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The Impact of Covariance Misspecification in
Multivariate Gaussian Mixtures on Estimation
and Inference: An Application to Longitudinal

Modeling

Brianna C. Heggeseth and Nicholas P. Jewell

Abstract

Multivariate Gaussian mixtures are a class of models that provide a flexible para-
metric approach for the representation of heterogeneous multivariate outcomes.
When the outcome is a vector of repeated measurements taken on the same sub-
ject, there is often inherent dependence between observations. However, a com-
mon covariance assumption is conditional independence—that is, given the mix-
ture component label, the outcomes for subjects are independent. In this paper,
we study, through asymptotic bias calculations and simulation, the impact of co-
variance misspecification in multivariate Gaussian mixtures. Although maximum
likelihood estimators of regression and mixing probability parameters are not con-
sistent under misspecification, they have little asymptotic bias when mixture com-
ponents are well-separated or if the assumed correlation is close to the truth even
when the covariance is misspecified. We also present a robust standard error es-
timator and show that it outperforms conventional estimators in simulations and
can indicate the model is misspecified. Body mass index data from a national lon-
gitudinal study is used to demonstrate the effects of misspecification on potential
inferences made in practice.



1 Introduction

Multivariate Gaussian mixtures are a class of models that provide a flexible parametric approach for the
representation of heterogeneous multivariate outcomes potentially originating from distinct subgroups in the
population. An overview of finite mixture models is available in many texts [8, 41, 24, 25, 10]. We can
estimate covariate effects on the outcome as well as group membership probabilities by extending mixture
models to include a regression structure for both the mean and mixing proportions. See De la Cruz-Meśıa et
al. [5] for a review of finite mixture models with a regression mean structure and Wedel [45] for the history of
concomitant variable models that use baseline variables to explain variation in subgroups. These extensions
are used in several medical applications [38] including epidemiology, genomics, and pharmacology in addition
to other fields including astronomy, biology, economics, and speech recognition. When the multivariate out-
come is a vector of repeated measures taken over time, these methods are identified as group-based trajectory
modeling [32, 33] or latent-class growth analysis [29, 27]. See Pickles and Croudace [36] and references within
for a review of mixture methods applied to longitudinal data. The use of mixture models for multivariate
data is increasing due to computational advances that have made maximum likelihood (ML) parameter esti-
mation possible, via the Expectation Maximization (EM) algorithm, through model-specific packages such as
Proc Traj in SAS [17], Flexmix [21] and mclust [9] in R, and software such as Mplus [31] and Latent Gold [42].

Despite the increased use of these models, the sensitivity of estimated regression coefficients to model as-
sumptions has only been explored to a limited degree. In a multivariate mixture model, one must specify
the component distribution, the form of the mean, the structure of the covariance matrix, and the number of
components; therefore, there are many ways to misspecify the model. For example, in practice, the number
of components is unknown and model selection procedures based on the Bayesian information criterion are
often employed. However, if the specified covariance structure is too restrictive relative to the truth, the
estimated number of components will typically be greater than the true number because more components
are needed to model the extra variability. The literature in estimating the number of components is vast
[34] and continues to debate this unresolved issue. Due to the potential complexity of mixture models, sim-
plifying assumptions are made to reduce the dimension of the parameter space, to make estimation possible,
and for computational convenience. In particular, many researchers assume Gaussian components and/or
restrict the components to have equal variance, both of which are known to result in asymptotic bias if the
assumptions are not met [11, 23]. In this paper, we assume that the number of components, mean structure,
and distribution are known and focus on other indeterminacies such as the covariance matrix.

In terms of the covariance matrix, eigenvalue and Cholesky decompositions [1, 26], as well as mixed ef-
fects structures [30], are used to impose structure and parsimony. Additionally, one common assumption
is conditional independence—given the mixture component label, the outcomes for a subject are assumed
independent [35, 28]. Of the available software that estimate regression effects for the mean and mixing
probabilities, most of them make this simplifying assumption. This restriction is convenient when the data
are unbalanced or if the sample size is small to make estimation of the covariance parameters more stable.
Despite the wealth of proposed covariance models, there has been little work done in the area of mixture
models with misspecified covariance structures, and the conditional independence assumption is unlikely to
hold in many multivariate data settings, specifically in longitudinal applications. If the mixture consists of
one component, work done by Liang, Zeger [22] and others suggest that regression estimates are asymptoti-
cally unbiased. However, these properties do not hold with additional components since estimation includes
mixing proportions as well as component parameters.

Here, we investigate the impact of covariance misspecification on ML estimation of parameters and standard
errors in multivariate Gaussian mixture models. In particular, our focus is on the assumption of conditional
independence for the covariance structure; therefore, we assume the number of components, the distribu-
tion, and the mean structure is known. This paper is organized as follows. Section 2 presents the model
specification. Section 3 describes the estimation procedure, issues, and asymptotic properties of the param-
eter estimators based on the seminal results of White [46]. In Section 4, we present a series of simulations
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of a simple misspecified example to compare asymptotic and finite-sample bias of parameter and standard
error estimates under varying levels of dependence and separation between components. In Section 5, we
apply these ideas to body mass index data from a national longitudinal study to demonstrate the effects of
misspecification on potential inferences made in practice.

2 Model Specification

In a finite multivariate mixture, the density of a random vector y takes the form

f(y) = π1f1(y) + · · ·+ πKfK(y)

where πk > 0 for k = 1, ...,K and
∑K
k πk = 1. The parameters πk are mixing proportions and the functions

f1, ..., fK are component densities, assumed multivariate Gaussian here.

We extend the general model to allow other factors to affect the mean as well as the mixing proportions.
Let y ∈ Rm be a random vector whose distribution, conditional on regression covariates, x, and concomitant
variables, z, is a mixture of K Gaussian densities with mixing proportions: π1(z,γ), ...., πK(z,γ). That is,
the conditional mixture density for y is defined by

f(y|x, z,θ) =
K∑
k=1

πk(z,γ)fk(y|x,θk) (1)

where fk(y|x,θk) denotes the m-variate Gaussian probability density function with mean xβk and covari-
ance matrix Σk (k = 1, ...,K), θk includes both βk and Σk, x is a m× p matrix, and z is a vector of length
q. The regression covariates include measures that affect the mean while the concomitant variables influence
the mixing proportions. This general structure allows the possibility that some baseline variables could be
in both x and z.

We parameterize the mixing proportions using the multinomial logit with the form

πk(z,γ) =
exp(zTγk)∑K
j=1 exp(zTγj)

for k = 1, ...,K where γk ∈ Rq, γ = (γT1 , ...,γ
T
K) where γK = 0.

Throughout this paper, we generally assume conditional independence with constant variance within a
component where Σk = σ2

kIm as the proposed estimation model, but it is straightforward to extend the
covariance model to include other correlation structures such as exchangeable or exponential. Therefore, the
vector of all unknown parameters, θ, consists of the mixing proportion parameters, γk, and the component
regression and variance parameters, θTk = (βTk , σ

2
k), for k = 1, ...,K and could include correlation parameters.

3 Estimation

3.1 EM Algorithm

Under the assumption that y1, ...,yn are independent realizations from the mixture distribution, f(y|x, z,θ),
defined in 1, the log likelihood function for the parameter vector, θ is given by

logL(θ) =
n∑
i=1

log f(yi|xi, zi,θ).
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The ML estimate of θ is obtained by finding an appropriate root of the score equation, ∂ logL(θ)/∂θ = 0.
Solutions of this equation corresponding to local maxima can be found iteratively through the Expectation-
Maximization (EM) algorithm [6]. This algorithm is applied in the framework where given (xi, zi) each yi is
assumed to have stemmed from one of the components and the indicator denoting its originating component
is missing. The complete-data log likelihood is based on these indicator variables as well as the observed
data {(yi,xi, zi)}. The Expectation step (E-step) involves replacing the indicators by current values of the
conditional expectation, which is the posterior probability of component membership, written as

αik = πk(zi,γ)fk(yi|xi)/
K∑
j=1

πj(zi,γ)fj(yi|xi,θj)

for i = 1, ..., n and k = 1, ...,K using current estimates of the parameters. In the Maximization step (M-step),
the parameter estimates for the mixing proportions, regression effects, and covariance matrices are updated
by maximizing the complete-data log likelihood using the posterior probabilities from the E-step in place of
the indicator variables using numerical optimization. The E- and M-steps are alternated repeatedly until
convergence. The EM algorithm guarantees convergence to a local maximum; global convergence may be
attained through initializing the algorithm by randomly assigning individuals to initial components, running
the algorithm multiple times and using the estimates associated with the highest log likelihood.

3.2 Issues

Although an estimation tool exists, there are potential issues of parameter identifiability with mixture mod-
els. Frühwirth-Schnatter [10] distinguishes between three types of nonidentifiability: invariance to relabeling
of components, potential overfitting, and nonidentifiability due to the family of component distribution and
the covariate design matrix. The first two issues are resolved through constraints such as θk 6= θk′ for all
k, k′ = 1, ...,K, k 6= k′. The last concern is solved by assuming Gaussian components since finite mixtures
of multivariate Gaussians are identifiable [40, 47]. However, Hennig [14] suggests that the introduction of
a regression structure to a Gaussian mixture requires a full rank design matrix as well as a rich covariate
domain for regression parameters to be identifiable. On the other hand, mixing proportions parameters
from a multinomial logit based on concomitant variables are identifiable by setting the parameters of one
component to zero such as γK = 0 [16].

Besides identifiability, there are other known issues with finite mixture models. McLachlan and Peel [25]
note that the sample size must be quite large for asymptotic theory to accurately describe the finite sampling
properties of the estimator. Also, when component variances are allowed to vary between components, the
mixture likelihood function is unbounded and each observation gives rise to a singularity on the boundary
of the parameter space [4, 18]. However, Kiefer [19] outlines theory that guarantees that there exists a
particular local maximizer of the mixture likelihood function that is consistent, efficient, and asymptotically
normal if the mixture is not overfit. To avoid issues of singularities and spurious local modes in the EM
algorithm, Hathaway [13] considers constrained maximum likelihood estimation for multivariate Gaussian
mixtures based on the following constraint on the smallest eigenvalue of the matrix ΣhΣ

−1
j , denoted as

λmin(ΣhΣ
−1
j ),

min
1≤h6=j≤K

λmin(ΣhΣ
−1
j ) ≥ c > 0

for some positive constant c ∈ [0, 1] to ensure a global maximizer.

3.3 Asymptotic Properties

If the true underlying data-generating distribution is a member of the specified model class, then maximum
likelihood estimation via the EM algorithm gives parameter estimates that are consistent [43, 20]. However,
if the model specified does not contain the true underlying mixture, then the ML estimators potentially
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have asymptotic bias [11, 23]. Here, we are interested in the impact of misspecifying the covariance matrix
structure on parameter estimation and inference.

General theoretical results for ML estimators are given by White [46]. Our investigation is a special case
where the covariance matrices of mixture components are incorrectly specified but the mean structure and
distribution are known. Let f(y|θ) be the assumed estimation model, g(y) be the true density, and C

be a compact subset of the parameter space. It follows that the ML estimator, θ̂n, is consistent for the
parameter vector, θ∗, that minimizes the Kullback-Leibler (KL) divergence,

∫
log[g(y)/f(y|θ)]g(y)dy =∫

log[g(y)]g(y)dy −
∫

log[f(y|θ)]g(y)dy, under some regularity conditions [46], which is equivalent to max-
imizing

∫
log[f(y|θ)]g(y)dy with respect to θ.

In the case of mixture densities, this integral is mathematically intractable. Lo [23] used a modified EM
algorithm for univariate data that maximized

∫
log[f(y|θ)]g(y)dy with respect to θ in order to estimate

θ∗. This procedure could be adapted to bivariate data, but for outcome vectors of larger dimension, this
procedure is not as useful. We know that for {yi}i=1,...,n generated from the true density, under suitable
regularity conditions [15],

sup
θ∈C

1

n

n∑
i=1

log f(yi|θ)
a.s.−→ sup

θ∈C

∫ ∞
−∞

log f(y|θ)g(y)dy as n→∞

Therefore, to investigate asymptotic bias under a misspecified covariance structure when g(y) is known, we
numerically approximate θ∗ using the EM algorithm on a large sample from g(y) of size n = 100, 000.

In addition to consistency, White [46] also showed that
√
n(θ̂n − θ∗) → N(0, C(θ∗)) where the asymp-

totic covariance matrix is C(θ∗) = A(θ∗)−1B(θ∗)A(θ∗)−1, with

A(θ∗) =

{
E

(
∂2 log f(yi|θ∗)

∂θj∂θl

)}
, B(θ∗) =

{
E

(
∂ log f(yi|θ∗)

∂θj
· ∂ log f(yi|θ∗)

∂θl

)}
.

Moreover, Cn(θ̂n) = An(θ̂n)−1Bn(θ̂n)An(θ̂n)−1
a.s.→ C(θ∗), with

An(θ̂n) =

{
1

n

n∑
i=1

∂2 log f(yi|θ̂n)

∂θj∂θl

}
, Bn(θ̂n) =

{
1

n

n∑
i=1

∂ log f(yi|θ̂n)

∂θj
· ∂ log f(yi|θ̂n)

∂θl

}
.

Following a similar procedure as Boldea and Magnus [2], we derive the score vector and Hessian needed to cal-
culate An and Bn for a multivariate Gaussian mixture model. Derivations are available from the first author.

If the model is correctly specified, then both −An(θ̂n)−1 and Bn(θ̂n)−1 are consistent estimators of C(θ∗)
[46], and two possible variance-covariance estimates for the parameter estimator are

Ĉov1(θ̂n) = Ŵ1 = −(nAn(θ̂n))−1

and

Ĉov2(θ̂n) = Ŵ2 = (nBn(θ̂n))−1

On the other hand, An(θ̂n)−1Bn(θ̂n)An(θ̂n)−1 provides a consistent estimator of C(θ∗) despite any mis-
specification. Therefore, a third and robust variance estimate of the parameter estimator is given by

Ĉov3(θ̂n) = Ŵ3 = n−1An(θ̂n)−1Bn(θ̂n)An(θ̂n)−1.

We refer to calculated standard error estimates corresponding to these three indexed variance-covariance
estimates throughout the rest of the paper.
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4 Simulations

We carry out two series of simulations to examine the behavior of the maximum likelihood estimators in
terms of bias under misspecification of the covariance structure for finite samples from a multivariate mix-
ture. Specifically, we are mainly interested in the impact of dependence in the true error structure on bias in
parameter and standard error estimates when the conditional independence is assumed incorrectly and how
this is affected by the (i) level of dependence and (ii) the separation between mixture components. Secondly,
we investigate the behavior of the bias when the estimation structure gets closer to the true correlation
structure by comparing the bias under three correlation structures.

In all of the simulations, the data with sample size n are generated from an m-variate Gaussian mixture
model with parameters (γk,βk, σ

2
k,Vk) for k = 1, ...,K where Vk is the true correlation structure as follows:

• Fix K.

• For each subject, i = 1, ..., n,

– Fix xi = 1m and zi = 1.

– Construct matrices Ak such that AkA
T
k = Vk for k = 1, ..,K using the Cholesky decomposition.

– Randomly assign group membership, hi, by drawing a value from the categorical distribution
defined by P (h = k) = πk(zi,γ) for k = 1, ...,K.

– Draw m standard normal random values ei and let

yi = xTi βhi
+ σhiAhiei

Thus, yi ∼ N(xTi βhi
, σ2
hi

Vhi
). We then estimate the parameters and standard errors, ŜE1, ŜE2, ŜE3,

using constrained maximum likelihood via the EM algorithm [13] doing five random initializations, based on
a multivariate mixture model with a specified correlation structure and known design matrix.

For simplicity, we focus on a example of two Gaussian components (K = 2) with constant mean vectors (i.e.
no relationship between covariates and y), one component with independent errors, the other with some
level of dependency in the errors. For the first series, the latter dependence is based on an exchangeable
correlation structure where all outcomes in an observational unit are equally correlated, which is mathemat-
ically equivalent to a random intercept model.

To investigate the influence of the level of dependence, we set the vector length to m = 5, equal mixing
proportions (γ1 = 0 and baseline variables have no effect), mean of the components to β1 = 1 and β2 = 3,
and the variance of the components to σ2

1 = 0.25 and σ2
2 = 1. The errors are independent (V1 = Im)

in component one and we let the level of dependence vary with ρ = 0, 0.5, 0.99 within the exchangeable
structure (V2 = ρ(Jm − Im) + Im where Jm is a m×m matrix of 1’s) for component two. We present the
bias of parameter estimates and the three standard error estimates under these conditions.

Then, we consider the separation between two component distributions using the concept of c-separation [3].
Two Gaussian distributions, N(µ1,Σ1) and N(µ2,Σ2), in Rm are c-separated if
||µ1 − µ2|| ≥ c

√
m ·max(λmax(Σ1), λmax(Σ2)) where λmax(Σ) is the largest eigenvalue of Σ. Dasgupta

[3] notes that two Gaussians are almost completely non-overlapping when c = 2. This inequality can be
rearranged to establish a measure of separation,

S = ||µ1 − µ2||/
√
m ·max(λmax(Σ1), λmax(Σ2)),

which is a standardized Euclidean distance between mean vectors. In this simulation, we calculate the value
of S for data-generating component densities as a measure of the separation between the two components

5
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and if S > 2, the components do not overlap and are well-separated. For this series of simulations, we again
use a strong level of dependence (ρ = 0.99) in the exchangeable structure, a vector length of m = 5, but vary
the mean and variance of the second component (β2 = 3, 5 and σ2

2 = 0.25, 1, 4) to invoke different degrees of
separation between components.

We perform 1000 replications of each simulation for sample sizes n = 100, 500, 1000. We approximate
the true standard error with the standard deviation of the replicates. To estimate the asymptotic bias of
the model parameters (n =∞), we complete one replication with n = 100, 000.

The two prong simulation described above focuses on the impact of using a conditional independence esti-
mation model under different levels of dependence and separation in the data-generating components. In
practice, we can choose correlation structures other than conditional independence. To explore the bias
under difference covariance assumptions, we run a short simulation adjusting the data-generating model
from above to use an exponential correlation structure, such that the dependence decreases as the time lag
increases, rather than the constant dependence from the exchangeable structure. Therefore, for component
two, the correlation between two measurements within a subject that are observed d time units apart is
exp(−d/r) where r, the range parameter, determines how quickly the correlation decays to zero. This struc-
ture is general enough so that if r is close to zero, the correlation matrix is close to conditional independence
and if r is very large, the structure is close to exchangeable correlation.

For this simulation, we continue using the two Gaussian components (K = 2) with constant mean vec-
tors (β1 = 1 and β2 = 3) of length m = 5 with observations at times t = 1, 2, 3, 4 and 5, one component
with independent errors, and the second component with a moderate level of dependence that decays expo-
nentially (r = 3). We estimate the mixing proportion, mean, and variance parameters assuming different
correlation structures: conditional independence, exchangeable, and exponential correlation. We estimate
and compare the finite-sample bias of parameters and standard errors by letting n = 500 with 1000 replica-

tions. Additionally, we compare the conventional estimate Ŵ1 of the covariance matrix of θ̂ and the robust

estimate Ŵ3 since if the estimation model is close to the true structure, the matrices should be similar and

Q = Ŵ−1
1 Ŵ3 should be close to the identity matrix. We calculate RJ = tr(Q)/ν where ν is the length of

θ̂, which has been termed the RJ criteria and should be close to 1 if the estimation model is close to the
truth [39, 37].

4.1 Results

Table 1 lists bias estimates for the dependence-varying simulation study. The estimates range from close to
zero when ρ = 0 to magnitudes of upwards of 0.3 when ρ = 0.99. It is clear from this table that stronger
dependence in the errors results in greater finite-sample and asymptotic bias when estimating under the con-
ditional independence assumption. Additionally, the magnitude of bias seems to reach the level of asymptopia
at sample sizes of n = 500, but it is important to note that the estimates for the asymptotic bias, based
on one replication with n = 100, 000, are only numerically accurate to two decimal places for γ1, σ

2
1 , and σ2

2

even when using computationally large sample sizes. We see this numerical inaccuracy when ρ = 0 since the
asymptotic bias should be zero when the conditional independence assumption is met. In terms of standard
error estimates, the bias increases with increased dependence with values ranging from 0.001 when ρ = 0
to 0.111 when ρ = 0.99. We see a divergence between the three variance estimators with ŜE3, the robust
estimator, consistently having the least bias (Table 2). When the model is correctly specified with ρ = 0,
the three estimators are similar as supported by asymptotic theory.

Figure 1 shows that the relationship between the level of component separation and the magnitude of
bias is complex. As in the previous simulation, sample sizes of n = 500 and larger produce similar bias
estimates so we only present the asymptotic results. When the level of separation is high, S > 2, then
the magnitude of the bias is small, but when there is some overlap, S < 2, there is not a clear, consistent
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Figure 1: Asymptotic bias estimates of maximum likelihood parameter estimators when the covariance
structure of a 2-component Gaussian mixture is assumed to be conditionally independent based on 1 repli-
cation with n = 100, 000 under each mixture distribution with m = 5, γ1 = γ2 = 0, β1 = 1, V1 = Im,
σ2
1 = 0.25, V2 = V (ρ), and ρ = 0.99 where V (ρ) is the exchangeable correlation matrix. The level of separa-

tion (S) is calculated using the true mixture distribution. For β2 = 3, variance parameters, σ2
2 = 0.25, 1, 4

result in S = 2.836, 1.418, 0.709, respectively. For β2 = 5, variance parameters, σ2
2 = 0.25, 1, 4 result in

S = 5.671, 2.836, 1.418, respectively. Values of S ≥ 2 indicate almost completely separated components.

relationship between the value of S and the magnitude of the estimated bias for all parameters. That is, for
two sets of parameter values, such as (β2 = 3, σ2

2 = 0.25) and (β2 = 5, σ2
2 = 1), that have the same level of

separation, S = 2.836, the magnitude of the bias for all parameter estimates is drastically different for the
two settings. However, in general, the bias decreases as the level of separation increases for a fixed mean
parameter. The only exception is that the estimator for the first component mean (β̂1) has increased bias
when S = 1.418 as compared to S = 0.709, but the bias then decreases when S = 2.836. It appears that
when there is high overlap between two components, there is a point at which the bias peaks and then starts
to decrease as σ2 increases even though the amount of overlap continues to increase. Lastly, similar to the
parameter estimates, the greater amount of separation results in less bias in the standard errors with biases
as large as 1.0 unit in the situation with the most overlap and as little as less than 0.001 when components
are well-separated. Again, the robust estimator again has the lowest bias. Tables available upon request.
The simulations based on dependence and separation demonstrate the finite-sample and asymptotic bias
in the ML estimators when the covariance structure is misspecified as conditional independence and the
mixture components overlap. However, if two components are well-separated, the misspecification of the
dependence in the errors does not result in large biases and thus any finite-sample bias could be removed
potentially conventional techniques such as bootstrapping with careful tracking of component labels [12].
Additionally, when there is no covariance misspecification or when components are well-separated, all of the
standard error estimates are similar and have little bias. However, when there is misspecification in the
dependence structure, the estimates basely solely on the Hessian matrix or the score vector understate the
true variability while the robust estimate has little bias. In cases where the true level of dependence is high,
the bias in the Hessian estimator, ŜE1, and the robust version, ŜE3, can differ by as much as a relative
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Figure 2: Bias estimates of maximum likelihood parameter estimators when the covariance structure of a
2-component Gaussian mixture is assumed to be conditionally independent, exchangeable, and exponential
structure based on 1000 replications under each mixture distribution with n = 500, m = 5, γ1 = γ2 = 0,
β1 = 1, V1 = Im, σ2

1 = 0.25, β2 = 3, V2 = V (r) and σ2
2 = 2 where V (r) is the exponential correlation matrix

and r = 3. Mean values of the RJ criteria are RJ = 1.97, 1.02, 0.99 for the three covariance assumptions,
respectively.

factor of 2. In simulations not shown, using unequal mixing proportions result in similar conclusions. When
the component proportions are unbalanced, the magnitude of bias increases when a majority of observations
units originate from the misspecified component (here component two).

Figure 2 shows the absolute bias of parameter estimates under the three different covariance assumptions
when the data was generating with the exponential correlation structure for component two. As expected,
when the model is correctly specified, there is very little bias. We note that assuming the exchangeable struc-
ture, while incorrect, results in less bias than assuming conditional independence. As the RJ criteria gets
closer to 1 from 1.97 to 1.02 to 0.99 using independence, exchangeable, and then exponential, the estimation
correlation structure gets closer to the true structure resulting in little bias in the parameter estimates.

5 Data Example

To look at the behavior of the parameter and standard error estimates in practice, we use data from the
1979 National Longitudinal Survey of Youth (NLSY79). The NLSY79 is a nationally representative sample
of 12,686 young American men and women aged 14-22 years in 1979, that oversampled Hispanic, Black, and
economically disadvantaged non-Black/non-Hispanics. The cohort, interviewed annually from 1979 to 1994
and biennially thereafter, provide health and economic data for a total of 23 interviews (until 2008). In
particular, the available body weight data for the 1979 cohort span a twenty-five year period [35]. We study
body mass index (BMI) over time as it is an important longitudinal measure for public health and eluci-
dating obesity development. Self-reported weight was collected in 17 interviews and height in five of those.
BMI [weight (kg)/height (m2)] was calculated for each interview based on the weight and the average height.
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For the purposes of this paper, the complex sampling structure is ignored and we randomly sample 500
subjects who were at least 18 years of age in 1981 and reported all 17 weight measurements. Of this sample,
51% are female, 54% are non-Hispanic/non-Black, 29.2% Black and 16.8% Hispanic. To model the BMI
outcomes, we allow a quadratic relationship between mean BMI and age and include sex as a baseline con-
comitant variable. Therefore, for i = 1, ..., 500, we assume that the observed data were generated according
to

BMI = βk0 + βk1 · (AGE − 18) + βk2 · (AGE − 18)2 + εk

with probability

πk(z,γ) =
eγk0+I(male)γk1∑
j e
γj0+I(male)γj1

where εk ∼ N(0, σ2
kVk) for k = 1, ..., 4. The choice of four groups is based on previous research [35]. Using the

EM algorithm with five random initializations, we estimate parameters and standard errors and present the
estimates that produced the highest log likelihood. For the sake of comparison, we complete the estimation
assuming conditional independence (Vk = Im), and under an exchangeable (Vk = ρk(Jm − Im) + Im) and
exponential (Vk = exp(−D/rk) where D is the Euclidean distance matrix of the ages at interviews for a
subject) correlation model.

5.1 Results

Parameter and standard errors are estimated for a four component multivariate Gaussian mixture model
assuming conditional independence, exchangeable, and exponential correlation (Table 3). The regression
parameter estimates are used to calculate the mean curves for the four groups under all three covariance
assumptions and we see that the mean curves differ between the models mainly in terms of the innermost
curves (Figure 3). Under exchangeable correlation, one of the middle curves represents little BMI increase
over time in contrast to the other groups. Under the exponential correlation assumption, the two lowest
groups have a similar pattern over time, but the dependence differs between these groups with the range
parameters estimated as r1 = 2.973 and r2 = 23.579 indicating that component 2 has more long range
dependence between the BMI outcomes than component 1. Our simulation results suggest the magnitude
of bias in the parameter estimator depends on how close the estimation correlation structure is to the truth
and the overlap between components. We note there are no well-separated components and we see bias in
the mean estimates by comparing the three covariance assumptions.

Given that the repeated outcome is BMI, we expect some dependence in the error structure within in-
dividuals. We consider the level of dependence in errors by plotting the estimated autocorrelation function
by calculating the empirical variogram of the residuals from the conditional independence model [7] for each
estimated component by randomly assigned each individual to a component using posterior probabilities
[44]. The estimated autocorrelation function of the residuals shows strong dependence between residuals
within 5 to 10 years and the correlation decreases with increasing time lags (Figure 4). This correlation
structure is therefore neither consistent with conditional independence nor exchangeable correlation, but
rather decreases to zero which is more consistent with the exponential correlation structure. We see that
the robust standard estimators are almost twice those of estimates using the standard estimators under
conditional independence, and the RJ criteria, which compares the naive and robust estimates of the covari-
ance matrix the parameters, suggests that the exponential correlation structure is the one closest to the truth.

In this data example, we see the influence of the covariance structure on the estimates, especially in terms
of the regression parameters. Based on the simulation results and the RJ criteria, we expect the exponential
correlation model fits the data the best out of the three structures. However, we note that we fixed the
number of components to be four for the sake of consistency and this may not be the optimal number of
components. In practice, this value is estimated from the data as mentioned earlier. This data application
highlights the impact of covariance misspecification as well as the fact that the mean structure may not be
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Figure 3: Random sample of 500 BMI trajectories from NLSY and mean curves for the four components
estimated using a Gaussian mixture model specified with a quadratic mean under the covariance assumptions:
conditional independence, exchangeable, and exponential correlation. The labeled are consistent with the
tables in the text: component 1 (solid), component 2 (dashed), component 3 (dotted), and component 4
(dashed-dot).
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the only aspect differing between individuals; the level of dependence and variability also distinguish groups
of individuals.

6 Discussion

We have shown that covariance misspecification of a two-component Gaussian mixture may produce very
little bias in regression and mixing probability parameter estimates when the components are well-separated.
This is well-aligned with Lo’s univariate findings [23]. However, when there is some overlap in the component
distributions, assuming the wrong correlation structure can produce asymptotically biased parameter esti-
mates, the magnitude dependent on the level of separation and how close the structure is to the truth. With
misspecified mixture models, the potential for biased mixing and regression parameters estimates differs from
the one component models for which general estimating equations [22] produce unbiased estimates despite
dependence present in the errors. Depending on the context and precision of the estimates, the bias may or
may not have practical significance, but it is important to note that the ML estimators are inconsistent under
covariance misspecification and there may be substantial bias when the components are not well-separated.

In addition to potential biases in the parameter estimates, the simulations provide evidence that conventional
standard errors estimates which are based solely on the score equation, or the Hessian, can be extremely
biased and underestimate the true variability of the estimators when the covariance structure is misspecified.
Therefore, standard errors should be robustly estimated using White’s estimator that sandwiches the two
conventional estimators. We use the exact formula for this estimator since the numerical approximations to
the Hessian matrix and score vector are not by-products produced by the EM algorithm. To the authors’
knowledge, very few software programs currently have implemented a robust standard error estimator, but
it should be implemented in every mixture model software as the default variance estimator and presented
along with standard estimators to allow for comparisons, calculation of the RJ criteria, and the detection of
misspecification bias.

Given our results, we recommend three things when estimating parameters in a mixture model. First,
count the number of subjects whose maximum posterior probability is less than 0.95. If this count is
non-zero, this indirectly indicates that the component distribution are not well-separated, suggesting that
specifying the correct correlation structure is important. Second, if the components are not well-separated,
fit the mixture model using several correlation structures such as conditional independence, exchangeable,
and exponential correlation. For each model, calculate the RJ criteria based on the conventional and robust
estimated variance-covariance matrix. Compare the parameter estimates to see if they change under the dif-
ferent assumptions and assess the RJ criteria values to see which structure results in a value closest to one.
Choose the most parsimonious model that has an RJ criteria value close to one. Third, if none of these three
structure fulfills this requirement, consider a more complex, potentially non-stationary covariance matrix as
well as other sources of misspecification such as an incorrect number of components, assumed distribution,
or an inflexible mean structure.

Our simulation study is limited, but the results likely apply to more complex mean structures and a larger
number of components. In future studies, the impact of bias should be explored for more than two com-
ponents with all components potentially having a misspecified covariance structure and for non-stationary
covariance structures. Additionally, mixture models as specified in this paper group individuals with similar
trajectories over time; we are currently investigating methods that distinguish between the shape of the
trajectory and the vertical level of the curve when grouping individuals together.
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Figure 4: Smoothed sample autocorrelation of component residuals of estimated Gaussian mixture model
specified with a quadratic mean and conditional independence with a random sample of 500 BMI trajectories
from NLSY randomly assigned to components based on estimated posterior probabilities. The dashed line
represents the estimated variance for each component.
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Bias Estimates

ρ n γ̂1 β̂1 σ̂2
1 β̂2 σ̂2

2

0.00 100 -0.004 (0.006) 0.000 (0.001) -0.000 (0.001) -0.002 (0.002) -0.006 (0.003)
500 0.005 (0.003) -0.000 (0.000) -0.000 (0.000) 0.001 (0.001) -0.000 (0.001)
1000 0.004 (0.002) -0.000 (0.000) -0.000 (0.000) 0.001 (0.001) -0.000 (0.001)
∞ -0.001 0.000 0.001 -0.000 0.002

0.50 100 0.125 (0.006) 0.031 (0.001) 0.024 (0.001) 0.106 (0.003) -0.136 (0.003)
500 0.125 (0.003) 0.028 (0.001) 0.024 (0.000) 0.101 (0.002) -0.124 (0.001)
1000 0.125 (0.002) 0.028 (0.000) 0.024 (0.000) 0.098 (0.001) -0.125 (0.001)
∞ 0.115 0.027 0.024 0.095 -0.125

0.99 100 0.370 (0.007) 0.087 (0.002) 0.033 (0.001) 0.327 (0.005) -0.410 (0.005)
500 0.346 (0.003) 0.078 (0.001) 0.030 (0.001) 0.310 (0.002) -0.388 (0.002)
1000 0.350 (0.002) 0.079 (0.001) 0.030 (0.000) 0.309 (0.001) -0.385 (0.001)
∞ 0.353 0.082 0.031 0.315 -0.383

Table 1: Bias estimates (SE) of maximum likelihood parameter estimators when the covariance structure
of a 2-component Gaussian mixture is assumed to be conditionally independent based on 1000 replications
under each mixture distribution with m = 5, γ1 = γ2 = 0, β1 = 1, V1 = Im, σ2

1 = 0.25, β2 = 3, V2 = V (ρ)
and σ2

2 = 1 where V (ρ) is the exchangeable correlation matrix. Asymptotic estimates (n =∞) are based on
one replication with n = 100, 000. Values equal to zero represent values less than 0.001.
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Bias Estimates

ρ n ŜE1(γ̂1) ŜE2(γ̂1) ŜE3(γ̂1) ŜE1(β̂1) ŜE2(β̂1) ŜE3(β̂1) ŜE1(σ̂2
1) ŜE2(σ̂2

1) ŜE3(σ̂2
1)

0.00 100 0.007 0.007 0.007 0.000 0.001 -0.000 -0.001 0.001 -0.001
500 0.002 0.002 0.002 -0.000 0.000 -0.000 0.000 0.000 0.000
1000 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000

0.50 100 0.004 0.004 0.004 -0.006 -0.008 -0.002 -0.007 -0.009 -0.004
500 0.002 0.002 0.002 -0.003 -0.004 -0.001 -0.002 -0.004 -0.001
1000 -0.001 -0.001 -0.001 -0.002 -0.002 -0.000 -0.001 -0.002 -0.000

0.99 100 -0.003 -0.003 -0.002 -0.026 -0.035 -0.010 -0.013 -0.016 -0.008
500 -0.005 -0.005 -0.004 -0.011 -0.015 -0.003 -0.005 -0.007 -0.002
1000 -0.003 -0.003 -0.002 -0.007 -0.010 -0.001 -0.003 -0.005 -0.002

ρ n ŜE1(β̂2) ŜE2(β̂2) ŜE3(β̂2) ŜE1(σ̂2
2) ŜE2(σ̂2

2) ŜE3(σ̂2
2)

0.00 100 0.001 0.003 0.001 -0.008 -0.004 -0.010
500 0.001 0.001 0.001 0.001 0.001 0.000
1000 0.000 0.000 0.000 0.001 0.001 0.001

0.50 100 -0.046 -0.070 -0.005 -0.019 -0.028 -0.004
500 -0.021 -0.032 -0.002 -0.010 -0.016 -0.001
1000 -0.014 -0.021 -0.000 -0.009 -0.013 -0.002

0.99 100 -0.092 -0.122 -0.017 -0.085 -0.111 -0.022
500 -0.040 -0.054 -0.006 -0.035 -0.049 -0.003
1000 -0.027 -0.037 -0.002 -0.026 -0.036 -0.004

Table 2: Bias estimates of the three standard error estimators (SE1, SE2, SE3) when the covariance structure
of a 2-component Gaussian mixture is assumed to be conditionally independent based on 1000 replications
under each mixture distribution with m = 5, γ1 = γ2 = 0, β1 = 1, V1 = Im, σ2

1 = 0.25, β2 = 3, V2 = V (ρ)
and σ2

2 = 1 where V (ρ) is the exchangeable correlation matrix. Approximate standard error is based on the
estimated standard deviation of the simulation distribution. Values equal to zero represent values less than
0.001.
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Conditional Independence Exchangeable Exponential

Estimate ŜE1 ŜE3 Estimate ŜE1 ŜE3 Estimate ŜE1 ŜE3

Component 1 γ10 0.827 0.201 0.461 0.122 0.182 0.261 0.420 0.235 0.442
γ11 -1.800 0.380 0.570 0.966 0.300 0.430 -0.888 0.734 2.275
β10 19.315 0.140 0.178 20.994 0.208 0.225 19.984 0.358 0.467
β11 0.104 0.020 0.027 0.155 0.010 0.017 0.217 0.049 0.056
β12 0.001 0.001 0.001 -0.001 0.000 0.001 -0.002 0.001 0.001
σ2
1 2.969 0.110 0.277 6.331 0.721 1.002 5.718 0.427 0.976
ρ1 - - - 0.855 0.017 0.023 - - -
r1 - - - - - - 2.973 0.207 0.280

Component 2 γ20 0.599 0.206 0.435 -0.450 0.216 0.275 0.716 0.221 0.523
γ21 0.435 0.280 0.385 0.851 0.344 0.464 1.424 0.511 1.687
β20 20.979 0.120 0.312 24.041 0.520 0.689 20.910 0.241 0.389
β21 0.238 0.016 0.023 0.198 0.032 0.070 0.187 0.024 0.029
β22 -0.002 0.000 0.001 -0.005 0.001 0.002 -0.001 0.001 0.001
σ2
2 3.150 0.104 0.365 21.113 2.926 4.716 8.147 0.788 2.458
ρ2 - - - 0.805 0.027 0.022 - - -
r2 - - - - - - 23.579 2.016 4.213

Component 3 γ30 0.279 0.221 0.482 0.129 0.186 0.282 0.174 0.247 0.526
γ31 0.534 0.296 0.402 1.066 0.304 0.424 1.739 0.514 1.575
β30 22.818 0.207 0.721 21.165 0.275 0.372 23.516 0.385 0.563
β31 0.449 0.027 0.051 0.366 0.016 0.031 0.464 0.049 0.085
β32 -0.006 0.001 0.002 -0.002 0.000 0.001 -0.006 0.001 0.002
σ2
3 6.416 0.260 1.162 11.241 1.225 2.230 13.049 1.004 2.851
ρ3 - - - 0.822 0.018 0.019 - - -
r3 - - - - - - 10.215 0.675 0.826

Component 4 γ41 0 - - 0 - - 0 - -
γ40 0 - - 0 - - 0 - -
β40 25.713 0.480 0.672 22.473 0.573 0.480 24.356 1.054 0.833
β41 0.679 0.069 0.108 0.725 0.042 0.080 0.636 0.138 0.099
β42 -0.008 0.002 0.003 -0.008 0.001 0.003 -0.006 0.004 0.004
σ2
4 26.864 1.154 7.891 32.982 3.484 6.928 44.788 4.093 13.757
ρ4 - - - 0.681 0.034 0.044 - - -
r4 - - - - - - 8.058 0.654 0.850

Table 3: Parameter and standard error estimates (ŜE1, ŜE3) for a random sample of 500 from NLSY79 as-
suming a four component mixture model with quadratic mean and the following correlation structures: con-
ditional independence, exchangeable, and exponential correlation. Values equal to zero represent values less
than 0.001. Additionally, the RJ criteria was calculated each covariance assumption: RJ = 7.34, 3.02, 2.22
under conditional independence, exchangeable, and exponential, respectively.
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