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Estimating Effects on Rare Outcomes:
Knowledge is Power

Laura B. Balzer and Mark J. van der Laan

Abstract

<blockquote>Many of the secondary outcomes in observational studies and ran-
domized trials are rare. Methods for estimating causal effects and associations
with rare outcomes, however, are limited, and this represents a missed opportunity
for investigation. In this article, we construct a new targeted minimum loss-based
estimator (TMLE) for the effect of an exposure or treatment on a rare outcome.
We focus on the causal risk difference and statistical models incorporating bounds
on the conditional risk of the outcome, given the exposure and covariates. By
construction, the proposed estimator constrains the predicted outcomes to respect
this model knowledge. Theoretically, this bounding provides stability and power
to estimate the exposure effect. In finite sample simulations, the proposed esti-
mator performed as well, if not better, than alternative estimators, including the
propensity score matching estimator, inverse probability of treatment weighted
(IPTW) estimator, augmented-IPTW and the standard TMLE algorithm. The
new estimator remained unbiased if either the conditional mean outcome or the
propensity score were consistently estimated. As a substitution estimator, TMLE
guaranteed the point estimates were within the parameter range. Our results high-
light the potential for double robust, semiparametric efficient estimation with rare
events</blockquote>



1 Introduction

When the outcome of interest occurs infrequently, building prediction models and obtaining esti-
mates of the intervention effect can be particularly challenging. For example, a recent study sought
to examine the impact of planned place of delivery (obstetric unit or not) on perinatal mortality
and neonatal morbidities, occurring in 250 of 63,827 births (0.39%) (Birthplace in England Col-
laborative Group, 2011). Due to the paucity of individual birth events, however, the researchers
estimated the effect on a composite outcome measure. Likewise, tuberculosis is a main cause of
mortality among HIV+ people (World Health Organization, 2013). Evaluating strategies to reduce
its transmission are essential, but difficult due to the disease’s relatively low incidence. Along the
same lines, international consortiums have been established to investigate the burden and treat-
ment for uncommon cancers (e.g. RARECARENet (2014)). While these outcomes are rare, a
better understanding of their occurrence is likely to have important policy and health implications.

For binary outcomes or proportions, parametric logistic regression is often used to estimate the
conditional odds ratio, given the exposure and measured covariates. Researchers, however, have
recognized the inadequacy of this approach, when the outcome is rare (Concato et al., 1993; Harrell
et al., 1996; Peduzzi et al., 1996; King and Zeng, 2001; Braitman and Rosenbaum, 2002; Cepeda
et al., 2003). For example, simulations by Peduzzi et al. (1996) illustrated that estimates could be
biased and inference unreliable if the number of outcomes per variable was less than 10. The authors
also found problems with estimator convergence, statistical power and the validity of significance
tests (i.e. type I error rates and confidence interval coverage). Harrell et al. (1996) cautioned
against over-fitting and encouraged the use cross-validation or bootstrapping for model validation.
Moreover, King and Zeng (2001) found that standard logistic models could substantially under-
estimate the probability of the outcome and offered a bias correction with accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, giving the covariates (Joffe
and Rosenbaum, 1999; Braitman and Rosenbaum, 2002; Patorno et al., 2014). These methods
avoid estimation of the conditional mean outcome and thereby are expected to perform well in the
face of sparsity due to few events. Simulations by Cepeda et al. (2003) suggested that propensity
score methods were less biased and more efficient than logistic regression for the mean outcome,
when the number of events per coefficient was less than 8. The authors also cautioned that the
performance of propensity score methods depended on the strength of the relationship between the
covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction
of semiparametric, efficient substitution estimators (van der Laan and Rubin, 2006; van der Laan
and Rose, 2011). The algorithm combines data-adaptive methods (i.e. machine learning techniques)
with an additional updating step to reduce bias for the parameter of interest and to obtain valid
statistical inference. TMLE has previously been applied in the context of rare outcomes in drug
safety analyses (Lendle et al., 2013; Gruber and van der Laan, 2013). Building on the work of
Gruber and van der Laan (2010), this paper proposes a new TMLE for statistical modelM, which
bounds the conditional mean (risk) of the rare outcome from above by some small u.

The remainder of the article is organized as follows. In Section 2, the estimation problem and
the theoretical motivation for the new TMLE are outlined. In particular, the statistical model,
the target statistical parameter, the corresponding causal parameter and the efficient influence
curve are discussed. Section 3 presents the rationale and procedure for the rare outcomes TMLE.
Simulations are given in the Section 4. Sample R code is presented in the Appendix. The article
concludes with a discussion of the advantages of the proposed TMLE and areas for future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome
Y . For example, Y might be an indicator that the subject develops tuberculosis with an incidence
rate of 255/100,000 per person-year in Sub-Saharan Africa (World Health Organization, 2013).
Alternatively, Y might be the proportion of community members, who develop tuberculosis over
the last year. Suppose we measure some baseline characteristics W that are predictors of both
the exposure and outcome. In other words, W represents the set of measured confounders. Let
O = (W,A, Y ) denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution. We first consider a nonparametric statistical
model Mnp, which places no restrictions on the set of possible data distributions. We then focus
on a semiparametric statistical modelM, which encodes bounds on the conditional risk of the rare
outcome, given the exposure and covariates.

Throughout our goal is to estimate and obtain inference for the marginal risk difference:

Ψ(P0) =
∑
w

[
E0(Y |A = 1,W = w)− E0(Y |A = 0,W = w)

]
P0(W = w)

= E0

[
Q̄0(1,W )− Q̄0(0,W )

]
where the summation generalizes to the integral for continuous covariates and Q̄0(A,W ) = E0(Y |A,W )
denotes the conditional mean outcome, given the exposure and covariates. This estimand is the
difference in the strata-specific risk of the outcome, averaged (standardized) with respect to the
baseline covariate distribution.

Under the necessary causal assumptions, this statistical parameter equals the causal risk dif-
ference and the average treatment effect: ΨF (PX) = E(Y1) − E(Y0). Here Ya represents the
counterfactual outcome, if possibly contrary-to-fact, the unit received exposure A = a. Briefly,
the observed data can be considered as a time-ordered missing data structure on the full data
XF = (W,Y1, Y0) ∼ PX , with censoring variable A (Neyman, 1923; Rubin, 1974). Alternatively,
the observed data can be considered as a draw from a distribution described by a structural causal
model, which also generates the counterfactual outcomes Ya (Pearl, 2000). To express the tar-
get causal parameter ΨF (PX) as a function of the observed data distribution P0, we need two
assumptions. First, there must be no unmeasured confounders of the effect of the exposure on
the outcome. Secondly, there must be sufficient variability in the treatment assignment. In other
words, the propensity score P0(A = 1|W ) must be bounded away from 0 and 1. This condition is
known as the positivity assumption. The reader is referred to Petersen and van der Laan (2014)
for an introduction to the causal framework and discussion of the necessary assumptions.

The challenge, addressed in this paper, is estimation with rare outcomes. This challenge is
illuminated by studying the efficient influence curve (function) of the target parameter Ψ at a
probability distribution P in a nonparametric statistical model Mnp (Bickel et al., 1993; van der
Laan and Rose, 2011):

D∗(P )(O) =
(

I(A=1)
P (A=1|W ) −

I(A=0)
P (A=0|W )

) (
Y − Q̄(A,W )

)
+ Q̄(1,W )− Q̄(0,W )−Ψ(P )

where I(·) is the indicator function. D∗(P )(O) is the critical ingredient in the construction of
double-robust, semiparametric, efficient estimators (van der Laan and Robins, 2003; van der Laan
and Rose, 2011). Specifically, D∗(P )(O) can be represented as an estimating function in Ψ(P )
as in augmented inverse probability of treatment weighting (A-IPTW) or used to fluctuate initial
estimates in the substitution estimator TMLE.
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The information for learning the target parameter is captured by the sample size n divided by
the variance of the efficient influence curve at the true distribution P0. Sparsity or low information
can occur when the propensity score P0(A = 1|W ) approaches 0 or 1 for certain treatment-covariate
combinations. The impact of violations of the positivity assumption on estimator performance are
demonstrated in Petersen et al. (2012). Sparsity can also occur when there are very few events
and the conditional mean Q̄0(A,W ) is or approaches 1 for some treatment-covariate combinations.
In either case, the variance of the efficient influence curve can become large, and the sample size
needed to detect effects with sufficient power correspondingly large.

This paper considers the semiparametric statistical model M, which incorporates knowledge
that the conditional mean outcome Q̄(A,W ) is bounded from above by some small constant u. For
rare binary outcomes, this knowledge has been noted by other researchers (Beck et al., 2000; King
and Zeng, 2001). Consider, for example, an unusual outcome with incidence 0.5%. With this rare
of an event, it seems unlikely that the conditional mean outcome exceeds 10% for any combination
of the exposure and measured covariates. Instead, the researcher might have knowledge that this
conditional mean does not exceed 5% for the study population. Formally, the statistical model M
is the set of possible data generating distributions:

M =
{
P : Q̄(A,W ) ∈ [`, u]

}
for some bounds 0 ≤ ` < u < 1. The specification of the bounds can be based on subject matter
knowledge or selected with cross-validation, as discussed in Section 3.3. We place no restrictions
on the marginal distribution of baseline covariates P (W ) or on the propensity score P (A = 1|W ).

The global constraints in the semiparametric statistical model M do not change the efficient
influence curve. They do, however, restrict its variance and thereby improve the information for
estimating the target parameter. To see this, let us assume the propensity score is bounded away
from 0 and 1. In other words, we assume there are no positivity violations. Further, let us set the
lower bound ` to 0. Then we can express the conditional mean outcome as Q̄(A,W ) = uQ̃(A,W )
for some function Q̃(A,W ) ∈ [0, 1]. For a binary outcome Y , the variance of the efficient influence
curve at some P in the semiparametric model M can be rewritten as

V ar
[
D∗(P )(O)

]
= uE

[
Q̃(1,W )

(
1− uQ̃(1,W )

)
P (A = 1|W )

+
Q̃(0,W )

(
1− uQ̃(0,W )

)
P (A = 0|W )

]
+u2E

[(
Q̃(1,W )− Q̃(0,W )− ψ̃

)2]
where ψ̃ = E[Q̃(1,W ) − Q̃(0,W )]. See Appendix A for the accompanying proof. As a result, the
variance of the efficient influence curve can be expressed as the upper limit u times a bounded
function of means. In other words, the variance of the efficient influence curve is dampened by a
factor of u, and the corresponding information for learning the target parameter from sample size
n is amplified by a factor of 1/u.

As originally noted in van der Laan (2008) and elaborated in Appendix B, this provides mo-
tivation for the construction of an efficient, substitution estimator, which is expected to have rea-
sonable power in finite samples. Briefly, the variance of the efficient influence curve establishes
a lower bound on the asymptotic variance of all regular, asymptotically linear estimators (Bickel
et al., 1993). A TMLE, enforcing the model constraints, is expected to achieve or nearly achieve
this efficiency bound even when the estimator of Q̄0(A,W ) converges to a misspecified limit (Proof
in Appendix B). Intuitively, bounding the estimates of Q̄0(A,W ) to be ≤ u limits the potential
deviations between the estimates and the truth, and since Q̄0(A,W ) yields the optimal variance,
this helps us to get closer to the efficiency bound. Thus, incorporating model knowledge is expected
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to decrease the estimator’s asymptotic variance as well as improve stability in finite samples. This
provides asymptotic as well as finite sample motivations for the development of a new TMLE for
the previously unconsidered statistical model M.

3 Estimation

Suppose we have n observations O = (W,A, Y ) drawn independently from P0. A simple substitution
estimator (i.e. the G-Computation estimator (Robins, 1986)) for the marginal risk difference Ψ(P0)
can be implemented with the following steps. First, we obtain an estimate of the conditional mean
outcome Q̄0(A,W ). Let us denote an initial estimator based on n observations as Q̄n(A,W ). Then
we obtain the predicted outcomes for each observation under the exposure Q̄n(1,W ) and under
the control Q̄n(0,W ). The sample average difference in these predicted outcomes provides a point
estimate for Ψ(P0). The final step corresponds to estimating the marginal covariate distribution
with the empirical proportion.

In some cases, we can estimate Q̄0(A,W ) with sample proportion in each exposure-covariate
strata. This non-parametric estimator can quickly become ill-defined when there are many exposure-
covariate combinations and can suffer from over-fitting, especially with rare outcomes. In some
cases, we may have the background knowledge to support parametric regression for Q̄0(A,W ). We
could, for example, run main terms logistic regression of the outcome Y on the exposure A and
measured covariates W . If this assumed parametric model is wrong, however, we are in danger of
biased point estimates and inference. Even if the assumed parametric model is correct, we are in
danger of biased point estimates and inference due to over-fitting.

Data-adaptive algorithms, using cross-validation (i.e. sample splitting), can help minimize these
dangers. Super Learner, for example, uses cross-validation to select the algorithm with best per-
formance or to build the optimal convex combination of candidate algorithms (van der Laan et al.,
2007). When the outcome is binary or a proportion, performance of candidate estimators can
be evaluated with the negative log-likelihood loss function. As before, a point estimate can be
obtained by plugging in the predicted outcomes, setting A = 1 and A = 0, to the parameter map-
ping. Inference, however, must respect the model building process. (Treating the final regression
model as if it were a priori -specified can result in misleading inference.) Furthermore, estimating
the conditional expectation Q̄0(A,W ) is a more ambitious task than estimating a single number
Ψ(P0) ∈ R. Thereby, an estimator of Q̄0(A,W ) will have the wrong bias-variance trade-off for the
parameter of interest Ψ(P0).

TMLE provides a solution to several of these challenges. In TMLE, the initial estimator of
Q̄0(A,W ) is updated to reduce bias for Ψ(P0) and to attain valid statistical inference. This updating
is accomplished with a loss function and a carefully selected submodel. For a binary or bounded
continuous outcome, the negative log-likelihood loss function and the following logistic regression
model can be used to update the initial estimator (Gruber and van der Laan, 2010):

logit
[
Q̄n(A,W )(ε)

]
= logit

[
Q̄n(A,W )

]
+ εHn(A,W )

with covariate Hn(A,W ) =

(
I(A = 1)

Pn(A = 1|W )
− I(A = 0)

Pn(A = 0|W )

)
and with ε as the univariate parameter. Logit refers to the logarithm of the odds and Pn(A = 1|W )
denotes an estimate of the propensity score. This combination of loss function and fluctuation model
returns the initial estimator Q̄n(A,W ) at ε = 0 and has score equal to the relevant component of
the efficient influence curve at ε = 0. To estimate the fluctuation parameter ε, we run logistic
regression of the outcome Y on the covariate Hn(A,W ) with the logit of the initial estimates as
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offset. Plugging in the estimated coefficient εn yields the targeted updates. A point estimate can
then be obtained by substituting the targeted estimates into the parameter mapping.

The standard TMLE algorithm for a binary or bounded continuous outcome is not optimal
for our semiparametric statistical model M. Specifically, this TMLE does not enforce the global
constraints on the conditional mean outcome. First, initial estimates Q̄n(A,W ) based on the log-
likelihood loss function are guaranteed to be within (0, 1), but are possibly outside of the model
bounds [`, u]. Secondly, the logistic regression, used to update the initial estimator, is technically
not a submodel, because it does not respect the constraints implied byM. Therefore, the updated
estimates Q̄∗n(A,W ) are guaranteed to be between (0, 1), but may be outside of the model bounds
[`, u]. As a result, the asymptotic and finite sample performance of a TMLE, using this loss
function and parametric working model, is expected to sub-optimal. The algorithm is expected to
be unstable due to sparsity from rare events.

3.1 The rare outcomes TMLE

To incorporate the model knowledge, we propose a linear transformation of the rare outcome
Y ∈ [0, 1] by subtracting off the lower bound ` and dividing by the deviation between the upper u
and lower bounds:

Ỹ =
Y − `
u− `

∈
[
−`
u− `

,
1− `
u− `

]
Suppose, for example, the bounds on Q̄0(A,W ) are [0, 0.05]. Then the transformed outcome Ỹ
would be bounded between 0 and 20. The mapping between the conditional mean of the original
outcome Y and the conditional mean of the transformed outcome Ỹ is given by

Q̄(A,W ) = `+ (u− `)Q̃(A,W )

where Q̃(A,W ) is a bounded function of exposure and covariates (A,W ). The analogous transfor-
mation was proposed by Gruber and van der Laan (2010) for the TMLE of a bounded continuous
outcome Y ∈ [a, b].

The negative quasi-log-likelihood is a valid loss function for initial estimation and targeting of
the transformed mean Q̃0(A,W ):

−L(Q̃)(O) = log
[
Q̃(A,W )Ỹ

(
1− Q̃(A,W )

)1−Ỹ ]
To update an initial estimator of Q̃n(A,W ), we can use the logistic fluctuation submodel: logit

[
Q̃n(A,W )(ε)

]
=

logit
[
Q̃n(A,W )

]
+ εHn(A,W ) with covariate Hn(A,W ) defined as above. This combination of loss

function and fluctuation submodel will generate a score proportional to the relevant component of
the efficient influence curve at zero fluctuation:

d

dε
L(Q̃n(ε))(O)

∣∣∣∣
ε=0

= Hn(A,W )
(
Ỹ − Q̃n(A,W )

)
= Hn(A,W )

(
Y − `
u− `

− Q̃n(A,W )

)
=

1

u− `
Hn(A,W )(Y − Q̄n(A,W ))

Through this transformation, the initial and targeted estimates are guaranteed to satisfy the model
constraints. This will provide robustness. The targeted estimates can then be rescaled and sub-
stituted in the parameter mapping. The proposed loss function and parametric submodel define
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a new TMLE of the target parameter Ψ(P0) in the semiparametric statistical model M, which
encodes bounds on the conditional risk of the rare outcome Q̄0(A,W ) ∈ [`, u]. Hereafter, we refer
to the proposed estimator as the rare outcomes TMLE.

3.2 Step-by-step implementation

Step 1: Transform the outcome. We first transform the outcome Y into Ỹ by subtracting the lower
bound ` and dividing by the difference between the upper and lower bounds (u− `).

Step 2: Estimate the transformed mean. An initial estimate of the conditional mean of the
transformed outcome Q̃0(A,W ) can be based on logistic regression of Ỹ on the exposure A and
baseline covariates W . Since the outcome is no longer between 0 and 1, standard software may
yield error messages. Example R code, using the optim function, is given in the Appendix (R Core
Team, 2014). More data-adaptive methods, such as Super Learner, can be implemented as long as
the library of algorithms respect the statistical model (van der Laan et al., 2007).

Step 3: Estimate the propensity score. An initial estimate of the conditional probability of being
exposed given the covariates P0(A = 1|W ) is also required, as it makes up the covariate Hn(A,W )
in the fluctuation submodel. Using the log-likelihood loss function, the propensity score could be
estimated with parametric logistic regression or with more data-adaptive methods.

Step 4: Target the initial estimator. Run logistic regression of the transformed outcome Ỹ on
the covariate Hn(A,W ) with offset as the logit of the initial estimates Q̃n(A,W ). The estimated
coefficient εn is then plugged into yield the updates:

Q̃∗n(A,W ) = Q̃n(A,W )(εn) = expit
[
logit[Q̃n(A,W )] + εnH(A,W )

]
where expit is the inverse-logit. The process of estimating the fluctuation parameter ε and updating
is iterated until convergence, which occurs here in a single step.

Step 5: Transform and plug-in the targeted estimates. The targeted estimate of the conditional
mean of the transformed outcome, denoted Q̃∗n(A,W ), can be mapped into a targeted estimate of
the conditional mean of the original outcome by

Q̄∗n(A,W ) = `+ (u− `)Q̃∗n(A,W )

We obtain a point estimate by substituting in the targeted estimates of the conditional mean under
the exposure Q̄∗n(1,W ) and under no exposure Q̄∗n(0,W ) into the parameter mapping:

Ψn,rtmle(Pn) =
1

n

n∑
i=1

(
Q̄∗n(1,Wi)− Q̄∗n(0,Wi)

)
Step 6: Obtain inference. Under regularity conditions, Ψn,rtmle(Pn) is an asymptotically linear

estimator of Ψ(P0) (van der Laan and Rose, 2011). Its limit distribution is normal with mean 0
and variance given by the variance of its influence curve divided by sample size n. Therefore, 95%
confidence intervals can be constructed as the point estimate ψ∗n ± 1.96σn/

√
n, where σ2n is the

sample variance of the estimated influence curve:

ICn(O) =
(

I(A=1)
Pn(A=1|W ) −

I(A=0)
Pn(A=0|W )

) (
Y − Q̄∗n(A,W )

)
+ Q̄∗n(1,W )− Q̄∗n(0,W )− ψ∗n

where ψ∗n denotes the resulting point estimate. Alternative approaches for variance estimation
include the non-parametric bootstrap or a substitution estimator for the variance. The former
might be problematic with rare binary outcomes as some bootstrapped samples may not have any
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events. The latter would guarantee the bounds on the variance are respected and is an area of
future work.

By construction, the rare outcomes TMLE solves the efficient score equation. Specifically,
the empirical mean of the efficient influence curve at the targeted estimator Q̄∗(A,W ) and initial
estimator Pn(A|W ) is zero. As a result, the TMLE is double robust: ψ∗n will be a consistent
estimator for ψ0 = Ψ(P0) if either the conditional mean function Q̄0(A,W ) or the propensity score
P0(A = 1|W ) is consistently estimated. As shown below, this property translates into important
bias gains in finite samples. If both functions are consistently estimated and the propensity score
satisfies the positivity assumption, the proposed TMLE will be asymptotically efficient in that its
influence curve equals the efficient influence curve. As illustrated below, this property translates
into important variance and power gains in finite samples.

3.3 Selecting the upper bound u with cross-validation

Thus far, we have assumed that the upper bound u is known. (The lower bound ` can trivially
be set to 0.) Such knowledge, however, may be unavailable in all applications. When the specified
upper bound is larger than needed, the gains in estimator performance will be attenuated. In
the extreme when u = 1, the rare outcomes TMLE will reduce to the standard TMLE algorithm
for binary or bounded continuous outcomes. If the specified upper bound is too small, then the
targeted estimator of Q̄0(A,W ) will be inconsistent. Nonetheless, if the propensity score is known
or consistently estimated, then the target parameter ψ0 will still be consistently estimated due to
the double robustness property. Moreover, the targeted estimates Q̄∗n(A,W ) will still be bounded
from above by u, which translates into important variance gains. Thereby, cross-validation can
be used to select u, when such knowledge is not available a priori. Specifically, the upper bound
can be selected by minimizing the cross-validated risk of candidate estimators Q̄n,u(A,W ), which
are now indexed by an upper bound u. The previously stated properties (e.g. double robustness,
asymptotic linearity and efficiency) should hold when the upper bound u is selected data-adaptively.
We implement this cross-validation selector in the following simulations.

4 Simulations

The following simulation studies compare the finite sample performance of the standard TMLE
with the proposed rare outcomes TMLE (rTMLE). For comparison, we also include the propensity
score matching (PSM) estimator (Rosenbaum and Rubin, 1983), inverse probability of treatment
weighted (IPTW) estimator (Hernán et al., 2000) and augmented inverse probability of treatment
weighted (AIPTW) estimator (Robins, 2000; van der Laan and Robins, 2003). The first two methods
rely solely on estimation of the propensity score and may have superior performance under sparsity
due to rare outcomes. AIPTW requires estimation of both the conditional mean outcome and the
propensity score, but is double robust and asymptotically efficient under consistent estimation of
both functions. AIPTW is an estimating equation (i.e. not a substitution estimator) and thereby
can result in impossible parameter estimates in the context of sparsity (e.g. probabilities less than
0 or greater than 1 (Lendle et al., 2013)).

For the PSM estimator, we used the Matching package in R for 1:1 matching based on the
estimated propensity score and calculated the point estimate as

ψn,PSM =
1

n

n∑
i=1

Ŷi(1)− Ŷi(0), where Ŷi(a) =

{
Yi if Ai = a
YMi if Ai 6= a

7
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with YMi denoting the outcome of observation matched to unit i based on the estimated propensity
scores (Sekhon, 2011). A point estimate from IPTW is given by the following weighted mean

ψn,IPTW =
1

n

n∑
i=1

(
I(Ai = 1)

Pn(Ai = 1|Wi)
− I(Ai = 0)

Pn(A = 0|Wi)

)
Yi

A point estimate from AIPTW is attained by directly solving the efficient score equation:

ψn,AIPTW = 1
n

∑n
i=1

[(
I(Ai=1)

Pn(Ai=1|W ) −
I(Ai=0)

Pn(Ai=0|Wi)

) (
Yi − Q̄n(Ai,Wi)

)
+Q̄n(1,Wi)− Q̄n(0,Wi)

]
where Q̄n(A,W ) denotes a non-targeted estimate of the conditional mean outcome. Inference
was based on the Abadie-Imbens standard error estimator for the PSM estimator (Abadie and
Imbens, 2006; Sekhon, 2011) and the estimated influence curve for the others. Wald-type confidence
intervals were calculated as ψn ± 1.96sen, where ψn denotes the point estimate and sen denotes
the estimated standard error. Likewise, tests of the null hypothesis of no effect were based on test
statistic Tn = ψn/sen.

4.1 Simulation 1: Individual-level data

The finite sample performance of the estimators was assessed by drawing 2000 samples of sizes
n = 1000 and n = 2500 according to the following process. First, we generated three baseline
covariates:

W1 ∼ Normal(0, 0.252), W2 ∼ Uniform(0, 1), W3 ∼ Bernoulli(0.5)

The exposure A was drawn from a Bernoulli distribution with probability

P0(A = 1|W ) = expit(−0.5 +W1 +W2 +W3)

With this exposure mechanism, there were no positivity violations; the propensity score was
bounded between 20% and 92%. Finally, the binary outcome was drawn from a Bernoulli dis-
tribution with probability

P0(Y = 1|A,W ) = expit(−3 + 2∗A+W1 + 2∗W2− 4∗W3 + 0.5∗A∗W1)/15

The resulting marginal probability of the outcome was E0(Y ) = 1.1%. The true bounds on the
conditional mean Q̄0(A,W ) were [0%, 6.2%], and the true value of the statistical parameter was
ψ0=1.3%.

The propensity score P0(A = 1|W ) was estimated with the correctly specified main terms
logistic model and a misspecified regression model, failing to adjust for W3. The conditional mean
outcome Q̄0(A,W ) was estimated with the correctly specified logistic regression model as well as
a misspecified regression, only adjusting for W1. For the rare outcomes TMLE, the lower bound
was set 0 and the upper bound was selected data-adaptively from the set {2.5%, 5%, 7.5%, 10%}
using cross-validation with the log-likelihood loss function.

The results for this simulation are presented in Figures 1 and 2. As expected, the PSM estimator
and IPTW exhibited low bias when the regression model for the propensity score P0(A = 1|W ) was
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Figure 1: Box plots of the point estimates from various algorithms for sample sizes n = 1000 (left) and n = 2500
(right) for Simulation 1. The x-axis denotes the estimator and the regression specification. CC indicates both
the outcome regression and the propensity score are correctly specified. CM indicates the outcome regression
is correctly specified, but propensity score misspecified. MC indicates the outcome regression is misspecified,
but the propensity score correctly specified. The dashed line indicates the true value ψ0 = 1.3%.
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Figure 2: Attained confidence interval coverage and power for the estimators in Simulation 1. The unfilled
and filled points denote sample sizes of n = 1000 and n = 2500, respectively. Circles indicate both the
outcome regression and the propensity score are correctly specified. Triangles indicate the outcome regression
is correctly specified, but propensity score misspecified. Squares indicate the outcome regression is misspecified,
and propensity score correctly specified. The dashed lines indicate 95% confidence interval coverage and 80%
power, respectively.
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correctly specified, but were biased otherwise. This bias did not disappear with sample size. Like-
wise, these estimators had poor confidence interval coverage under misspecification of the propen-
sity score. Even under correct specification of this function, the PSM estimator had notably lower
power than IPTW, AIPTW or rTMLE. Indeed, neither the PSM estimator nor IPTW are efficient
estimators.

In theory, the other estimators solve the efficient score equation directly (AIPTW) or during
the targeting step (TMLE, rTMLE). As a result, these estimators are double robust. For these
simulations, however, the standard TMLE exhibited substantial bias when estimating Q̄0(A,W )
with the correctly specified regression model, which included 4 main terms plus an interaction
(Figure 1). Due to the paucity of events, logistic regression of the untransformed outcome Y was
unstable. Thereby, the updating step, which involved fitting an additional coefficient ε, did little
to reduce bias. As a result, its confidence interval coverage was poor under correct specification
of the outcome regression (Figure 2). On the other hand, when the initial estimator of Q̄0(A,W )
was based on the misspecified regression, the performance of the standard TMLE was comparable
to AIPTW and rTMLE. Recall the misspecified regression model for Q̄0(A,W ) only included main
terms for the exposure and W1. The smaller adjustment set lead to more stable initial estimates,
but also complete reliance on consistent estimation of the propensity score for confounding control
and consistency. Thereby, a potential approach when estimating effects with rare outcomes is to
use a smaller adjustment set for Q̄0(A,W ) and thereby sacrifice double robustness and efficiency
for greater stability and potentially reduced bias. This approach was taken by Gruber and van der
Laan (2013).

The performance of AIPTW and rTMLE did not suffer when fitting Q̄0(A,W ) in the larger,
correctly specified regression model. As shown in Figure 1, both AIPTW and rTMLE had low
bias when either the outcome regression, the propensity score or both were correctly specified.
Furthermore, these estimators had good confidence interval coverage at both sample sizes and
attained power for the larger sample (Figure 2). Therefore, it seemed that the performance of
AIPTW and rTMLE were comparable for this set of simulations. It is worth emphasizing, however,
that rTMLE is a substitution estimator and thereby guaranteed to respect the global constraints
in the model. In particular, AIPTW yielded negative (impossible) estimates for the marginal risk
under no exposure (Table 1).

n = 1000 n = 2500

Both Correct 120 5
P0(A = 1|W ) mis 260 11

Q̄0(A,W ) mis 130 6

Table 1: For Simulation 1, the number of negative estimates for the marginal risk under no exposure from
AIPTW with samples of size n = 1000 and n = 2500.

Under the null, the PSM estimator and IPTW had good type I error control when the propensity
was correctly specified (Results not shown). Under misspecification, their type I error rates exceeded
20%. The standard TMLE also suffered from high type I error rates, when both regression models
were correctly specified. AIPTW and rTMLE maintained nominal type I error rates for both sample
sizes and all regression specifications.

4.2 Simulation 2: Group-level data

For this set of simulations, we focused on clustered data, where the covariates, exposure and outcome
were measured or aggregated to the cluster-level. For 2,000 simulations of n = 100 units, three
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baseline covariates
(
W1,W2,W3

)
and the exposure A were generated according to the above

process. We also simulated two additional covariates W4 and W5 as independent draws from a
normal distribution with mean 0 and standard deviation 0.25. The cluster-level outcome Y was
the empirical mean of 2,500 independent Bernoulli’s with a cluster-specific risk of

P0(Y = 1|A,W ) = expit(−2.5 + 0.5∗A+W1 + 2∗W2− 2∗W3)/15

The average outcome across the clusters was E0(Y ) = 0.99%. The true bounds on the conditional
mean Q̄0(A,W ) were [0%, 4.7%], and the true value of the statistical parameter was ψ0=0.36%.
For completeness, the null scenario was also generated by simulating the outcomes as if all clusters
were exposed.

As suggested by the previous simulations, a possible approach for estimation with rare outcomes
is using a small adjustment set for Q̄0(A,W ) and fully relying on consistent estimation of the
propensity score P0(A = 1|W ). To evaluate this approach, we estimated the conditional mean
outcome with the unadjusted treatment-specific mean Q̄n(A). For comparison, we also employed
Super Learner for initial estimation of transformed mean Q̃0(A,W ) in rTMLE. For simplicity, we
limited our library of algorithms to logistic regressions, building up from a single main term to
four terms (the exposure plus three covariates). For example, a candidate algorithm included as
main terms the exposure A, the baseline confounder W1 as well as the two irrelevant covariates
W4 and W5. This simple library was selected for illustration; in practice, the inclusion of more
flexible algorithms is recommended. The bounds for rTMLE were selected from the set {2.5%, 5%,
7.5%, 10%} with cross-validation and the log-likelihood loss. The propensity score was estimated
according to the correctly specified logistic regression model.

The simulation results are given in Table 2. Since the estimated propensity score was based
on the correct regression model, all algorithms were unbiased. When using an unadjusted (initial)
estimator Q̄n(A), the double robust estimators did not substantially outperform the PSM estimator.
Instead, AIPTW, TMLE and rTMLE were under-powered, and there was evidence of conservative
inference, as indicated by over-coverage of confidence intervals and lower than nominal Type I error
rates. Furthermore, when there was a treatment effect, the mean squared error (MSE) of standard
TMLE, using the unadjusted initial estimate Q̄n(A), was notably larger than that of the other
estimators. This suggests that even when a small adjustment set is used, rTMLE can provide
stability over the standard algorithm. The rTMLE, using Super Learner for initial estimation, had
good confidence interval coverage and type I error control. Furthermore, when there was a treatment
effect, the rTMLE, using Super Learner, attained highest power of 95%. This demonstrates the
potential gains with data-adaptive estimation in the rTMLE algorithm.

5 Discussion

In this paper, we proposed a new TMLE for evaluating causal effects and estimating associations
with rare outcomes. The efficient influence curve (function) provided theoretical motivation for
the new estimator. Specifically, sparsity or low information can arise when the propensity score
approaches 0 or 1 for some exposure-covariate combinations or when outcome is rare and the
conditional mean outcome approaches 1 for some exposure-covariate combinations. Thereby, the
information for estimating the impact on a rare outcome is substantially improved when the con-
ditional mean outcome is bounded from above by some small u. These bounds can be based on
subject matter knowledge or selected with cross-validation and are encoded in a semiparametric
statistical model. Estimators, incorporating this model knowledge, are expected to be less variable
asymptotically and more stable in finite samples. Furthermore, if the estimator of conditional mean
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Treatment effect: ψ0=0.36% Null: ψ0 = 0%
ψn (%) MSEa Cov.b Power ψn (%) MSEa Cov.b α

PSM 0.36 1.4E-6 1.00 0.53 0.00 1.9E-6 0.99 0.01
IPTW 0.35 6.3E-7 1.00 0.02 0.00 7.6E-7 1.00 0.00

AIPTW 0.35 7.4E-7 1.00 0.47 0.00 9.1E-7 1.00 0.00
TMLE 0.38 1.0E-4 1.00 0.55 0.02 1.0E-4 1.00 0.00

rTMLE 0.35 7.2E-7 1.00 0.55 0.00 8.6E-7 1.00 0.00
rTMLESL 0.36 7.3E-7 0.96 0.95 0.00 1.1E-6 0.97 0.03
a mean squared error (bias-squared + variance)
b confidence interval coverage

Table 2: Estimator performance over 2,000 simulations of n = 100 clusters in Simulation 2. The rows indicate
the estimator with “SL” denoting that Super Learner was used for initial estimation of Q̃0(A,W ).

Q̄0(A,W ) converges to a misspecified limit but still satisfies the model bounds, the corresponding
TMLE is expected to achieve or nearly achieve the efficiency bound.

In finite sample simulations, the proposed rare outcomes TMLE performed as well or outper-
formed the alternative estimators. The PSM estimator and IPTW were biased under misspec-
ification of the propensity score. The standard TMLE algorithm suffered from bias and poor
confidence interval coverage when the adjustment set for the conditional mean outcome was large.
Both AIPTW and rTMLE were robust to model misspecification and remained unbiased if either
the conditional mean outcome or the propensity score were consistently estimated. AIPTW, how-
ever, is not a substitution estimator and yielded negative (impossible) risk estimates. In contrast,
the proposed TMLE respected the global knowledge in the statistical model. Our simulations fur-
ther highlighted the potential for data-adaptive estimation to avoid parametric assumptions and to
increase power.

The proposed TMLE is generalizable for estimation of other parameters, including the risk ra-
tios, odds ratios and the impacts of longitudinal exposures. The TMLE is also applicable to other
sampling designs. Specifically, case-control studies are commonly employed to increase robustness
and efficiency of the analysis of rare events. There are several well established methods that correct
for selection on the outcome (Anderson, 1972; Prentice and Breslow, 1978; King and Zeng, 2001;
Robins, 1999; Mansson et al., 2007). For example, van der Laan (2008) presented a general map-
ping of loss functions, substitution estimators and estimating equations developed for prospective
sampling (i.e. cohort sampling) into loss functions, substitution estimators and estimating equa-
tions for biased sampling (e.g. case-control sampling). The estimator’s properties, such as double
robustness and asymptotic efficiency, are preserved under the mapping. As noted by van der Laan
(2008), however, the sample size needed to detect effects on the order of the outcome prevalence
will be very large, unless the conditional probability of the outcome is bounded from above by some
small constant u. The estimator, proposed in this article, satisfies this condition by construction
and thereby has the potential to achieve higher power than its unconstrained counterpart in finite
samples. In other words, the mapping provided in van der Laan (2008) will allow us to weight
rTMLE appropriately for case-control sampling. We expect the resulting estimator to offer an
improvement in terms of stability and power in finite samples.
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Appendix

Appendix A: Variance of the efficient influence curve at P0 ∈M

Suppose the outcome Y is binary, and consider the semiparametric statistical modelM, bounding
the conditional probability of the outcome Q̄(A,W ) by some [`, u] with 0 ≤ ` < u < 1. For
simplicity, let us us assume the lower bound ` is 0 and re-express the conditional mean function as

Q̄(A,W ) = uQ̃(A,W )

for some Q̃(A,W ) ∈ [0, 1]. Let g0(A|W ) denote the conditional distribution of the exposure, given
the covariates P0(A|W ). Then the variance of the efficient influence curve at the true but unknown
distribution P0 can be written as

V ar[D∗(Q0, g0)]

=E0

[(
I(A = 1)

g0(1|W )
− I(A = 0)

g0(0|W )

)2 (
Y − Q̄0(A,W )

)2]
+ E0

[(
Q̄0(1,W )− Q̄0(0,W )−Ψ(Q0)

)2]
=E0

[(
I(A = 1)

g0(1|W )2
+
I(A = 0)

g0(0|W )2

)
E0

[
(Y − Q̄0(A,W ))2

∣∣∣∣A,W]]+ E0

[(
Q̄0(1,W )− Q̄0(0,W )−Ψ(Q0)

)2]
=E0

[
Q̄0(1,W )

(
1− Q̄0(1,W )

)
g0(1|W )

+
Q̄0(0,W )

(
1− Q̄0(0,W )

)
g0(0|W )

]
+ E0

[(
Q̄0(1,W )− Q̄0(0,W )−Ψ(Q0)

)2]
=uE0

[
Q̃0(1,W )

(
1− uQ̃0(1,W )

)
g0(1|W )

+
Q̃0(0,W )

(
1− uQ̃0(0,W )

)
g0(0|W )

]
+ u2E0

[(
Q̃0(1,W )− Q̃0(0,W )−Ψ(Q̃0)

)2]
where Ψ(Q0) = E0[Q̄0(1,W )− Q̄0(0,W )] and Ψ(Q̃0) = E0[Q̃0(1,W )− Q̃0(0,W )].

Now consider the outcome Y to be a proportion. Specifically, suppose the outcome Y is the
average of k independent Bernoulli’s with probability Q̄0(A,W ) ∈ [0, u]. The variance of the
efficient influence curve at the true but unknown distribution P0 is then

V ar[D∗(Q0, g0)] =
u

k
E0

[
Q̃0(1,W )

(
1− uQ̃0(1,W )

)
g0(1|W )

+
Q̃0(0,W )

(
1− uQ̃0(0,W )

)
g0(0|W )

]
+
(u
k

)2
E0

[(
Q̃0(1,W )− Q̃0(0,W )−Ψ(Q̃0)

)2]
Appendix B: Asymptotic variance at a misspecified limit Q̄(A,W )

Suppose we have n independent, identically distributed (i.i.d.) observations of O = (W,A, Y ) drawn
from some P0 in the semiparametric statistical modelM. Further suppose, for discussion, that the
exposure mechanism g0(A|W ) is known and satisfies the positivity assumption. Again, we consider
Y to be binary for simplicity. Now consider two TMLEs Ψ1,n(Pn) and Ψ2,n(Pn), which are functions
of the empirical distribution Pn. Suppose the first constrains the estimated risks Q̄n(A,W ) to be
≤ 1, while the second constrains its estimated risks Q̄n(A,W ) to be ≤ u. In other words, Ψ2,n(Pn)
ensures the estimated risks are within the model bounds. Since both TMLEs solve the efficient
influence curve equation, they are double robust and will be consistent even if Q̄n(A,W ) converges
to a misspecified limit. The second TMLE, however, will often be more efficient when Q̄0(A,W ) is
inconsistently estimated.

Under regularity conditions, the asymptotic variance of the first estimator Ψ1,n(Pn) is given by
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the variance of the efficient influence curve at the misspecified limit Q̄(A,W ) divided by n:

nV ar[Ψ1,n(Pn)] = V ar[D∗(P0)(O)] + E0

[(
1− g0(1|W )

)
g0(1|W )

(
Q̄0(1,W )− Q̄(1,W )

)2]

+ E0

[(
1− g0(0|W )

)
g0(0|W )

(
Q̄0(0,W )− Q̄(0,W )

)2]
+ 2E0

[(
Q̄0(1,W )− Q̄(1,W )

)(
Q̄0(0,W )− Q̄(0,W )

)]
where V ar[D∗(P0)(O)] is the variance of the efficient influence curve at P0 ∈ M as given above.
The second and third terms, involving squared deviations between the true mean Q̄0(A,W ) and
limit Q̄(A,W ), are always positive. The last term, involving the product of these deviations, will be
positive when both treatment-specific means are under-estimated or over-estimated. Thereby, when
Q̄(A,W ) approaches 1 for some treatment-covariate combinations, these terms will be positive and
contribute substantially to the asymptotic variance of the first estimator.

In contrast, the asymptotic variance of the second estimator Ψ2,n(Pn) is

nV ar[Ψ2,n(Pn)] = V ar[D∗(P0)(O)] + u2E0

[(
1− g0(1|W )

)
g0(1|W )

(
Q̃0(1,W )− Q̃(1,W )

)2]

+ u2E0

[(
1− g0(0|W )

)
g0(0|W )

(
Q̃0(0,W )− Q̃(0,W )

)2]
+ 2uE0

[(
Q̃0(1,W )− Q̃(1,W )

)(
Q̃0(0,W )− Q̃(0,W )

)]
where we have replaced the limit Q̄(A,W ) with uQ̃(A,W ) for some Q̃(A,W ) ∈ [0, 1]. Since u is
small, the contribution from misspecification of Q̄0(A,W ) is diminished in the second estimator,
which enforces the constraints in the statistical modelM. Thereby, this estimator will be closer to
achieving the efficiency bound even if Q̄n(A,W ) converges to a misspecified limit. This provides an
asymptotic motivation for constructing a new TMLE, which guarantees the predicted probabilities
are within model bounds and does not rely on them being nicely bounded by chance. Indeed,
one could easily imagine a situation where an unconstrained estimator for Q̄0(A,W ) adds more
covariates into the regression model as sample size increases and thereby converges to a limit
outside the model bounds.

Finally, we note that if Q̄n(A,W ) converges to the true Q̄0(A,W ), then the two estimators
Ψ1,n(Pn) and Ψ2,n(Pn) will be asymptotically equivalent. Both estimators will achieve the efficiency
bound in that their asymptotic variance will be given by the variance of the efficient influence curve
at P0 divided by sample size. Their finite sample performance, however, is still likely to be different.
The proof is available upon request.

Appendix C - Sample R Code

Below, we provide sample R code to minimize the log-likelihood loss for Ỹ = (Y − `)/(u− `). Full
code for implementing the rare outcomes TMLE algorithm is available from the authors by request.

#############

# LogLikelihood() -

# function to calculate the loglikelihood loss for a bounded Y

# with values possibly outside of [0,1]

# this uses on a parametric regression model for P(Y | A,W)
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# input: beta (initial values for coefficients), outcome Y, design matrix X

# returns: negative log likelihood loss

#############

LogLikelihood<- function(beta, Y, X){

pi<- plogis( X%*%beta ) # P(Y|A,W)= expit(beta0 + beta1*X1+beta2*X2...)

pi[pi==0] <- .Machine$double.neg.eps # to prevent taking the log of 0

pi[pi==1] <- 1-.Machine$double.neg.eps

logLike<- sum( Y*log(pi) + (1-Y)*log(1-pi) )

return(-logLike)

}

###########

# grad- corresponding function to calculate the gradient

# other optimization routines (e.g. Nelder-Mead) do not use the gradient

######

grad<- function(beta, Y, X){

pi<- plogis( X%*%beta ) # P(Y|A,W)= expit(beta0 + beta1*X1+beta2*X2...)

pi[pi==0] <- .Machine$double.neg.eps # for consistency with above

pi[pi==1] <- 1-.Machine$double.neg.eps

gr<- crossprod(X, Y-pi) # gradient is -residual*covariates

return(-gr)

}

# Example: Data generating experiment for Simulation 1

set.seed(123)

n=2500

W1<- rnorm(n, 0, .25)

W2<- runif(n, 0, 1)

W3<- rbinom(n, size=1, 0.5)

A<- rbinom(n, size=1, prob= plogis(-.5+ W1+W2+W3) )

pi<- plogis(-3+ 2*A + 1*W1+2*W2-4*W3 + .5*A*W1)/15

Y<- rbinom(n, size=1, prob= pi)

sum(Y)

# 29

# Qbounds (l,u)= (0,0.065)

l=0; u=0.065

#create the design matrix

X <- model.matrix(as.formula(Y~W1+W2+W3+A*W1))

# transform Y to Y.tilde in between (l,u)

Y.tilde<- (Y - l)/(u-l)

summary(Y.tilde)

# Min. 1st Qu. Median Mean 3rd Qu. Max.

# 0.0000 0.0000 0.0000 0.1785 0.0000 15.3800

# call to the optim function.

# par: initial parameter estimates; f:function to minimize; gr: gradient

# arguments to LogLikelihood() & grad() are Y and X

optim.out <- optim(par=rep(0, ncol(X)), fn=LogLikelihood, gr=grad,

Y=Y.tilde, X=X, method="BFGS")

# see optim help files for more details and other optimization routines

# get parameter estimates

beta<- optim.out$par

# get predicted values and transform to proper scale

pred.prob.optim <- plogis(X%*%beta)*(u-l) + l

# compare with

pred.prob.glm<- predict(glm(Y~W1+W2+W3+A*W1, family="binomial"), type="response")

predictions<- data.frame(optim=pred.prob.optim, glm=pred.prob.glm)
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summary(predictions*100)

# optim glm

# Min. :0.00001 Min. : 0.000364

# 1st Qu.:0.02923 1st Qu.: 0.070958

# Median :0.14395 Median : 0.159921

# Mean :1.16000 Mean : 1.160000

# 3rd Qu.:1.62741 3rd Qu.: 1.678541

# Max. :6.30201 Max. :10.321924
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