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Sensitivity Analysis for Causal Inference
Under Unmeasured Confounding and

Measurement Error Problems

Iván Dı́az and Mark J. van der Laan

Abstract

In this paper we present a sensitivity analysis for drawing inferences about param-
eters that are not estimable from observed data without additional assumptions.
We present the methodology using two different examples: a causal parameter
that is not identifiable due to violations of the randomization assumption, and a
parameter that is not estimable in the nonparametric model due to measurement
error. Existing methods for tackling these problems assume a parametric model
for the type of violation to the identifiability assumption, and require the devel-
opment of new estimators and inference for every new model. The method we
present can be used in conjunction with any existing asymptotically linear estima-
tor of an observed data parameter that approximates the unidentifiable full data
parameter, and does not require the study of additional models.



1 Introduction
A common problem in statistics and causal inference is the need to draw inferences and test hypothe-
ses about phenomena based on partially observed data. Examples of this situation are given by causal
inference, measurement error, and missing data problems.

Causal parameters are defined in terms of a counterfactual stochastic process that measures what
would happen to a subject under a system that enforces the value of the exposure variable. Since the
researcher can only observe the outcome under the actually observed exposure, causal inference problems
are often presented as regular inference problems with a partially observed counterfactual process. A
fundamental assumption that allows the identification of parameters in missing data and causal inference
problems is that the missingness or exposure mechanism does not depend on unmeasured factors that
are causally related to the outcome. This assumption has been referred to as missing at random [MAR
Rubin, 1976], non-ignorability, selection bias, and sequential randomization assumption [SRA, see e.g.,
van der Laan and Robins, 2003] depending on the context and working paradigm, and is closely related
to a more general assumption for estimation in missing data problems called coarsening at random [CAR,
see e.g., Heitjan and Rubin, 1991, Gill et al., 1997]. Under violations to the CAR assumption, the full
data parameter of interest cannot be identified only from the distribution of the observed data without
additional untestable assumptions.

In measurement error problems the exposure or outcome variable is usually completely unobserved,
and a surrogate variable is observed in its place. Causal parameters are often non parametrically uniden-
tifiable if the exposure or outcome of interest is not measured or measured with error, unless the error
measurement model is known.

A commonly used method for identifying the otherwise unidentifiable parameter of interest is to
assume parametric models that encode stringent assumptions about the data generating mechanism. This
approach has been widely used for causal inference, missing data, and measurement error problems.
Despite their generalized use, it is widely accepted that parametric models are very often misspecified,
and that incorrectly specified parametric models lead to unmeasurable amounts of bias in estimation of
the parameter of interest.

An alternative approach, employed in this article, is to define a sensitivity parameter that quantifies the
severity of the violation to the identifiability assumption (e.g., SRA, MAR, measurement error), test the
hypothesis of interest for each value of this parameter, and translate subject-matter expert knowledge on
the plausibility of each value of the sensitivity parameter into a decision about the hypothesis of interest.
This approach has been extensively used in the statistical literature, and was originally developed by
Rotnitzky et al. [1998]. In their original article, Rotnitzky et al. assume parametric models for the
outcome regression and missingness (or treatment) mechanism, and find regular asymptotically linear
(RAL) estimators of the parameters of the outcome regression model. In the same paper, Rotnitzky et al.
introduce a sensitivity analysis in terms of a parametric model for the missingness mechanism. They
propose to estimate the outcome regression model under several values of an unidentifiable parameter
α that relates the unobserved outcome to the missingness mechanism, and decide on the plausibility
of each α value based on subject-matter expert knowledge. In their approach, α = 0 corresponds to
a situation in which the CAR assumption is satisfied, and α > 0 measures deviations from CAR in
a particular direction. For each α > 0, they present an estimator of the desired full data parameter,
whose inference requires the development of new methods compared to the estimators developed for
α = 0. This approach is further developed in a series of subsequent articles [Scharfstein et al., 1999,
Robins et al., 1999, Rotnitzky et al., 2001, Scharfstein and Robins, 2002]. In particular, Scharfstein
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et al. [1999] extend the approach to allow the specification of the missingness mechanism in terms of a
Cox proportional hazards model, and Robins et al. [1999] present a detailed study of the properties of this
methodology in a variety of data structures and semiparametric models. Because the sensitivity parameter
α introduced in their work depends on the functional form of the (semi) parametric model posed for the
missingness mechanism, it may not have an intelligible interpretation that is easily communicable to the
subject-matter expert, who is expected to judge on the plausibility of each of its values.

In this paper we propose a sensitivity analysis for drawing inferences about unidentifiable parameters
in which the sensitivity parameter is given by a bound on the difference between an observed data param-
eter and the full data parameter. The observed data parameter may be defined as the parameter that would
identify the full data parameter if the appropriate assumption had been satisfied. For instance, in missing
or counterfactual data structures, the observed data parameter may be given by the parameter that would
identify the causal parameter under the CAR assumption. In error measurement problems, the observed
data parameter may defined as the parameter that identifies the causal effect assuming that the surrogate
variable equals the unobserved variable. The estimators and confidence intervals we present come at no
additional cost, only the specification based on subject-matter expert knowledge of a plausible range of
values for the difference between the causal and observed data parameter.

The paper is organized as follows. In section 2 we describe the general estimation problem and
present two motivating examples: the first one about effectiveness of a treatment for the Chagas disease
under informative dropout, and the second one about the effect of physical activity on mortality in the
elderly under measurement error. In section 3 we describe the proposed sensitivity analysis, and present
the results of the analysis of the two examples. Finally, in section 4 we present a brief comparison with
methods in the existing literature.

2 Data and examples
Let X = {X1, . . . , Xp} be a set of observed temporally ordered random variables governed by a non
parametric structural equation model (NPSEM) described by three elements: a set of functions f1, . . . , fp,
a set of parents of Xi denoted by pa(Xi) ⊆ {X1, . . . , Xi−1}, and a set of unobserved random variables
U1, . . . , Up. The NPSEM is given by Xi = fi(pa(Xi), Ui) : i = 1, . . . , p [Pearl, 2000]. Let F0 ∈ Mf

denote the joint distribution of (U,X), and let P0 ∈ M denote the distribution of X . HereMf andM
are models describing the set of allowed distributions for F0 and P0, respectively. The target parameter
of the full data distribution is given by Ψf : Mf → R, and its true value is denoted by ψf0 = Ψf (F0).
Identification assumptions usually refer to the set of assumptions posed on the modelMf that must be
made in order to write Ψf (F0) = Ψ(P0) for some map Ψ : M → R. For example, in a missing data
problem where W is a set of covariates and Y is an outcome observed only when a missingness indicator
C equals one, the assumption Y⊥⊥C|W (often referred to as missing at random (MAR)) is necessary
to prove that E(Y ) = EW{E(Y |C = 1,W )}, where the right hand side quantity is estimable from the
observed data alone. Identification of parameters in this context is discussed in more detail by Pearl
[2000], for example.

If the previous identifiability assumptions do not hold, the parameter Ψf
0 cannot be estimated from a

sample of the distribution P0 of observed data. A possible solution, exploited in this paper, is to define
an observed data parameter Ψ : M → R as an approximation to Ψf , and perform a sensitivity analysis
in terms of a sensitivity parameter δ0 satisfying ψ0 − ψf0 ≤ δ0. It is important to set up the problem in
terms of a sensitivity parameter δ0 that is equal to zero under CAR, so that it provides a true measure
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of the amount of unmeasured confounding (see example 1 below). In a causal inference problem, if the
randomization assumption is violated, Ψ may be defined by the parameter that would otherwise identify
Ψf . If, on the other hand, the source of unidentifiability is measurement error in the exposure variable, Ψ
may be given by the parameter that identifies Ψf under the (false) assumption that the surrogate exposure
is equal to the unobserved exposure. The null hypothesisH0 : ψf0 ≤ 0 can then be tested for each value of
δ0, empowering the researcher with a tool to make decisions according to his subject-matter knowledge
on the parameter δ0. The amount and quality of knowledge available about δ0 is specific to the problem,
and depends on the definition of the parameter Ψ. Some examples will be discussed next.

Example 1. The Chagas disease is estimated to affect about 8 million people in Latin American en-
demic areas, with an additional 400.000 in the U.S. and Spain. Despite the public importance of the
disease, few rigorous research studies exists about the efficacy of currently available treatments. Because
of the long incubation periods of the disease (up to 30 years), the cost of the a well designed study to
assess the efficacy of different treatments is prohibitive, and a meta analysis of the existing literature is
necessary. The existing literature includes several observational studies with large number of drop-outs,
lost-to-follow-up, and unmeasured confounding, as well as statistical methods whose conclusions are
not reliable because they are not up to the state of the art in causal inference for observational studies.
A thorough review of the literature about the Chagas disease rendered 19 studies comprising about 520
patients. A standard meta analysis of these studies was not possible because of several methodological
issues: a) Many studies did not have a control group; b) There is very limited information about treatment
allocation in all the manuscripts; c) None of the studies reported baseline/confounder information (e.g.,
baseline health status, exposure to the vector, etc.); and d) Many of the studies presented large numbers
of lost to follow-up and drop-outs. In terms of treatment assignment, the previous points imply that these
studies cannot be considered randomized, and that there may be an important amount of unmeasured
confounding (e.g., treatment was allocated according to unmeasured baseline status of the infection).
Additionally, since patients drop out of the study as a consequence of the worsening or improving of
their health condition, lost to follow-up and drop out were often related to the unobserved outcome.

This problem can be set up in terms of the notation of this paper as follows. Assume the following
NPSEM:

S = fS(US)

W = fW (S, UW )

A = fA(S,W,UA)

∆ = f∆(S,W,A, U∆)

Y = fY (S,W,A, UY )

Y ∗ =

{
NA if ∆ = 0 and A = 0

∆Y otherwise

where S denotes the study, W denotes a set of unmeasured baseline characteristics, A denotes treatment
allocation, ∆ denotes a missingness indicator, Y denotes an indicator of cure, and Y ∗ is the partially
observed outcome Y . Note that Y ∗ = 0 whenever ∆ = 0 and A = 1, so that we impute all treated
missing patients as “not cured”. The objective of this analysis is to estimate the causal effect among the
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treated, given by

Ψf (F ) =EF (Y1 − Y0|A = 1)

≡ Ψf,1(F )−Ψf,0(F ),

where

Ψf,a(F ) =EF (Ya|A = 1)

=
∑
s

EF (Ya|S = s, A = 1)P (S = s|A = 1),

and Ya = fY (S,W, a, UY ) is a counterfactual of Y ∗ obtained by setting (∆, A) = (1, a) with probability
one. Define the observed data parameter

Ψ(P ) = EP (Y ∗|A = 1)− E(Y |∆ = 1, A = 0).

Under the randomization assumption that (∆, A)⊥⊥Ya for a ∈ {0, 1}, Ψf,a(F ) would be identified in
terms of the observed data distribution as Ψa(P ) = EP (Y ∗|∆ = 1, A = a). This randomization as-
sumption is violated because both the missingness mechanism and the treatment mechanism depend on
the unobserved variable W that is also causally related to the outcome. Note that under our imputation
approach, EP (Y ∗|A = 1) is a conservative approximation of Ψf,1. That is

E(Y ∗|A = 1) = E(∆Y1|A = 1) ≤ E(Y1|A = 1). (1)

Since the randomization assumption does not hold and Ψf is not estimable from the observed data, we
will approximate it with the observed data parameter Ψ(P ), and establish an upper bound δ0 on ψ0 − ψf0
(here ψ0 = Ψ(P0) and P0 is the true distribution of the observed data) which will be used as sensitivity
parameter. For that purpose, we note that given (1), we have

ψ0 − ψf0 ={EF0(Y0|A = 1)− EP0(Y |∆ = 1, A = 0)}+ {EP0(Y
∗|A = 1)− EF0(Y1|A = 1)}

≤EF0(Y0|A = 1)− EP0(Y |∆ = 1, A = 0)

≡ δ0.

Note that δ0 = 0 under CAR. We will now test the hypothesis of no effect of treatment for a range of
plausible values of δ0. In this example, knowledge about the plausibility of each value δ0 can be obtained
by finding independent bounds on each of its terms. One one hand, the parameter EF0(Y0|A = 1) is
the probability of cure for the treated population had they not been treated (also called probability of
spontaneous cure from now on) and can be bounded based on subject-matter expert knowledge. On the
other hand, EP0(Y |∆ = 1, A = 0) will be replaced by its most conservative value: zero.

Example 2. Tager et al. [1998] followed a group of people over 55 years of age living around Sonoma,
CA, over a time period of about ten years as part of a longitudinal study of physical activity and fitness
(Study of Physical Performance and Age Related Changes in Sonomans - SPPARCS). The goal in analyz-
ing the data that were collected as part of this study is to examine the effect of baseline vigorous physical
activity on subsequent five-year all-cause mortality. Vigorous physical activity is often measured in terms
of Metabolic Equivalents of Tasks (MET), which is a physiological measure expressing the energy cost
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of physical activities. One MET is approximately equal to the energy produced per unit surface area of
an average person sitting quietly.

Since the actual amount of vigorous physical activity in METs is not measurable, Tager et al. used
a questionnaire in which participants were asked how many hours during the past seven days they had
participated in twelve common vigorous physical activities, such as jogging, swimming, bicycling on
hills, or racquet-ball. A surrogate measure for LTPA (Leisure Time Physical Activity), is thus given
by a continuous score based on the number of hours that the participants reported engagement in these
activities during the last seven days, and the approximate intensity values in METs of each activity.

These data were previously analyzed by Bembom and van der Laan [2007] and Dı́az and van der Laan
[2012]. In particular, Dı́az and van der Laan considered the question of assessing the causal effect of a
population intervention that causes a shift of 12 METs in the distribution of vigorous physical activity—
corresponding, for instance, to bicycling during three hours at less than 10MPH per week—assuming
that the exposure was measured without error. Dı́az and van der Laan showed that the effect of such
intervention would be a reduction of the risk of all cause mortality in the elderly of 1.79% (0.71%).

This problem can be set up as follows. Assume that the following NPSEM holds:

W = fW (UW ); A = fA(W,UA); A∗ = fA∗(A,W,UA∗); Y = fY (A,W,UY ), (2)

where A is the (unmeasured) true physical activity in METs, A∗ is the surrogate physical activity dis-
cussed above, W represents a set of measured confounders (e.g., gender, age, health status, smoking,
etc.), Y is an indicator of subsequent five-year mortality, and UW , UA and UY are exogenous random
variables. For the sake of discussion assume that the randomization assumption holds (i.e., UA⊥⊥UY |W ),
but the analysis presented here is also valid without it.

As explained by Dı́az and van der Laan [2012], the intervention of interest in this case can be defined
by the intervened NPSEM:

W = fW (UW ); Aε = fA(W,UA) + ε; A∗
ε = fA∗(Aε,W, UA∗); Yε = fY (Aε,W, UY ), (3)

with ε = 12, and the effect of such intervention on mortality would be identified by

Ψf (F ) ≡ EF (Y − Yε) = EP{Y − EP (Y |A+ ε,W )},

if A had been measured. Clearly, since A is not observed the latter quantity is not estimable. Therefore,
we will define the observed data parameter

Ψ(P ) = EP{Y − EP (Y |A∗ + ε,W )}, (4)

and perform a sensitivity analysis in terms of the difference

δ0 = ψ0 − ψf0 = EP0{EP0(Y |A+ ε,W )− EP0(Y |A∗ + ε,W )},

which measures the difference between the true effect and the effect as approximated by Ψ(P0). As
discussed by Hernán and Cole [2009], A∗ cannot possibly have a causal effect on Y , and “the assumption
implicit in many epidemiologic analyses is that the association between A∗ and Y approximates the
causal relation between A and Y ”. We therefore present a way of explicitly defining such association,
and quantifying the extent to which that implicit assumption can be considered to hold.
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3 Sensitivity analysis
In a general formulation of causal inference problems it is often of interest to establish whether an in-
tervention of interest has a positive effect on the population. This hypothesis testing problem can be
described in terms of the hypothesis system

H0 : ψf0 ≤ 0 vs H1 : ψf0 > 0,

for an appropriately defined full data parameter ψf0 = Ψf (F0). Let Pn denote the empirical distribution
of the observed data O, and let Ψ̂ :M→ R be an asymptotically linear estimator of ψ0. That is

ψn − ψ0 =
1

n

n∑
i=1

D(Oi) + oP (1/
√
n),

where ψn = Ψ̂(Pn), and D is the influence function of Ψ̂: a mean zero function of O that depends on P0.
Thus, the variance of an asymptotically linear estimator can be estimated as

σn =
1

n2

n∑
i=1

Dn(Oi)
2

where Dn is an estimator of D. We will use the statistic Tn = ψn/σn to test the hypothesis H0, rejecting
H0 if Tn > c.

3.1 Cut-off based on hypothesized value of sensitivity parameter.
Define a sensitivity parameter δ0 such that δ0 ≥ ψ0 − ψf0 . In particular, δ0 may be defined as ψ0 − ψf0 ,
but the methodology that we present can also be used for an upper bound on ψ0 − ψf0 . The interpretation
of such upper bound may be more intelligible by a subject-matter expert, as in our example 1 above.

Consider the type I error probability

PH0(Tn > c) = PH0{ψn − ψ0 + (ψ0 − ψf0 ) + ψf0 > cσn}.

Since ψf0 ≤ 0 under H0, we have

PH0(Tn > c) ≤ PH0{ψn − ψ0 + (ψ0 − ψf0 ) > cσn},

and since ψ0 − ψf0 ≤ δ0, we obtain

PH0(Tn > c) ≤ PH0{ψn − ψ0 + δ0 > cσn}
= PH0{Zn > c− d0},

where
Zn =

ψn − ψ0

σn

d→ N(0, 1) and d0 =
δ0

σn
.

We need a value c such that c− d0 ≥ zα, where P (Zn > zα) = α, so that the probability of type I error
is less than or equal to α. Let t be the observed value of Tn. Consider Φ {c− d0} = α, where Φ is the
standard normal distribution. For a given value d0, we can solve this equation in c giving c(d0) = zα+d0.
Therefore, given a hypothesized value of d0, we will reject the null hypothesis of no treatment effect if
t > c(d0).

6 http://biostats.bepress.com/ucbbiostat/paper303



3.2 Determining all hypothesized values of sensitivity parameter under which the
null hypothesis is rejected.

Let d∗ be the value that solves c(d0) = t, which is given by d∗ = t − zα. This value d∗ is critical
since all the values of d0 below d∗ will lead to a rejection of the null hypothesis of no treatment effect.
Equivalently, all values of δ0 such that

δ0 ≤ σn(t− zα)

result in rejection of the null hypothesis of no treatment effect at a type I error of α.
Thus, if it can be argued, based on subject matter knowledge and the observed data that δ0 ≤ σn(t−

zα), then the test would reject the null hypothesis of no treatment effect with a probability of type I error
less than or equal to α. Alternatively, a plot of δ(α) = σn(t − zα) shows the bounds on δ0 that lead to
rejection of the null hypothesis of no effect at each probability of type one error α.

Example 1. In our working example, the test statistic Tn will be given by

Tn =
ψn
σn
,

where ψn is the non parametric estimator of

Ψ(P ) =
∑
s

{
E(Y ∗|S = s, A = 1)P (S = s|A = 1)

− E(Y |S = s,∆ = 1, A = 0)P (S = s|∆ = 1, A = 0)

}
obtained by replacing the population probabilities with sample probabilities. The standard error is com-
puted as

σn =

√∑
s

{
w2
s,1

ψ1
n,s(1− ψ1

n,s)

ns,1
+ w2

s,0

ψ0
n,s(1− ψ0

n,s)

ns,0

}
,

where ns,1 is the number of treated patients in study s, ns,0 is the number of observed untreated patients
in study s, ws,a = P̂ (S = s|A = a) = ns,a/

∑
s ns,a, and ψ1

n,s is the sample probability of Y ∗ = 1 among
treated patients, and ψ0

n,s is the sample probability of Y = 1 among observed, untreated patients. The
computation of the quantities defined in the previous section results in the values t = 23.35, σn = 0.0202,
and δ(0.05) = 0.4394.

For the sake of interpretation we will now translate the previous bound on δ0 into a bound on the more
interpretable quantity EF0(Y0|A = 1). Recall that

δ0 = EF0(Y0|A = 1)− EP0(Y |∆ = 1, A = 0).

Replacing EP0(Y |∆ = 1, A = 0) by its most conservative value 0 implies that subject-matter knowledge
that E(Y0|A = 1) ≤ 0.4394 would be enough to reject the hypothesis of no effect of treatment at a type I
error probability smaller than α = 0.05. In many of the studies it was documented that for ethical reasons
the treatment was assigned to sicker patients, which would imply thatE(Y0|A = 1) ≤ E(Y0|A = 0). The
observation that EP0(Y |∆ = 1, A = 0) was estimated at 0.0184 is thus strong evidence that E(Y0|A =
1) ≤ 0.4394 holds.

Figure 1(a) shows the different bounds on δ0 for rejecting the null hypothesis with different probabil-
ities of type I error.
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(a) Example 1.
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Figure 1: Upper bounds on δ0 for which null hypothesis of no treatment effect is rejected at different
probabilities of type I error α.

Example 2. Dı́az and van der Laan [2012] presented a targeted minimum loss based estimator [TMLE,
see e.g., van der Laan and Rubin, 2006, Rose and van der Laan, 2011] for the parameter Ψ(P ) defined
in (4). TMLE is a loss-based semi-parametric estimation method that yields a substitution estimator
of a target parameter of the probability distribution of the data that solves the efficient influence curve
estimating equation, and thereby yields a double robust locally efficient estimator of the parameter of
interest, under regularity conditions.

In the original paper, Dı́az and van der Laan [2012] found ψn = 0.0179 and σn = 0.0071. Figure
1(b) shows the function δ0(α) = σn(t − zα), defined as the bound on δ0 that leads to a rejection of the
hypothesis of no effect for different probabilities of type I error α. This figure shows that if the difference
between the probabilities of death E{E(Y |A+ 12,W )} and E{E(Y |A∗ + 12,W )} is as large as 0.8%,
then the hypothesis of no effect of the intervention is rejected at a type I error probability of less than 0.1.
In particular, if ψf0 = ψ0, then the hypothesis of no effect of the intervention is rejected with a probability
of type I error smaller than 0.01.

3.3 Estimator and confidence interval for each value of sensitivity parameter
As a by-product of the procedure described above, analogue to the point and interval estimators presented
by Robins, Scharfstein, and Rotnitzky in their series of articles, if the sensitivity parameter is defined as
δ0 = ψ0 − ψf0 , it is possible to construct an asymptotically linear estimator of the causal parameter as
a function of each hypothesized value δ0. That is, if δ0 = δ is known, the estimate of ψf0 is given by
ψfn(δ) = ψn− δ, with standard error given by σfn = σn. A (1− α)100% confidence interval is thus given
by (ψn − δ − zα/2σn, ψn − δ − zα/2σn), and can be computed for a range of values δ defined based on
subject-matter expert knowledge at no additional analytical or computational cost.
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3.4 A generalization of the sensitivity analysis
The sensitivity analysis presented in this section can be generalized as follows. Consider a function f
such that it can be established that ψf0 ≥ f(ψ0, δ0) for an observed data parameter ψ0 (that needs not
approximate ψf0 ) and a sensitivity parameter δ0. In such case, the untestable hypothesis of no causal
effect H0 : ψf0 ≤ 0 implies the hypothesis H1

0 : f(ψ0, δ0) ≤ 0, which can be tested for a range of user-
given values of the sensitivity parameter δ0. Rejecting H1

0 with a probability of type I error smaller than
α will thus lead to rejection of H0 with at most the same probability of type I error.

The analysis presented above for example 1 is equivalent to this analysis with f(ψ0, δ0) = ψ0 − δ0,
ψ0 = E(Y ∗|A = 1) − E(Y |∆ = 1, A = 0), and δ0 = E(Y0|A = 1) − E(Y |∆ = 1, A = 0). Notice,
however, that the choice of observed data parameter and sensitivity parameter is not unique, since the
choice ψ∗

0 = E(Y ∗|A = 1), and δ∗0 = E(Y0|A = 1) would also satisfy the condition ψf0 ≥ f(ψ∗
0, δ

∗
0).

Thus, the hypothesisH0 : ψf0 ≤ 0 implies the hypothesisH1
0 : E(Y ∗|A = 1) ≤ δ∗0 which can be tested for

a set of fixed values of δ∗0 . The latter choice of sensitivity and observed data parameters has two important
consequences on the results of the analysis: first, for a given value of δ0 the sample size is reduced because
only the treated patients are used to test the hypothesis H0; and second, the sensitivity parameter does
not equal zero if the CAR assumption holds, which means that additional information about the location
of the sensitivity parameter must be known. The convenience of a specific choice of sensitivity and
observed data parameter must therefore be determined taking into account these consequences, as well
as the simplicity of interpretation of the sensitivity parameter and the amount of information available
about it.

4 Comparison with existing methods
Existing approaches for sensitivity analysis under violations to the CAR assumption require the specifi-
cation of a parametric model for the treatment mechanism or measurement error that relates the observed
exposure to the unmeasured counterfactuals through a sensitivity parameter α0 [see e.g., Rotnitzky et al.,
1998, Scharfstein et al., 1999, Robins et al., 1999, Rotnitzky et al., 2001, Scharfstein and Robins, 2002].
Estimation of the parameter of interest ψf0 is then carried out for a set of possible values of α0 through
a model-dependent and often complex estimator, and a decision about the original question of interest is
made based on these estimates together with auxiliary subject-matter expert information about α0. How-
ever, the parameter α0 usually has a complex interpretation that is very difficult to communicate to the
subject-matter expert, who is expected to provide auxiliary information about it. In addition, since para-
metric models are seldom correct, these sensitivity parameters are often ill-defined and do not even have
the complex interpretation that is originally intended. Furthermore, even if these issues are overcome and
a parametric model is known to contain the true measurement error or treatment mechanism, the develop-
ment and computation of estimators for the causal quantity of interest are often overly and unnecessarily
complex, and lead to sub-optimal estimators that do not enjoy desirable statistical properties like double
robustness, which only hold in the case α = 0 (i.e., when the CAR assumption holds). To illustrate some
of these ideas, consider the case of example 2 above. It is common practice to assume a normal mean
zero model for the measurement error:

A∗ = A+ ν, ν ∼ N(0, α2
0), ν⊥⊥A ν⊥⊥W. (5)
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The parameter of interest ψf0 can then be written as a function of the standard deviation α0 of the mea-
surement error:

ψf0 = E0{Y − E0(Y |A+ ε,W )},

where the outer expectation is taken with respect to the joint density of (A,W ), and the density gA of
A conditional on W can be identified in terms of the density gA∗ of A∗ given W . Though possible, this
identification result is often a hard problem, since it requires using inverse characteristic functions. From
model (5), note that the characteristic function of A conditional on W is given by

ϕA(t|W ) =
ϕA∗(t|W )

ϕν(t)
,

where ϕA∗(t|W ) and ϕν(t) are the characteristic functions of A∗ and ν conditional on W given by

ϕA∗(t|W ) =

∫
R
gA∗(a|W ) exp(ita)da

ϕν(t) = exp

(
−1

2
α2

0t

)
.

Thus, using the inversion formula the density of A can be identified from the density of A∗ (conditional
on W ) as

gA(a|W ) =
1

2π

∫
R

exp

(
1

2
α2

0t− iat
)
ϕA∗(t|W )dt. (6)

The expectation E0(Y |A,W ) can be identified using similar arguments. It can be seen from these equa-
tions that the parameter (and thereby its efficient influence function) depends on α0 in a very complex
way, and thus a new evaluation of the estimator must be performed for each hypothesized value of α0. In
addition, because evaluation of the parameter requires the use of computer-intensive numerical methods
for the computation of the integral in (6), this complex dependence of the parameter on α0 represents an
important disadvantage of this method compared to the method presented in section 3 above, in which
an existing estimate of the observed data parameter was used to carry out the sensitivity analysis and no
additional analytical or computational tools were necessary.

The approach presented in this paper overcomes the difficulties described above in various fronts.
First, the sensitivity parameter is defined as a difference between the target quantity and an estimable
quantity, thus providing a more straightforward account of the amount of unmeasured confounding as
relevant for the specific outcome and parameter of interest. Second, since the parameter of interest is
defined as ψf0 = ψ0 − δ0, the estimate of ψ0 has to be computed only once, providing an important
advantage compared to methods in which an estimate must be computed for each value of the sensitivity
parameter. Third, existing optimal estimators of ψ0 may be used, avoiding the analytical complexity that
α-specific estimators in the existing literature entail. Fourth, for each value of δ0, the estimator of ψf0
enjoys all the statistical properties of the estimator of ψ0 (e.g., double robustness and efficiency). Lastly,
since the measurement error model presented in NPSEM (2) is completely non-parametric, the validity
of the results of a sensitivity analysis for δ0 is not compromised by possible misspecifications of the
measurement error model.

An important similarity between both approaches is the need for auxiliary subject-matter information
on a range of plausible values for the sensitivity parameter (either δ0 or α0). In our measurement error
example, it may be the case that the subject-matter expert has auxiliary information about the standard
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deviation α0 of the measurement error, but not about the amount of unmeasured confounding δ0. In
the following subsection we will present a way of translating knowledge about a parameter α0 in a
parametric model for the treatment or measurement error mechanism into knowledge about the amount
of unmeasured confounding δ0 = ψ0 − ψf0 , so that the sensitivity analysis can be performed as presented
in section 3.

4.1 Translating knowledge about α0 into knowledge about δ0
In certain situations it is possible that the amount of unmeasured confounding as measured by the differ-
ence ψ0 − ψf0 is completely unknown, and that subject-matter knowledge about it can only be obtained
through a sensitivity parameter α0 in a parametric model. For instance, Scharfstein et al. [1999] propose
a sensitivity analysis in which knowledge about a sensitivity parameter α0 that represents the log hazard
ratio for drop-out between subjects with the same baseline covariates but who differ by 1 in their outcome
is available. In our example 2, if the measurement error is known to follow model (5), a range of plausible
values for α0 may also be known.

In these cases, the range of plausible values for the parameter α0 can be mapped into a range of
plausible values for the sensitivity parameter δ0 = ψ0 − ψf0 by noting that the full data parameter can
be written as a function of the observed data distribution and the parameter α as δ(α, P0) = Ψ(P0) −
Ψf (α, P0). In example 2, assuming model (5), application of this formula results in

δ(α, P0) = EW,0

∫
E0(Y |A+ ε,W )gA(a|W ) da− E0{E0(Y |A∗ + ε,W )}, (7)

where gA is a function of gA∗ given by (6), andE0(Y |A+ε,W ) can be written as a function ofE0(Y |A∗+
ε,W ) and gA∗ . Note that (7) depends on α and Q(P0) = (E(Y |A∗,W ), gA∗(A∗|W ), QW (W )), where
QW denotes the marginal distribution of W . For a given range of plausible values for α, the correspond-
ing range of plausible values for δ can be found by plugging in α and a sensible estimate of Q(P0).
In our example, estimates of E(Y |A∗,W ) and gA∗(A∗|W ) may be obtained through machine learning
methods (such as the super learner [van der Laan et al., 2007]), and the marginal distribution of W may
be estimated with its empirical counterpart. Once the range of plausible values for δ0 is obtained, the sen-
sitivity analysis can be carried out as described in section 3 making full use of the advantages previously
described.
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