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Vertically Shifted Mixture Models for
Clustering Longitudinal Data by Shape

Brianna C. Heggeseth and Nicholas P. Jewell

Abstract

Longitudinal studies play a prominent role in health, social and behavioral sci-
ences as well as in the biological sciences, economics, and marketing. By follow-
ing subjects over time, temporal changes in an outcome of interest can be directly
observed and studied. An important question concerns the existence of distinct
trajectory patterns. One way to determine these distinct patterns is through cluster
analysis, which seeks to separate objects (subjects, patients, observational units)
into homogeneous groups. Many methods have been adapted for longitudinal
data, but almost all of them fail to explicitly group trajectories according to dis-
tinct pattern shapes. To fulfill the need for clustering based explicitly on shape,
we propose vertically shifting the data by subtracting the subject-specific mean
directly removes the level prior to fitting a mixture modeling. This non-invertible
transformation can result in singular covariance matrixes, which makes mixture
model estimation difficult. Despite the challenges, this method outperforms exist-
ing clustering methods in a simulation study.



1 Introduction

A key advantage of a longitudinal study is its ability to measure individual change over time
and to distinguish between “aging” affects and cohort variability. Typical longitudinal data
analysis often involves modeling the conditional mean outcome as a function of time and
explanatory variables while taking the inherent time dependence into account. This type of
analysis provides a useful summary of relationships present within observed groups defined
by categorical variables such as race/ethnicity or sex; however, if there are unmeasured
subgroups in which the relationships differ, focusing only on the mean masks interesting and
useful patterns. In these circumstances, it is more informative to partition the subjects into
data-driven groups to estimate the relationships.

Cluster analysis methods have been adapted and developed specifically for approaching
longitudinal data in this way, focusing on estimating trajectory groups in genomics and
behavioral and cognitive development [18, 22, 29, 27]. Most of these methods involve fitting
a finite mixture model to the outcome vectors. Other techniques cluster subjects via a
partitioning method such as K-means [25, 19] or partitioning around mediods (PAM) [23]
using on a dissimilarity measure developed specifically to take the time-ordered structure of
longitudinal data into account.

These clustering methods are now being applied in other fields such as clinical medicine,
public health, education, and economics. For example, researchers are attempting to discover
distinct childhood growth patterns by clustering body mass index measurements over time
with a view to determining which early life factors may contribute to following that pattern
[31, 2]. The goal is to group children who grow similarly over time; however, none of the
popular clustering methods explicitly group subjects based on the shape of the pattern while
ignoring the trajectory level over time. Many authors have either been deceived or simply
misunderstand this fact and interpret their clustering results as if the data were grouped by
shape [31, 2, 30].

There has been little work and discussion on the best methods to utilize when shape,
as distinct from level, is the feature of interest. The few proposals involve partitioning
methods using dissimilarity measures based either on the derivative function or the Pearson
correlation coefficient.

With longitudinal data, we do not directly observe the derivative function for each indi-
vidual. Therefore, Möller-Levet et al. [28] and D’Urso [13] independently suggest estimating
the derivative function via the difference quotient, calculating the slope of a linear inter-
polation between adjacent repeated measures. The dissimilarity between two individuals is
measured as the squared Euclidean distance between the vectors of derivative estimates. As
a result, individuals are compared on the shape of their underlying trend over time ignoring
the original level of the data. Assume that the jth observed outcome for subject i at time
tij is a realization of the model

yij = fi(tij) + εij

for i = 1, ..., n and j = 1, ...,mi where εij
iid∼ (0, σ2

i ), fi is a subject-specific differentiable,
continuous function, and mi is relatively small (usually around 5 to 10). This clustering
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method essentially requires balanced data so the observations are fixed across individuals,
mj = m and tij = tj for j = 1, ..,m and i = 1, ..., n. This ensures the estimated slopes are
comparable between individuals. The forward difference quotient equals

f̂
′

i (tj) = (yi j+1)− yij)/(tj+1 − tj).

By the mean value theorem, this is an unbiased estimate of the true derivative, f
′
i (τ), at a

point τ ∈ [tj, tj+1] such that

E(f̂
′

i (tj)) = fi(tj+1)− fi(tj))/(tj+1 − tj) = f
′

i (τ).

However, the estimate is highly variable if σ2
i is large since

Var(f̂
′

i (τ)) = 2σ2
i /(tj+1 − tj)2.

Large variability in the estimates impacts the cluster analysis if enough estimates are far
from the true derivative. Imagine two vectors that have the same underlying function but
by chance, the noisy observations are on opposing sides of the function at every time point.
Thus, the estimate derivatives are opposite signs for each interval and will be placed in
separate groups despite the same underlying function. Now, one way to minimize the variance
is to maximize the time between observations. Observing only two observations, one at
baseline and another at the end of follow up, minimizes the variance but at the great expense
of observing the rate of change during the follow up period. If time of observations are
densely sampled, a functional approach smoothes out the noise using splines to estimate
the function and then the derivative function. In either circumstance, the derivatives are
independently estimated for each individual and there is no direct way to borrow strength
between individuals to better estimate the derivative even if some individuals are thought
to have a common shape.

The Pearson correlation coefficient has been used to measure dissimilarity between two
vectors based on the shape of the data [4, 14, 3]. In the context of functional clustering,
Chiou and Li [3] suggest using the functional correlation as a similarity measure to cluster
similar functions. Despite the wide use, there has been little to no discussion about how
well the correlation does to discriminate between shapes. In the multivariate setting, a
dissimilarity measure between two comparable vectors of equal length, x = (x1, ..., xm) and
y = (y1, ..., ym), based on the Pearson correlation coefficient equals

dCor(x,y) = 1− Cor(x,y)

where

Cor(x,y) =

∑m
j=1(xj − x̄)(yj − ȳ)√∑m

j=1(xj − x̄)2
√∑m

j=1(yj − ȳ)2

and x̄ = m−1
∑m

j=1 xj and ȳ = m−1
∑m

j=1 yj. Assume the data vectors are generated from
the same model presented for the derivative-dissimilarity measure. Imagine the data is
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observed with no noise, εij = 0 for i = 1, ..., n and j = 1, ...,m. A vector with an underlying
functional shape of f(x) is perfectly positively correlated with a vector with functional shape
af(x)+b where a, b ∈ R and a ≥ 0. As a result, two vectors that have the same shape but at
different levels have a dissimilarity of zero since the correlation coefficient equals 1. However,
two vectors that are multiples of each other are placed in the same cluster despite having
drastically different shapes. While this method succeeds in grouping individuals with the
same shape at different levels, it fails in the sense that is also groups individuals with different
shapes. Now, if the data is observed with error such that εij ∼ (0, σ2

i ), the dissimilarities
usually increase especially when the noise is large relative to the functional shape.

Now, if two vectors are error-free observations of a constant, horizontal function, f(x) = c
where c ∈ R, the correlation coefficient is undefined. When this type of data is observed
with noise, the correlation is on average zero but variable when the number of observations is
small and the magnitude of noise is large. In other words, the Pearson correlation coefficient
cannot consistently detect that two horizontal vectors have the same shape. This methods
fails to group by shape when the variance of the noise, σ2

i , is large, the number of observations
is small, and the data set includes horizontal patterns over time. These characteristics do not
get discussed in the literature, but they have huge ramifications for clustering longitudinal
data.

Both of these proposals implicitly remove the level while clustering, but they fail to detect
shape when data is observed with high noise. Additionally, these dissimilarity measures
based on comparing vectors are not conducive to use on irregularly sampled longitudinal
data with inconsistent observation times. Also, the partitioning methods do not provide
a way to estimate the impact of baseline factors on group membership while taking into
account membership uncertainty.

In this paper, we propose vertically shifting each subject by subtracting its mean before
fitting a multivariate mixture model in order to cluster longitudinal data by the shape over
time. This method provides a probability framework and works with irregularly sampled
longitudinal data. In Section 2, we discuss related work and then we present the model
specification and provide details for the mean and covariance structure in Section 3. Imple-
mentation including parameter estimation is discussed in Section 4. We discuss challenges
when modeling the transformed data in Section 5. Lastly, a simulation study demonstrates
the merits of the proposed method in comparison to standard clustering methods and those
that explicitly attempt to group based on shape in Section 6.

2 Related Work

A finite mixture model is a standard method for clustering multivariate data [16] and has
been used for longitudinal applications [29, 22]. See [26] for an extensive summary of finite
mixture models. However, for longitudinal data, the models are commonly used for the
observed data without much regard to the goal of clustering by shape.

We suggest removing the level by subtracting out the mean outcome level prior to mod-
eling. Subtracting the mean is not a novel idea in statistics or even cluster analysis. In fact,
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experimental data such as gene expression microarrays are often normalized to compensate
for variability in the measurement device between samples. In cluster analysis of multi-
variate data, it is recommended that each variable is standardized by subtracting the mean
of the variable measures and dividing by the standard deviation so that each standardized
variable is in comparable units and equally contributes to the grouping process. This is not
recommended for the longitudinal setting where each variable is a repeated measurement at
a different time point. To compare shapes, we want to maintain the original scale since the
relationship between measurements within individuals is of interest. Therefore, any trans-
formation performed should only be additive in nature to preserve the original shape of the
data over time. In general, pre-processing the data can provide a path to answering the re-
search question but any transformation of the data should be carefully studied for potential
unintended consequences.

A version of this idea has been implemented in the functional data analysis literature.
For processes in a Hilbert space of square integrable functions with respect to the Lebesgue
measure, dt, on the interval T = [0, T ], Chiou and Li [3] propose using a mixture model and
the Karhunen-Loève expansion for centered stochastic processes within their correlation-
based clustering algorithm. The integral of the random function over interval T divided
by T , the length of the interval, is subtracted to center the process; the resulting process
integrates to zero. The integral of the process is the functional analogue to a mean vector
in vector space; similarly, the resulting vector has mean zero after subtraction.

Although centering a process and a shifting a vector stems from the same idea, there are
distinct consequences of subtracting the estimated level of a noisy curve observed at a finite
number of points that do not arise when centering a smooth function. The term centering
is used in the stochastic processes literature, but we use the term vertically shifting to refer
to the procedure of subtracting the mean since it graphically describes the transformation
of the noisy longitudinal data.

3 Model Specification

Let yi = (yi1, ..., yimi
) denote an outcome vector of repeated observations for individual i,

i = 1, ..., n. The vector of corresponding times of observation for individual i is denoted
as ti = (ti1, ..., timi

) and wi is a q-length design vector based on time-fixed factors that are
typically collected at or before time ti1. We assume that there are K mean shape functions,
µk(t), in the population such that the outcome vector for individual i in shape group k is

yi = λi1mi
+ µi + εi, λi ∼ F, εi ∼ N(0,Σk)

where F is a probability distribution, 1mi
is a m-length vector of 1’s, and µij = µk(tij) is the

jth element of a mi-length vector of mean values evaluated at the observation times, ti. The
outcome vector is determined by a mean shape function, a random intercept, and potentially
correlated random errors. The probability of being in a particular shape group could depend
on baseline covariates in the vector wi. Let ȳi = m−1i

∑mi

j=1 yij = λi + µ̄i + ε̄i be the mean
of the outcome measurements for individual i. This measure of the vertical level of the data
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vector can be removed by applying a linear transformation, Ai = Imi
−m−1i 1mi

1Tmi
, to the

vector of observations. The vertically shifted vector for individual i equals

y∗i = Aiyi

= Ai(λi1mi
+ µik + εi)

= Ai(µi + εi)

= µi − µ̄i + εi − ε̄i.

Applying the symmetric matrix Ai to the vector yi subtracts the individual mean, ȳi, from
each element yi. This results in the removal of the random intercept, λi, leaving the mean
function evaluated at the observation times plus random error shifted by a random constant,
µ̄i + ε̄i. Clearly, we do not have to worry about F , the distribution of the random intercept,
or any other time-fixed factors that only impact the level of the outcome.

Once the level is removed, we assume the vertically shifted data, y∗i , follow a Gaussian
mixture of K groups with mean shape functions and random errors. If the observation times
are fixed, vertically shifted data generated from the model above would exactly follow this
Gaussian mixture. Thus, conditional on observation times t and baseline covariates w, y∗

is assumed to be a realization from a finite mixture model with density

f(y∗|t,w,θ) =
K∑
k=1

πk(w,γ)fk(y
∗|t,θk)

where πk(w,γ) is the prior probability of being in the kth component given baseline covari-
ates, w. The full vector of parameters for the model is θ = (γ,θ1, ...,θK). To allow baseline
covariates to impact the probability of having a certain shape pattern over time, the prior
probabilities are parameterized using the generalized logit function of the form

πk(w,γ) =
exp(wTγk)∑K
j=1 exp(wTγj)

for k = 1, ..., K where γk ∈ Rq, γ = (γ1, ...,γK), and γK = 0. For continuous outcome
vectors, the component densities fk(y

∗|t,θk) are multivariate Gaussian densities with mean
and covariance dependent on time.

3.1 Mean Structure

To focus on shape, the mean is modeled as a smooth function of time represented by a chosen
functional basis. If the shape is periodic in nature, a Fourier basis is appropriate. Another
common basis is a lower order polynomial basis such as {1, t, t2}. However, this basis cannot
capture complex shapes with drastic, local changes.

To allow for flexibility in the functional shape, the observation time interval, [a, b], is
broken up into smaller interval using L knots, a < τ1 < · · · < τL < b, and polynomials
of order p are fit in each subinterval. This piecewise polynomial can be expressed as a
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linear combination of truncated power functions and polynomials of order p. In other words,
{1, t, t2, ..., tp−1, (t − τ1)p−1+ , ..., (t − τL)p−1+ } is a basis for a piecewise polynomial with knots
at τ1, ..., τL. However, the normal equations associated with the truncated power basis are
highly ill-conditioned.

A better conditioned basis for the same function space is the B-spline basis [8, 34, 6,
9]. A B-spline function of order p with L internal knots, τ1, ..., τL, is defined by a linear
combination of coefficients and B-spline basis functions

µ(t) =

L+p∑
j=1

βjBj,p(t)

where the basis functions, Bj,p(t), are defined iteratively [10, 5]. Values from the pth order
B-spline basis functions taken at observation times ti can be used in a design matrix, xi, to
linearly model the mean vector. Thus, the mean of the kth shape cluster is approximated
by the linear function µk(t) =

∑L+p
j=1 βjBj,p(t). In the multivariate form, the mean vector at

observation times ti equals xiβk where βk = (βk,1, ..., βk,L+p).

3.2 Covariance Structure

There are many potential assumptions to be made about the covariance of the random devi-
ations from the mean. Here, we allow the covariances to differ between clusters. Since it is
common for longitudinal data to have sparse, irregular time sampling, the covariance matrix
needs structure to allow for parameter estimation as described by Jennrich and Schluchter
[21] in their seminal paper. A common parameterization is conditional independence with
constant variance where Σk = σ2

kImi
. This is typically an unrealistic assumption for lon-

gitudinal data since there is inherent dependence between repeated measures on the same
unit.

Compound symmetry, which is also known as exchangeable correlation, is a popular cor-
relation structure in longitudinal analysis where all repeated measures are equally correlated.
This is typically paired with constant variance such that Σk = σ2

k(ρk1mi
1Tmi

+ (1 − ρk)Imi
)

where −1 ≤ ρk ≤ 1 is the correlation between any two distinct measurements within an in-
dividual. This dependence structure describes the resulting correlation matrix of a random
intercept model.

Another structure that provides a compromise between the two is the exponential corre-
lation structure in which the dependence decays as the time between observations increases
such that [Σk]jl = σ2

k exp(−|tij − til|/rk) where rk > 0 is the range of the dependence. If
the range, rk, is small, the correlation decays quickly, but if the rk is large, there is long
range dependence between measurements within an individual. This structure is similar to
the correlation matrix generated from a continuous autoregressive model of order one such

that [Σk]jl = σ2ρ
|tij−till|
k where ρk is the correlation for measurements observed one unit of

time apart. If ρk = exp(−1/rk), then the two parameterization result in the same structure
if the correlation between two measures is constrained to be positive. This is a reasonable
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assumption for longitudinal data in the original form but it many not be acceptable for the
transformed data as discussed later.

All of the covariance structures mentioned above are associated with weakly stationary
processes with constant variance and correlation dependent only on the time lag between
observations. If the variance or correlation function is non-constant but varying continuously,
it could be potentially modeled as a function, but estimation is more difficult.

It is important to model the covariance structure correctly as misspecification can highly
impact mixture model results in terms of parameter estimates and the final clustering if the
groups are not well separated [20]. Transforming the data brings individuals with similar
shapes closer but also brings others closer as well. In general, this decreases the separation
between groups, which may force us to accurately model the correlation.

4 Implementation

Given a collection of independent observed outcome vectors from n individuals, y1, ...,yn.
The first step is to calculate the mean for each subject, ȳi, and subtract the subject-specific
mean from the observed outcome vector for i = 1, ..., n. This transformation results in
independent vertically shifted vectors, y∗1, ...,y

∗
n.

Then, the order of the spline and the number and location of internal knots for the
mean structure is chosen. The B-spline basis should be kept constant for all shape groups,
so the simplest way to select the number of knots is through visual inspection of the full
data set. If the most complex shape patterns is a lower order polynomial, no internal knots
are necessary. However, if the most complex function has local activity, adding knots and
increasing the order of the spline functions flexibly accommodates the twists and turns of
the mean patterns. In choosing both the order of the polynomials and the number of knots,
it is important to balance the number of mean parameters with the sample size. Every unit
increase in the order or in the number of knots increases the number of parameters by K,
the number of groups. In terms of location of the knots, one suggestion is to place knots
at sample quantiles based on the sampling times of all the observations [33]. However, this
strategy may not work well if the median time is not the point of deviation from a regular
polynomial. If possible, it is best to place knots at local maxima, minima, and inflection
points of the overall trends as to accommodate the differences from a polynomial function
[15]. Once these are decided, the design matrices, xi, are calculated using widely available
B-spline algorithms for i = 1, ..., n.

Parameters are estimated using maximum likelihood estimation via the EM algorithm.
Under the assumption that y∗1, ...,y

∗
n are independent realizations from the mixture distribu-

tion, f(y∗|t,w,θ), defined in Section 3, the log likelihood function for the parameter vector,
θ∗, is given by

logL(θ) =
n∑
i=1

log f(y∗i |ti,wi,θ).

The maximum likelihood estimate of θ is obtained by finding an appropriate root of the score
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equation, ∂ logL(θ)/∂θ = 0. Solutions of this equation corresponding to local maxima can be
found iteratively through the expectation-maximization (EM) algorithm [11]. This algorithm
is applied in the framework where given (ti,wi) each y∗i is assumed to have stemmed from one
of the mixture components and the indicator denoting its originating component is missing.
The complete-data log likelihood is based on these indicator variables as well as the observed
data {(y∗i , ti,wi)}. The expectation step (E-step) involves replacing the indicators by current
values of their conditional expectation, which is the posterior probability of component
membership, written as

αik = πk(wi,γ)fk(y
∗
i |ti,θk)/

K∑
j=1

πj(wi,γ)fj(y
∗
i |ti,θj)

for i = 1, ..., n and k = 1, ..., K using current estimates of the parameters. In the maxi-
mization step (M-step), the parameter estimates for the prior probabilities, linear mean, and
covariance matrices are updated by maximizing the complete-data log likelihood using the
posterior probabilities from the E-step in place of the indicator variables using numerical
optimization. The E- and M-steps are alternated repeatedly until convergence. The EM
algorithm guarantees convergence to a local maximum; global convergence may be attained
through initializing the algorithm by randomly assigning individuals to initial components,
running the algorithm multiple times and using the estimates associated with the highest log
likelihood. Besides the parameter estimates, the algorithm returns the posterior probability
estimates of component membership. These probabilities can be used to partition individ-
uals into distinct clusters by selecting the cluster with the maximum posterior probability.
However, unlike K-means, the posterior probability provides some measure of uncertainty in
the group membership.

Estimation requires the number of clusters, K, to be known. In practice, this is not the
case and K is chosen. The most popular way to choose K is by setting a maximum value
such that Kmax < n, fitting the model under all values of K = 2, ..., Kmax, and choosing the
value that optimizes a chosen criteria. In this article, the criteria is the Bayesian Information
Criterion (BIC) [35], defined as

BIC = −2 logL(θ̂)− d log(n)

where d is the length of θ, the number of parameters in the mixture model, and L(θ) is
the likelihood function for the parameter vector. The BIC has been widely used for model
selection with mixture models since the paper by Roeder and Wasserman [32]. In particular,
the criteria has been to select the number of clusters [7, 17] with good results in practice.
For regular models, the BIC was derived as an approximation to twice the log integrated
likelihood using the Laplace method [36], but the necessary regularity conditions do not hold
for mixture models in general [1]. However, Roeder and Wasserman [32] showed that the BIC
leads to a consistent estimator of the mixture density, and Keribin [24] showed that the BIC
is consistent for choosing the number of components in a mixture model.
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5 Modeling Challenges

There are issues of identifiability with Gaussian mixture models that can be mitigated
through some minor constraints [26]. In this section, we discuss some unique consequences
of vertically shifting the data on the model and estimation.

5.1 Covariance of transformed data vectors

Let Y = (Y1, ..., Ym) be a random vector observed at times t = (t1, ..., tm) such that Y =
λ1m +µ+ε such that λ ∼ F , µ is a vector of evaluations of a known deterministic function,
µ(t), at times t, and ε ∼ (0,Σ). Let Σ = V1/2R(ρ)V1/2 where R(ρ) is an m×m correlation
matrix based on the parameter ρ and potentially the associated observation times, and V is
a m×m matrix with variances along the diagonal.

Subtracting the mean of the elements of the vector by applying the transformation matrix
A = Im − m−11m1Tm changes the correlation structure of the data. The covariance of the
transformed random vector, Y∗, equals

Cov(Y∗) = Cov(AY)

= Cov(A(λ1m + µ + ε))

= Cov(A(µ + ε))

= ACov(µ + ε)AT

by the properties of covariance. One important property of this transformation is that it
is non-invertible; once the mean is subtracted from the data, the original data cannot be
recovered. This has tremendous consequences on the covariance matrix. Since det(A) = 0,
the determinant of Cov(Y∗) is always zero and the covariance matrix is singular. Intuitively,
the matrix has to be singular because the removal of the mean constrains the data to sum
to zero. In other words, the transformation projects the data onto the (m− 1)-dimensional
subspace orthogonal to the nullspace 1. However, this presents challenges when trying to
model the covariance of the transformed data.

Rather than focusing on the covariance of the transformed vector, we work with the
covariance of the transformed vectors after removing the relationship with time. Therefore,
the covariance of the deviations of the transformed data from the known mean shape is

Cov(Y∗ − µ) = Cov(AY − µ)

= Cov(A(λ1m + µ + ε)− µ)

= Cov(A(µ + ε)− µ)

= Cov((A− Im)µ + Aε).

If the observation times are fixed, then µ is not random and the covariance simplifies to
ACov(ε)AT . However, if the observation times are random, then µ is a random vector and
contributes variability. To better understand how best to model the transformed data, we
explore this covariance matrix when the observation times are fixed and random. From this
point on, Im will be written as I and 1m as 1 for simplification.

9
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5.1.1 Fixed observation times

For the moment, assume that the observation times, t, are fixed. Then

Cov(Y∗ − µ) = ACov(ε)AT

= AΣAT

where Σ is the covariance of the original random errors. If the variance is constant over
time, V = σ2I, and the elements of the original vector are independent, Ri(ρ) = I, then the
covariance of the deviations of the transformed data from the known mean shape is

Cov(Y∗ − µ) = σ2AAT

= σ2A

= σ2(I−m−111T )

= σ2

(
m− 1

m

)
(a11T + (1− a)I)

where a = −1
m−1 . Therefore, if the observation times are fixed and the data has independent

errors, subtracting the estimated mean induces negative exchangeable correction between
the observations of magnitude −1

m−1 . Additionally, the variance decreases to σ2m−1
m

. If m is
large, the resulting correlation structure is approximately independent with variance σ2.

If the errors in the original data have constant variance, V = σ2I, and are exchangeable
with R(ρ) = ρ11T + (1− ρ)I, then the covariance of the deviations of the transformed data
from the known mean shape is

Cov(Y∗ − µ) = σ2AR(ρ)AT

= σ2(I−m−111T )(ρ11T + (1− ρ)I)(I−m−111T )T

= σ2(1− ρ)(I−m−111T )

= σ2(1− ρ)

(
m− 1

m

)
(a11T + (1− a)I)

where a = −1
m−1 . This transformation maintains the exchangeable structure but with negative

correlation on the off diagonal and decreased variance of σ2(1 − ρ)
(
m−1
m

)
. Again, if the

number of observed data points is large, then the structure is approximately independent
with variance σ2(1− ρ).

On the other hand, if the original correlation is exponential such that the correlation
decreases as time lags increases, Cor(Yj, Yl) = exp(−|tj − tl|/ρ), the resulting covariance
after transformation is not a recognizable structure. In fact, the covariance can no longer
be written as a function of time lags. The covariance matrix is a linear combination of the
original correlation matrix, column and row means, and the overall mean correlation,

Cov(Y∗ − µ) = σ2AR(ρ)AT

= σ2
[
R(ρ)−m−111TR(ρ)−m−1R(ρ)11T +m−211TR(ρ)11T

]
= σ2 [R(ρ)− column mean vector − row mean vector + overall mean] .
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This non-stationary covariance matrix includes negative correlations when the mean of the
correlations within each column and within each row are positive and substantial. For
example, if σ2 = 1, ρ = 2 and t = (1, 2, 3, 4), then the covariance matrix of the deviations of
the transformed data from the known mean shape is

Cov(Y∗ − µ) =


0.499 0.009 −0.229 −0.278
0.009 0.307 −0.087 −0.229
−0.229 −0.087 0.307 0.009
−0.278 −0.229 0.009 0.499

 .
The variance and covariance changes over time with the covariance becoming negative as
the time lag increases. If the number of observation times increase such that the observa-
tion period expands, the covariance of the transformed vector becomes close to the original
covariance as column, row, and overall means decrease to zero when the number of pairs
of measurements with large time lags increases. However, if the observation period remains
fixed as the number of observations increases, the covariance after transformation continues
to be non-stationary and has negative correlations.

We have calculated the covariance of the transformed random vector under three com-
mon covariance structures for the original data assume fixed observation times. All of these
covariance matrices are not invertible since det(A) = 0. In particular, if prior to transforma-
tion, the errors are independent or exchangeable, the correlation of the resulting transformed
data is exchangeable equal to −1

m−1 . This particular value has significant meaning as it is the
lower bound for correlation in an exchangeable matrix. This means that the true parame-
ter value of the correlation for the transformed vector is on the boundary of the parameter
space. Therefore, even if the true structure is known, estimating parameters for the true
model is difficult. Conditional independence or the exponential structure may be an adequate
approximation to regularize the estimation, especially if m is moderately large.

5.1.2 Random observation times

In practice, individuals in a longitudinal study are not typically observed at exactly the
same times but rather at random times. When the times are random, the vector µ is
random because the elements are evaluations of the deterministic function, µ(t), at random
times. Therefore, the transformed vector has variability due to the random times in addition
to the errors.

If the covariance of the original errors, Σ, does not depend on time such as in the case
of conditional independence or exchangeable, then the covariance simplifies to

Cov(Y∗ − µ) = Cov((A− I)µ + Aε)

= (A− I)Cov(µ)(A− I)T + ACov(ε)AT

= m−211TCov(µ)11T + AΣAT .

Let the random times, t1, ..., tm be independent with potentially different expected values
and variances. The covariance of µ equals a diagonal matrix with the jth diagonal entry
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approximately equal to V ar(tj)[µ
′(E(tj))]

2 by the delta method. Then, the covariance matrix
of Y∗ is the sum of two non-invertible matrices,

Cov(Y∗ − µ) = m−2

(
m∑
j=1

V ar(tj)[µ
′(E(tj))]

2

)
11T + AΣAT ,

which need not be non-invertible. In fact, if the variance of the times and/or the derivative
of the deterministic function, µ(t), is large, the positive magnitude of the first matrix may
be large enough to counteract negative correlations in the second matrix.

If the original covariance is dependent on the random times through an exponential
function of time lags, the mean vector and error structure both depend on the times of
observation. We explore the impact of transforming the data through empirical simulations.
Let the observation times equal random perturbations around specified goal times such
that t = T + τ where τ ∼ N(0, σ2

τI) and T = (1, 2, ..., 9, 10). Therefore, E(t) = T and
Cov(t) = σ2

τI. We generate n = 500 realizations of the model,

yi = µi + εi where εi ∼ N(0,Ri(ρ))

where the mean elements µij = µ(tij). We repeat the simulation under different assump-
tions for the mean function, µ(t), and standard deviations of the observation times, στ .
Figure 1 and Figure 2 show the estimated autocorrelation functions of the deviations of the
transformed data from the mean when Ri(ρ) is an exchangeable correlation matrix with
correlation parameter ρ = 0.5 and when Ri(ρ) is an exponential correlation matrix with
range parameter ρ = 2, respectively, under varying conditions for observations times and
shape functions.

As the variance of observation times and the magnitude of the derivative mean function
increases, the estimated correlation between deviations from the mean becomes more posi-
tive. Thus, variability in the observations times can result in covariance structures that are
no longer singular.

In practice, if the data are regularly or very close to regularly sample, negative correlations
are problematic for estimation and an independence or exponential correlation structure may
be the best option. If the data are irregularly sampled, one potential covariance model is
an additive model that combines a random intercept with the exponential correlation [12],
which may be appropriately flexible to approximate the covariance of the deviations from
the mean of the transformed data.

5.1.3 Unbalanced observation times

In addition to the issues of fixed versus random sampling, having an unequal number of
observations per subject can impact the estimation of covariance of transformed vector. As
we saw above, the length of the vector, m, impacts the covariance of the transformed vector.
Suppose the outcome vectors for a sample of individuals has the same mean shape and
covariance over time, but each individual is observed a different number of times because
they were unavailable for an interview or two. Transforming the vectors by subtracting means
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based on a variety of number of observations induces a different covariance structure for each
individual based on the length of outcome vector. If there is quite a bit of variability in the
number of observations, it may impact clustering to assume they share the same covariance
structure during the estimation/clustering process. However, if the number of observation
times is large for all subjects and the observation period is long, then the covariance matrices
should be similar.

Additionally, if the unbalanced nature of the data is due to lost to follow up during a
longitudinal study, clustering based on the shape should be done with caution. If the general
shape of the curve during the observation period is not measured adequately by the number
of observations, it does not make sense to try and cluster those individuals with the rest who
have more fully observed curves.
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Figure 1: Estimated autocorrelation functions of the deviations from the mean from data generated with an exchangeable
correlation error structure and random observation times under different mean functions, µ(t), and standard deviations
of the random time perturbations, στ .
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Figure 2: Estimated autocorrelation functions of the deviations from the mean from data generated with an exponential
correlation error structure and random observation times under different mean functions, µ(t), and standard deviations
of the random time perturbations, στ .
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6 Simulation

To compare the performance of the proposed clustering method with competing methods, we
completed a simulation study with three trajectory shapes and three levels in the population.
We restricted some shapes to particular levels to induce a relationship between level and
shape. The five mean functions for generating the data with shapes at different levels are
below:

µ1(t) = −1− t (negative slope, low level)

µ2(t) = 11− t (negative slope, high level)

µ3(t) = 0 (horizontal, middle level)

µ4(t) = −11 + t (positive slope, low level)

µ5(t) = 1 + t (positive slope, high level)

Individuals follow these patterns with varying probabilities that depend on two factors. The
first factor w1 impacts the shape and w2 impacts the level. Individuals are randomly assigned
values of these two binary factors with the independent simulated tosses of a fair coin such
that P (w1 = 1) = P (w1 = 0) = 0.50 and P (w2 = 1) = P (w2 = 0) = 0.50.

Let S be a categorical random variable that indicates the shape/slope group. S = 1, 2, 3
refers to the negative slope, horizontal, and positive slope groups, respectively. Conditional
on the baseline factors, the probability of being in a shape group equals

P (S = k|w1) =
exp(γ0k + γ1kw1)∑3
l=1 exp(γ0l + γ1lw1)

for k = 1, 2, 3 where γ01 = 2, γ11 = −4, γ02 = 1.5, γ12 = −2, γ03 = γ13 = 0 and w1 ∈ {0, 1}.
Since the value of w1 is determined by a coin toss, each shape group has about an equal
frequency, marginally.

The second factor impacts the level, but I placed restrictions when creating the mean
functions; therefore, level and shape are not independent of each other. Let L be a categorial
random variable that indicates level group. L = 1, 2, 3 refers to the low, middle, and high
group, respectively. Conditional on the shape group, all of the horizontal lines are in the
middle level. For those in either the negative or positive slope groups, the chance of the high
or low level equals

P (L = k|S = 1 or S = 3, w2) =
exp(ζ0k + ζ1kw2)∑

l∈{1,3} exp(ζ0l + ζ1lw2)

for k = 1, 3 and w2 ∈ {0, 1} where η01 = 0, ζ11 = 0, ζ03 = −3, ζ13 = 6. Again, each level
group marginally has about the same frequency.

To summarize, individual trajectories are generated by first simulating two coin tosses
to determine values for the two baseline binary factors. Then conditional on the factors,
shape and level groups are randomly assigned by plugging the factors into the generalized
logit functions above and drawing from multinomial distributions. Then, the chosen mean
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function is evaluated at five equidistant observation times t = 1, 3.25, 5.5, 7.75, 10 that span
the period 1 to 10 units. Random noise is added to induce variability.

The random noise is made up of two components: individual-specific level perturbation
and time-specific Gaussian measurement error. For individual i (i = 1, ..., n) at the jth
observation time (j = 1, .., 5) with the lth mean function, the observed outcome equals

yij = λi + µl(tj) + εij where εij ∼ N(0, σ2
ε ), λi ∼ N(0, σ2

λ)

where σε is the standard deviation of the measurement error and σλ is the standard deviation
of the level perturbation. To create conditions with differing amount of overlap between
groups, I let σλ = 2, 3 such that there are 4 or 6 standard deviation between the mean
functions with the same shape. The magnitude of measurement error influences the signal
to noise ratio and I let σε = 0.5, 2 to create two extreme conditions. There are four possible
combinations of these two properties, representing the four conditions of the data-generating
process in the simulation study.

For each condition, we generate a data set of n = 500 individuals using the process
described above and apply five clustering methods: independence Gaussian mixture model,
K-means on the difference quotients, PAM with a correlation-based dissimilarity measure,
vertically shifting mixture models with independence, and vertically shifting mixture mod-
els with exponential correlation. For each method, we calculate the optimal K using the
silhouette measure [23] for the partition methods and the BIC [35] for the models and esti-
mate the misclassification rate when K = 3. The misclassification rate detects whether the
method discovers the underlying shape structure. This is repeated B = 500 times such that
we get 500 unique data sets under each condition on which we can apply each methods and
summarize the results.

6.1 Results

Table 1 summarizes the simulations in terms of the number of groups and average misclassi-
fication rate. It is clear from this table that the standard Gaussian mixture model assuming
independence does not select three groups as the optimal number of groups. The BIC with
the independent mixture model consistently chooses five groups, the maximum we allow in
the simulation, under all conditions. This method also does not perform well when forced
to have K = 3. Only about 50% of the data is correctly specified in terms of the generating
shape groups.

Of the established methods that are intended to group on shape, K-means on difference
quotients selects the correct number of groups if the magnitude of the measurement error is
small (Table 1). If the variability around the individual mean is large, the method chooses
two groups and misclassifies about 38% of the individuals when forced to have three groups.
Using the correlation dissimilarity measure with the PAM algorithm gives slightly better
results with only 25-27% misclassification, but the it does not consistently choose three
groups. It only selects two and five groups.

Lastly, the method that prevailed amongst the competition is the vertically shifted mix-
ture models. For every condition, the method chose three groups as the optimal number
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99% of the time and when forced to K = 3, the method discovered the shape groups with
little misclassification. Only when the measurement error is large (σε = 2) did the method
misclassify 5% (about 25) of the individuals in terms of shape. The method worked well
under both assumptions of independence and exponential correlation even though we know
the true correlation structure is exchangeable with correlation -0.25. Therefore, in this case,
the shapes are distinct enough that either correlation assumption worked well.

7 Conclusion

This method to cluster longitudinal data by the shape of the trajectory over time directly
removes the level by subtraction individual-specific means prior to modeling. In contrast
to partition methods based on observed vectors, this approach not only allows irregularly
sampled data but may perform better when observation times are random, not fixed. The
mixture model provides a probability framework to explicitly model the variability around an
underlying smooth function. Therefore, the method does well even when the measurement
error is large.

The standard method of mixture models applied to the original data values does not
directly cluster based on shape. The methods created to focus on shape fail under fairly
common circumstances. K-means applied to difference quotients works well when there is
little measurement error, but fails to create distinct shape groups when there is moderate
error. The correlation-based dissimilarity measure fails to group horizontal trajectories as
similar. Therefore, it is hard to tell whether the high misclassification rate is due primarily to
measurement error or the horizontal issues. Since it is common to have horizontal trajectories
as well as substantial measurement error in longitudinal data, both of these methods are not
recommended for wide use.

While the proposed method drastically out performs the competition, there are two main
issues. First, subtracting the observed mean impacts the covariance in a way that makes
it harder to model with familiar correlation structures. However, if the shapes drastically
differ, using the the simple independence correlation structure may work well enough to
detect the shape groups. Second, care needs to be taken when there is sparse and irregularly
sampling.
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σε σλ K = 2 K = 3 K = 4 K = 5 MR
Independent Mixture

0.50 2.00 0.00 0.00 10.00 490.00 0.41
2.00 2.00 0.00 0.00 24.00 476.00 0.39
0.50 3.00 0.00 0.00 1.00 499.00 0.45
2.00 3.00 0.00 0.00 5.00 495.00 0.45

K-means on Difference Quotients
0.50 2.00 0.00 500.00 0.00 0.00 0.00
2.00 2.00 483.00 17.00 0.00 0.00 0.38
0.50 3.00 0.00 500.00 0.00 0.00 0.00
2.00 3.00 483.00 17.00 0.00 0.00 0.38

Correlation-based PAM
0.50 2.00 403.00 0.00 0.00 97.00 0.25
2.00 2.00 500.00 0.00 0.00 0.00 0.27
0.50 3.00 403.00 0.00 0.00 97.00 0.25
2.00 3.00 500.00 0.00 0.00 0.00 0.27

Vertically Shifted Independent Mixture
0.50 2.00 0.00 499.00 0.00 1.00 0.00
2.00 2.00 0.00 498.00 2.00 0.00 0.05
0.50 3.00 0.00 499.00 0.00 1.00 0.00
2.00 3.00 0.00 498.00 2.00 0.00 0.05

Vertically Shifted Exponential Mixture
0.50 2.00 0.00 500.00 0.00 0.00 0.00
2.00 2.00 0.00 499.00 1.00 0.00 0.05
0.50 3.00 0.00 500.00 0.00 0.00 0.00
2.00 3.00 0.00 499.00 1.00 0.00 0.05

Table 1: Frequency table of the number of groups chosen and average misclassification rate
(MR) (K = 3) for 500 replications of clustering methods applied to data generated under
different values for σε and σλ.
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