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An Application Of Machine Learning Methods
To The Derivation Of Exposure-Response

Curves For Respiratory Outcomes

Ekaterina Eliseeva, Alan E. Hubbard, and Ira B. Tager

Abstract

Analyses of epidemiological studies of the association between short-term changes
in air pollution and health outcomes have not sufficiently discussed the degree
to which the statistical models chosen for these analyses reflect what is actually
known about the true data-generating distribution. We present a method to es-
timate population-level ambient air pollution (NO2) exposure-health (wheeze in
children with asthma) response functions that is not dependent on assumptions
about the data-generating function that underlies the observed data and which
focuses on a specific scientific parameter of interest (the marginal adjusted asso-
ciation of exposure on probability of wheeze, over a grid of possible exposure
values). We show that this approach provides a more nuanced summary of the
data than more typical statistical methods used in air pollution epidemiology and
epidemiological studies in general.



Introduction

Quantitative estimates of the effects of ambient air pollutants on human health are derived

almost exclusively from epidemiological studies. A voluminous literature has been generated

to provide estimates of the impacts of short and long-term exposures. Time series studies

have been the mainstay for assessment of short-term associations ([1],[2],[3],[4],[5],[6]), and

cohort and cross-sectional studies provide estimates of associations related to exposures over

the course of years ([7],[8],[9]).

In addition to emission source strengths, ambient air pollutant concentrations are highly

dependent on seasonal characteristics of meteorological factors (e.g. temperature, humid-

ity, depth of mixing layer, etc. ([10])). Similar factors affect a broad range of health and

physiological outcomes (e.g. heart attacks, respiratory illnesses, hospitalizations for a vari-

ety of diseases) ([11],[12],[13],[14]). Consequently, considerable attention has been paid to

the control of these temporal, potentially confounding factors, in particular, meteorological

variables ([15],[16],[17]).

In contrast to the attention paid to the functional forms of the confounders, much less

work has been carried out in defining the exposure-response relation between pollutants

and outcomes. Most studies have used either parametric or semi-parametric models, with

the latter often still constrained by strong assumptions, like additivity of the risk factors.

Some have parameterized the exposure coefficient as a single linear term, as unconstrained

or constrained lag functions in time series, or as simple linear terms in chronic exposure

studies ([18],[19],[20],[21],[1],[17]). While efforts have been made to characterize the shapes

of the exposure-response associations, most study’s analyses have been carried out within

the framework of a single class of models, thus making potentially strong assumptions of the

joint functional form of confounders and the exposure variable ([22],[23]). Characterizations

of the functional form of the exposure-response relation have used linear models, parametric

threshold models ([24],[25]), polynomials ([26]), natural cubic splines ([22],[5]), penalized
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splines ([8]), or have been implied by comparison of a linear model with and without a

truncated distribution of exposure at a specific “threshold” value ([20]).

A related issue concerns the type of parameter typically estimated by existing studies. Specif-

ically, given the estimates are simply direct byproducts of the models used, estimates from

most time series and cohort analyses are so-called conditional estimates, i.e., the interpre-

tation of the coefficient(s) in front of the air pollution term (or the ”smoothed” exposure-

response”) is conditional on fixing the other covariates in the model. Interpretation of this

“conditional” association becomes problematic in the almost-certain case that those highly

constrained models are misspecified. Generally, this fact is ignored and the coefficient(s)

are treated as if they were marginal (in terms of being averaged association over the entire

population distribution of covariates/confounders, such as the average treatment effect), the

one exception being the type of Bayesian Model Averaging (BMA) used by Schwartz, et al.

([8]). This has serious consequences when relative risk/hazard (or relative odds) are treated

as if they were true population expected values ([27]) and are then incorporated into risk

assessments to estimate population burden ([28],[29]) or to estimate change in population

burden with changes in air pollutant concentrations over time ([31],[32]).

This paper addressed these issues simultaneously, in that 1) we discuss estimation of the

model of the outcome given an air pollutant in a very ”big” regression model, meaning one

that assumes very little about the exposure-response, or statistical interactions, for instance,

and 2) defines an estimator that does not depend on the form of the regression model,

and leverages this fit to estimate a parameter with a direct public health interpretation:

a marginally adjusted risk of health outcomes. Specifically, we describe the use of Super

Learner (SL) - a cross-validation based, ensemble-learner approach to prediction, that casts

a very large net for fitting models, without over-fitting them. We apply this approach to

obtain estimates of the daily probability of wheezing had the entire population of children

in the Fresno Asthmatic Children’s Environment Study (FACES) been exposed to specific
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levels of NO2 (two days prior to measuring wheezing) conditional on a high-dimensional

vector of assumed confounders. We discuss a straightforward use of Super Learner (SL)

for estimating the standardized, marginal risk of wheezing over a grid of potential values

for NO2 (a method equivalent to the G-computation approach of Robins ([30])). Under

(strong) causal assumptions of conditional exchangeability, consistency, and positivity, these

treatment-level specific standardized risks may be interpreted causally- specifically as the

probability of wheeze on a given day had NO2 two days before been set to that particular

exposure level. This example shows that the method we propose does as well as the typically

used parametric approach.

Materials and Methods

The approach we present derives from two majors issues, which are distinct but important

components of research in causal inference. First, we want to be able to model the data-

generating distribution, i.e., the system that produced the FACES data, constraining our

model only by information we actually have. Specifically, we have an idea of the process that

produces the health outcomes (wheeze) via exposure (NO2) and covariates (Table 1), but one

rarely, if ever, has firm theoretical justification for the multivariate (confounders+variable

of interest) response of the outcome of interest. Optimally, one would define the estimating

model to be one that follows only the known constraints of the mechanism by which the

data is generated, which are typically minimal, or a nearly nonparametric models. However,

given the so-called ‘curse of dimensionality’, nonparametric estimation is impossible (in rea-

sonable sample sizes, there is rarely enough observations in every unique group defined by

the predictor variables to get a reasonable estimate of the mean within such groups), so some

compromise must be made, and that compromise is estimation in a large semi-parametric

model. Thus, instead of a compromise that is based on an arbitrary model, we discuss below

a data-adaptive method (SL) that finds the ”best” model in a huge class of potential models.
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Because the model is unknown, putting constraints on it in order to get it to return an

interpretable estimated parameter must lead to bias of unknown magnitude. However, SL

returns a regression with no such convenient form (nor should it), so one needs estimates

of a parameter of interest that is simple and meaningful to interpret, but is not tied to a

specific model. Thus, we estimate parameters (standardized risks) that do not rely on the

statistical specification of a particular parametric or semi-parametric model, but instead rely

on specific questions (e.g., how many children would wheeze on average if they all experienced

a particular value of NO2).

Data

The data come from the Fresno Asthmatic Children’s Environment Study (FACES) ([43]).

The goal of this study was to examine the effects of air pollution on children with asthma.

Briefly, a convenience sample of children with asthma was recruited between 2000 and 2005,

and data collection ran from 2000 to 2008 ([44]). Eligibility criteria were ages 6-11 at the

start of the study, a physician’s diagnosis of asthma, having active asthma (indicated by use

of asthma medication, asthma symptoms, or asthma-related healthcare utilization), living

in their primary residence for at least 3 months prior to enrollment in the study and no

plans to move for the next 2 years, living within 20 km of the US Environmental Protection

Agency (EPA) air quality monitoring site located in Fresno, CA, and no physical or mental

conditions that could impair completion of the study protocol ([45]).

We define the unit of observation as the child, i, who has measurements of variables on

each day, j, including their outcome Yij, as well as time-dependent exposure, Aij, and a

vector of adjustment variables, Wij. For each child there is also a missing indicator for the

outcome, ∆ij. Thus we observe i.i.d. occurrences of Oi = (∆i,∆iYi, Ai,Wi), where, for

example, Ai = (Ai1, Ai2, ..., Aim). We focused on estimating the relationship between the

probability of wheezing for each child (binary outcome), and exposure to NO2 (measured
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in ppb), (a continuous exposure), while controlling for a number of covariates. During

each panel day, the presence or absence of wheeze was recorded between 6 and 9 AM and

responses to questions were programmed into the portable spirometer (“Did you wheeze

after bedtime?”). NO2 data were collected from a central site monitor in Fresno, CA, and

exposures were assigned for each child on the day the measurement was taken. Thus, all

children received the same air pollutant exposure assignment, if they were in the same two-

week panel. To account for a temporal relationship between NO2 and wheeze, lags and

moving averages were created for days 1 through 14 prior to the outcome assessment. To

illustrate our method, we focus only on lag one of NO2 in our analysis (NO2 measured in

the 48 hour period before the test). Covariates included those measured at baseline, at each

6-month or annual field office visit, and environmental covariates such as temperature (Table

1). Thee confounders were chosen and justified in a previous paper ([44]. There were a total

of 15252 observations with non-missing outcomes among 280 children.

Statistical Methodology

Parameter of Interest

Our parameter of interest, is the marginally adjusted association of exposure (NO2) on

probability of wheeze, adjusting for a large set of confounding variables, or explicitly, over a

grid of possible exposure values, a:

θ(a) ≡ EW [E(Y |(A = a,W )]

If the assumptions of positivity and experimental treatment assignment hold, this parameter

is equal to EW (Q0(a,W )), where Q0(a,W ) is the true conditional expectation function. In

other words, we want the estimated mean, over the observed distribution of the W in our

population (covariates measured over all children, all days in our study). If we knew the

true conditional mean (Q0(a,W )), and could replace the observed values of exposure over
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time and children (the A) to a single value, a, we could examine this value (say via a plot)

over a grid, from relatively low to high values of fixed exposure, a, or θ̂(a) vs a.

Without further assumptions, this is a reasonable way to get a standardized risk, but it has

an even more appealing interpretation under stronger assumptions: θ(a) = EW (Y (a)). This

is is an estimate of one-day lagged marginal probability of wheezing for every day of the

study for all subject had NO2 = a, P (Y (a) = 1), where Y (a) represents the outcome for a

particular subject on a particular day if he had, contrary to fact, been exposed to level a of

NO2 two days previously.

Estimation Procedure

First, we need an estimate of the regression Q0(A,W ), and as discussed above, we have the

challenge of many covariates (high dimensional data), but in a huge statistical model. We

use the Super Learner (SL), an ensemble, machine-learning algorithm ([41]), which allows for

the simultaneous evaluation (by cross-validation) of a library of plausible model algorithms

(including potentially the investigators’ a priori chosen model) to determine which of the

models are most appropriate for the data, based on minimizing a least squares loss function,

and then averages over these chosen models to produce a composite model. This process

makes few assumptions about the relation between wheeze and the joint distribution of

NO2 and confounders. The SL performs asymptotically as well (in terms of expected risk

difference) as the oracle estimator (the estimator that comes closest to the truth if it were

known), up to a second order term. While the number of learning algorithms considered by

SL is polynomial in sample size, the SL is relatively optimal because it converges to the oracle

selector if none of its candidate learners (and oracle estimator) converges at a parametric

rate. If one of the parametric candidate learners is actually the true model, however, and

thus converges at a parametric rate, the SL will converge at almost the parametric rate of

log n/n ([41]). Thus the SL theory encourages the use of a very large number of possible

learning algorithms with very little penalty if the true model is one of the simple, parametric
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models contained in the set of learners.

We use a simple substitution estimator, sometimes called the G-computation algorithm

([30]) in the context of point treatments (that is, we are not treating every day as a serial

cross-sectional study) and our estimating model, Q(a,W ) equals the true model, Q0(a,W ),

assuming our assumption of positivity holds. Our estimator is

θ̂(a) =
1

N

n∑
i=1

m∑
j=1

Q̂(a,Wij),

and can be obtained by first setting A to values a in the estimated model Q(a,Wij) for

each child, while keeping their covariates at their observed values. Then these estimates

would be averaged over all children for each level of a. Note that we are assuming that

we can extrapolate our SL curve to estimate θ̂(a) even for those children who may never

have experienced the set exposure level. However we did test for positivity (the amount

of extrapolation) and found no significant violations ([55]). Also note that we predicted

outcomes for all observations that a child was supposed to have had, even if they were

originally missing a panel day. Thus we were predicting for 32189 observations rather than

15252.

For comparison, we also plugged in averages of covariates into our SL fit to predict outcomes.

Thus we were calculating E(Y |A = a,W = w̄) over a grid of a. This would mimic the typical

way of generating an “adjusted” curve.

We also fit unadjusted models, i.e., models with only NO2 as a predictor of the outcome,

using the SL and a main-terms only generalized additive model (GAM) with a spline option

and 4 degrees of freedom, the last because it has been frequently used in time series analyses

of associations between daily changes in air pollution and a variety of health effects.

The R ([49]) package SuperLearner ([41]) were used to run the SL machine learning algorithm.

Since the dataset consisted of repeated measures on each child, an “ID” variable was used to
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make sure that the V-fold cross-validation splits kept observations from the same individuals

in the same split. The binomial family was also specified for both the SuperLearner and GAM

models.

To handle missing covariate, Wij, we redefined the data to include δij and δijWij, where

δij = 1 if the covariate was observed and 0 otherwise. The SL library contained a gener-

alized additive model (GAM) ([50]), a GAM with 3 degrees of freedom, generalized linear

models (GLM) ([51]), neural networks (NNET) ([52]), NNET with tuning parameter set to

3, GLMNET, and the GAM with spline model with NO2 as the only predictor and four

degrees of freedom as candidate learners (Table 4). These learning algorithms were chosen

because they vary in the way they perform model selection. Specifically, when these are

combined they have the potential for and the flexibility with which they can fit a regression,

but as well contain learners that are highly parametric (single regression) if such models

are better fits. Additional tuning parameters for the SL were the number of folds in V-fold

cross-validation, set to 5, and a loss function, which was the non-negative least squares loss

function.

Since the model for the average outcome, given observed exposures and confounders, was

estimated data-adaptively based on a (nearly) unspecified (semi-parametric) model, asymp-

totically this method should converge, as sample size grows, to a consistent estimate of θ(a)

and, thus, the true exposure-response curve.

Note that given our model is (nearly) non-parametric, our estimator is not an asymptotically

linear estimator ([46]), and we cannot rely on the asymptotic normality of the pointwise

estimates, θ̂(a), over a grid on a. However, we can calculate uncertainty intervals akin to

pointwise confidence intervals (CIs) at each exposure level using the nonparametric bootstrap

procedure ([53]). Because we had repeated measures data, and the children were assigned

randomly to the seasonal, 14-day panels, we performed a “clustered” bootstrap with the

children as the cluster ([54]). We refit the model for Q(A,W ), using the SL algorithm on each
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sampled dataset and used each fit of the model to make predictions on the bootstrap samples.

The substitution estimator of the G-computation formula was then used to recalculate the

exposure-response curve for the range of NO2 observed in the data. The 2.5th and 97.5th

percentile of the bootstrap distribution were selected at each level of NO2 to obtain 95%

confidence intervals. Note we can also predict Y ’s for subjects over each of the panels in

which they were enrolled in the study, as we still observe the Aij = a,Wij and thus we

average over the entire complete data. This implicitly assumes that the data are missing at

random (MAR) ([59]).

We also calculated the 95% confidence interval for the difference between the estimator at

NO2 levels of 35 and and 5 (an estimate of Ew{Q(35,W )−Q(5,W )}) as well as the relative

risk (an estimate of Ew{Q(35,W )/Q(5,W )}) to see whether there was a significant difference

in the prediction between these two levels.

To see how well our models were predicting we split our data into 10 groups and ran SL

and GAM on each group separately, while predicting on the remaining groups. We then

plotted ROC curves based on these cross-validated predictions, to get an unbiased estimate

of performance.

Results

Descriptive statistics for Y , A, and 36 covariates are in Table 2. Figures 1a-1b present the

estimated unadjusted curves for predicted probability of wheeze for GAM with spline and

SL.

The red line in Figure 2 displays the estimate of the marginal exposure-response curve ob-

tained from GAM with a smoothing spline. Its shape is similar to the equivalent unadjusted

curve based on GAM (essentially a bivariate smoothing spline).

Of all the candidate learners considered in the SL algorithm, only two were given a non-
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zero weight in the final model (weights must sum to one). The weights for these learners

were: 0.74 for the GAM with spline model and 0.26 for the GLM model. It is interesting

to note that most of the weight in the SL was given to the preferred model used in air

pollution research. However, note that our model indicates that the relative difference is

approximately linear, not the relative risk. The estimated marginal exposure-response curve

obtained from the SL is in (Figure 2, black line). This curve is relatively flat over the range

of the observed NO2. The scale of probabilities on the vertical axis indicates that this curve

shows is steeper than from the adjusted GAM. We note that the confidence intervals from

the GAM model are narrower than the ones from SL, which is what one would expect if the

best choice (the oracle selector ([41])) was in fact GAM However, as one can see, there is

little loss in precision in the SL, even with a much bigger model, as the oracle inequality

predicts.

The estimate of Ew{Q(35,W )−Q(5,W )} for the SL was 0.067 and the 95% confidence limits

were (0.032, 0.094). The estimate for GAM was 0.043 and the 95% confidence interval was

(0.011, 0.082). Thus, the SL estimate is 50% larger than the one from GAM, though both

indicate a significant change for higher NO2 vs. a lower exposure.

The estimate of Ew{Q(35,W )/Q(5,W )} for the SL was 1.53 and the 95% confidence limits

were (1.27, 1.98). The estimate for GAM was 1.30 and the 95% confidence interval was

(1.07, 1.65).

Finally, we show the ROC curves (Figure 3) of the cross-validated predictors based on GAM

and SL and see that neither algorithm predicts wheezing very accurately.

Discussion

Epidemiological studies of the association between short-term changes in air pollution and

health outcomes have not generally discussed the degree to which the statistical models
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chosen for analyses of exposure-response functions reflect what is actually known about the

true underlying data-generating distribution. Many analyses have applied statistical models

without first carefully focusing on the scientific parameter of interest - increase in health

outcome per unit of increased exposure. Emphasis has been on relative changes in outcome

or survival rather than on direct estimates of this parameter. The emphasis on relative

changes has a long history derived from Cornfield ([56]); the consequence is that absolute

estimates of disease burden have not been used as much as they might have been. The relative

association (effect) parameter is often simply a byproduct of a statistical procedure, such as

Poisson regression, not chosen a priori to directly address the scientific question of interest,

which is to estimate an exposure-response function from which one can derive an estimate of

health hazard for a given level of exposure. Such models provide only relative estimates of

hazard without any regard to the actual underlying (“baseline”) risk, which is of importance

in and of itself. Finally, estimation has often been done under the implicit assumption that

much more is known about the data-generating distribution than can actually be supported

by previous work or theory. The approach we employed defines a parameter of interest

to environmental epidemiologists– an adjusted, marginal exposure-response curve; it does

not presume knowledge of the true data-generating distribution (i.e., the model is semi-

parametric) and we can derive standardized risk and/or relative risk estimates from it.

Results based on a composite model derived from a library of different model-fitting al-

gorithms showed an exposure-response function for ambient NO2 concentrations in the 48

hours prior to assessment of wheeze status in a group of children with asthma that is most

consistent with no threshold (Figure 2).

The results (estimates and inference) from our SL approach were not very different from

those of the approach using a smaller statistical model (GAM). This fact might seem to

be an advertisement for simpler methods. However, because it is never known a priori

what the functional regression form is, we are only able to know this in hindsight. In this
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case, estimation with the SL and the resulting inference is consistent with the lack of a

priori knowledge about the statistical model. The fact that the oracle inequality states the

potential gain in accuracy by using SL with a large library, and the relatively low cost of

fitting a big model even when a simpler model is “true”, one essentially gets to have their

cake and eat it too. This is underscored by the similar range of the 95% CI comparing

estimates of the population-level change in probability of wheezing comparing high to low

levels of exposure.

We have not provided a complete analysis of the response functions for various lags or types

of moving averages. Instead, we have focused on the shape of the curve and its interpretation

relative to other methods. In addition, we used data from a fixed central site monitor to

define exposure, which we acknowledge would not be the optimal method if the goal were

to focus specifically on the relation of the exposure and wheeze in our population, which

would require individual-level measurements of NO2 for each child. Individual-level exposure

estimates are available to us and will be used in analyses focused on specific health outcomes.

In summary, we present a method to estimate population-level ambient air pollution exposure-

response functions that are not dependent on assumptions about the underlying data-

generating distribution, which focuses on a specific scientific parameter of interest (risk

difference), and which, from a theoretical standpoint, asymptotically provides an estimator

that is optimal with respect to variance and bias given a large library of learners.
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Table 1: Table of Covariates used in the FACES data analysis 

Baseline Time-varying Environmental 

gender height temperature 

income category age relative humidity 

low birth weight bird/cat/rodent/dog in home season 

father’s/mother’s asthma 

status 

eczema . 

asthma diagnose before age 2 rhinitis . 

smoking during pregnancy ownership of home . 

premature birth household smoking policy . 

race/ethnicity Ba/Cb medication status . 

age at asthma diagnosis . . 

breastfeeding status . . 

symptom severity score . . 

income category . . 

positive skin tests . . 

a inhaled steroids and intal/cromolyn 

b not beta-agonists or inhaled steroids 
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Table 2: Descriptive statistics of the variables in the FACEs dataset 

Variable N Mean SD Min/Max 

Wheeze (1=yes, 0=no) 15252 0.15 0.36 0/1a 

NO2 Lag 1 15252 19.59 8.10 4.62/52.44 

Low Birth Weight 14681 0.08 0.27 0/1a 

Premature 14801 0.10 0.30 0/1a 

Breastfed 14875 0.73 0.44 0/1a 

Male 15252 0.58 0.49 0/1a 

Income Category 14883 2.72 1.10 1/4 

Own Home 13762 0.66 0.48 0/1a 

Hispanic 15252 0.41 0.49 0/1a 

Black 15252 0.11 0.31 0/1a 

White 15252 0.45 0.50 0/1a 

Age (years) 15252 9.42 1.97 6/14 

Height (cm) 15200 139.2 14.1 106.4/182.9 

B Meds 15252 0.52 0.50 0/1a 

C Meds 15252 0.30 0.46 0/1a 

Bird in Home 15252 0.12 0.33 0/1a 

Cat in Home 15252 0.25 0.43 0/1a 

Dog in Home 15252 0.35 0.48 0/1a 

Rodent in Home 15252 0.13 0.33 0/1a 

Positive Skin Test 13756 0.65 0.48 0/1a 

Eczema 15070 0.16 0.37 0/1a 
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Rhinitis 15070 0.13 0.34 0/1a 

Diagnosis ≤  2 15006 0.38 0.49 0/1a 

Age First Diagnosed 15006 3.79 2.70 0/11 

Father’s Asthma 13271 0.28 0.45 0/1a 

Mother’s Asthma 14861 0.38 0.48 0/1a 

Symptom Severity Score 15252 1.93 0.70 1/3 

Prenatal Smoking 14047 0.08 0.27 0/1a 

Home No Smoking Policy 14926 0.97 0.18 0/1a 

Home Smoking 15250 0.18 0.38 0/1a 

Year 15252 2002.98 1.16 2000/2005 

Month 15252 6.47 3.58 1/12 

Winter (Nov-Feb) 15252 0.35 0.48 0/1a 

Spring  (Mar-June) 15252 0.33 0.47 0/1a 

Sumer (July-Oct) 15252 0.32 0.47 0/1a 

Apparent Temperature 15252 16.28 8.38 0.33/36.66 

Avg Temperature (oC) 15252 16.28 7.57 0.33/36.66 

a 1 indicates yes/present, 0 indicates no/absent 

Hosted by The Berkeley Electronic Press



Table 3: SuperLearner Candidate Algorithms 

Algorithm Description 

GAM generalized additive model with 2 df and 

considers any variable with more than 4 

unique values to be continuous and able to 

be in smoothing splines 

GAM generalized additive model with 3 df and 

considers any variable with more than 4 

unique values to be continuous and able to 

be in smoothing splines 

GLM generalized linear model with all main 

terms 

NNET neural net with size (number of units in 

hidden layer) 1 

NNET neural net with size (number of units in 

hidden layer) 3 

GLMNET generalized linear model with all main 

terms with penalized likelihood 

GAM w/ spline generalized additive model with 4 df and 

NO2 fixed in the model 
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Figures 

 

Figure 1: a) Estimated unadjusted marginal exposure-response curve and CIs obtained using 
GAM with a spline model with 4 df.  
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Figure 1: b) Estimated unadjusted marginal exposure-response curve and CIs obtained using SL. 
The horizontal axis is based on the NO2 distribution observed in the data. The blue bars on the 
horizontal axis indicate actual NO2 levels that were observed. The vertical axis is the predicted 
probability of wheezing. The red lines are 95% confidence limits. 
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Figure 2: Estimated adjusted marginal exposure-response curve and CIs from SL and GAM. The 
range of the horizontal axis on this graph is based on the NO2 distribution observed in the data. 
The blue bars on the horizontal axis indicate actual NO2 levels that were observed. The vertical 
axis is the predicted probability of wheezing. The red lines are 95% confidence limits. 
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Figure 3: ROC curves of the cross-validated predictors based on GAM and SL. The black 
diagonal line indicates a predictor that does no better than chance. 
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