p) that is somewhat well behaved as function in p for
p→∞ so that the previous lemma applies.

We use the following lemma to bound the p-th moment of XN(f).

Lemma 3 Assume that, for each i = 1, . . . , N , and each integer p, we have a
universal constant C so that

‖ fi(f) ‖p= (E(fi(f)(O))p)1/p ≤ C ‖ f ‖ . (8)

Then, we have

E

p∏
j=1

fj ≤
p∏
j=1

‖ fj ‖2j≤ Cp ‖ f ‖p .
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The bounding (8) is a straightforward consequence of our conditions stated in
the theorem.
Proof. By repeatedly applying Cauchy-Schwarz inequality, it follows that

E
∏
j

fj(f) ≤
p∏
j=1

(
Efj(f)2j

)1/(2j)
=

p∏
j=1

‖ fj(f) ‖2j .

By assumption, ‖ fj(f) ‖2j≤ C ‖ f ‖, so that the latter is bounded by
Cp ‖ f ‖p. 2

The following lemma provides us with an upper bound for C(N, p) so that
E | XN(f) |p≤ C(N, p) ‖ f ‖.

Lemma 4 Assume that, for each i, and each integer p, we have a universal
constant C so that

‖ fi(f) ‖p= (E(fi(f)(O))p)1/p ≤ C ‖ f ‖ .

Given an index ~i = (i1, . . . , ip) ∈ {1, . . . , N}p (one among Np elements),
we can draw a graph by drawing a line between any two elements il1 , il2 in
{i1, . . . , ip} whenever the two corresponding sets F (il1) and F (il2) have a non-

empty intersection. Let R(i1, . . . , ip) be an indicator, identified by indices ~i =
(i1, . . . , ip) ∈ {1, . . . , N}p, which equals 1 if there exist a set F (il) among the
sets F (i1), . . . , F (ip) that is disjoint from the other sets.

Let
C(N, p) ≡ N−p/2

∑
~i(1−R(~i))

Then
‖ XN(f) ‖pp≤ C(N, p)Cp ‖ f ‖p .

Proof. We have

E
(

1/
√
N
∑

i fi

)p
= N−p/2

∑
i1,...,ip

E
∏p

j=1 fij

= N−p/2
∑

i1,...,ip
(1−R(i1, . . . , ip))E

∏p
j=1 fij .

By the previous lemma, we have E
∏p

j=1 fj ≤ Cp ‖ f ‖p for a C <∞, so that
we obtain

E

(
1/
√
N
∑
i

fi

)p

≤ N−p/2
∑
i1,...,ip

(1−R(i1, . . . , ip))C
p ‖ f ‖p .

This completes the proof. 2
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Lemma 5 Assume that, for each i, and each p, we have a universal constant
C so that

‖ fi(f) ‖p= (E(fi(f)(O))p)1/p ≤ C ‖ f ‖ .
Assume also that maxi | Fi |≤ K. For p an integer, we have E | XN(f) |p≤
C(N, p)Cp ‖ f ‖p, where

C(N, p) ≡ N−p/2
∑
i1,...,ip

(1−R(i1, . . . , ip))

≤ 2p(K2p)p/2(N −K2p)p/2N−p/2.

For ψ(x) = ex
2 − 1, we have ‖ XN(f) ‖ψ≤ C1 ‖ f ‖ for some universal

C1 <∞.

Proof. We first need to show that C(N, p) ≤ 2p(K2p)p/2(N −K2p)p/2N−p/2.
One needs to select p times in a row an element in {1, . . . , N}, which then re-
sults in one particular~i. Without restrictions on this sequence of p draws, one
has N options at each of the subsequent p steps resulting in Np vectors. Sup-
pose we have arrived at the l-th draw, so that we have a sequence (i1, . . . , il−1)
with corresponding sets F (i1), . . . , F (il−1) For a given set F (is) we define the
set F c(is) = ∪i∈F (is)F (i). For a next il we define a binary B(il) = 1 if F c(il)
has no intersection with ∪s≤l−1F

c(is), and we define B(il) = 0 otherwise. The
maximal size of a set F (i) is K so that the maximal size of a set F c(i) is
K∗ = K2. Suppose B(il) = 1. Among F (i1), . . . , F (il), F (il) is an island, and
one cannot find a single element in {1, . . . , N}/{i1, . . . , il} that connects both
il and one of the others in {i1, . . . , il−1}. In general, an element with B(il) = 1
will need at least one future s > l selection with B(is) = 0 in order to connect
il with is. Suppose in the sequence of p elements (B(i1), . . . , B(ip)) there are
more than p/2 1’s. Then there will be at least one island of size 1 one corre-
sponding with a il with B(il) = 1. Thus, in that case 1− R(~i) = 0. Thus, we
only need to count the vectors for which B(i1), . . . , B(ip) has at most p/2 1’s.
For a choice with B(il) = 1, we have at most N −K2p possible choices since
we cannot select any of the elements in F (i1)+, . . . , F (il−1)+. For a choice
with B(il) = 0, we have maximally K2p choices. The total number of se-
quences B(i1), . . . , B(ip) for which there are at most p/2 1’s is upper-bounded

by 2p. The total number of sequences ~i present in one such sequence is given
by (K2p)p/2(N −K2p)p/2. To conclude, we have the following upper bound

C(N, p) ≤ 2p(K2p)p/2(N −K2p)p/2N−p/2.

This proves that E | XN(f) |p≤ CpC(N, p) ‖ f ‖p. We now want to
bound the orlics norm ‖ XN(f) ‖ψ2 . Firstly, we will do this for the orlics norm
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ψ1(x) = exp(x) − 1. Using that p! ≥ (p/2)!(p/2)p/2, (N − K2p)/N ≤ 1, we
have

‖ XN(f) ‖ψ1= inf
{
c0 :

∑∞
p=1

CpC(p,N)
p!

‖f‖p
cp0
≤ 1
}

= inf
{
c0 :

∑∞
p=1

Cp2p

p!
(K2p)p/2 (N−K2p)p/2

Np/2

‖f‖p
cp0
≤ 1
}

≤ inf
{
c0 :

∑∞
p=1

(
2C
√
K2‖f‖
c0

)p
pp/2

(p/2)!(p/2)p/2
≤ 1
}

= inf
{
c0 :

∑∞
p=1

(
2
√

2C
√
K2‖f‖

c0

)p
1

(p/2)!
≤ 1
}
.

Thus there exists a c0 = c0(K2, C) ‖ f ‖ so that the term on the left of the
inequality is smaller or equal than 1, so that we have shown ‖ XN(f) ‖ψ1≤
c0(K2, C) ‖ f ‖. This completes the proof.

Let’s now do the proof for the orlics norm identified by ψ2. Note E exp{(Xn(f)/c0)2}−
1 =

∑∞
p=1

EXn(f)2p

c2p0 p!
. Thus, we have

‖ XN(f) ‖ψ2= inf
{
c0 :

∑∞
p=1

C2pC(2p,N)
p!

‖f‖2p

c2p0
≤ 1
}

= inf
{
c0 :

∑∞
p=1

C2p22p

p!
(K22p)p (N−K22p)p

Np

‖f‖2p

c2p0
≤ 1
}

≤ inf

{
c0 :

∑∞
p=1

(
2
√

2C
√
K2‖f‖

c0

)2p
pp

p!
≤ 1

}
.

The term within ()2p can be made smaller than an arbitrary number δ > 0 by
just selecting c0 large enough. Therefore, we need to show that

∑∞
p=1 δ

ppp/p!
is bounded for some small enough δ > 0. The proof then proceeds as above
for the ψ1-orlics norm. Now, we note that, using 1− x ≈ exp(−x) for x ≈ 0,
and

∑p
j=1(j − 1) = p(p− 1)/2,

p!
pp

=
∏p

j=1{1− (j − 1)/p} ≈ exp(−
∑p

j=1(j − 1)/p)

= exp(−
∑p

j=1(j − 1)/p) = exp(−1/pp(p− 1)/2) = exp(−(p− 1)/2).

Thus,
∑∞

p=1 δ
ppp/p! behaves as

∑∞
p=1 δ

p exp((p−1)/2). Since exp((p−1)/2) ≤
exp(p) is bounded by a p-th power of e, by selecting δ small enough, this sum
can be made arbitrarily small. This completes the proof.

2

B.4 (A3): Asymptotic equicontinuity of ZN
Y .

The process ZN
Y = 1/

√
N
∑

i f
Y
i is a sum of independent random variables

conditional on (W,A), so that its analysis is a simple imitation of the general
analysis above. The proof that the ‖ · ‖p norm of fYi (f) is bounded by the
supremum norm of f is trivial.
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B.5 (A3): Asymptotic equicontinuity of ZN
A

Conditional on W , for a fixed f = (h̃, Q̄), we can represent this process as
1/
√
N
∑

i f
A
i (Aj : j ∈ Fi) = 1/

√
N
∑N

i=1 f
A
i (Ci(Aj : j ∈ Fi)), E(fAi | W ) = 0,

where Ci ∈ IRd for some d so that we can define fAi : IRd → IR for a fixed d
not depending on N , and Ai, i = 1, . . . , N are independent. Again, the above
general analysis can be applied, and the proof that the ‖ · ‖p-norm of fAi (f)
is bounded by supremum norm of f is trivial.

B.6 (A3): Asymptotic equicontinuity of ZN
W (h̃, Q̄).

Conditional on F1, . . . , FN , we can represent ZN
W (h̃, Q̄) as 1/N

∑
i{fWi (h̃, Q̄)(Wj :

j ∈ Ri) − P0fi}, where Wj, j = 1, . . . , N , are independent. Specifically,
fWi (h̃, Q̄) =

∫
h̃(Q̄ − Q̄0)g0,i(c | W ). If Fi ∩ Fj = ∅, then, conditional on

F1, . . . , FN , fi and fj are not only uncorrelated, but are completely indepen-
dent. Thus, we can apply our general proof above to establish the bound of
its orlics norm. It is again trivially shown that the ‖ · ‖p norm of fWi (f) is
bounded by the supremum norm of f .

C Proof of (A2).

Define the process Z1
W,N(Q̄) = 1√

N

∑N
i=1{f 1

W,i(Q̄) − P0f
1
W,i(Q̄)} indexed by Q̄,

where f 1
W,i(Q̄) =

∫
Q̄(c)g∗i (c | W ). We need to prove that RN,0 = Z1

W,N(Q̄∗N −
Q̄∗) = oP (1). This proof is completely analogue to our proof above for es-
tablishing asymptotic equicontinuity of the other ZW,N(h̃, Q̄) process analyzed
above, but now with respect to athe supremum norm for Q̄.

D (A1): Establishing weak convergence of first

order approximation of standardized esti-

mator

D.1 Outline of proof.

Recall

ψ∗N − ψ0 ≈
∑
i

fi(O) =
∑
i

{fY,i + fA,i + fW,i} = ZN
Y + ZN

A + ZN
W ,
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where

fY,i =
h̄(g∗)

h̄(g0)
(cYi )(Yi − Q̄Y,0(cYi ))

fA,i =
h̄(g∗)

h̄(g0)
(cYi )(Q̄Y,0 − Q̄∗Y )(cYi )

−
∫
c

h̄(g∗)

h̄(g0)
(c)(Q̄Y,0 − Q̄∗Y )(c)g0,i(c | W )

fW,i =

∫
c

Q̄Y,0(c)g∗i (c | W )−
∫
c,w

Q̄Y,0(c)g∗i (c | W )QW,0(w).

We will establish weak convergence of each of the three terms separately.
The proof of weak convergence of ZN

Y can be based on standard CLT since,
conditional on (A,W ), ZN

Y is a sum of mean zero independent random vari-
ables.

Lemma 6 ZN
Y = 1/

√
N
∑N

i=1 fY,i converges weakly to a normal distribution
with mean zero and variance

σ2
Y = lim

N→∞

1

N

N∑
i=1

P0f
2
Y,i

= lim
N→∞

∫
h̃0(c)2σ2

Y (c)
h̄0(c)

N
dµ(c),

where

σ2
Y (cYi ) = E0({Yi − Q̄Y,0(cYi )}2 | A,W ) = E0({Yi − Q̄Y,0(cYi )}2 | cYi (A,W )).

For example, if Yi is binary, then the latter expression equals

σ2
Y (cYi ) = Q̄Y,0(1− Q̄Y,0)(cYi ).

Recall that h̄0/N = 1
N

∑
i h0,i.

We establish weak convergence of ZN
A by establishing convergence of its p-

th moment. Specifically, we establish that E(ZN
A )p ≈ ρ̄p/2 p!

(p/2)!2p/2
for p even,

and E(ZN
A )p ≈ 0 for p odd, where ρ̄ represents the limit of the second moment

E(ZN
A )2. This convergence in moments implies that ZN converges weakly to a

normal distribution N(0, σ2 = ρ̄), where we utilize the following two lemmas.

Lemma 7 A random variable Z with EZp = ρ̄p/2 p!
2p/2(p/2)!

for p even, and

EZp = 0 for p odd has probability distribution equal to N(0, σ2 = ρ̄), the
normal distribution with mean zero and variance ρ̄.
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Proof. We have

E exp(tZ) =
∑∞

p=0
tp

p!
EZp =

∑∞
p=0

t2p

(2p)!
EZ2p

=
∑∞

p=0
t2p

(2p)!
ρ̄p (2p)!

p!2p

=
∑∞

p=0
(0.5t2ρ̄)p

p!

= exp(0.5t2ρ̄),

which is the moment generating function of N(0, σ2 = ρ̄), i.e., a normal dis-
tribution with mean zero and variance equal to ρ̄. 2

Lemma 8 Suppose EZp
N ≤ Cp for a universal C <∞. Suppose that EZp

N →
ρ̄p/2p!/(p/2)!2p/2 for p even, and EZp

N → 0 for p odd. Then ZN converges in
distribution to Z = N(0, σ2 = 2d).

Proof. Consider the moment generating function E exp(tZN) when EZp
N →

ρ̄p/2 p!
(p/2)!2p/2

. By Fubini’s theorem,

E
∑∞

p=0
tp

(p)!
Zp
N =

∑∞
p=0

tp

p!
EZp

N .

Because EZp
N ≤ Cp, we have

∞∑
p=M

tp

p!
EZp

N ≤
∞∑

p=M

tp

p!
Cp,

which converges to zero in M → ∞. Therefore, we can truncate the summa-
tion defining the moment generating function of ZN and focus on establishing
convergence of E

∑M
p=0

tp

p!
Zp
N , but the latter follows from EZp

N → EZp as
N →∞. This proves that

E exp(tZN)→ E exp(tZ).

This proves that ZN(Q) converges in distribution to Z(Q) = N(0, σ2 = ρ̄) as
N →∞. 2

D.2 (A1): Establishing convergence of p-th moment for
ZN
A

Lemma 9 Let ZN
A =

∑
i fi(A), and fi(A) = fi(Aj : j ∈ Fi). Let

ρ(j1, j2 | W ) = E0(fj1(A)fj2(A) | W ).
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Specifically, for ZN
A we have

ρ(j1, j2 | W ) =
∫ h̄∗0(c1)

h̄0(c1)
(Q̄0 − Q̄)(c1)

h̄∗0
h̄0

(c2)(Q̄0 − Q̄)(c2)g0,j1,j2(c1, c2 | W )

−
∫ h̄∗0

h̄0
(c)(Q̄0 − Q̄)(c)g0,j1(c | W )

∫ h̄∗0
h̄0

(c)(Q̄0 − Q̄)(c)g0,j2(c | W ),

where g0,i,j is conditional distribution of (Ci(A,W ), Cj(A,W )), given W , which
only depends on A through (Al : l ∈ Fi ∪ Fj). Let ρA(j1, j2) = E(ρ(j1, j2 |
W ) | F). For two integers (i1, i2), define R2(i1, i2) as the indicator that the
intersection of N(i1) and N(i2) is non-empty. Assume

1

N

∑
i1,i2,R2(i1,i2)=1

ρA(i1, i2)→N→∞ ρ̄A.

We have for p even,

E
(

1√
N

∑
i fi

)p
→ p!

(p/2)!2p/2
ρ̄
p/2
A as N →∞.

For p odd, this p-th moment converges to zero.

Proof. Given an index ~i = (i1, . . . , ip) ∈ {1, . . . , N}p (one among Np), we
can draw a graph by drawing a line between two elements il1 , il2 in {i1, . . . , ip}
whenever the two corresponding sets F (il1) and F (il2) have a non-empty in-
tersection. Classify an element (i1, . . . , ip) by the sizes of the connected sets
that make up the graph of (i1, . . . , ip). One category of indices is that each

connected set is of size 2, assuming p is even, and let R2(~i) be the indicator
of falling in this category. For each of the other categories with all connected
sets of size larger or equal than 2, but at least one larger than 2, we assume
that its number X of elements is of smaller order than N−p/2: N−p/2X → 0
as N →∞. This can be shown to hold under our assumption that | Fi |< K.

In addition, for ~i with R2(~i) = 1, let j = 1, . . . , p/2 index the p/2 pairs that

are connected, and let j1(~i), j2(~i) denote the two indices in {i1, . . . , ip} cor-
responding with each j-th pair. We also note that (fj1 , fj2) are independent
across the pairs j, conditional on W . We can now state

E
(

1√
N

∑
i fi

)p
= N−p/2

∑
i1,...,ip

R2(i1, . . . , ip)
∏p/2
j=1Efj1(~i)fj2(~i) + o(1)

= N−p/2
∑

i1,...,ip
R2(i1, . . . , ip)

∏p/2
j=1 ρ(j1, j2 |W ) + o(1),

where

ρ(j1, j2 | W ) =

∫
h(g∗)(c1)

h(g0)(c1)
(Q̄0−Q̄)(c1)

h(g∗)

h(g0)
(c2)(Q̄0−Q̄)(c2)g0,j1,j2(c1, c2 | W ).
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Let (Fi,Wi) represent the i-specific baseline covariates, so that Fi is sep-
arate from Wi. We take a conditional expectation, given F1, . . . , FN . Condi-
tional on F1, . . . , FN , the indicators R2(~i) are fixed. Since ρ(j1, j2 | W ) only
depends on W through (Wi : i ∈ Nj1 ∪ Nj2), the sets Nj1 ∪ Nj2 in the prod-
uct over j are disjoint across j, and for any pair (t, l), Wt,Wl is conditionally
independent, it follows that, conditional on F = (F1, . . . , FN),

E

(
1√
N

∑
i

fi(Q̄)

)p

≈ N−p/2
∑
i1,...,ip

R2(i1, . . . , ip)

p/2∏
j=1

E(ρ(j1, j2 | W ) | F).

Let ρN(j1, j2) = E(ρ(j1, j2 | W ) | F). For two integers (i1, i2), define R2(i1, i2)
as the indicator that the intersection of N(i1) and N(i2) is non-empty. Let

R2 = {(i1, i2) ∈ {1, . . . , N}2 : R2(i1, i2) = 1}, and Rp/2
2 is the cartesian

product of this set. Let R = {(i1, . . . , ip) : R2(~i) = 1}, where we are reminded

that R2(~i) is the indicator of all connected sets among {i1, . . . , ip} being of size
2. We have the following lemmas.

Lemma 10 We have

N−p/2
∑

(j1,j2)∈Rp/22
R2((j1, j2 : j = 1, . . . , p/2)

∏p/2
j=1 ρN(j1, j2)

= N−p/2
∑

(i1,i2)∈Rp/22

∏p/2
j=1 ρN(j1, j2) + o(1).

Proof of Lemma 10. Note that the right-hand side sums over vectors Rp/2
2

while the left-hand side sums over vectors that are both in Rp/2
2 and satisfy

~i ∈ R. Since a vector made up of p/2-connected pairs can correspond with

connected sets of larger size than 2, we have that R ⊂ Rp/2
2 , i.e., the right-

hand side sums over more elements. However, the number of these extra
vectors~i ∈ Rp/2

2 /R that should not have been counted is of smaller order than
Np/2, so that the contribution is negligible. 2

Lemma 11 We have

N−p/2
∑

i1,...,ip
R2(i1, . . . , ip)

∏p/2
j=1 ρN(j1, j2)

= p!
(p/2)!2p/2

N−p/2
∑

(j1,j2)∈Rp/22
R2(j1, j2 : j = 1, . . . , p/2)

∏p/2
j=1 ρN(j1, j2).

Proof of Lemma 11: Consider a vector of three connected pairs (1, 1), (2, 2), (3, 3)
(i.e., p = 6). These three connected pairs appear 3! (i.e. (p/2)!) times on right-
hand side. However, on the left-hand side, any vector of length 6 with two 1’s,
two 2’s, and 2 3’s is counted, and there are 6!/23 (i.e., p!/2p/2) of such vectors:
the number of ordered vectors of length 6 is 6!, but flipping the two 1’s or two
2’s or two 3’s does not yield a different vector. 2

Finally, we state the following trivial result
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Lemma 12 We have

∑
(j1,j2)∈Rp/22

p/2∏
j=1

ρN(j1, j2) =

 ∑
i1,i2,R2(i1,i2)=1

ρN(i1, i2)

p/2

.

This proves that

N−p/2
∑

i1,...,ip
R2(i1, . . . , ip)

∏p/2
j=1 ρN(j1, j2) =

p!
(p/2)!2p/2

N−p/2
∑

(j1,j2)∈Rp/22
R2(j1, j2 : j = 1, . . . , p/2)

∏p/2
j=1 ρN(j1, j2)

≈ p!
(p/2)!2p/2

N−p/2
∑

(j1,j2)∈Rp/22

∏p/2
j=1 ρN(j1, j2)

= p!
(p/2)!2p/2

(
1/N

∑
i1,i2,R2(i1,i2)=1 ρN(i1, i2)

)p/2
.

Finally, we assumed that the latter summation within the power converges to
ρ̄. Thus,

E

(
1√
N

∑
i

fi(Q̄)

)p

→ p!

(p/2)!2p/2
ρ̄p/2 2

D.3 (A1): Convergence of p-th moment of ZN
W .

The same proof can be applied to establish the convergence of the p-th moment
of ZN

W resulting in the following lemma.

Lemma 13 Let ZN
W =

∑
i(fi(W ) − P0fi), and fi(W ) = fi(Wj : j ∈ Ri) for

set Ri defined by F with | Ri |< K for some fixed K <∞, where we condition
on F. Let

ρW (j1, j2) = E0(fj1(W )fj2(W ) | F)− E0(fj1(W ) | F)E0(fj2(W ) | F).

Specifically, for ZN
W we have

fi(W ) =

∫
Q̄Y,0(cYi (a,W ))g∗(a | W ) =

∫
Q̄Y,0(c)g∗0,i(c | W ).

We assumed that g∗((Aj : j ∈ Fi) | W ) only depends on (Wj : j ∈ Ri) for sets
Ri implied by F. Thus, in this case

ρW (j1, j2) = EW
∫
Q̄Y,0(c1)Q̄Y,0(c2)g0,j1(c | W )g0,j2(c | W )

−EW
∫
Q̄Y,0(c)g0,j1(c | W )EW

∫
Q̄Y,0(c)g0,j2(c | W ).
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For two integers (i1, i2), define R2(i1, i2) as the indicator that the intersec-
tion of Fi1 and Fi2 is non-empty. Assume

1

N

∑
i1,i2,R2(i1,i2)=1

ρW (i1, i2)→N→∞ ρ̄.

We have for p even,

E
(

1√
N

∑
i fi

)p
→N→∞

p!
(p/2)!2p/2

ρ̄p/2.

For p odd, this p-th moment converges to zero.

E Outline of proof of asymptotic normality of

TMLE for general longitudinal data.

Recall that D∗ = 1/N
∑N

j=1D
∗
j (O) is a sum over the individuals j. We will

use the notation PND
∗ = 1/N

∑N
j=1D

∗
j (O), while P0D

∗ = 1/N
∑

j EP0D
∗
j (O)

is its expectation w.r.t. distribution P0. Let W = L(0). We have D∗ =
D∗W + D∗1, P0D

∗
1(Q∗N , QW,0) = 0, P0D

∗
1(Q∗N , QW,0) = ψ0 − Ψ(Q∗N , QW,0) + RN ,

and PND
∗
W (Q∗N , QW,N) = PND

∗
1(Q∗N , QW,N) = 0. We assume that RN =

oP (1/
√
N). In particular, this yields

P0D
∗(Q∗N , QW,0) = ψ0 −Ψ(Q∗N , QW,0) +RN .

We now proceed as follows:

Ψ(Q∗N , QW,N)− ψ0 = Ψ(Q∗N , QW,N)−Ψ(Q∗N , QW,0) + Ψ(Q∗N , QW,0)− ψ0

= Ψ(Q∗N , QW,N)−Ψ(Q∗N , QW,0)− P0D
∗
1(Q∗N , QW,0) +RN

= Ψ(Q∗N , QW,N)−Ψ(Q∗N , QW,0) + (PN − P0)D∗1(Q∗N , QW,0)
−PN{D∗1(Q∗N , QW,0)−D∗1(Q∗N , QW,N)}+RN

= Ψ(Q∗N , QW,N)−Ψ(Q∗N , QW,0) + (PN − P0)D∗1(Q∗N , QW,0)
+(PN − P0){D∗1(Q∗N , QW,N)−D∗1(Q∗N , QW,0)}
+P0{D∗1(Q∗N , QW,N)−D∗1(Q∗N , QW,0)}+RN .

Assume,

Ψ(Q∗N , QW,N)−Ψ(Q∗N , QW,0) ≈ Ψ(Q∗, QW,N)−Ψ(Q∗, QW,0)

= 1/N
∑

i f
1
W,i + oP (1/

√
N)

(PN − P0){D∗1(Q∗N , QW,N)−D∗1(Q∗N , QW,0)} = oP (1/
√
N)

P0{D∗1(Q∗N , QW,N)−D∗1(Q∗N , QW,0)} = P0{D∗1(Q∗, QW,N)−D∗1(Q∗, QW,0)}
+oP (1/

√
N)

= 1/N
∑

i f
2
W,i + oP (1/

√
N)

(PN − P0)D∗1(Q∗N , QW,0) = (PN − P0)D∗1(Q∗, QW,0) + oP (1/
√
N).
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To establish these oP (1/
√
N)-results, we will have to establish asymptotic

equicontinuity of a process ZN(h,Q) indexed by (h,Q), and we can use the
same template as we used for the single time point case to analyze these
processes. Thus, any function f(O) is decomposed in

∑τ+1
k=0 fL(k) +

∑τ
k=0 fA(k),

where fL(k) = E0(f(O) | L̄(k), Ā(k − 1))−E0(f(O) | L̄(k − 1), Ā(k − 1)), and
fA(k) = E0(f(O) | L̄(k), Ā(k)) − E0(f(O) | L̄(k), Ā(k − 1)). In this manner,

we obtain an orthogonal decomposition of ZN(h,Q) =
∑τ+1

k=0 Z
N
L(k)(h,Q) +∑τ

k=0 Z
N
A(k)(h,Q). Each of these orthogonal components of this process will

be analyzed separately completely analogue as we analyzed our orthogonal
components ZN,Y , ZN,A and ZN,W for the single time point case. For example,
we can represent ZN,L(k) as

∑
i fi(L(k) | Pa(L(k))), where fi has conditional

mean zero, given Pa(L(k)) = (L̄(k − 1), Ā(k − 1)), and fi only depends on
L(k) through Lj(k) for j in a finite set (e.g., Fi(k)), and apply our general
results above for analyzing such processes.

In this manner, we obtain the following first order approximation

ψ∗N − ψ0 =
1

N

N∑
i=1

{f 1
W,i(W )− P0f

1
W,i}+

1

N

∑
i

{f 2
W,i(W )− P0f

2
W,i}

+(PN − P0)D∗1(Q∗, QW,0) + oP (1/
√
N).

Analysis of first order approximation: Let f̄W,i = f 1
W,i + f 2

W,i. The
first order approximation equals

1/N
∑

i{D∗1,i(Q∗, QW,0) + f̄W,i(W )− P0{D∗1,i + f̄W,i}}
≡ 1/N

∑
i fi(O).

Using our notation, this thus equals (PN −P0)f . It remains to prove that this
first order expansion converges to a normal limit distribution. This proof has
its own outline. Firstly, we decompose any f(O) as f = 1/N

∑τ+1
k=0 fL(k)(O) +∑τ

k=0 fA(k)(O), where

fL(k)(O) = E(f | L̄(k), Ā(k − 1))− E(f | L̄(k − 1), Ā(k − 1))
fA(k)(O) = E(f | L̄(k), Ā(k))− E(f | L̄(k), Ā(k − 1)).

In this manner, we decompose
√
N(PN−P0)f orthogonally in

∑τ+1
k=0 Z

NL(k)(f)+∑τ
k=0 Z

N
A(k)(f), where ZN

L(k) = 1/
√
N
∑N

i=1 fi,L(k) and ZN
A(k)(f) = 1/

√
N
∑N

i=1 fi,A(k).
We will then need to show that

ZN
L(k) ⇒d N(0, σ2

L(k))

ZN
A(k) ⇒d N(0, σ2

A(k)).
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Due to the orthogonality of the empirical processes, using moment generating
functions, it also follows that∑

k

ZN
L(k) +

∑
k

ZN
A(k) ⇒d N(0, σ2 =

∑
k

σ2
L(k) +

∑
k

σ2
A(k)).
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