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Statistical Inference when using Data Adaptive
Estimators of Nuisance Parameters

Mark J. van der Laan

Abstract

In order to be concrete we focus on estimation of the treatment specific mean,
controlling for all measured baseline covariates, based on observing n indepen-
dent and identically distributed copies of a random variable consisting of base-
line covariates, a subsequently assigned binary treatment, and a final outcome.
The statistical model only assumes possible restrictions on the conditional dis-
tribution of treatment, given the covariates, the so called propensity score. Esti-
mators of the treatment specific mean involve estimation of the propensity score
and/or estimation of the conditional mean of the outcome, given the treatment
and covariates. In order to make these estimators asymptotically unbiased at any
data distribution in the statistical model, it is essential to use data adaptive esti-
mators of these nuisance parameters such as ensemble learning, and specifically
super-learning. Because such estimators involve optimal trade-off of bias and
variance w.r.t. the infinite dimensional nuisance parameter itself, they result in a
sub-optimal bias/variance trade-off for the resulting real valued estimator of the
estimand. We demonstrate that additional targeting of the estimators of these
nuisance parameters guarantees that this bias for the estimand is second order,
and thereby allows us to prove theorems thatestablish asymptotic linearity of the
estimator of the treatment specific mean under regularity conditions. These in-
sights result in novel targeted maximum likelihood estimators (TMLE) that use
ensemble learning withadditional targeted bias reduction to construct estimators
of the nuisance parameters. In particular, we construct collaborative targeted max-
imum likelihood estimators (CTMLE) with known influence curve allowing for
statistical inference, even though these CTMLEs involve variable selection for the
propensity score based on a criterion that measures how effective the resulting fit
of the propensity score is in removing bias for the estimand. As a particular spe-
cial case, we also demonstrate the required targeting of the propensity score for



the inverse probability of treatment weighted estimator using super-learning to fit
the propensity score.



1 Introduction

Suppose we observe n independent and identically distributed copies of a ran-
dom variable O with probability distribution P0. In addition, assume that it
is known that P0 is an element of a statistical model M, and that we want
to estimate ψ0 = Ψ(P0) for a given target parameter mapping Ψ : M → IR.
Since such correctly specified models only incorporate real knowledge, such
models M are always very large and, in particular, are infinite dimensional.
We assume that the target parameter mapping is path-wise differentiable and
let D∗(P ) be the canonical gradient of the path-wise derivative of Ψ at P ∈M
(Bickel et al., 1997). An estimator ψn = Ψ̂(Pn) is a functional Ψ̂ applied to
the empirical distribution Pn of O1, . . . , On into the parameter space, and can
thus be represented as a mapping Ψ̂ : MNP → IR from the nonparametric
statistical model MNP into the real line. An estimator Ψ̂ is efficient if and
only if it is asymptotically linear with influence curve D∗(P0):

ψn − ψ0 =
1

n

n∑
i=1

D∗(P0)(Oi) + oP (1/
√
n).

The empirical mean of the influence curve D∗(P0) represent the first order
linear approximation of the estimator as a functional of the empirical distribu-
tion, and the derivation of the influence curve is a by-product of the application
of the so called functional delta-method for statistical inference based on func-
tionals (i.e., Ψ̂) of the empirical distribution (Gill, 1989; van der Vaart and
Wellner, 1996; Gill et al., 1995).

Suppose that Ψ(P ) only depends on P through a parameter Q(P ) and
that the canonical gradient depends on P only through Q(P ) and a nuisance
parameter g(P ). The construction of an efficient estimator requires the con-
struction of estimators Qn and gn of these nuisance parameters Q0 and g0,
respectively. Targeted maximum likelihood estimation (TMLE) represents a
method for construction of efficient substitution estimators Ψ(Q∗n), where Q∗n
is an update of Qn that relies on the estimator gn(van der Laan and Rubin,
2006; van der Laan, 2008; van der Laan and Rose, 2012). The bias of such an
estimator will be second order in terms of the bias of (Qn−Q0) and (gn− g0).
As a consequence, TMLE will only have a chance of being asymptotically lin-
ear if at least one of the nuisance parameter estimators is consistent, thereby
requiring nonparametric adaptive estimation such as super-learning (van der
Laan and Dudoit, 2003; van der Laan et al., 2007; van der Vaart et al., 2006).
If only one of the nuisance parameter estimators is consistent, then it follows
that the bias is of the same order as the bias of the consistent nuisance pa-
rameter estimator. Thus, in that case the estimator of the target parameter is
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still having the same order of bias as the consistent nuisance parameter esti-
mator, and thus be overly biased. Therefore it is essential that the consistent
nuisance parameter estimator is targeted towards the estimand so that the
bias for the estimand becomes second order. Even if both estimators Qn, gn
are consistent, but one might be converging at a faster rate than the other,
this targeting of the nuisance parameter estimator will help to remove finite
sample bias for the estimand. The same arguments applies to other double
robust estimators, such as estimating equation based estimators and inverse
probability of treatment weighted (IPTW) estimators (see e.g., Robins and
Rotnitzky (1992, 1995); van der Laan and Robins (2003); Robins et al. (2000);
Robins (2000); Robins and Rotnitzky (2001)). The current article concerns
the construction of such targeted IPTW and TMLE that are asymptotically
linear under regularity conditions, even when only one of the nuisance param-
eters is consistent and the estimators of the nuisance parameters are highly
data adaptive.

In order to be concrete in this article we will focus on a particular example.
Let O = (W,A, Y ) ∼ P0, W baseline covariates, A a binary treatment, and Y a
final outcome. LetM be a model that makes at most some assumptions about
the conditional distribution of A, given W , but leaves the marginal distribution
of W and the conditional distribution of Y , given A,W , unspecified. Let Ψ :
M→ IR be defined as Ψ(P ) = EPEP (Y | A = 1,W ), the so called treatment
specific mean controlling for the baseline covariates. The canonical gradient,
also called the efficient influence curve, of Ψ at P is given by D∗(P )(O) =
A/g(1 | W )(Y − Q̄(1,W ))+ Q̄(1,W )−Ψ(P ), where g(1 | W ) = P (A = 1 | W )
is the propensity score, and Q̄(a,W ) = EP (Y | A = a,W ) is the outcome
regression (e.g., (van der Laan and Robins, 2003). Let Q = (QW , Q̄), where
QW is the marginal distribution of W , and note that Ψ(P ) only depends on
P through Q = Q(P ). For convenience, we will denote the target parameter
with Ψ(Q) in order to not have to introduce additional notation. A targeted
maximum likelihood estimator is a plug-in estimator Ψ(Q∗n), where Q∗n is an
update of an initial estimator Qn that relies on an estimator gn of g0, and it
has the property that it solves PnD

∗(Q∗n, gn) = 0, where we used the notation
Pf =

∫
f(o)dP (o).

For this example, such targeted maximum likelihood estimators are pre-
sented in Scharfstein et al. (1999); van der Laan and Rubin (2006); Bembom
et al. (2009); Gruber and van der Laan (2010a,c,d); Rosenblum and van der
Laan (2010); Sekhon et al. (2011); van der Laan and Rose (2012); Gruber and
van der Laan (2012c). Since P0D

∗(Q, g) = ψ0−Ψ(Q) +P0(Q̄0− Q̄)(ḡ0− ḡ)/ḡ
(e.g, Zheng and van der Laan (2010, 2011)), where we use the notation ḡ(W ) =
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g(1 | W ) and Q̄(W ) = Q̄(1,W ), this results in the identity:

Ψ(Q∗n)− ψ0 = (Pn − P0)D∗(Q∗n, gn) + P0(Q̄0 − Q̄∗n)(ḡ0 − ḡn)/ḡn.

The first term equals (Pn−P0)D∗(Q, g)+oP (1/
√
n) if D∗(Q∗n, gn) falls in a P0-

Donsker class with probability tending to 1, and P0{D∗(Q∗n, gn)−D∗(Q, g)}2 →
0 in probability as n→∞ (van der Vaart and Wellner (1996); van der Vaart
(1998)). If Q̄∗n and ḡn are consistent for the true Q̄0 and ḡ0, respectively, then
the remainder is a second order term. If one now assumes that this second
order term is oP (1/

√
n), it has been proven that the TMLE is asymptotically

efficient. However, if only one of these nuisance parameter estimators is consis-
tent, then this remainder is still a first order term, and it remains to establish
that it is also asymptotically linear with a second order remainder. For sake of
discussion, suppose that Q̄∗n converges to a wrong Q̄ while ḡn is consistent. In
that case, this remainder behaves in first order as P0(Q̄0− Q̄)(ḡn− ḡ0)/ḡ0. To
establish that such a term (e.g., ḡn is a super-learner) is asymptotically linear
requires that ḡn solves the necessary estimating equations, and thereby needs
to be targeted: that is, ḡn needs to be a TMLE itself targeting the required
smooth functional of g0.

In this article, we present TMLE that also target gn and allow us to prove
the desired asymptotic linearity of the remainder when either ḡn or Q̄n is
consistent, under conditions that require second order terms to be oP (1/

√
n).

The latter type of regularity conditions are typical for the construction of
asymptotically linear estimators and are therefore considered appropriate for
the sake of this article. Though it is of interest to study cases in which these
second order terms cannot be assumed to be oP (1/

√
n), this is beyond the

scope of this article.
The organization of this paper is as follows. In the next section 2 we

introduce a targeted IPTW estimator that relies on an adaptive consistent
estimator of g0, and we establish its asymptotic linearity. In the remainder
of the article we focus on asymptotic linearity of the TMLE. In Section 3 we
introduce a novel TMLE that assumes that the targeted adaptive estimator gn
is consistent for g0, and we establish its asymptotic linearity. In Section 4 we
introduce a novel TMLE that only assumes that either the targeted Q̄∗n or the
targeted ḡ∗n is consistent, and we establish its asymptotic linearity. This re-
sult thus allows statistical inference in the statistical model that only assumes
that one of the estimators is consistent, and we refer to this as ”double robust
statistical inference”. Even though double robust estimators have been exten-
sively presented in the current literature, double robust statistical inference
in these large semi-parametric models has been a difficult topic. In Section
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5 we extend our results to collaborative targeted maximum likelihood esti-
mators (CTMLE) in which the estimator gn is construction w.r.t. a criterion
that measures how well the corresponding TMLE improves bias for the esti-
mand of interest (van der Laan and Gruber, 2010; Gruber and van der Laan,
2010c, 2011; Stitelman and van der Laan, 2010; Porter et al., 2011; Gruber
and van der Laan, 2012a; van der Laan and Rose, 2011; Wang et al., 2011).
Specifically, we present a novel CTMLE for which we can establish asymp-
totic linearity and thereby statistical inference. Again, even though CTMLEs
have been presented in the current literature, statistical inference based on
the CTMLEs has been another difficult topic. We conclude this article with a
discussion. The proofs of the theorems are presented in the Appendix.

2 Statistical inference for IPTW-estimator when

using super learning to fit treatment mech-

anism.

We consider a simple IPTW estimator Ψ̂(Pn) = PnD(ĝ(Pn)), whereD(g)(O) =
Y I(A = 1)/ḡ(W ), and ĝ :Mnp → G is an adaptive estimator of g0 based on the
log-likelihood loss function. For a general presentation of an IPTW estimator
we refer to Robins and Rotnitzky (1992); van der Laan and Robins (2003);
Hernan et al. (2000). We wish to establish conditions under which reliable
statistical inference based on this estimator of ψ0 can be obtained.

One might wish to estimate g0 with ensemble learning, and, in particular,
super learning in which cross-validation (Györfi et al., 2002) is used to de-
termine the best weighted combination of a library of candidate estimators:
van der Laan and Dudoit (2003); van der Laan et al. (2006); van der Vaart
et al. (2006); van der Laan et al. (2004); Dudoit and van der Laan (2005); Pol-
ley et al. (2011); Polley and van der Laan (2010); van der Laan et al. (2007);
van der Laan and Petersen (2012). We will start with presenting a succinct
description of a super-learner. Consider a library of estimators ĝj :Mnp → G,
j = 1, . . . , J , and a family of weighted (on logistic scale) combinations of these
estimators Logitĝα(1 | W ) =

∑J
j=1 αjLogitĝj(1 | W ), indexed by vectors α for

which αj ∈ [0, 1] and
∑

j αj = 1. Given a random sample split Bn ∈ {0, 1}n
into a training sample {i : Bn(i) = 0} of size n(1 − p) and validation sample
{i : Bn(i) = 1} of size np, let

αn = arg min
α
EBnP

1
n,Bn

L(ĝα(P 0
n,Bn

)) = arg min
α
EBn

1

np

∑
i:Bn(i)=1

L(ĝα(P 0
n,Bn

))(Oi)
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be the choice of estimator that minimizes cross-validated risk, where L(g)(O) =
−{A log g(1 | W )+(1−A) log(1−g(1 | W ))} is the log-likelihood loss function
for g0. The super-learner of g0 is defined as the estimator ĝ(Pn) = ĝαn(Pn).

The next theorem presents an IPTW-estimator that uses a targeted fit g∗n
of g0, involving the updating of an initial estimator gn, and conditions under
which this IPTW estimator of ψ0 is asymptotically linear. For example, gn
could be defined as the super-learner presented above. In spite of the fact that
such an IPTW estimator uses a very adaptive hard to understand estimator gn,
this theorem shows that its influence curve is known and can be well estimated.

Theorem 1 Suppose O = (W,A, Y ) ∼ P0 ∈ M, the model M makes only
assumptions about g0, and our target parameter Ψ : M → IR is defined as
Ψ(P ) = EPEP (Y | A = 1,W ). Let ḡ(W ) = g(1 | W ), Q̄(W ) = Q̄(1,W ).
We consider a simple IPTW estimator Ψ̂(Pn) = PnD(ĝ(Pn)), where D(g) =
Y I(A = 1)/g(A|W ), and ĝ :Mnp → G is an estimator of g0.

Let g∗n be an update of gn = ĝ(Pn) defined as follows:
Definition of targeted estimator g∗n: Define Q̄r

0 = E0(Y | A = 1, ḡ0(W )),
and Hr

0 ≡ Q̄r
0/ḡ0.Let Q̄r

n be obtained by nonparametric estimation of the re-
gression function E0(Y | A = 1, ḡn(W )) treating ḡn as a fixed covariate (i.e.,
function of W ). This yields an estimator Hr

n ≡ Q̄r
n/ḡn of Hr

0 . Consider the
submodel Logitḡn(ε) = Logitḡn + εHr

n, and fit ε with the MLE

εn = arg max
ε
Pn log gn(ε).

We define g∗n = gn(εn) as the corresponding targeted update of gn. This TMLE
g∗n satisfies

PnDHr
n
(ḡ∗n) = 0,

where DH(ḡ) ≡ H(W )(A− ḡ(W )).
Empirical Process condition:

Assume that D(g∗n), DHr
n
(ḡ∗n) fall in a P0-Donsker clas with probability tend-

ing to 1.
Consistency condition: Assume

P0{D(g∗n)−D(g0)}2 = oP (1)

P0{DHr
n
(ḡ∗n)−DHr

0
(ḡ0)}2 = oP (1)

Negligibility of second order terms: Define Q̄r
0,n ≡ E0(Y | A = 1, ḡ0(W ), ḡn(W )).

5
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Assume

P0
Q̄0

ḡ0ḡ∗n
(ḡ0 − ḡ∗n)2 = oP (1/

√
n)

P0(Q̄r
0,n − Q̄r

0)
ḡ0 − ḡ∗n
ḡ0

= oP (1/
√
n)

P0(Hr
n −Hr

0)(ḡ0 − ḡ∗n) = oP (1/
√
n).

Then,
Ψ̂(Pn)− ψ0 = (Pn − P0)IC(P0) + oP (1/

√
n),

where IC(P0) = Y I(A = 1)/g0(A | W )− ψ0 +Hr
0(W )(A− ḡ0(W )).

Regarding the displayed second order term conditions, we note that the first
condition is satisfied if ḡ∗n − ḡ0 converges to zero w.r.t. L2(P0)-norm at rate
oP (n−1/4), and ḡ∗n > δ > 0 for some δ > 0 with probability tending to 1 as
n→∞. The second and third condition again require that ḡ∗n converges to ḡ0

at fast enough rate o(n−1/4) so that the products of the two terms is oP (1/
√
n).

The two consistency conditions only require consistency of ḡ∗n and Hr
n to ḡ0

and Hr
0 , respectively.

An example of a Donsker class is the class of multivariate real valued func-
tions with uniform sectional variation norm bounded by a universal constant
(van der Laan (1996)). It is important to note that if each estimator in the
library falls in such a class, then also the convex combinations fall in that
same class(van der Vaart and Wellner, 1996). So this Donsker condition will
hold if it holds for each of the candidate estimators in the library of the super
learner. The obvious important implication of this theorem is that, under ap-
propriate regularity conditions, even if we use a very adaptive estimator gn of
g0, the resulting IPTW-estimator is asymptotically normally distributed with
a variance σ2 = P0IC(P0)2 that can be consistently estimated with

σ2
n =

1

n

n∑
i=1

IC2
n(Oi),

where ICn is the plug-in estimator of the influence curve IC(P0) obtained by
plugging in gn or g∗n for g0 and Q̄r

n for Q̄r
0.

2.1 Comparison with IPTW using parametric model.

Consider an IPTW estimator using a MLE g1
n according to a parametric model

for g0, and let’s contrast this IPTW estimator with an IPTW estimator defined

6
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in the above theorem based on an initial super learner gn that includes g1
n as

an element of the library of estimators. Let’s first consider the case that
the parametric model is correctly specified. In that case g1

n converges to g0

at a parametric rate 1/
√
n. From the oracle inequality for cross-validation

(van der Laan and Dudoit, 2003; van der Laan et al., 2006; van der Vaart
et al., 2006), it follows that gn also converges at the rate 1/

√
n to g0 possibly

up to a
√
logn-factor in case the number of algorithms in the library is of the

order np for some fixed p. As a consequence, all the consistency and second
order term conditions for the IPTW-estimator using a targeted g∗n based on gn
hold. If one uses estimators in the library of algorithms that have a uniform
sectional variation norm smaller than a M <∞ wit probability tending to 1,
then also a weighted average of these estimators will have uniform sectional
variation norm smaller than M < ∞ with probability tending to 1. Thus,
in that case we will also have that D(g∗n), DHr

n
(ḡ∗n) fall in a P0-Donsker class.

Examples of estimators that control the uniform sectional variation norm are
any parametric model with fewer than K main terms that themselves have a
uniform sectional variation norm, but also penalized least-squares estimators
(e.g., Lasso) using basis functions with bounded uniform sectional variation
norm, and one could map any estimator into this space of functions with
universally bounded uniform sectional variation norm through a smoothing
operation. Thus, under this restriction on the library, the IPTW-estimator
using the super-learner is asymptotically linear with influence curve IC(P0) =
Y I(A = 1)/g0(A | W )−ψ0 +Hr

0(W )(A− ḡ0(W )), where Hr
0(W ) = E0(Y | A =

1, ḡ0(W ))/ḡ0(W ). We note that IC(P0) is the efficient influence curve for the
target parameter E0Y (1) if the observed data is given by O = (ḡ0(W ), A, Y )
instead of O = (W,A, Y ).

The parametric IPTW-estimator is asymptotically linear with influence
curve Y I(A = 1)/g0(A | W ) − ψ0 − Π(Y I(A = 1)/ḡ0(W ) | Tg), where Tg is
the tangent space of the parametric model for g0, and Π(f | Tg) denotes the
projection of f onto Tg in the Hilbert space L2

0(P0) (van der Laan and Robins,
2003). This IPTW estimator could be less or more efficient than the IPTW-
estimator using the super-learner depending on the actual tangent space of
the parametric model. For example, if the parametric model happens to have
a score equal to Q̄0(W )(A/ḡ0(W )− 1), then the parametric IPTW-estimator
would be asymptotically efficient. Of course, a standard parametric model
is not tailored to correspond with such optimal scores, but it shows that we
cannot claim superiority of one versus the other in the case that the parametric
model for g0 is correctly specified.

If, on the other hand, the parametric model is misspecified, then the IPTW
estimator using g1

n is inconsistent. However, the super-learner gn will be consis-
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tent if the library contains a nonparametric adaptive estimator, and performs
asymptotically as well as the oracle selector among all the weighted combina-
tions of the algorithms in the library. To conclude, the IPTW estimator using
super-learning to estimate g0 will be as good as the IPTW-estimator using
a correctly specified parametric model (included in the library of the super-
learner), but it remains consistent and asymptotically linear in a much larger
model than the parametric IPTW-estimator relying on the true g0 being an
element of the parametric model.

3 Statistical inference for TMLE when using

super learning to consistently fit treatment

mechanism.

In this section we extend the result for the IPTW estimator of the previous
section to TMLE. Since TMLE also relies on an estimator of Q̄0, the targeting
of the estimator of g0 is by necessity iterative in order to establish the desired
asymptotic linearity of the TMLE of ψ0 under second order conditions. The
following theorem presents a novel TMLE and corresponding asymptotic lin-
earity with specified influence curve, where we rely on on consistent estimation
of g0. The TMLE still uses the same updating step for the estimator of Q̄0, but
uses a novel targeting step for the estimator of g0, analogue to the targeting
step of the IPTW-estimator in the previous section.

Theorem 2 Let O = (W,A, Y ), and Y ∈ {0, 1} or Y is continuous with
values in (0, 1). Let P0 be the true probability distribution of O, and let M be
a statistical model that only puts restrictions on the conditional distribution of
A, given W . Let D∗(Q, g)(O) = A/ḡ(W )(Y − Q̄(A,W )) + Q̄(1,W )−Ψ(Q) be
the efficient influence curve of Ψ :M→ IR.
Definition of terms: Consider the following definitions:

Q̄r
0,n(W ) ≡ E0(Y − Q̄(1,W ) | A = 1, ḡ∗n(W ), ḡ0(W ))

Q̄r
0(W ) ≡ E0(Y − Q̄(1,W ) | A = 1, ḡ0(W ))

Hg(A,W ) ≡ A/ḡ(W )
Hr

0,n = Q̄r
0,n/ḡ

∗
n

H0,r = Q̄r
0/ḡ0

DH(ḡ)(A,W ) ≡ H(W )(A− ḡ(W )),

where ḡ∗n(W ) is treated as a fixed covariate (i.e., function of W ) in the condi-
tional expectation Q̄r

0,n.
Iterative targeted MLE of ψ0:

8
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Definitions: Given Q̄, ḡ, let Q̄r
n(Q̄, ḡ) be a consistent estimator of the regres-

sion of (Y − Q̄) on ḡ(W ) and A = 1. Let Hr
n(Q̄, ḡ) = Q̄r

n(Q̄, ḡ)/ḡ. Let
gn, Q̄n be an initial estimator of g0, Q̄0.

Initialization: Let g0
n = gn, Q̄

0
n = Q̄n and let k = 0.

Updating step for gkn: Consider the submodel Logitḡkn(ε) = Logitḡkn+εHr
n(Q̄k

n, ḡ
k
n),

and fit ε with the MLE

εn = arg max
ε
Pn log gkn(ε).

We define gk+1
n = gkn(εn) as the corresponding targeted update of gkn. This

gk+1
n satisfies

PnDHr
n(Q̄k

n,ḡ
k
n)(ḡ

k+1
n ) =

1

n

∑
i

Hr
n(Q̄k

n, ḡ
k
n)(Wi)(Ai − ḡk+1

n (Wi)) = 0.

Updating step for Q̄k
n: Let −L(Q̄)(O) = Y log Q̄(A,W ) + (1 − Y ) log(1 −

Q̄(A,W )) be the log-likelihood loss-function for Q̄0. Define the submodel
LogitQ̄k

n(ε) = LogitQ̄k
n + εHgk

n
, and let εn = arg maxε PnL(Q̄k

n(ε)). Define
Q̄k+1
n = Q̄k

n(εn) as the resulting update.

Iterating till convergence: Now, set k = k + 1, and iterate this updating
process mapping a (gkn, Q̄

k
n) into (gk+1

n , Q̄k+1
n ) till convergence or till large

enough K so that the estimating equations (1) below are solved up till an
oP (1/

√
n)-term. Denote the limit of this iterative procedure with g∗n, Q̄

∗
n.

Plug-in estimator: Let Q∗n = (QW,n, Q̄
∗
n), where QW,n is the empirical dis-

tribution estimator of QW,0. The TMLE of ψ0 is defined as Ψ(Q∗n).

Estimating equations solved by TMLE: This TMLE (Q∗n, g
∗
n) solves

PnD
∗(Q∗n, g

∗
n) = 0

PnDHr
n(Q̄∗

n,ḡ
∗
n)(ḡ

∗
n) = 0 (1)

Empirical process condition: Let Hr
n = Hr

n(Q̄∗n, ḡ
∗
n). Assume that D∗(Q∗n, g

∗
n),

DHr
n
(g∗n) fall in a P0-Donsker class with probability tending to 1 as n→∞.

Consistency condition:

P0{D∗(Q∗n, g∗n)−D∗(Q, g0)}2 = oP (1)
P0(DHr

n
(ḡ∗n)−DHr

0
(ḡ0))2 = oP (1)

9
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Negligibility of second order terms:

P0(Hg∗n −Hg0)(Q̄
∗
n − Q̄) = oP (1/

√
n)

P0(Hr
0,n −Hr

0)(ḡ∗n − ḡ0) = oP (1/
√
n)

P0(Hr
n −Hr

0)(ḡ∗n − ḡ0) = oP (1/
√
n).

Then,
Ψ(Q∗n)−Ψ(Q0) = (Pn − P0)IC(P0) + oP (1/

√
n),

where IC(P0) = D∗(Q, g0)−DHr
0
(ḡ0).

4 Double robust statistical inference for TMLE

when using super learning to fit outcome re-

gression and treatment mechanism

In this section our aim is to present a TMLE whose influence curve is known
if either g0 or Q0 is consistently estimated, but we do not need to know which
one. Again, this requires a novel way of targeting the nuisance parameters
in order to arrange that the relevant smooth functionals of the nuisance pa-
rameter estimators are indeed asymptotically linear under second order term
conditions. In this case, we also need to augment the targeting operation for
the estimator of Q̄0 with another clever covariate.

Theorem 3 Let O = (W,A, Y ), and Y ∈ {0, 1} or Y is continuous with
values in (0, 1). Let M be a statistical model for the true distribution of O
that only puts restrictions on the conditional distribution g0 of A, given W .
Let D∗(Q, g)(O) = A/ḡ(W )(Y − Q̄(A,W )) + Q̄(1,W )−Ψ(Q) be the efficient
influence curve of Ψ : M → IR at P ∈ M, where Q = (QW , Q̄), QW is
probability distribution of W under P , and Q̄(W ) = EP (Y | A = 1,W ).
Definitions:

Q̄r
0 = Q̄r

0(ḡ, Q̄) = E0(Y − Q̄ | A = 1, ḡ)
ḡr0 = ḡr0(ḡ, Q̄) = E0(A | Q̄, ḡ)
Q̄r

0,n = E0(Y − Q̄ | A = 1, ḡ, ḡn)
ḡr0,n = E0(A | ḡ, Q̄, Q̄∗n)

HA(ḡ, Q̄r
0) ≡ Q̄r

0

ḡ

HY (ḡr0, ḡ) ≡ A
ḡr
0

ḡr
0−ḡ
ḡ

DA(ḡ, Q̄r
0) = HA(ḡ, Q̄r

0)(A− ḡ)
DY (ḡr0, ḡ, Q̄) = HY (ḡr0, ḡ)(Y − Q̄)
Hg(A,W ) ≡ A

ḡ(W )
.
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For any given ḡ, Q̄, let ḡrn(ḡ, Q̄) and Q̄r
n(ḡ, Q̄) be consistent estimators of

ḡr0(ḡ, Q̄) and Q̄r
0(ḡ, Q̄), respectively (e.g., using a super learner or other non-

parametric adaptive regression algorithm). Let Q̄r
n = Q̄r

n(ḡ∗n, Q̄
∗
n) and ḡrn =

ḡrn(ḡ∗n, Q̄
∗
n) denote these estimators applied to (ḡ∗n, Q̄

∗
n).

Iterative targeted MLE of ψ0:

Initialization: Let gn, Q̄n be an initial estimator of g0, Q̄0. Let g0
n = gn,

Q̄0
n = Q̄n and let k = 0.

Updating step: Let ḡr,kn = ḡrn(ḡkn, Q̄
k
n) be obtained by non parametrically re-

gressing A on Q̄k
n, ḡ

k
n. Let Q̄r,k

n = Q̄r
n(ḡkn, Q̄

k
n) be obtained by non para-

metrically regressing Y − Q̄k
n on A = 1, ḡkn. Consider the submodel

Logitḡkn(ε) = Logitḡkn + εHA(ḡkn, Q̄
r,k
n ), and fit ε with the MLE

εA,n = arg max
ε
Pn log gkn(ε).

Let −L(Q̄)(O) = Y log Q̄(A,W ) + (1− Y ) log(1 − Q̄(A,W )) be the log-
likelihood loss for Q̄0. Define the submodel LogitQ̄k

n(ε) = LogitQ̄k
n +

ε1Hgk
n

+ ε2HY (ḡr,kn , ḡkn), and let εY,n = arg maxε PnL(Q̄k
n(ε)) be the MLE.

We define gk+1
n = gkn(εA,n) as the corresponding targeted update of gkn,

and Q̄k+1
n = Q̄k

n(εY,n) as the corresponding update of Q̄k
n.

Iterate till convergence: Now, set k = k + 1, and iterate this updating
process mapping a (gkn, Q̄

k
n) into (gk+1

n , Q̄k+1
n ) till convergence or till large

enough K so that the following three estimating equations are solved up
till an oP (1/

√
n)-term:

oP (1/
√
n) = PnD

∗(gKn , Q
K
n )

oP (1/
√
n) = PnDA(ḡKn , Q̄

r,K
n )

oP (1/
√
n) = PnDY (ḡr,Kn , ḡKn , Q̄

K
n ).

Final substitution estimator: Denote these limits of this iterative proce-
dure with Q̄r

n, ḡ
r
n, g
∗
n, Q̄

∗
n. Let Q∗n = (QW,n, Q̄

∗
n), where QW,n is the em-

pirical distribution estimator of QW,0. The TMLE of ψ0 is defined as
Ψ(Q∗n).

Equations solved by TMLE:

oP (1/
√
n) = PnD

∗(g∗n, Q
∗
n)

oP (1/
√
n) = PnDA(ḡ∗n, Q̄

r
n)

oP (1/
√
n) = PnDY (ḡrn, ḡ

∗
n, Q̄

∗
n).

11
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Empirical process condition: Assume that D∗(g∗n, Q
∗
n), DA(ḡ∗n, Q̄

r
n), DY (ḡrn, ḡ

∗
n, Q̄

∗
n)

fall in a P0-Donsker class with probability tending to 1 as n→∞.
Consistency condition: Q̄r

n, ḡ
r
n, ḡ
∗
n, Q̄

∗
n are consistent for Q̄r

0, ḡ
r
0, ḡ, Q̄ in the

following sense:

P0{D∗(g∗n, Q∗n)−D∗(g,Q)}2 = oP (1)
P0{DA(ḡ∗n, Q̄

r
n)−DA(ḡ, Q̄r

0}2 = oP (1)
P0{DY (ḡrn, ḡ

∗
n, Q̄

∗
n)−DY (ḡr0, ḡ, Q̄)}2 = oP (1)

Q̄ = Q̄0 or ḡ = ḡ0.

Negligibility of Second order terms: We assume that the following second
order terms are oP (1/

√
n):

P0(Hg∗n −Hg)(Q̄
∗
n − Q̄) = oP (1/

√
n)

P0(Q̄∗n − Q̄0))(ḡ∗n − ḡ0) ḡ
∗
n−ḡ
ḡḡ∗n

= oP (1/
√
n)

P0(Q̄∗n − Q̄) ḡ
∗
n−ḡ
ḡ

= oP (1/
√
n)

P0
Q̄r

0,n−Q̄r
0

ḡ
(ḡ∗n − ḡ) = oP (1/

√
n)

P0(HA(ḡ∗n, Q̄
r
n)−HA(ḡ, Q̄r

0)(ḡ∗n − ḡ) = oP (1/
√
n)

P0{HY (ḡr0, ḡ)−HY (ḡrn, ḡ
∗
n)(Q̄− Q̄∗n)} = oP (1/

√
n)

P0{HY (ḡr0,n, ḡ)−HY (ḡr0, ḡ)(Q̄− Q̄∗n)} = oP (1/
√
n).

Then,
Ψ(Q∗n)−Ψ(Q0) = (Pn − P0)IC(P0) + oP (1/

√
n),

where
IC(P0) = D∗(g,Q)−DA(ḡ, Q̄r

0) +DY (ḡr0, ḡ, Q̄).

Note that consistent estimation of the influence curve IC(P0) relies on consis-
tency of ḡrn, Q̄

r
n as estimators of ḡr0, Q̄

r
0, and estimators Q̄∗n, ḡ

∗
n converging to a

Q̄, ḡ for which either Q̄ = Q̄0 or ḡ = ḡ0.
If ḡ = ḡ0, then E0(A | ḡ, Q̄) = ḡ, and therefore DY (ḡr0, ḡ, Q̄) = 0 for all Q̄.

If Q̄ = Q̄0, then it follows that Q̄r
0 = 0, and thus that DA(ḡ, Q̄r

0) = 0 for all ḡ.
In particular, if both ḡ = ḡ0 and Q̄ = Q̄0, then IC(P0) = D∗(g0, Q0). We also
note that if ḡ 6= ḡ0, but ḡ is a true conditional distribution of A, given some
function W r of W for which Q̄(W ) is only a function of W r, then it follows
that E0(A | ḡ, Q̄) = ḡ and thus DY = 0.
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5 Collaborative double robust inference for C-

TMLE when using super learning to fit out-

come regression and reduced treatment mech-

anism

We note that P0D
∗(Q, g) = P0

A
ḡ

(Q̄0 − Q̄) + Q̄ − Ψ(Q). If QW = QW,0, this

reduces to P0D
∗(Q, g) = P0

A
ḡ

(Q̄0 − Q̄). Let G be the class of all possible
distributions of A, given W , and let g0 ∈ G be the true conditional distribution
of A given W . We define the set G(P0, Q) ≡ {g :∈ G : 0 = P0(A − ḡ) Q̄0−Q̄

ḡ
}.

For any g ∈ G(P0, Q̄), we have P0D
∗(Q, g) = Ψ(Q0) − Ψ(Q). We note that

G(P0, Q̄) contains the true conditional distributions gr0 of A, given W r, for
which (Q̄ − Q̄0)/ḡr0 is a function of W r. We refer to such distributions as
reduced treatment mechanisms. However, it contains many more conditional
distributions since any conditional distribution g for which (A − ḡ(W )) is
orthogonal to (Q̄0 − Q̄)/ḡ in L2

0(P0) is an element of G(P0, Q). The general
collaborative TMLE introduced in (van der Laan and Gruber, 2010) provides
a template for construction of a TMLE (g∗n, Q̄

∗
n) satisfying PnD

∗(g∗n, Q
∗
n) = 0

and that converges to a (g, Q̄) with g ∈ G(P0, Q̄) so that P0D
∗(g,Q) = 0

and thereby Ψ(Q) − Ψ(Q0) = 0. Thus C-TMLE provides a template for
construction of targeted MLEs that exploit the collaborative double robustness
of TMLEs in the sense that a TMLE will be consistent as long as Q∗n, g∗n
converge to a (Q, g) for which g ∈ G(P0, Q̄). The goal is not to estimate
the true treatment mechanism, but instead the goal is to construct a g∗n that
converges to a conditional distribution given a reduction W r of W that is
an element of G(P0, Q̄). We could state that, just as the propensity score
provides a sufficient dimension reduction for the outcome regression, so does,
given Q̄, (Q̄− Q̄0) provide a sufficient dimension reduction for the propensity
score regression in the TMLE. The current literature appears to agree that
propensity score estimators are best evaluated with respect to their effect on
estimation of the causal effect of interest, not by metrics such as likelihoods or
classification rates (Lee et al., 2009; Schneeweiss et al., 2009; Westreich et al.,
2011; Vansteelandt et al., 2010), and the above stated general collaborative
double robustness provides a formal foundation for such claims.

The general collaborative targeted maximum likelihood estimator (C-TMLE)
has been implemented and applied to point treatment and longitudinal data
(Porter et al., 2011; Stitelman and van der Laan, 2010; van der Laan and
Gruber, 2010; Gruber and van der Laan, 2010c; Wang et al., 2011; Gruber
and van der Laan, 2012a, 2011). A C-TMLE algorithm relies on a TMLE
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algorithm that maps an initial (Q̄n, gn) into a TMLE (Q̄∗n, g
∗
n), and uses this

algorithm in combination with a targeted variable selection algorithm for gen-
erating candidate models for the propensity score to generate a sequence of
candidate TMLEs (gkn, Q̄

k
n), increasingly nonparametric in k, and finally uses

cross-validation to select the best TMLE among these candidates estimators
of Q̄0.

In particular, the CTMLE algorithm in (van der Laan and Gruber, 2010;
Gruber and van der Laan, 2010b,c) is tailored to determine a gn that adjusts
for Q̄ − Q̄0, where Q̄ denotes the limit of the resulting CTMLE of Q̄0. For
example, if one runs the CTMLE with initial estimator of Q̄0 the intercept,
then the resulting gn involves adjustment for a function close to Q̄0. Note that
the conditional distribution of A, given Q̄(W ), Q̄0 − Q̄, is by no means close
to the true g0 that was used in the data generating experiment.

The C-TMLE algorithm can be thought of as a targeted variable selection
algorithm for selecting variables in the model for the propensity score, whose
resulting fit is then used in the TMLE for Q̄0. This variable selection algorithm
avoids selection of instrumental variables but prioritizes the variables that
provide the most important bias reduction for the target parameter when the
resulting fit of the propensity score is used in the TMLE for Q̄0. It results in
estimators of the conditional distribution of A, given W r, for a function W r

of W . Just as with the IPTW and TMLE analyzed in the previous sections,
to establish that the C-TMLE is asymptotically linear at misspecified Q̄∗n, it
will be necessary that certain smooth functionals of Q̄∗n, ḡ

∗
n are asymptotically

linear. This will thus again require a further targeting.
In this section we wish to establish a C-TMLE with known influence curve

under regularity conditions, generalizing our theorem in the previous section
by also allowing that both Q̄, ḡ are misspecified, but g ∈ G(Q,P0). Our next
theorem presents a TMLE algorithm and a corresponding influence curve un-
der the assumption that the propensity score correctly adjusts for the possibly
misspecified Q̄ and Q̄− Q̄0. The presented TMLE algorithm already arranges
that this TMLE indeed non parametrically adjusts for Q̄. In the next sub-
section we will present an actual C-TMLE algorithm that generates a TMLE
for which the propensity score is targeted to adjust for Q̄ − Q̄0, so that this
theorem can be applied.

Theorem 4 Let O = (W,A, Y ), and Y ∈ {0, 1} or Y is continuous with
values in (0, 1). Let M be a statistical model for the true distribution of O
that only puts restrictions on the conditional distribution g0 of A, given W .
Let D∗(Q, g)(O) = A/ḡ(W )(Y − Q̄(A,W )) + Q̄(1,W )−Ψ(Q) be the efficient
influence curve of Ψ : M → IR at P ∈ M, where Q = (QW , Q̄), QW is
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probability distribution of W under P , and Q̄(W ) = EP (Y | A = 1,W ).
Definitions: We define

Q̄r
0 = Q̄r

0(ḡ, Q̄) = E0(Y − Q̄ | A = 1, ḡ)
ḡr0 = ḡr0(ḡ, Q̄) = E0(A | Q̄, ḡ)

HA(ḡ, Q̄r
0) ≡ Q̄r

0

ḡ

DA(ḡ, Q̄r
0) = HA(ḡ, Q̄r

0)(A− ḡ)
Hg(A,W ) ≡ A

ḡ

Q̄r
0,n = E0(Y − Q̄ | A = 1, ḡ, ḡ∗n)

ḡr0,n = E0(A | ḡ, Q̄, Q̄∗n)

H(ḡr0,n, ḡ) ≡ ḡr
0,n−ḡ
ḡ

.

Estimators: Let Q̄∗n, ḡ
∗
n be estimators that are consistent for Q̄, ḡ. For any

given ḡ, Q̄, let ḡrn(ḡ, Q̄) and Q̄r
n(ḡ, Q̄) be consistent estimators of ḡr0(ḡ, Q̄) and

Q̄r
0(ḡ, Q̄), respectively (e.g., using a super learner or other nonparametric adap-

tive regression algorithm). Let Q̄r
n = Q̄r

n(ḡ∗n, Q̄
∗
n) and ḡrn = ḡrn(ḡ∗n, Q̄

∗
n) denote

these estimators applied to (ḡ∗n, Q̄
∗
n).

”Score” equations the TMLE should solve: Below, we describe an iter-
ative TMLE algorithm that results in estimators ḡrn, Q̄

r
n, g∗n, Q̄∗n that solve the

following equations:
0 = PnD

∗(g∗n, Q
∗
n)

0 = PnDA(ḡ∗n, Q̄
r
n)

Iterative targeted MLE of ψ0:

Initialization: Let gn, Q̄n be an initial estimator of g, Q̄.

Let g0
n = gn, Q̄0

n = Q̄n and let k = 0.

Updating step: Let ḡnewn = ḡrn(ḡkn, Q̄
k
n) be obtained by non parametrically re-

gressing A on Q̄k
n, ḡ

k
n. Let Q̄r,k

n = Q̄r
n(ḡkn, Q̄

k
n) be obtained by non para-

metrically regressing Y − Q̄k
n on A = 1, ḡkn. Redefine gkn = ḡnewn .

Consider the submodel Logitḡkn(ε) = Logitḡkn + εHA(ḡkn, Q̄
r,k
n ), and fit ε

with the MLE
εA,n = arg max

ε
Pn log gkn(ε).

Let −L(Q̄)(O) = Y log Q̄(A,W ) + (1− Y ) log(1 − Q̄(A,W )) be the log-
likelihood loss for Q̄0. Define the submodel LogitQ̄k

n(ε) = LogitQ̄k
n+ε1Hgk

n
.

Let εY,n = arg maxε PnL(Q̄k
n(ε)) be the MLE.

We define gk+1
n = gkn(εA,n) as the corresponding targeted update of gkn,

and Q̄k+1
n = Q̄k

n(εY,n) as the corresponding update of Q̄k
n.
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Iterating till convergence: Now, set k = k + 1, and iterate this updating
process mapping a (gkn, Q̄

k
n) into (gk+1

n , Q̄k+1
n ) till convergence or till large

enough K so that the following estimating equations are solved up till an
oP (1/

√
n)-term:

oP (1/
√
n) = PnD

∗(gkn, Q
k
n)

oP (1/
√
n) = PnDA(ḡkn, Q̄

r,k
n ).

Final substitution estimator: Denote these limits of this iterative proce-
dure with Q̄r

n, ḡ
r
n, g
∗
n, Q̄

∗
n, γ∗n, where ḡrn = ḡ∗n at convergence. Let Q∗n =

(QW,n, Q̄
∗
n), where QW,n is the empirical distribution estimator of QW,0.

The TMLE of ψ0 is defined as Ψ(Q∗n).

Assumption on limit ḡ of ḡ∗n: We assume that ḡ(W ) = E0(A | W r) for some
function W r(W ) of W for which Q̄, (Q̄0− Q̄)(W ) is a function of W r: i.e., ḡ∗n
involves nonparametric adjustment by Q̄, Q̄0. As a consequence, ḡr0 = ḡ.
Empirical process condition: Assume that D∗(g∗n, Q

∗
n), DA(ḡ∗n, Q̄

r
n) fall in

a P0-Donsker class with probability tending to 1 as n→∞.
Consistency condition: Assume that Q̄r

n, ḡ
r
n, ḡ
∗
n, Q̄

∗
n are consistent for Q̄r

0, ḡ
r
0, ḡ, Q̄,

where ḡr0 = ḡ, in the following sense:

P0{D∗(g∗n, Q∗n)−D∗(g,Q)}2 = oP (1)
P0{DA(ḡ∗n, Q̄

r
n)−DA(ḡ, Q̄r

0}2 = oP (1)

Second order conditions: Define H1(ḡ∗n) ≡ E0(Q̄−Y | A = 1, ḡ, ḡ∗n)E0(A|ḡ,ḡ∗n)
ḡ2

.
We assume

P0(Q̄− Q̄0)(ḡ − ḡ0) (ḡ∗n−ḡ)2
ḡ2ḡ∗n

= oP (1/
√
n)

P0(H1(ḡ∗n)−H1(ḡ))(ḡ∗n − ḡ) = oP (1/
√
n)

P0(Q̄∗n − Q̄) (ḡ∗n−ḡ)
ḡ

= oP (1/
√
n)

P0
(Q̄r

0,n−Q̄r
0)

ḡ
(ḡ∗n − ḡ) = oP (1/

√
n)

P0(HA(ḡ∗n, Q̄
r
n)−HA(ḡ, Q̄r

0))(ḡ∗n − ḡ) = oP (1/
√
n)

P0
(ḡr

0,n−ḡ)
ḡ

(Q̄∗n − Q̄) = oP (1/
√
n).

Then,
Ψ(Q∗n)−Ψ(Q0) = (Pn − P0)IC(P0) + oP (1/

√
n),

where
IC(P0) = D∗(g,Q)−DA(ḡ, Q̄r

0).

Note that consistent estimation of the influence curve IC(P0) relies on
consistency of Q̄r

n as an estimator of Q̄r
0, and estimators Q̄∗n, ḡ

∗
n converging to

a Q̄, ḡ = ḡr0 for which ḡ equals a true conditional mean of A, given W r, and
Q̄0 − Q̄, Q̄ only depend on W through W r.
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5.1 A C-TMLE algorithm

The TMLE algorithm presented in Theorem 4 maps an initial estimator Q0
n, g

0
n

into an updated estimator Q∗n, g
∗
n that solves the two estimating equations,

allowing for statistical inference with known influence curve. The updating
algorithm results in a g∗n that non-parametrically adjusts for Q̄∗n itself, and
thus for its limit Q̄ in the limit. The condition on the limit g was that it should
not only non parametrically adjust for Q̄ but also for Q̄ − Q̄0. If the initial
estimator g0

n already adjusted for an approximation of Q̄0
n − Q̄0, for example,

g0
n, Q

0
n is already a C-TMLE, then this condition might hold approximately.

Nonetheless, we want to present a C-TMLE algorithm that simultaneously fits
g in response to Q̄ − Q̄0, but also carries out the nonparametric adjustment
by Q̄. The latter is normally not part of the C-TMLE algorithm, but we
want to enforce this in order to be able to apply Theorem 3. We achieve this
goal in this subsection by applying the C-TMLE algorithm as presented in
van der Laan and Gruber (2009) to the particular TMLE-algorithm presented
in Theorem 4.

Firstly, we compute a set of K univariate covariates W1, . . . ,WK , i.e., func-
tions of W , which we will refer to as main terms, even though a term could be
an interaction term or a super learning fit of the regression of A on a subset of
the components of W . Let Ω = {W1, . . . ,WK} be the full collection of main
terms. In the previous subsection we defined an algorithm that maps an initial
(Q, g) into a TMLE (Q∗, g∗). Let L(Q)(O) be the loss function for Q0.

Globally, given a TMLE algorithm that maps any initial (Q, g) into a
TMLE (Q∗, g∗), the C-TMLE algorithm generates a sequence of increasing
sets Sk ⊂ Ω of k main terms, where each set Sk has an associated estimator
gk of g0, and simultaneously it generates a corresponding sequence of Qk,
k = 1, . . . , K. This sequence (gk, Qk) maps into a corresponding sequence of
TMLEs (gk∗, Qk∗) that is increasingly nonparametric in k, k = 1, . . . , K, using
the TMLE-algorithm presented in Theorem 4.

In this variable selection algorithm the choice of the next main term to add,
mapping Sk into Sk+1, is based on how much the TMLE using the g-fit implied
by Sk+1, using Qk as initial estimator, improves the fit of the corresponding
TMLE Qk∗ for Q0. Cross-validation is used to select k among these candidate
TMLEs Qk∗, k = 1, . . . , K, where the last TMLE QK∗ uses the most aggressive
bias reduction by being based on the most nonparametric estimator gK implied
by Ω.

In order to present a precise C-TMLE algorithm we will first introduce some
notation. For a given subset of main terms S ⊂ Ω, let Sc be its complement
within Ω. In the C-TMLE algorithm we use a forward selection algorithm
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that augments a given set Sk into a next set Sk+1 obtained by adding the best
main term among all main terms in the complement Sk,c of Sk. Each choice S
corresponds with an estimator of g0. In other words, the algorithm iteratively
updates a current estimate gk into a new estimate gk+1, but the criterion for
g does not measure how well g fits g0; it measures how well the TMLE of Q0

that uses this g (and as initial estimator Qk) fits Q0.
Given a set Sk, an initial gk−1, Qk−1, we define a corresponding gk obtained

by fitting

Logitḡk = Logitḡr(ḡk−1, Q̄k−1) +
∑
j∈Sk

βjWj.

Thus, this estimator gk involves nonparametric adjustment by ḡk−1, Q̄k−1, aug-
mented with a linear regression component implied by Sk. This function map-
ping Sk, gk−1, Qk−1 into a fit gk will be denoted with g(Sk, gk−1, Qk−1). This
also allows us to define a mapping from (Qk,Sk, Qk−1, gk−1) into a TMLE
(Qk∗, gk∗) defined by the TMLE algorithm of Theorem 4 applied to initial
Qk and gk = g(Sk, gk−1, Qk−1). We will denote this mapping into Qk∗ with
TMLE(Qk,Sk, Qk−1, gk−1).

The C-TMLE algorithm defined below generates a sequence (Qk,Sk) and
thereby corresponding TMLEs (Qk∗, gk∗), k = 0, . . . , K, where Qk represents
an initial estimate, Sk a subset of main terms that defines gk, and Qk∗, gk∗ the
corresponding TMLE that starts with (Qk, gk). These TMLEs Qk∗ represent
subsequent updates of the initial estimator Q0. The corresponding main term
set Sk that defines gk in this k-specific TMLE, increases in k, one unit at a
time: S0 is empty, | Sk+1 |=| Sk | +1, SK = Ω. The C-TMLE uses cross-
validation to select k, and thereby to select the TMLE Qk∗ that yields the best
fit of Q0 among the K + 1 k-specific TMLEs (Qk∗ : k = 0, . . . , K) that are
increasingly aggressive in their bias-reduction effort. This C-TMLE algorithm
is defined as follows, and uses the same format as presented in (Wang et al.,
2011):

Initiate algorithm: Set initial TMLE. Let k = 0, and Qk = Q0, gstart

be an initial estimate of Q0, g0, and let S0 be the empty set. Let gk =
g(S0, Q0, gstart). This defines an initial TMLEQ0∗ = TMLE(Q0,S0, Q0, g0).

Determine next TMLE. Determine the next best main term to add:

Sk+1,cand = arg min
{Sk∪Wj :Wj∈Sk,c}

PnL(TMLE(Qk,Sk ∪Wj, Q
k−1, gk−1)).

If
PnL(TMLE(Qk,Sk+1,cand, Qk−1, gk−1)) ≤ PnL(Qk∗),
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then (Sk+1 = Sk+1,cand, Qk+1 = Qk), else Qk+1 = Qk∗, and

Sk+1 = arg min
{Sk∪Wj :Wj∈Sk,c}

PnL(TMLE(Qk∗,Sk ∪Wj, Q
k−1, gk−1)).

[In words: If the next best main term added to the fit of E0(A | W ) yields
a TMLE of E0(Y | A,W ) that improves upon the previous TMLE Qk∗,
then we accept this best main term, and we have our next (Qk+1,Sk+1)
and corresponding TMLE Qk+1∗, gk+1∗ (which still uses the same initial
estimate of Q0 as Qk∗ uses). Otherwise, reject this best main term,
update the initial estimate in the candidate TMLEs to the previous
TMLE Qk∗ of E0(Y | A,W ), and determine the best main term to add
again. This best main term will now always result in an improved fit of
the corresponding TMLE of Q0, so that we now have our next TMLE
Qk+1∗, gk+1 (which now uses a different initial estimate than Qk∗ used).]

Iterate. Run this from k = 1 to K at which point SK = Ω. This yields a
sequence (Qk, gk) and corresponding TMLE Qk∗, k = 0, . . . , K.

This sequence of candidate TMLEs Qk∗ of Q0 has the following property:
the estimates gk are increasingly nonparametric in k and PnL(Qk∗) is decreas-
ing in k, k = 0, . . . , K. It remains to select k. For that purpose we use V -fold
cross-validation. That is, for each of the V splits of the sample in a training and
validation sample, we apply the above algorithm for generating a sequence of
candidate estimates (Qk∗ : k) to a training sample, and we evaluate the empir-
ical mean of the loss function at the resulting Qk∗ over the validation sample,
for each k = 0, . . . , K. For each k we take the average over the V -splits of
the k-specific performance measure over the validation sample, which is called
the cross-validated risk of the k-specific TMLE. We select the k that has the
best cross-validated risk, which we denote with kn. Our final C-TMLE of Q0

is now defined as Q∗n = Qkn∗, and the TMLE of ψ0 is defined as ψ∗n = Ψ(Q∗n).
Fast version of above C-TMLE: We could carry out the above C-

TMLE algorithm but replacing the TMLE that maps an initial (Q, g) into
Q∗, g∗ replaced by the first-step of the TMLE that maps (Q, g) into Q1, g1.
In that manner, the selection of the sets Sk is based on the bias reduction
achieved in a first step of the TMLE algorithm, and most bias reduction occurs
in the first step. After having selected the final one-step TMLE Qkn1 and
corresponding gkn , one should still carry out the full TMLE algorithm so that
the final Q∗n = Qkn∗, gkn∗ is a real TMLE solving the estimating equations of
Theorem 4.
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Statistical inference for C-TMLE: Let Q̄r
n = Q̄r

n(ḡ∗n, Q̄
∗
n) be the final es-

timator of Q̄r
0 = Q̄r

0(ḡ, Q̄) = E0(Y − Q̄ | A = 1, ḡ), a by-product of the TMLE-

algorithm. Let HA(ḡ∗n, Q̄
r
n) = Q̄r

n(W )
ḡ∗n(W )

, and DA(ḡn, Q̄
r
n) = HA(ḡ∗n, Q̄

r
n)(W )(A −

ḡ∗n(W )). An estimate of the influence curve of ψ∗n is now given by

ICn = D∗(Q∗n, ḡ
∗
n)−DA(ḡ∗n, Q̄

r
n).

The asymptotic variance of
√
n(ψ∗n − ψ0) can thus be estimated with σ2

n =
1/n

∑n
i=1 ICn(Oi)

2. An asymptotically valid 0.95-confidence interval for ψ0 is
given by ψ∗n ± 1.96σ∗n/

√
n.

6 Discussion

Targeted minimum loss-based estimation allows us to construct plug-in esti-
mators Ψ(Q∗n) of a path-wise differentiable parameter Ψ(Q0) utilizing the state
of the art in ensemble learning such as super-learning, while guaranteeing that
the estimator Q∗n, and an estimator g∗n of the nuisance parameter the TMLE
utilizes in its targeting step, solve a set of user-supplied estimating equations,
empirical means of estimating functions. These estimating functions can be se-
lected so that the resulting TMLE of ψ0 has certain statistical properties such
as being efficient, or guaranteed to be more efficient than a given user supplied
estimator (Rotnitzky et al., 2012; Gruber and van der Laan, 2012b), and so on.
However, most importantly, these estimating equations are necessary to make
the TMLE asymptotically linear, i.e. to make the TMLE unbiased enough so
that the first order linear expansion can be used for statistical inference. For
example, by selecting the estimating functions to be equal to the canonical
gradient of Ψ : M → IR one arranges that Ψ(Q∗n) is asymptotically efficient
under conditions that assume consistency of Q∗n and g∗n.

However, we noted that this level of targeting is insufficient if one only
relies on consistency of g∗n, even when that suffices for consistency of Ψ(Q∗n).
Under such weaker assumptions, additional targeting is necessary so that a
specific smooth functional of g∗n is asymptotically linear, which requires that
that smooth function of g∗n is itself a TMLE. The joint targeting of Q∗n and
g∗n is achieved by a TMLE that solves these extra equations, allowing one to
establish asymptotic linearity of Ψ(Q∗n) under milder conditions that assume
that the second order terms are negligible relative to the first order linear
approximation.

In this article we also pushed this additional level of targeting to a new
level by demonstrating how it allows for double robust statistical inference,
and that even if we estimate the nuisance parameter in a complicated manner
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that is based on a criterion that cares about how it helps the estimator to fit
ψ0, as used by the C-TMLE, we can still determine a set of additional esti-
mating equations that need to be targeted by the TMLE in order to establish
asymptotic linearity and thereby valid statistical inference based on the central
limit theorem. This allows us now to use the sophisticated but often neces-
sary C-TMLE while still preserving valid statistical inference under regularity
conditions.

It remains to evaluate the practical benefit of the modifications of TMLE
and C-TMLE as presented in this article. We plan to address this in future
research. At least, we feel that it is useful to now have an actual influence
curve for C-TMLE while in our general theorems so far (see e.g., Appendix
van der Laan and Rose (2011)) our suggested influence curve relied on the
influence curve of a smooth functional of Q∗n that is typically unknown to the
user if Q∗n was a complicated estimator.

Even though we focussed in this article on a particular concrete estima-
tion problem, TMLE is a general tool and our theorems can be generalized
to general statistical models and path-wise differentiable statistical target pa-
rameters.

We note that this targeting of nuisance parameter estimators in the TMLE
is not only necessary to get a known influence curve, but it is necessary to make
the TMLE asymptotically linear. So it does not simply suffice to run a boot-
strap as an alternative of influence curve based inference, since the bootstrap
only works if the estimator is asymptotically linear so that it has an exist-
ing limit distribution. In addition, the established asymptotic linearity with
known influence curve has the important by-product that one now obtains
statistical inference with no extra computational cost. This is particularly im-
portant in these large semi-parametric models that require the utilization of
aggressive machine learning methods in order to cover the model-space, mak-
ing the estimators by necessity very computer intensive, so that a bootstrap
method might simply be too computer extensive.
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Appendix

Proof of Theorem 1.

To start with we note:

PnD(g∗n)− P0D(g0) = (Pn − P0)D(g0) + Pn(D(g∗n)−D(g0))
= (Pn − P0)(D(g0)− ψ0) + P0(D(g∗n)−D(g0)) + (Pn − P0)(D(g∗n)−D(g0)).

Since g∗n falls in Donsker class the last second term is oP (1/
√
n) if P0(D(g∗n)−

D(g0))2 → 0 in probability. So it remains to analyze P0(D(gn)−D(g0)). We
now note

P0Y A{1/g∗n − 1/g0} = P0Y A{(g0 − g∗n)/(g∗ng0)}
= P0Y A{g0 − g∗n}/g2

0 + P0Y A{g0 − g∗n)2}/(g2
0g
∗
n).

We assumed that the last term

P0Y A{g0 − g∗n)2/g2
0g
∗
n = P0Q̄0(ḡ∗n − ḡ0)2/(ḡ0ḡ

∗
n) = oP (1/

√
n).
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So it remains to study:

P0Y A{g0 − g∗n}/g2
0 = P0Q̄0(ḡ0 − ḡ∗n)/ḡ0.

We now use the following lemma.

Lemma 1 Define Q̄r
0,n ≡ E0(Y | A = 1, ḡ0(W ), ḡ∗n(W )), Q̄r

0 = E0(Y | A =
1, ḡ0(W )), where ḡ∗n(W ) is treated as a fixed function of W when calculating
the conditional expectation. Assume

R1,n ≡ P0(Q̄r
0,n − Q̄r

0)(ḡ0 − ḡ∗n)/ḡ0 = oP (1/
√
n).

Define Ψ1(g) = P0
Q̄0

ḡ0
ḡ. Define Ψr

1(g) = P0
Q̄r

0

ḡ0
ḡ. Then,

Ψ1(g∗n)−Ψ1(g0) = P0Q̄0(ḡ∗n − ḡ0)/ḡ0

= P0Q̄
r
0(ḡ∗n − ḡ0)/ḡ0 + P0(Q̄r

0,n − Q̄r
0)(ḡ∗n − ḡ0)/ḡ0

= Ψr
1(ḡ∗n)−Ψr

1(ḡ0) +R1,n.

Proof of Lemma 1: Note that

Ψ1(g∗n)−Ψ1(g0) = P0Y A{g0 − g∗n}/g2
0

= P0Q̄
r
0,nA{g0 − g∗n}/g2

0

= P0Q̄
r
0,n(ḡ0 − ḡ∗n)/ḡ0

= P0Q̄
r
0(ḡ0 − ḡ∗n)/ḡ0 + P0(Q̄r

0,n − Q̄r
0)(ḡ0 − ḡ∗n)/ḡ0.2

Thus, it remains to prove that Ψr
1(g∗n) − Ψr

1(g0) = P0Q̄
r
0(ḡ0 − ḡ∗n)/ḡ0 is

asymptotically linear. Let DH(g) = H(W )(A − ḡ(W )), and let Hr
0 = Q̄r

0/ḡ0.
Let Hr

n = Q̄r
n/ḡ

∗
n, where Q̄r

n is obtained by regressing Y on ḡn(W ) (initial esti-
mator ḡ∗n is based on) and A = 1. We have PnDHr

n
(ḡ∗n) = 1/n

∑
iH

r
n(Wi)(Ai−

ḡ∗n(Wi)) = 0. Thus,

P0DHr
n
(ḡ∗n) = P0(DHr

n
−DHr

0
)(ḡ∗n) + P0DHr

0
(ḡ∗n)

=
∫

(Hr
n −Hr

0)(W )(A− ḡ∗n(W ))dP0(W,A) + P0DHr
0
(ḡ∗n)

=
∫

(Hr
n −Hr

0)(W )(ḡ0 − ḡ∗n)(W )dP0(W ) + P0DHr
0
(ḡ∗n)

≡ R2,n + P0DHr
0
(ḡ∗n).

We now note that

P0DHr
0
(ḡ∗n) =

∫
Hr

0(W )(A− ḡ∗n(W ))dP0(A,W )
=
∫
Hr

0(W )ḡ0(W )dP0(W )−
∫
Hr

0(W )ḡ∗n(W )dP0(W )
≡ Ψr

1(ḡ0)−Ψr
1(ḡ∗n).
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Thus, we have
−P0DHr

n
(ḡ∗n) = Ψr

1(ḡ∗n)−Ψr
1(ḡ0)−R2,n.

Thus,

Ψr
1(ḡ∗n)−Ψr

1(ḡ0) = −P0DHr
n
(ḡ∗n) +R2,n

= (Pn − P0)DHr
n
(ḡ∗n) +R2,n

= (Pn − P0)DHr
0
(ḡ0) +R2,n +R3,n,

where we defined

R3,n = (Pn − P0)(DHr
n
(ḡ∗n)−DHr

0
(ḡ0)).

This yields the following lemma.

Lemma 2 Define Ψ1(g) =
∫
H0(W )ḡ(W )dP0(W ), where H0 = Q̄0(W )/ḡ0(W ).

Let Ψr
1(g) =

∫
Hr

0(W )ḡ(W )dP0(W ), where Hr
0 = Q̄r

0(W )/ḡ0(W ). Let g∗n sat-
isfy PnDHr

n
(ḡ∗n) = 0, where Hr

n = Q̄r
n/ḡn for some estimator gn (not necessarily

equal to g∗n) and estimator Q̄r
n of E0(Y | A = 1, ḡ0(W )). Assume that

R1,n ≡ P0(Q̄r
n − Q̄r

0)(ḡ0 − ḡ∗n)/ḡ0 = oP (1/
√
n)

R2,n = P0(Hr
n −Hr

0)(ḡ0 − ḡ∗n) = oP (1/
√
n)

R3,n = (Pn − P0){DHr
n
(ḡ∗n)−DHr

0
(ḡ0)} = oP (1/

√
n).

Then,

Ψ1(g∗n)−Ψ1(g0) = (Pn − P0)DHr
0
(ḡ0) +R1,n +R2,n +R3,n.

Under the conditions on Q̄r
n, gn and g∗n that R1,n, R2,n, R3,n are all oP (1/

√
n),

we now have that Ψ1(g∗n) − Ψ1(g0) = (Pn − P0)DHr
0
(ḡ0). This completes the

proof of the theorem. 2

Proof of Theorem 2.

We have

Ψ(Q∗n)−Ψ(Q0) = −P0D
∗(Q∗n, g0)

= −P0D
∗(Q∗n, g

∗
n) + P0{D∗(Q∗n, g∗n)−D(Q∗n, g0)}

= (Pn − P0)D∗(Q∗n, g
∗
n) + P0{D∗(Q∗n, g∗n)−D(Q∗n, g0)}.

If D∗(Q∗n, g
∗
n) falls in a P0-Donsker class and P0{D∗(Q∗n, g∗n) − D∗(Q, g0)}2 =

oP (1), then the first term on the right-hand side equals (Pn − P0)D∗(Q, g0) +
oP (1/

√
n). The second term can be written as

P0 ({D∗(Q∗n, g∗n)−D∗(Q∗n, g0)} − {D∗(Q, g∗n)−D∗(Q, g0)})+P0{D∗(Q, g∗n)−D∗(Q, g0)}.
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The first term equals
P0(Hg∗n −Hg0)(Q̄

∗
n − Q̄),

where Hg(A,W ) = A/ḡ(W ). We assumed that this term is oP (1/
√
n). Thus,

it remains to establish asymptotic linearity of Ψ1(g∗n) = P0D
∗(Q, g∗n) as an

estimator of Ψ1(g0) = P0D
∗(Q, g0). We have

Ψ1(g∗n)−Ψ1(g0) = −P0(Y − Q̄) A
ḡ∗nḡ0

(ḡ∗n − ḡ0)

= −P0Q̄
r
0,n

A
ḡ∗nḡ0

(ḡ∗n − ḡ0)

= −P0Q̄
r
0,n

1
ḡ∗n

(ḡ∗n − ḡ0).

Let Hr
0,n = Q̄r

0,n/ḡ
∗
n and Hr

0 = Q̄r
0/ḡ0, where Q̄r

0 = E0(Y − Q̄(W ) | A =
1, ḡ0(W )). The last term can be written as

−P0H
r
0(ḡ∗n − ḡ0)− P0(Hr

0,n −Hr
0)(ḡ∗n − ḡ0).

We assumed that the second term is oP (1/
√
n). Thus, in order to establish

asymptotic linearity of Ψ1(g∗n), it remains to establish asymptotic linearity of
Ψr

1(ḡ∗n) = P0H
r
0 ḡ
∗
n as an estimator of Ψr

1(ḡ0) = P0H
r
0 ḡ0.

Let DH(g) = H(W )(A− ḡ(W )). Let Hr
n = Q̄r

n/ḡ
∗
n. Our targeted estimator

g∗n solves PnDHr
n
(ḡ∗n) = 1/n

∑
iH

r
n(Wi)(Ai − ḡ∗n(Wi)) = 0. We now note that

P0DHr
0
(ḡ∗n) =

∫
Hr

0(W )(A− ḡ∗n(W ))dP0(A,W )
=
∫
Hr

0(W )ḡ0(W )dP0(W )−
∫
Hr

0(W )ḡ∗n(W )dP0(W )
≡ Ψr

1(ḡ0)−Ψr
1(ḡ∗n).

Thus, we can focus on establishing the asymptotic linearity of P0DHr
0
(ḡ∗n). We

have

P0DHr
n
(ḡ∗n) = P0(DHr

n
−DHr

0
)(ḡ∗n) + P0DHr

0
(ḡ∗n)

=
∫

(Hr
n −Hr

0)(W )(A− ḡ∗n(W ))dP0(W,A) + P0DHr
0
(ḡ∗n)

=
∫

(Hr
n −Hr

0)(W )(ḡ0 − ḡ∗n(W ))dP0(W ) + P0DHr
0
(ḡ∗n) ≡ R2,n + P0DHr

0
(ḡ∗n),

where R2,n = oP (1/
√
n), by assumption. Thus, we have

−P0DHr
n
(ḡ∗n) = Ψr

1(ḡ∗n)−Ψr
1(ḡ0) +R2,n.

We now proceed as follows:

Ψr
1(ḡ∗n)−Ψr

1(ḡ0) = −P0DHr
n
(ḡ∗n)−R2,n

= (Pn − P0)DHr
n
(ḡ∗n)−R2,n

= (Pn − P0)DHr
0
(ḡ0)−R2,n +R3,n,

29

Hosted by The Berkeley Electronic Press



where we defined

R3,n = (Pn − P0)(DHr
n
(ḡ∗n)−DHr

0
(ḡ0)).

We have that R3,n = oP (1/
√
n) if DHr

n
(ḡ∗n)−DHr

0
(ḡ0) falls in a P0-Donsker class

with probability tending to 1, and P0{DHr
n
(ḡ∗n)−DHr

0
(ḡ0)}2 → 0 in probability

as n→∞. Thus we have proven that Ψ1(g∗n)−Ψ1(g0) = −(Pn − P0)DHr
0
(ḡ0).

This completes the proof of the theorem. 2

Proof of Theorem 3.

If PnD
∗(Q∗n, g

∗
n) = 0, then

Ψ(Q∗n)−Ψ(Q0) = −P0D
∗(Q∗n, g

∗
n) + P0(Q̄0 − Q̄∗n) ḡ0−ḡ

∗
n

ḡ∗n

= (Pn − P0)D∗(Q∗n, g
∗
n) + P0(Q̄0 − Q̄∗n) ḡ0−ḡ

∗
n

ḡ∗n

= (Pn − P0)D∗(Q, g) + P0(Q̄∗n − Q̄0) ḡ
∗
n−ḡ0
ḡ∗n

+ oP (1/
√
n).

Here we used that the latter term is indeed oP (1/
√
n), if D∗(Q∗n, g

∗
n) falls in a

Donsker class with probability tending to 1, and P0{D∗(Q∗n, g∗n)−D∗(Q, g)}2 →
0 in probability as n→∞.

It remains to analyze the second term. Firstly, we note that

P0(Q̄0 − Q̄∗n)
ḡ0 − ḡ∗n
ḡ∗n

= P0(Q̄0 − Q̄∗n)
ḡ0 − ḡ∗n
ḡ

+R1,n,

where

R1,n = P0(Q̄∗n − Q̄0))(ḡ∗n − ḡ0)
ḡ∗n − ḡ
ḡḡ∗n

.

We assumed that R1,n = oP (1/
√
n).

Now, we note

P0(Q̄∗n − Q̄0) ḡ
∗
n−ḡ0
ḡ

= P0(Q̄∗n − Q̄+ Q̄− Q̄0) ḡ
∗
n−ḡ+ḡ−ḡ0

ḡ

= P0(Q̄∗n − Q̄) ḡ
∗
n−ḡ
ḡ

+ P0(Q̄∗n − Q̄) ḡ−ḡ0
ḡ

+P0(Q̄− Q̄0) ḡ
∗
n−ḡ
ḡ

+ P0(Q̄− Q̄0) ḡ−ḡ0
ḡ
.

Let’s denote the first term with R2,n = P0(Q̄∗n − Q̄) ḡ
∗
n−ḡ
ḡ

. We assumed R2,n =

oP (1/
√
n). The last term equals zero by assumption. So it remains to analyze

the second and third term.
In order to represent the second and third term we define

Ψ2,ḡ,ḡ0(Q̄
∗
n) = P0Q̄

∗
n
ḡ−ḡ0
ḡ

Ψ1,ḡ,Q̄,Q̄0
(ḡ∗n) = P0

Q̄−Q̄0

ḡ
ḡ∗n.
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Note that the second and third term can now be represented as:

I(Q̄ = Q̄0)
{

Ψ2,ḡ,ḡ0(Q̄
∗
n)−Ψ2,ḡ,ḡ0(Q̄)

}
+I(ḡ = ḡ0)

{
Ψ1,ḡ,Q̄,Q̄0

(ḡ∗n)−Ψ1,ḡ,Q̄,Q̄0
(ḡ)
}
.

For notational convenience, we will suppress the dependence of these mappings
on the unknown quantities, and thus use Ψ1,Ψ2.

Analysis of Ψ1(ḡ∗n) if ḡ = ḡ0: If ḡ = ḡ0, Hr
0 = Q̄r

0/ḡ0, Hr
n = Q̄r

n/ḡ
∗
n, and

PnH
r
n(A− ḡ∗n) = 0, then

Ψ1(ḡ∗n)−Ψ1(ḡ) = P0
Q̄−Q̄0

ḡ0
(ḡ∗n − ḡ0)

= −P0(Y − Q̄) A
ḡ20

(ḡ∗n − ḡ0)

= −P0
E0(Y−Q̄|A=1,ḡ0,ḡ∗n)

ḡ0
(ḡ∗n − ḡ0)

= −P0
Q̄r

0,n

ḡ0
(ḡ∗n − ḡ0)

= −P0
Q̄r

0,n−Q̄r
0

ḡ0
(ḡ∗n − ḡ0) +−P0

Q̄r
0

ḡ0
(ḡ∗n − ḡ0).

We assumed

R3,n ≡ P0

Q̄r
0,n − Q̄r

0

ḡ0

(ḡ∗n − ḡ0) = oP (1/
√
n).

Using notation Hr
0 = Q̄r

0/ḡ0, we proceed as follows:

P0H
r
0(ḡ∗n − ḡ0)

= P0H
r
n(ḡ∗n − ḡ0) + P0(Hr

0 −Hr
n)(ḡ∗n − ḡ0)

≡ P0H
r
n(ḡ∗n − ḡ0) +R4,n

= −P0H
r
n(A− ḡ∗n) +R4,n

= −(Pn − P0)Hr
n(A− ḡ∗n) +R4,n

= −(Pn − P0)Hr
0(A− ḡ0) +R4,n +R5,n,

where R5,n = oP (1/
√
n) if P0(DA(ḡ∗n, Q̄

r
n)−DA(ḡ, Q̄r

0)2 = oP (1) andDA(ḡ∗n, Q̄
r
n)

falls in a Donsker class with probability tending to 1. We also assumed

R4,n = P0(Hr
n −Hr

0)(ḡ∗n − ḡ0) = oP (1/
√
n).

This proves that, if ḡ = ḡ0, then Ψ1(ḡ∗n) − Ψ1(ḡ0) = −(Pn − P0)DA(ḡ, Q̄r
0) +

oP (1/
√
n).

Analysis of Ψ2(Q̄∗n) if Q̄ = Q̄0: If Q̄ = Q̄0, ḡr0,n = E0(A | ḡ, Q̄∗n, Q̄), and recall
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that ḡrn is estimator of ḡr0 = E0(A | ḡ, Q̄), PnHY (ḡrn, ḡ
∗
n)(Y − Q̄∗n) = 0, then

Ψ2(Q̄∗n)−Ψ2(Q̄0) = P0
ḡ−ḡ0
ḡ

(Q̄∗n − Q̄0)

= −P0
A−ḡ
ḡ

(Q̄∗n − Q̄0)

= −P0
ḡr
0,n−ḡ
ḡ

(Q̄∗n − Q̄0)

= P0
A
ḡr
0,n

ḡr
0,n−ḡ
ḡ

(Y − Q̄∗n)

= P0HY (ḡr0,n, ḡ)(Y − Q̄∗n)
= P0HY (ḡrn, ḡ

∗
n)(Y − Q̄∗n)+

P0{HY (ḡr0,n, ḡ)(Y − Q̄∗n)−HY (ḡrn, ḡ
∗
n)(Q̄0 − Q̄∗n)}

We assumed that the last term is oP (1/
√
n). We now proceed as follows:

P0HY (ḡrn, ḡ
∗
n)(Y − Q̄∗n) = (Pn − P0)HY (ḡrn, ḡ

∗
n)(Y − Q̄∗n)

= (Pn − P0)HY (ḡr0, ḡ)(Y − Q̄),

where we assumed that HY (ḡrn, ḡ
∗
n)(Y −Q̄∗n) falls in a Donsker class with proba-

bility tending to 1, and P0{HY (ḡrn, ḡ
∗
n)−HY (ḡr0, ḡ)(Y −Q̄)}2 → 0 in probability.

This proves Ψ2(Q̄∗n)−Ψ2(Q̄0) = (Pn−P0)DY (ḡr0, ḡ, Q̄)+oP (1/
√
n). This com-

pletes the proof of the theorem. 2

Proof of Theorem 4.

If PnD
∗(Q∗n, g

∗
n) = 0, then

Ψ(Q∗n)−Ψ(Q0) = −P0D
∗(Q∗n, g

∗
n) + P0(Q̄0 − Q̄∗n) ḡ0−ḡ

∗
n

ḡ∗n

= (Pn − P0)D∗(Q∗n, g
∗
n) + P0(Q̄0 − Q̄∗n) ḡ0−ḡ

∗
n

ḡ∗n

= (Pn − P0)D∗(Q, g) + P0(Q̄∗n − Q̄0) ḡ
∗
n−ḡ0
ḡ∗n

+ oP (1/
√
n),

ifD∗(Q∗n, g
∗
n) falls in a Donsker class with probability tending to 1, and P0{D∗(Q∗n, g∗n)−

D∗(Q, g)}2 → 0 in probability as n→∞.
Now, we note

P0(Q̄∗n − Q̄0) ḡ
∗
n−ḡ0
ḡ∗n

= P0(Q̄∗n − Q̄+ Q̄− Q̄0) ḡ
∗
n−ḡ+ḡ−ḡ0

ḡ∗n

= P0(Q̄∗n − Q̄) ḡ
∗
n−ḡ
ḡ∗n

+ P0(Q̄∗n − Q̄) ḡ−ḡ0
ḡ∗n

+P0(Q̄− Q̄0) ḡ
∗
n−ḡ
ḡ∗n

+ P0(Q̄− Q̄0) ḡ−ḡ0
ḡ∗n

,

resulting in four terms, which we will denote with Term 1,2,3,4, respectively.
Term 4: This last term equals:

P0(Q̄− Q̄0)(ḡ − ḡ0) (ḡ∗n−ḡ)
ḡ∗nḡ

= P0(Q̄− Q̄0)(ḡ − ḡ0) (ḡ∗n−ḡ)
ḡ2

+R1,n,
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where

R1,n = P0(Q̄− Q̄0)(ḡ − ḡ0)
(ḡ∗n − ḡ)2

ḡ2ḡ∗n
= oP (1/

√
n),

by assumption. We proceed as follows:

P0(Q̄− Q̄0)(ḡ − ḡ0) (ḡ∗n−ḡ)
ḡ2

= P0(Q̄− Q̄0)(ḡ − A) (ḡ∗n−ḡ)
ḡ2

= P0
(Q̄−Q̄0)

ḡ
(ḡ∗n − ḡ)− P0(Q̄− Q̄0) A

ḡ2
(ḡ∗n − ḡ).

The first term is identical to Term 3 analyzed below, and is shown to be asymp-
totically linear with influence curve −DA(ḡ, Q̄r

0). The second term equals

−P0(Q̄− Q̄0) A
ḡ2

(ḡ∗n − ḡ) = −P0(Q̄− Y ) A
ḡ2

(ḡ∗n − ḡ)

= −P0E0(Q̄− Y | A = 1, ḡ, ḡ∗n) A
ḡ2

(ḡ∗n − ḡ)

= −P0E0(Q̄− Y | A = 1, ḡ, ḡ∗n)E0(A|ḡ,ḡ∗n)
ḡ2

(ḡ∗n − ḡ)

= −P0E0(Q̄− Y | A = 1, ḡ)E0(A|ḡ)
ḡ2

(ḡ∗n − ḡ)− P0(H1(ḡ∗n)−H1(ḡ))(ḡ∗n − ḡ),

where H1(ḡ∗n) ≡ E0(Q̄−Y | A = 1, ḡ, ḡ∗n)E0(A|ḡ,ḡ∗n)
ḡ2

which approximates H1(ḡ) =

E0(Q̄− Y | A = 1, ḡ)E0(A|ḡ)
ḡ2

. We assume that

R2,n = −P0(H1(ḡ∗n)−H1(ḡ))(ḡ∗n − ḡ) = oP (1/
√
n).

We also have that E0(A | ḡ) = ḡ, by the fact that ḡ = E0(A | W r) for some
function W r of W . Thus, it remains to analyze

P0
E0(Y − Q̄ | A = 1, ḡ)

ḡ
(ḡ∗n − ḡ).

This term is analyzed below under Term 3, and it is shown that this term
equals

(Pn − P0)DA(ḡ, Q̄r
0) + oP (1/

√
n),

which cancels with the above mentioned −(Pn − P0)DA(ḡ, Q̄r
0). To conclude,

we have shown that

P0(Q̄− Q̄0)(ḡ − ḡ0)
(ḡ∗n − ḡ)

ḡ∗nḡ
= oP (1/

√
n).

Term 1: The first term P0(Q̄∗n − Q̄) ḡ
∗
n−ḡ
ḡ

= oP (1/
√
n), by assumption.

So it remains to analyze the second and third term. In order to represent
the second and third term we define

Ψ2,ḡ,ḡ0(Q̄
∗
n) = P0Q̄

∗
n
ḡ−ḡ0
ḡ

Ψ1,ḡ,Q̄,Q̄0
(ḡ∗n) = P0

Q̄−Q̄0

ḡ
ḡ∗n.
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Note that the sum of second and third term can now be represented as:{
Ψ2,ḡ,ḡ0(Q̄

∗
n)−Ψ2,ḡ,ḡ0(Q̄)

}
+
{

Ψ1,ḡ,Q̄,Q̄0
(ḡ∗n)−Ψ1,ḡ,Q̄,Q̄0

(ḡ)
}
.

For notational convenience, we will suppress the dependence of these mappings
on the unknown quantities, and thus use Ψ1,Ψ2 instead.
Analysis of Term 3: If Hr

0 = Q̄r
0/ḡ, Hr

n = Q̄r
n/ḡ

∗
n, PnH

r
n(A− ḡ∗n) = 0, then

Ψ1(ḡ∗n)−Ψ1(ḡ) = P0
Q̄−Q̄0

ḡ
(ḡ∗n − ḡ)

= −P0(Y − Q̄) A
ḡ∗0,nḡ

(ḡ∗n − ḡ),

where
ḡ∗0,n ≡ E0(A | Q̄0 − Q̄, ḡ∗n, ḡ) = E0(A | ḡ∗n, ḡ),

where latter equality follows since Q̄0− Q̄ is a function of W r and ḡ = E0(A |
W r). We note that ḡ∗0,n converges to ḡ. So we used the following lemma.

Lemma 3 Suppose ḡ = E0(A | W r) and Q̄0 − Q̄ depends on W only through
W r. Then E0(A | Q̄0 − Q̄, ḡ) = ḡ.

Proof lemma: In general, E0(A | E0(A | Z)) = E0(A | Z). Thus, E0(A |
E0(A | W r)) = E0(A | W r). If Q̄0− Q̄ is a function of W r, then E0(A | E0(A |
W r), Q̄0 − Q̄) = E0(A | W r) = ḡ. 2

We define Q̄r
0,n = E0(Y − Q̄ | A = 1, ḡ∗0,n, ḡ, ḡ

∗
n), and Q̄r

0 = E0(Y − Q̄ | A =
1, ḡ). Since ḡ∗n, ḡ

∗
0,n both converge to ḡ, we have that Q̄r

0,n will converge to Q̄r
0.

We now proceed as follows:

−P0(Y − Q̄) A
ḡ∗0,nḡ

(ḡ∗n − ḡ) = −P0E0(Y − Q̄ | A = 1, ḡ∗0,n, ḡ, ḡ
∗
n) A

ḡ∗0,nḡ
(ḡ∗n − ḡ)

≡ −P0
Q̄r

0,n

ḡ
E0(A|ḡ,ḡ∗n)

ḡ∗0,n
(ḡ∗n − ḡ)

= −P0
Q̄r

0,n

ḡ
(ḡ∗n − ḡ)

= −P0
Q̄r

0,n−Q̄r
0

ḡ
(ḡ∗n − ḡ)− P0

Q̄r
0

ḡ
(ḡ∗n − ḡ),

where we used that ḡ∗0,n = E0(A | ḡ∗n, ḡ). We assumed

R3,n ≡ P0

Q̄r
0,n − Q̄r

0

ḡ
(ḡ∗n − ḡ) = oP (1/

√
n).

It remains to analyze −P0
Q̄r

0

ḡ
(ḡ∗n− ḡ). We will use the notation Hr

0 = Q̄r
0/ḡ.
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Let Hr
n = Q̄r

n/ḡ
∗
n. We have

−P0H
r
0(ḡ∗n − ḡ)

= −P0H
r
n(ḡ∗n − ḡ)− P0(Hr

0 −Hr
n)(ḡ∗n − ḡ)

≡ −P0H
r
n(ḡ∗n − ḡ) +R4,n

= P0H
r
n(A− ḡ∗n) +R4,n

= −(Pn − P0)Hr
n(A− ḡ∗n) +R4,n

= −(Pn − P0)Hr
0(A− ḡ) +R4,n +R5,n,

where R5,n = oP (1/
√
n) if P0(DA(ḡ∗n, Q̄

r
n)−DA(ḡ, Q̄r

0)2 = oP (1) andDA(ḡ∗n, Q̄
r
n)

falls in a Donsker class with probability tending to 1, and we are reminded
that DA(ḡ, Q̄r

0) = Hr
0(A− ḡ). We also assumed that

R4,n = P0(Hr
n −Hr

0)(ḡ∗n − ḡ) = oP (1/
√
n).

This proves that, Ψ1(ḡ∗n)−Ψ1(ḡ) = −(Pn − P0)DA(ḡ, Q̄r
0) + oP (1/

√
n).

Analysis of term 2: We have

Ψ2(Q̄∗n)−Ψ2(Q̄) = P0
ḡ−ḡ0
ḡ

(Q̄∗n − Q̄)

= −P0
A−ḡ
ḡ

(Q̄∗n − Q̄)

= −P0
E0(A|ḡ,Q̄∗

n,Q̄)−ḡ
ḡ

(Q̄∗n − Q̄).

By assumption, we have that ḡ = E0(A | Q̄,W r) since Q̄ is a function of W r.
In that case, we have

E0(A | ḡ, Q̄) = E0(E0(A | Q̄,W r) | ḡ, Q̄) = ḡ.

Let ḡr0,n = E0(A | ḡ, Q̄∗n, Q̄), and we assumed that

P0

ḡr0,n − ḡ
ḡ

(Q̄∗n − Q̄) = oP (1/
√
n).

This proves that Ψ1(Q̄∗n)−Ψ2(Q̄) = oP (1/
√
n).

This completes the proof of the theorem. 2
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