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Statistical Inference for Data Adaptive Target
Parameters

Mark J. van der Laan, Alan E. Hubbard, and Sara Kherad Pajouh

Abstract

Consider one observes n i.i.d. copies of a random variable with a probability
distribution that is known to be an element of a particular statistical model. In
order to define our statistical target we partition the sample in V equal size sub-
samples, and use this partitioning to define V splits in estimation-sample (one of
the V subsamples) and corresponding complementary parameter-generating sam-
ple that is used to generate a target parameter. For each of the V parameter-
generating samples, we apply an algorithm that maps the sample in a target pa-
rameter mapping which represent the statistical target parameter generated by that
parameter-generating sample. We define our sample-split data-adaptive statistical
target pa- rameter as the average of these V -sample specific target parameters.
We present an analogue estimator of this type of data adaptive target parameter
and corresponding statistical inference. This general methodology for generating
data adaptive target parameters while still providing valid statistical inference is
demonstrated with a number of examples. These examples demonstrate that this
methodology presents new opportunities for statistical learning from data that go
beyond the usual requirement that the estimand is a priori defined in order to allow
for proper statistical inference. This new framework provides a rigorous statistical
methodology for both exploratory and confirmatory analysis within the same data.
Given that more research is becoming “data-driven”, the theory developed within
this paper provides a new impetus for a greater involvement of statistical inference
into problems that are being increasingly addressed by clever, yet ad hoc pattern
finding methods - that is, the role of statisticians is being supplanted by computer
scientist, deriving clever, yet typically ad hoc methods that “discover” the inter-
esting patterns in data. The methodology presented in this paper can harness these
methods, and now provide rigorous inference for the patterns, or target parameters
suggested by such procedures. In this way, it returns exercises involving learning



from data back within the proper domain of rigorous statistical inference. To sug-
gest such potential, and to verify the predictions of the theory, simulation studies
based upon algorithms that map the parameter- generating sample into the desired
estimand are shown. However, the methodology generalizes to situations where
even these algorithms are not prespecified.



1 Introduction and motivating examples

Consider n independent and identically distributed observations O1, . . . , On from a probability dis-
tribution P0 that is known to be an element of a statistical model M. In order to allow for formal
statistical inference it is generally considered important that the statistical target parameter is a
priori defined, where a statistical target parameter is defined as a mapping Ψ : M → Ψ from the
statistical model into the parameter space Ψ; ψ0 = Ψ(P0) is the true parameter value. Otherwise,
such analyses will typically be considered “exploratory” (data mining, data dredging) and the result-
ing findings typically greeted with greater skepticism. In a typical data mining exercise, a variety of
target parameters, typically not pre specified, are estimated from the data. Specifically, one might
apply a certain algorithm to the data that generates potential parameters of interest, but even this
algorithm might be not only developed data adaptively, it is often the case that the steps taken are
not well documented. For instance, the sequence of analysis often used in large scale omic studies
(genomics, proteomics, metabolomics, etc.; Zhang and Chen [2011], Berger et al. [2013]) can be the
result of a series of suggested patterns that lead to further analyses not previously considered, e.g.,
multiple testing, to clustering, to exploration of pathways, to more targeted analyses, leading to the
highlighting of a particular pathway. In these cases, treating the resulting suggested target param-
eter of interest as pre-specified makes it virtually impossible to obtain honest statistical inference.
Others have noted the particular dangers of high dimensional data combined with flexible method-
ologies to generate excessive false positive findings (Ioannidis [2008], Broadhurst and Kell [2006]).
Other examples could include using a particular data adaptive method to fit a regression function
only to then evaluate its fit on the same sample. In many cases, even when the best intentions are to
stick to a pre-specified data analysis plan, implying targeted parameters of interest, there is feedback
from the data and the types of analysis conducted: models changed (e.g., covarietes dropped) due
to identifability concerns, unplanned sub-group analysis (Barraclough and Govindan [2010], Marler
[2012] ).

In this article, we propose methods that both utilize the potential of algorithms to find patterns
in data in exploratory data analysis, but still provide meaningful inference about the resulting
estimates. This paper, thus, provides a new framework for data mining methods used to generate
interesting target parameters, while still providing honest statistical inference. Though there are
advantages for doing so, the general methodology does not even require one to pre-specify the
algorithm used to generate the target parameter(s). Thus, it can be applied in circumstances where
there is little constraint on how the data is explored to generate potential parameters of interest for
estimation and inference.

The method is analogous to a known commonly employed solution, which splits the sample in two
parts, use one part to generate the statistical target parameter, and estimate the resulting target
parameter with the other part of the sample. The great advantage of this is that honest statistical
inference is obtained with standard methodology. However, the motivation for our approach is that
this method comes at an enormous cost with regards to power since only half of the sample is used
to estimate the statistical target parameter. Therefore, we seek extensions of this simple method,
and the conditions such that the resulting inference will be consistent. Firstly, we propose to use
V-fold sample splitting, use one part of the sample of size n(1 − 1/V ) to generate the statistical
target parameter, and estimate this target parameter with the remaining sample of size n/V , and do
this for each of the V splits of the sample. The target parameter is defined as the average over the V
splits of the split-specific target parameters, and our estimator is defined as a corresponding average
of split-specific estimators. We prove that the latter estimator allows statistical inference under very
weak regularity conditions, which mean that one can derive honest inference for parameters defined
by very aggressive procedures. The price one pays is that one has to accept that the statistical
inference concerns the average of V target parameters. If the parameter generating algorithm is a
priori specified and the same for each of the splits, then the V target parameters might be very
similar, so that the interpretation of the average of the V target parameters is quite clear. On the
other hand, if each split uses a different parameter-generating algorithm, then the resulting average
of the V target parameters is what it is. Even in the latter case, rejecting a null hypothesis about
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this average of target parameters can be interesting by, for example, showing that the treatment is
effective for at least one of the subgroups suggested within one of the parameter-generating samples.

In addition, we also present estimators that apply the parameter generating algorithm to the whole
sample and then fits the resulting statistical target parameter on the same (full) data. This method
is generally understood to provide misleading inference regarding the target parameters generated by
the exploratory phase of the analysis, and, as expected, in many circumstances this understanding
proves correct. However, we present the (stronger) assumptions under which such a procedure results
in the asymptotically normal estimates with consistently estimable variability, noting that great
caution must be exercised regarding finite sample behavior of the resulting statistical inference. In
addition, in certain applications, such as estimating the true conditional risk of a candidate estimator
and using this estimator to compare the performance of different candidate estimators, the finite
sample bias of the resulting estimator due to overfitting might make the estimator unusable for its
purpose. However, as opposed to a blanket dismal of this as a valid way to analyze data, this paper
presents formal theorems for when such an approach will work asymptotically.

This article is organized as follows. In the next Section 2 we will define our general methodology
with the two above mentioned estimation strategies (i.e. using sample splitting or not), present
theorems establishing the asymptotic statistical performance, and discuss its implications, as well
as present influence curve and bootstrap based inference. In Section 3, we discuss in detail several
examples of interesting target parameters generated via the data adaptive methodology presented
in Section 2. In Section 4 we demonstrate the finite sample performance (including coverage proba-
bilities of confidence intervals) for several examples, showing the relative difference in efficiency and
influence-curve based inference of three general approaches discussed in Section 2. This is followed
by concluding remarks in Section 5.

2 General methodology

Let O1, . . . , On be i.i.d. with probability distribution P0 known to be an element of a statistical
model M. Let Bn ∈ {0, 1}n be a random vector of binaries, independent of (O1, . . . , On), that
defines a random split into an estimation-sample {Oi : Bn(i) = 1} and parameter-generating sample
{Oi : Bn(i) = 0}. For simplicity, assume that Bn corresponds with V -fold cross-validation scheme,
i.e., 1) {1, . . . , n} are divided in V equal size subgroups, 2) an estimation-sample is defined by one
of the subgroups, 3) the parameter-generating sample is its complement resulting in V such splits
of the sample. Thus, in this case Bn has only V possible values.

For a given random split Bn, let P
0
n,Bn

be the empirical distribution of the parameter-generating sam-

ple, and P 1
n,Bn

be the empirical distribution of the estimation-sample. For a given Bn, ΨBn,P
0
n,Bn

:

M→ R is the target parameter mapping indexed by the parameter-generating sample P 0
n,Bn

, and

Ψ̂Bn,P
0
n,Bn

: MNP → R the corresponding estimator of this target parameter. Here MNP is the

nonparametric model and an estimator is defined as a mapping/algorithm from a nonparametric
model, including the empirical distributions, to the parameter space. For simplicity, assume that
the parameter is real valued. Thus, the target parameter mapping and estimator can depend not
only on parameter-generating-sample P 0

n,Bn
, but also on the particular split Bn.

Thus, assume the existence of a mapping from the parameter-generating sample P 0
n,Bn

into a target
parameter mapping and a corresponding estimator of that target parameter, where this mapping
can be different for each split Bn. The choice of target parameter mapping and corresponding
estimator can be informed by the data P 0

n,Bn
but not by the estimation-sample P 1

n,Bn
. One does not

need to assume the mapping from the parameter-generating sample to the space of target parameter
mappings and estimators is known, but one need only to know its realization (ΨBn,P

0
n,Bn

, Ψ̂Bn,P
0
n,Bn

).

Define the sample-split data-adaptive statistical target parameter as Ψn :M→ R with

Ψn(P ) = EBn
ΨBn,P

0
n,Bn

(P )
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and the statistical estimand of interest is thus

ψn,0 = Ψn(P0) = EBn
ΨBn,P

0
n,Bn

(P0).

Note that this target parameter mapping depends on the data, which is the reason for calling it a
data-adaptive target parameter. A corresponding estimator of the data adaptive estimand ψn,0 is
given by:

ψn = Ψ̂(Pn) = EBn
Ψ̂Bn,P

0
n,Bn

(P 1
n,Bn

).

The goal is to prove that
√
n(ψn −ψn,0) converges in distribution to mean zero normal distribution

with variance σ2 that can be consistently estimated, allowing the construction of confidence intervals
for ψn,0 and also allow testing a null-hypothesis such as H0 : ψn,0 ≤ 0. In particular, this would

hold if ψn = Ψ̂(Pn) is an asymptotically linear estimator of ψn,0 with influence curve IC(P0):

ψn − ψn,0 = (Pn − P0)IC(P0) + oP (1/
√
n),

where we used the notation Pf ≡
∫

f(o)dP (o) for the expectation of f(O) w.r.t. P . Since (Pn −
P0)IC(P0) = 1/n

∑

i IC(P0)(Oi) is a sum of mean zero independent random variables, by the central
limit theorem, this asymptotic linearity implies that

√
n(ψn−ψn,0) converges to a mean zero normal

distribution with variance σ2 = P0IC(P0)
2.

Theorem 1. Suppose that, given (Bn, P
0
n,Bn

), Ψ̂Bn,P
0
n,Bn

is an asymptotically linear estimator of

ΨBn,P
0
n,Bn

(P0) at P0 with influence curve ICBn,P
0
n,Bn

(P0) indexed by (Bn, P
0
n,Bn

):

Ψ̂Bn,P
0
n,Bn

(P 1
n,Bn

)−ΨBn,P
0
n,Bn

(P0) = (P 1
n,Bn

− P0)ICBn,P
0
n,Bn

(P0) +Rn,Bn
,

where (unconditional) Rn,Bn
= oP (1/

√
n). For a given split Bn = v, assume that P0IC

2
v,P 0

n,v
(P0)−

P0ICv(P0))
2 → 0 in probability, where ICv(P0) is a limit influence curve that can still be indexed

by the split v.

Then,
√
n(ψn − ψn,0) = 1

V

∑

v

√
V
√

n/V (P 1
n,Bn

− P0)ICBn,P
0
n,Bn

(P0) + oP (1/
√
n) converges to a

mean zero normal distribution with variance

σ2 =
1

V

V
∑

v=1

σ2
v ,

where σ2
v = P0IC

2
v (P0). A consistent estimator of σ2 is given by

σ2
n =

1

V

V
∑

v=1

PnIC
2
v,n,

where ICv,n is an L2(P0)-consistent estimator of ICv(P0). Alternatively, one can use,

σ2
n =

1

V

V
∑

v=1

P 1
n,vICv,P 0

n,v
(P 0

n,v)
2, (1)

where ICv,P 0
n,v

(P 0
n,v) is an L2(P0)-consistent estimator of ICv,P 0

n,v
(P0) based on the sample P 0

n,v.

The latter variance estimator avoids finite sample bias by using sample splitting and might therefore
be preferable in finite samples.
Proof: As a consequence of the asymptotic linearity assumption,

ψn − ψn,0 = EBn
Ψ̂Bn,P

0
n,Bn

(P 1
n,Bn

)− EBn
ΨBn,P

0
n,Bn

(P0)

= EBn
(P 1

n,Bn
− P0)ICBn,P

0
n,Bn

(P0) + EBn
Rn,Bn

.
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EBn
Rn,Bn

= oP (1/
√
n) follows from the above stated asymptotic linearity and that Bn has only

a finite V values. By assumption, for a given split Bn = v, P0IC
2
v,P 0

n,v
(P0) − P0ICv(P0))

2 → 0 in

probability, where ICv(P0) is a limit that might still be indexed by the split v. As a consequence, for a
given split Bn = v, conditional on the parameter-generating sample P 0

n,Bn
, by the standard CLT, we

have that
√

n/V (P 1
n,Bn

−P0)ICBn,P
0
n,Bn

(P0) converges in distribution to a normal distribution with

mean zero and variables σ2
v = P0ICv(P0)

2. Since P 1
n,Bn

are independent across the V realizations

of Bn the right-hand side EBn
(P 1

n,Bn
− P0)ICBn,P

0
n,Bn

(P0) is an average of V independent sums.

Thus,
√
n(ψn − ψn,0) ≈ 1

V

∑

v

√
V
√

n/V (P 1
n,Bn

− P0)ICBn,P
0
n,Bn

(P0) converges to a mean zero

normal distribution with variance

σ2 =
1

V

V
∑

v=1

σ2
v ,

where σ2
v = P0IC

2
v (P0). �

Asymptotic equivalence of standardized estimator and standardized oracle estimator:

Suppose that the algorithm (Bn, P
0
n,Bn

) → (Ψ̂Bn,P
0
n,Bn

,ΨBn,P
0
n,Bn

) that maps the data and choice

of sample split into an estimator and target-parameter mapping does not depend on the particular
split Bn. In that case, the influence curve ICBn,P

0
n,Bn

(P0), conditional on the parameter-generating

sample P 0
n,Bn

and split Bn, will converge to a fixed IC(P0), which does not depend on the split. In
this important case, the estimator ψn of ψn,0 is asymptotically linear with influence curve IC(P0),

which is the influence curve of the estimator Ψ̂P0
:MNP → IR of the target parameter ΨP0

:M→ IR,
treating P0 as known. Thus in this case the limit-variance is given by

σ2 = P0IC(P0)
2.

We can conclude that in this important case our standardized estimator
√
n(ψn − ψ0,n) has the

same asymptotic variance as the standardized ”oracle” estimator
√
n(Ψ̂P0

(Pn) − Ψ̂P0
(P0)) (that is

an estimator of an a priori specified parameter, as opposed to a data adaptive one) one would have
used for the parameter ΨP0

(P0) if the parameter mapping ΨP0
is treated as known. Even though

there was no loss in efficiency relative to this oracle procedure Ψ̂P0
(Pn), we should note that this

asymptotic variance is measured relative to a different target EBn
ΨP 0

n,Bn

(P0) instead of Ψ̂P0
(P0).

The number of splits V. Let’s consider the case above that the algorithms that generate the
parameter and estimator is constant across the V splits. In that case, the asymptotic variance of ψn

as an estimator of ψn,0 is not affected by V , since it equals the asymptotic variance of Ψ̂P0
(Pn) as

an estimator ΨP0
(P0). So is there any guidance in selecting between V = 2 or V = 10, for example?

First, notice the estimand is affected by the choice V : it is an average over V sample-split specific
target parameters. Thus, this might provide an argument to prefer one or the other. Regarding
statistical behavior, if we select V large, then the parameter-generating sample is large so that one
might get a relatively stable collection of V target parameters (i.e., V target parameters that are
very similar to each other). However, if V is large, then the estimation-sample is relatively small (size
being n/V ) and even though it does not affect first order asymptotics, for non-linear estimators,
it will result larger second order terms. Thus, there might be a trade-off between having more
data to generate more interesting and or more stable target parameters versus having more data
in the estimation-samples to control the second order terms in the sample-split specific estimators.
Presently, we have no universal recommendations, but this trade-off should be considered when
designing the analysis.
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2.1 Splitting the sample, but using the whole sample to fit the data
adaptively generated target parameter

In the above Theorem 1, Donsker class conditions were assumed, so that the target-parameter choices
ΨBn,P

0
n,Bn

could be arbitrarily dependent on the data P 0
n,Bn

. However, now consider an estimator

ψ1
n of the same ”estimand” ψ0,n but which uses the entire sample as the estimation sample for each

of the V parameter-generating samples. The asymptotics will now rely on stronger assumptions,
but if the algorithm generating the target parameter and estimator is different across splits, and the
stronger assumptions are satisfied, then the estimator is generally more efficient than the algorithm
based on theorem 1, whereas it has the same efficiency otherwise. Formally, we define this estimator
as ψ1

n = EBn
Ψ̂Bn,P

0
n,Bn

(Pn).

Theorem 2. As above assume that conditional on (Bn, P
0
n,Bn

), Ψ̂Bn,P
0
n,Bn

is asymptotically linear

with influence curve ICBn,P
0
n,Bn

(P0) so that

Ψ̂Bn,P
0
n,Bn

(Pn)−ΨBn,P
0
n,Bn

(P0) = (Pn − P0)ICBn,P
0
n,Bn

(P0) +Rn,Bn
,

where (unconditionally) Rn,Bn
= oP (1/

√
n). For a given split Bn, assume that P0(ICBn,P

0
n,Bn

(P0)−
ICBn

(P0))
2 → 0 in probability, where ICBn

(P0) is a limit that can still be indexed by the split Bn.
We also assume that ICBn,P

0
n,Bn

(P0) falls in a P0-Donsker class with probability tending to 1.

Then,
ψ1
n − ψn,0 = (Pn − P0)IC(P0) + oP (1/

√
n),

where
IC(P0) ≡ EBn

ICBn
(P0)

is an average of the Bn-specific influence curves. Thus,
√
n(ψ1

n − ψn,0) converges to a mean zero
normal distribution with variance

σ2
1 = P0

{

1

V

∑

v

ICv(P0)

}2

.

Proof: As a consequence of the stated asymptotic linearity,

ψ1
n − ψn,0 = EBn

Ψ̂Bn,P
0
n,Bn

(Pn)− EBn
ΨBn,P

0
n,Bn

(P0)

= EBn
(Pn − P0)ICBn,P

0
n,Bn

(P0) + EBn
Rn,Bn

.

EBn
Rn,Bn

= oP (1/
√
n), which follows from the above stated asymptotic linearity and that Bn has

only a finite V values. For a given split Bn, we assumed P0(ICBn,P
0
n,Bn

(P0) − ICBn
(P0))

2 → 0 in

probability, where ICBn
(P0) is a limit that can still be indexed by the split Bn. We also assumed

that ICBn,P
0
n,Bn

(P0) falls in a P0-Donsker class with probability tending to 1. Then, by van der

Vaart and Wellner [1996], for a given split Bn, conditional on the parameter-generating sample
P 0
n,Bn

,

EBn
(Pn − P0)ICP 0

n,Bn

(P0) = EBn
(Pn − P0)ICBn

(P0) + oP (1/
√
n)

= (Pn − P0)EBn
ICBn

(P0) + oP (1/
√
n).

This completes the proof of Theorem 2. �

The relative efficiency of the two estimators ψn and ψ1
n is of course based on the two corresponding

asymptotic variances

σ2 =
1

V

V
∑

v=1

σ2
v and σ2

1 =
1

V 2

∑

v1,v2

P0{ICv1(P0)ICv2
(P0)}.
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In the special case that ICv = IC does not depend on the split v (i.e., the algorithm generating
a target parameter and estimator is the same for each split), then σ2 = σ2

1 . In the other extreme
case that P0ICv1

ICv2 = 0 for v1 6= v2, σ
2 = 1/V

∑

v σ
2
v and σ2

1 = 1
V 2

∑

v σ
2
v . Thus, in the latter

case σ2 = V σ2
1 and one can conclude that if the selected target parameters across the V parameter-

generating samples are highly correlated, then the estimator ψn is almost as efficient as ψ1
n, but

if the selected target parameters across different sample splits are highly independent/orthogonal,
then a very significant loss in efficiency up till a factor V can occur. This efficiency comparison
does not take into account that ψn is asymptotically normally distributed under significantly weaker
conditions than the conditions needed for asymptotic linearity of ψ1

n, so that there will be cases
under which the model required for asymptotic normality of ψn holds, but the analogue model for
ψ1
n fails to hold. This comparison also does not take into account that ψ1

n should have better second
order term behavior than ψn for non-linear estimators, since ψ1

n involves using the full sample for
each of the data adaptively generated target parameters.

Donsker class condition: We try to provide more detail on the important (non-trivial) additional
Donsker class conditions for theorem/algroithm 2. Specifically, the key condition in this theorem
is that the random influence curve ICBn,P

0
n,Bn

(P0), random through its dependence on the data

P 0
n,Bn

, falls with probability tending to one in a P0-Donsker class. A Donsker class F is a class

of functions for which the entropy integral
∫

supQ
√

logN(ε,F , L2(Q))dε < ∞ (van der Vaart and
Wellner [1996]). Here N(ε,F , L2(Q)) is the number of balls of size ε (w.r.t. Hilbert space norm

‖ f ‖=
√

∫

f2dQ) that is needed to cover F , and it is called the covering number. Thus a Donsker

class F requires this covering number N(ε,F , L2(Q)) (which can be bounded by N(ε,F , ‖ · ‖∞)
w.r.t. supremum norm) to converge to infinity when ε → 0 at a slower rate than exp(1/ε2). Here
one might keep in mind that a finite dimensional set of dimension P would have a covering number
that behaves as 1/εp, so that Donsker classes can be much larger than finite dimensional sets.

For example, one implication is that, if the data adaptive target parameter is only random through a
finite dimensional vector of coefficients, so that this influence curve ICBn,P

0
n,Bn

will only be random

through a finite dimensional vector of coefficients, then this assumption will practically always hold:
since in this case this random influence curve can be represented as ICβ(P 0

n,Bn
)(P0) for a finite

dimensional random vector β(P 0
n,Bn

), and such finite dimensional class of functions satisfies the
entropy integral condition. However, P0-Donsker classes are allowed to be much bigger than finite
dimensional. That is N(ε,F , ‖ · ‖) does not have to be a polynomial in 1/ε, but it can behave as
exp(1/εa) for a < 2. As a consequence, many large Donsker class example exist. An example of a
Donsker class is the class of k-variate functions that have uniform sectional variation norm smaller
than a universal constant M < ∞ (Van Der Laan [1996]): for example, for k = 2, this is a class of
functions for which there exists aM <∞ so that for each f ∈ F

∫

| df |< M , supx
∫

| f(x, dy) |< M ,
and supy

∫

| f(dx, y) |< M .

One important operation that preserves the Donsker property is taking convex combinations. As a
consequence, the class of convex combinations of a set of basis functions for which each basis function
has a uniform sectional variation norm bounded by a M <∞ is a Donsker class. For example, one
might define as class of basis functions piece-wise linear functions for which the number of knot-
point is bounded by a universal K. Even thought this class of functions could be infinite, the class
of functions defined by all convex combinations of such basis functions would be a Donsker class.
Moreover, the convex combinations can be replaced by ”weighted” averages in which the sum of the
absolute values of the weights is bounded by a constant. This indicates that if the influence curve
ICBn,P

0
n,Bn

(P0) can be represented as IC∑
j
βj(P 0

n,Bn
)φj

(P0), where
∑

j | βj |< M < ∞ for some

M < ∞ and φj are multivariate real valued functions with bounded uniform sectional variation
norm, then such an influence curve will satisfy the Donsker condition. In this manner, one may
show that data adaptive target parameters that use the data P 0

n,Bn
to create, for example, a data

adaptively weighted combination of outcomes and defines the target parameter as the (causal) effect
of a given treatment on that outcome will result in a corresponding influence curve ICBn,P

0
n,Bn

that
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satisfies the Donsker class condition, allowing for infinite number of outcomes as long as the sum of
the absolute value of the weights is controlled.

By a priori defining the parameter generating mapping and estimator, one can study this influence
curve condition, and based on such a mathematical analysis one might feel comfortable with this
Donsker class condition. Simulation studies, such as obtained by resampling data from a semi
parametric fit of P0 (i.e., semiparametric bootstrap), could be used to shed additional light on
the validity of these assumptions, and to establish if normality of the standardized estimator is a
reasonable assumption. In these cases, this method and the method in the next subsection are
important. If one does not want to a prior specify such a parameter mapping or one wants to
allow for highly adaptive mappings that potentially fall outside the relevant Donsker class, then the
method based on theorem 1 should be used.

2.2 Using the whole sample to generate the target parameter and to
subsequently estimate it: no sample splitting

Consider a mapping Pn → (ΨPn
, Ψ̂Pn

) from a sample to a target parameter mapping ΨPn
:M→ IR

and corresponding estimator Ψ̂Pn
:MNP → IR. The estimand of interest is now ΨPn

(P0) and it is
estimated with ψ2

n = Ψ̂Pn
(Pn). The possible advantage of this approach is that the estimand is a

single parameter instead of an average over splits of sample-split-specific estimands, and the latter
might be harder to interpret. However, as in the previous subsection, stronger conditions are needed
to establish the desired asymptotic consistency and normality. In contrast to the method of the
previous subsection, in which we only changed the estimator, we now actually changed the estimand
as well.
Theorem 3. Assume Ψ̂P (Pn) is an asymptotically linear estimator of ΨP (P0) at P0 with influence
curve ICP (P0) uniformly in the choice of parameter P in the following sense:

Ψ̂Pn
(Pn)− Ψ̂Pn

(P0) = (Pn − P0)ICPn
+Rn,

where Rn = oP (1/
√
n). In addition, assume P0(ICPn

(P0) − ICP0
(P0))

2 → 0 in probability and
ICPn

(P0) is an element of a P0-Donsker class with probability tending to 1. Then,

Ψ̂Pn
(Pn)− Ψ̂Pn

(P0) = (Pn − P0)ICP0
(P0) + oP (1/

√
n),

and thus
√
n(ψ2

n − Ψ̂Pn
(P0)) is asymptotically normally distributed with mean zero and variance

σ2 = P0ICP0
(P0).

The proof follows trivially.

Again, this estimator ψ2
n is as efficient as the oracle estimator Ψ̂P0

(Pn) as an estimator of ΨP0
(P0),

discussed above, but one should note again that its efficiency is measured relative to a different target
ΨPn

(P0) instead of ΨP0
(P0). Since the parameter ΨP0

is unknown while ΨPn
is a known target

parameter mapping, one might often find the parameter ΨPn
(P0) more tangible than ΨP0

(P0), and
thus perhaps easier to interpret.

2.3 Inference via the bootstrap

The estimator ψn = EBn
Ψ̂P 0

n,Bn

(P 1
n,Bn

) of ψn,0 = EBn
ΨP 0

n,Bn

(P0) has a second order term that

includes EBn
Rn,P 1

n,Bn

, an average over the splits Bn of the second order term Rn,P 1
n,Bn

of the

estimator applied to the estimation sample P 1
n,Bn

, only based on n/V observations. This suggests
that the second order term in the expansion of ψn − ψn,0 might be substantial in many practical
scenarios. It is well known that in such cases the bootstrap may provide important improvements by
estimating a finite sample variance instead of only aiming to estimate the variance of the influence
curve (which represents the asymptotic variance). On the other hand, one needs to be aware that
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the nonparametric bootstrap does not always work since it relies on the estimators to be smooth
functions of the data. The asymptotic linearity of ψn−ψn,0 is a necessary condition for the validity of

the bootstrap. Under additional smoothness conditions on the estimators Ψ̂P 0
n,Bn

, one can establish

asymptotic validity of the bootstrap. We assume these conditions to further discuss the bootstrap.

Let O#
1 , . . . , O

#
n be an i.i.d. sample from the empirical distribution Pn, referred to as the bootstrap-

sample. Let P#
n be the empirical distribution of this bootstrap sample. Let P 1,#

n,Bn
, P 0,#

n,Bn
be the

empirical distributions of the estimation-sample and parameter-generating-sample defined by the
split Bn applied to the bootstrap sample. One can now construct ψ#

n = EBn
Ψ̂

P
0,#

n,Bn

(P 1,#
n,Bn

) as an

estimator of ψ#
n,0 = EBn

ΨP 0
n,Bn

(P 1
n,Bn

) for each bootstrap sample P#
n . Given Pn, one samples a

large number of draws from P#
n . Thus, conditional on Pn, one can construct a large number of

random draws of
√
n(ψ#

n −ψ#
n,0) and use this bootstrap sampling distribution as an estimator of the

distribution of
√
n(ψn −ψn,0). Specifically, the variance of

√
n(ψ#

n −ψ#
n,0) yields an estimate of the

variance of
√
n(ψn − ψn,0), which can be used to construct a normal-based confidence interval.

Obviously, this bootstrap method is much more computer intensive than the asymptotic normal-
ity based methods based on the influence curve presented earlier, but should be considered when
the algorithm that maps the sample P 0

n,Bn
into the target parameter mapping and corresponding

estimator, and the estimator Ψ̂P 0
n,Bn

applied to P 1
n,Bn

are not too computer intensive.

3 Examples

In this section we showcase a few examples to demonstrate the proposed procedures for generating
statistical target parameters and corresponding estimators and confidence intervals.

3.1 Inference for the sample-split conditional risk of a data adaptive re-
gression estimator

One of the fundamental statistical parameters relevant to prediction models (e.g., diagnostic models)
is the performance of such model fits to future data. Thus, estimation and inference regarding
risk estimates are crucial for determining expectations for future performance. In this case, the
parameter is clearly a data adaptive target parameter, since of interest is not the performance of
repeated experiments where the model is re-fit, but the performance of an actual model, fit to data,
that will be used in the future.

Let O = (W,Y ), where W is a vector of input-variables and Y is an outcome one wants to predict.

Let P0 be its probability distribution and let the statistical model M be nonparametric. Let ˆ̄Q be
an estimator of the true regression function Q̄0 = E0(Y | W ), and let Q̄P 0

n,Bn

be the corresponding

estimate of Q̄0 = E0(Y |W ) based on the parameter-generating sample P 0
n,Bn

. The target parameter

ΨP 0
n,Bn

(P0) generated by P 0
n,Bn

is defined as the mean squared error E0(Y − Q̄P 0
n,Bn

(W ))2 or, in

general, as the loss-function specific risk E0L(Q̄P 0
n,Bn

)(W,Y ) for some loss function L(Q̄) satisfying

Q̄0 = argminQ̄E0L(Q̄).

The estimator of ΨP 0
n,Bn

(P0) based on the estimation sample P 1
n,Bn

is defined as its empirical

counterpart Ψ̂P 0
n,Bn

(P 1
n,Bn

) = P 1
n,Bn

L(Q̄P 0
n,Bn

). Conditional on the sample P 0
n,Bn

, this estimator

Ψ̂P 0
n,Bn

(P 1
n,Bn

) is asymptotically linear with influence curve L(Q̄P 0
n,Bn

) − P0L(Q̄P 0
n,Bn

) with no re-

mainder. The sample-split data adaptive target parameter is thus defined as ψn,0 = EBn
P0L(Q̄P 0

n,Bn

)

and its corresponding estimators are ψn = EBn
P 1
n,Bn

L(Q̄P 0
n,Bn

), ψ1
n = EBn

PnL(Q̄P 0
n,Bn

), and

ψ2
n = PnL(Q̄Pn

). Theorem 1 implies that if the loss function chosen is uniformly bounded and
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the estimator ˆ̄Q(Pn) is consistent for a limit Q̄ (not necessarily Q̄0), then ψn − ψn,0 is asymptoti-
cally linear with influence curve L(Q̄)− P0L(Q̄), the same influence curve as the estimator PnL(Q̄)
of P0L(Q̄) treating Q̄ as known. This allows us to construct a confidence interval for the true con-

ditional risk ψn,0, under these very weak conditions. In particular, the estimator ˆ̄Q can be a highly
data adaptive super learner [van der Laan et al., 2007].These results were presented earlier (Dell
et al. [2012], Dudoit and van der Laan [2005]).

Similarly, Theorem 2 implies a formal result for ψ1
n, but now L(Q̄Pn

) has to be an element of a
P0-Donsker class with probability tending to 1, putting some constraints on how adaptive Q̄Pn

can
be. Under the same conditions, we will have that ψ2

n = PnL(Q̄Pn
) is an asymptotically linear

estimator of P0L(Q̄) with the same influence curve L(Q̄) − P0L(Q̄). Even though these conditions
might be satisfied for Q̄n, the estimator ψ2

n is known to be wrong for the sake of using PnL(Q̄Pn
)

to select among a collection of candidate estimators of Q̄0 since this estimator of risk will favor
over-fitted estimators. Nonetheless, if the goal is to obtain confidence intervals for the asymptotic
risk P0L(Q̄Pn

) of an estimator Q̄Pn
, then this method could be considered.

3.2 Inference for the sample-split AUC of a data adaptive regression
estimator.

The motivation for this parameter is identical to above, it simply represents a different measure of
performance for diagnostic models.

Let ˆ̄Q be an estimator of Q̄0 = E0(Y | W ), and let Q̄P 0
n,Bn

be the corresponding estimate of

Q̄0 = E0(Y |W ) based on the sample P 0
n,Bn

. The target parameter ΨP 0
n,Bn

(P0) generated by P 0
n,Bn

is defined as the true area under the curve AUC(P0, Q̄P 0
n,Bn

), where

AUC(P0, Q̄) =

∫ 1

0

P0

(

Q̄(W ) > c | Y = 1
)

P0

(

Q̄(W ) = c | Y = 0
)

dc

= P0

(

Q̄(W1) > Q̄(W2) | Y1 = 1, Y2 = 0
)

,

where the latter equivalent representation is in terms of two independent observations (W1, Y1), (W2, Y2).
The estimator of ΨP 0

n,Bn

(P0) based on P 1
n,Bn

is defined as its empirical counterpart Ψ̂P 0
n,Bn

(P 1
n,Bn

) =

AUC(P 1
n,Bn

, Q̄P 0
n,Bn

). The sample-split data adaptive target parameter is thus defined as ψn,0 =

EBn
AUC(P0, Q̄P 0

n,Bn

) and its corresponding estimators are ψn = EBn
AUC(P 1

n,Bn
, Q̄P 0

n,Bn

), ψ1
n =

EBn
AUC(Pn, Q̄P 0

n,Bn

), and ψ2
n = AUC(Pn, Q̄Pn

). In Dell et al. [2012] we show that AUC(Pn, Q̄) is

an asymptotically linear estimator of AUC(P0, Q̄) with influence curve

ICAUC(P0, Q̄)(O) =
I(Y = 1)

P0(Y = 1)
P0

(

Q̄(W ) < x | Y = 0
)

|x=Q̄(W )

+
I(Y = 0)

P0(Y = 0)
P0

(

Q̄(W ) > x | Y = 1
)

|x=Q̄(W )

−
{

I(Y = 0)

P0(Y = 0)
+

I(Y = 1)

P0(Y = 1)

}

AUC(P0, ψ).

The theorem 1 implies that if the estimator ˆ̄Q(Pn) is consistent for a limit Q̄ (not necessarily Q̄0),
then ψn − ψn,0 is asymptotically linear with influence curve IC(P0) = ICAUC(P0, Q̄). This allows
one to construct a confidence interval for the true sample-split AUC ψn,0. In particular, an estimator
ˆ̄Q can be a highly data adaptive super learner. These results for the cross-validated area under the
curve for a given estimator of Q̄0 were earlier presented in Dell et al. [2012], which also provide a
simulation and data example to demonstrate the finite sample coverage of the confidence interval.
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Similar remarks as in the previous example apply to the alternative estimator ψ1
n = EBn

AUC(Pn, Q̄P 0
n,Bn

)

of the same estimand (sample split area under the curve) ψn,0 = EBn
AUC(P0, Q̄P 0

n,Bn

), and the

estimator ψ2
n = AUC(Pn, Q̄Pn

) of AUC(P0, Q̄Pn
), but these two estimators rely on the Donsker

class condition putting some constraints on how adaptive the estimator Q̄Pn
can be.

3.3 Inference for sample-split cluster-specific target parameters, where
the clusters are data adaptively determined

Consider a situation where one has a very high dimensional set of variables, potentially correlated
in relatively distinct groups, but for which the definition of such groups is not known a priori, and
thus must be determined empirically. Furthermore, that summaries of the values of the variables in
these blocks represent meaningful summaries of their joint relationship to an explanatory variable.
One such situation might be genomic experiments, where the expression of highly correlated genes
represent distinct pathways that might be simultaneously triggered by the same intervention (e.g.,
drug). Thus, one might derive significant variable reduction by creating summaries of the highly
correlated gene expression in these blocks, as well as exploratory summaries of potential pathways
to more efficiently measure the impact of the intervention of interest. Because this involves both an
exploratory part (forming the blocks/clusters), but still with the need for formal statistical inference
to determine the significance of the relationship of these clusters to the intervention, it is an ideal
application for the methodologies in this paper.

Suppose that one observes on each subject a p-dimensional gene-expression profile Y ∈ IRp, a binary
treatment/exposure A, and a vector of baseline characteristics W . Thus O = (W,A, Y ) and we
observe n i.i.d. copies O1, . . . , On of O ∼ P0. Suppose that the statistical modelM is nonparametric.
Consider an algorithm that maps a data set O1, . . . , On into a cluster C ⊂ {1, . . . , p} of genes. Denote
this cluster-estimator with Ĉ :MNP → C, where C is the space of possible cluster values. Given a
realized cluster C, let ΨC :M→ IR be a desired parameter of interest such as the effect of treatment
A on Y (M(C)), controlling for the baseline covariates W , where M(C) is the medoid/center of the
cluster C, defined as

ΨC(P0) = E0{E0(Y (M(C)) | A = 1,W )− E0(Y (M(C)) | A = 0,W )}.

Alternatively, one might define ΨC(P0) as the average over all genes j in cluster C of the effect of
treatment A on Y (j), controlling for W , defined as

ΨC(P0) =
1

| C |

|C|
∑

j=1

E0{E0(Y (j) | A = 1,W )− E0(Y (j) | A = 0,W )}.

Let Ψ̂C :MNP → IR be an estimator of ΨC(P0) such as a targeted maximum likelihood estimator
as presented in van der Laan and Rubin [2006] and van der Laan and Rose [2011]. Assume that the
regularity conditions hold so that this TMLE Ψ̂C(Pn) is asymptotically linear with influence curve
ICC(P0):

Ψ̂C(Pn)−ΨC(P0) = (Pn − P0)ICC(P0) +RC,n,

where RC,n = oP (1/
√
n). We define ΨP 0

n,Bn

:M→ IR as ΨP 0
n,Bn

= ΨĈ(P 0
n,Bn

), i.e., the causal effect

of treatment on the data adaptively determined cluster Ĉ(P 0
n,Bn

). Similarly, we define Ψ̂P 0
n,Bn

:

MNP → IR as Ψ̂P 0
n,Bn

= Ψ̂Ĉ(P 0
n,Bn

), i.e. the TMLE of the W -controlled effect of treatment of this

data adaptively determined cluster, treating the latter as given. The estimand of interest is thus
defined as ψn,0 = EBn

ΨP 0
n,Bn

(P0) and its estimator is ψn = EBn
Ψ̂P 0

n,Bn

(P 1
n,Bn

). That is, for a

given split Bn, we use the parameter-generating-sample P 0
n,Bn

to generate a cluster Ĉ(P 0
n,Bn

) and

corresponding TMLE of Ψ̂Ĉ(P 0
n,Bn

)(P0) applied to the estimation-sample P 1
n,Bn

, and these sample-

split specific estimators are averaged across the V sample splits. By assumption we have for each
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split Bn

Ψ̂Ĉ(P 0
n,Bn

)(P
1
n,Bn

)−ΨĈ(P 0
n,Bn

)(P0) = (P 1
n,Bn

− P0)ICĈ(P 0
n,Bn

)(P0) +RĈ(P 0
n,Bn

),n,

where we now assume that (unconditionally) RĈ(P 0
n,Bn

),n = oP (1/
√
n). In addition, we assume

that P0{ICĈ(P 0
n,Bn

)(P0)}2 converges to P0{ICĈ(P0)
(P0)}2 for a limit cluster Ĉ(P0). Application of

Theorem 1 now proves that ψn − ψn,0 is asymptotically linear with influence curve ICĈ(P0)
(P0) so

that it is asymptotically normally distributed with mean zero and variance σ2 = P0ICĈ(P0)
(P0)

2.

Under the Donsker class condition on ICĈ(P 0
n,Bn

)(P0) we can also establish the formal results for

ψ1
n = EBn

Ψ̂Ĉ(P 0
n,Bn

)(Pn) of ψn,0, and the estimator ψ2
n = Ψ̂Ĉ(Pn)

(Pn) of ΨĈ(Pn)
(P0), respectively.

3.4 Inference for sample-split subgroup-specific causal effect, where the
subgroups are data adaptively determined.

On obvious subject of interest in many studies, including drug trials, is the identification of sub-
groups within the target population that have unique relationships with explanatory variable of
interest (e.g., drug treatment, environmental exposure, etc.). Often, these sub-groups are not a
priori known, and so sub-group analysis is typically treated as purely explanatory and thus the
statistical inference inherently flawed, typically anti-conservative. However, the approach we have
outlined above now allows both an aggressive search for interesting sub-groups, and formal, statistical
inference concerning parameters related to the association of an explanatory and outcome variable
of interest within the same data set. This is one of the exciting new opportunities this approach
now permits.

Suppose that we observe on each subject O = (W,A, Y ), where W are baseline covariates, A is a
binary treatment, and Y a final outcome. Thus we observe n i.i.d. copies O1, . . . , On of O ∼ P0.
Suppose that the statistical model M is nonparametric. Consider an algorithm that maps a data
set O1, . . . , On into a subgroup W → C(W ) ∈ {0, 1}, where C(W ) = 1 indicates membership in the
subgroup. Denote this subgroup-estimator with Ĉ : MNP → C, where C is the space of functions
that map a W into a binary indicator. Given a realized subgroup C, let ΨC :M→ IR be a desired
parameter of interest such as the W -controlled effect of treatment A on Y for subgroup C, defined
as

ΨC(P0) = E0{E0(Y | A = 1,W,C(W ) = 1)− E0(Y | A = 0,W,C(W ) = 1) | C(W ) = 1}.

Let Ψ̂C :MNP → IR be an estimator of ΨC(P0) such as a targeted maximum likelihood estimator
or TMLE [van der Laan and Rubin, 2006, van der Laan and Rose, 2011]: note that this is just the
targeted maximum likelihood estimator for the W -controlled effect of treatment but applied to the
subsample {i : C(Wi) = 1}. Assume that the regularity conditions hold so that this TMLE Ψ̂C(Pn)
is asymptotically linear with influence curve ICC(P0):

Ψ̂C(Pn)−ΨC(P0) = (Pn − P0)ICC(P0) +RC,n,

where RC,n = oP (1/
√
n).

Define ΨP 0
n,Bn

: M → IR as ΨP 0
n,Bn

= ΨĈ(P 0
n,Bn

), i.e., the W -controlled effect of treatment on

the outcome for the data adaptively determined subgroup Ĉ(P 0
n,Bn

). Similarly, we define Ψ̂P 0
n,Bn

:

MNP → IR as Ψ̂P 0
n,Bn

= Ψ̂Ĉ(P 0
n,Bn

), i.e. the TMLE of the W -controlled effect of treatment on the

outcome for this data adaptively determined subgroup, treating the latter as given. The estimand
of interest is thus defined as ψn,0 = EBn

ΨP 0
n,Bn

(P0) and its estimator is ψn = EBn
Ψ̂P 0

n,Bn

(P 1
n,Bn

).

That is, for a given split Bn, we use the parameter-generating sample P 0
n,Bn

to generate a subgroup

Ĉ(P 0
n,Bn

) and corresponding TMLE of Ψ̂Ĉ(P 0
n,Bn

)(P0) applied to the estimation-sample P 1
n,Bn

, and
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these sample-split specific estimators are averaged across the V sample splits. By assumption we
have for each split Bn

Ψ̂Ĉ(P 0
n,Bn

)(P
1
n,Bn

)−ΨĈ(P 0
n,Bn

)(P0) = (P 1
n,Bn

− P0)ICĈ(P 0
n,Bn

)(P0) +RĈ(P 0
n,Bn

),n,

where we now assume that (unconditionally) RĈ(P 0
n,Bn

,n = oP (1/
√
n). In addition, we assume that

P0{ICĈ(P 0
n,Bn

)(P0)}2 converges to P0{ICĈ(P0)
(P0)}2 for a limit subgroup Ĉ(P0). Application of

Theorem 1 now proves that ψn − ψn,0 is asymptotically linear with influence curve ICĈ(P0)
(P0) so

that it is asymptotically normally distributed with mean zero and variance σ2 = P0ICĈ(P0)
(P0)

2.

Under the Donsker class condition on ICĈ(P 0
n,Bn

)(P0) we can also establish the formal results for

ψ1
n = EBn

Ψ̂Ĉ(P 0
n,Bn

)(Pn) of ψn,0, and the estimator ψ2
n = Ψ̂Ĉ(Pn)

(Pn) of ΨĈ(Pn)
(P0), respectively.

4 Simulations

Simulations for different algorithms producing the data adaptive target parameters were examined
for performance among the three different algorithms based on theorems 1, 2 and 3 (referred to as
algorithms 1, 2 and 3).

• Algorithm 1, in the context of V-fold cross validation, defines the parameter on the pa-
rameter generating sample, ΨP 0

n,Bn

, and estimated on the corresponding estimation samples,

Ψ̂P 0
n,Bn

(P 1
n,Bn

) which are then averaged to produce an estimate of the data adaptive parameter

of interest.

• Algorithm 2 uses the same procedure to define the target parameter, but the estimation for
each parameter defined by a particular parameter generating sample is estimated on the full
sample.

• Algorithm 3 which generates the target parameter based on the whole sample, and subsequently
estimates this target parameter on the whole sample: Ψ̂Pn

(Pn).

We will report three sets of simulations which will be explained in detail below.

4.1 General Simulation Structure

Description of the general simulation structure provides concreteness to what we refer to as data
adaptive target parameters, as well as how the three algorithms differ in their details.

(1) Generate a random sample from the data generating distribution of size n and break into V equal
size estimation samples of size nV = n/V with corresponding parameter generating samples of
size n− n/V ;

(2) For each parameter-generating sample, apply the data-adaptive algorithm to define the param-
eter to be estimated on the corresponding estimation sample, this defines ΨP 0

n,Bn

. For instance,

fit a data-adaptive regression procedure estimating the mean of outcome Y based on predictors
X, say m̂v(X) ≡ mP 0

n,Bn

(X), and define the target parameter as the risk based on squared error

loss defined as ΨP 0
n,Bn

(P0) = EP0
(Y − m̂v(X))2, treating m̂v as fixed and known.

(3) For each of the V estimation samples, estimate the data adaptive parameter. For example, in
the case of the risk example described in 2., Ψ̂P 0

n,Bn

(P 1
n,Bn

) = EP 1
n,Bn

(Y −m̂v(X))2. In addition,

derive the influence curve ICBn,P
0
n,Bn

(·) of this estimator for each of the sample-splits.
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(4) To derive the value of the true parameter corresponding to each parameter-generating sample,
we draw a very large sample using the same distribution, representing a target population (P0).
This is used to evaluate ΨP 0

n,Bn

(P0) = EP0
(Y − m̂v(X))2, where P0 is approximated by this

empirical probability distribution of this very large sample (specifically, a sample of 100000).

(5) Estimate the asymptotic variance (1) of ψn based on the sample variance within estimation
samples of ICBn,P

0
n,Bn

(·) (see Theorem 1 above), and construct a corresponding Wald-type

confidence interval.

(6) Repeat 1-5 for 1000 simulations, examine the distribution of standardized differences,
√
n(ψn −

ψn,0), and determine the coverage probabilities for the confidence intervals.

The modifications for algorithms 2 and 3 follow from the respective theorems.

4.2 Risk Estimation of a Data Adaptive Prediction Algorithm

For this simulation, the motivating question concerns estimation of the risk of a machine learning
algorithm. For this, we have the following set-up:

• The data is O = (Y,X), for outcome Y , predictor X, where X ∼ N(0, σ2
X = 4), mtrue(X) ≡

E0(Y | X) is shown in Figure 1, based on a piecewise constant model, and Y |X ∼ N(mtrue(X), σ2
Y =

0.25).

• For the v-th parameter-generating sample, we fit the regression with an ensemble stacking
algorithm, called the SuperLearner (SL; van der Laan et al. [2007]), resulting in a convex
combination of a variety of algorithms ranging from very smooth to highly data adaptive: linear
model, stepwise regression based on AIC (stepAIC; Venables and Ripley [2002]), Bayesian glm
(linear) model (bayesglm; Gelman et al. [2012]), generalized additive model with smooth term
for covariate Hastie and Tibshirani [1990]; neural nets (nnet; Venables and Ripley [2002]); and
a simple null model (sample average of outcome).

• For the v-th parameter-generating sample the data adaptive parameter of interest was defined
as the conditional risk (mean squared error; MSE), conditional on the fitted prediction function:
ΨP 0

n,v
(P0) ≡ EP0

[(Y − m̂v(X))2] (treating m̂v as given) is the expected squared error loss of

SL fit on parameter-generating sample, where m̂v = m̂(P 0
n,v) is estimated as Ψ̂P 0

n,v
(P 1

n,v) =

EP 1
n,v

[(Y − m̂v(X))2].

• The data adaptive parameter of interest is thus defined as the risk averaged over the V esti-
mation samples: ΨPn

(P0) =
1
V

∑V

v=1 ΨP 0
n,v

(P0).

• The corresponding estimator is defined as Ψ̂(Pn) =
1
V

∑V

v=1 Ψ̂P 0
n,v

(P 1
n,v).

• Finally, inference is derived based on (1) above, where the estimated influence curve for the
v-th estimation sample is given by

ICP 0
n,v,n

= (Y − m̂v(X))2 − Ψ̂P 0
n,v

(P 1
n,v).

• This is repeated for sample sizes of n = 100, 500, 1000, using algorithm 1 and algorithm 2.

4.2.1 Results

We examined the empirical distribution of the standardized differences, (ψn − ψn,0)/se(ψn) for
the risk. We observe minimal departure from normality (Figure 2), and nearly perfect coverage
probability of the confidence intervals for all sample sizes, and for both algorithms 1 and 2 (see
Table 1).
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Figure 1: True model mtrue(X) for simulations of conditional risk estimation

Table 1: Simulation results for Estimating Conditional Risk for Methods based on Theorem 1 and
2. Coverage probability is for a nominative 95% CI

Algorithm n Ave Est. EBn
Ψ̂ Ave. True EBn

Ψ(P0) MSE Variance Cov. Prob.
1 100 0.59 0.59 2.43 2.43 0.92
1 500 0.55 0.55 1.39 1.39 0.94
1 1000 0.40 0.40 0.38 0.38 0.94
2 500 0.83 0.84 1.11 1.05 0.94
2 1000 0.83 0.84 1.12 1.07 0.95

We also examined the same procedure for estimating the risk difference using algorithm II. In
this case, we observe slower convergence, but still relatively good coverage for an estimate that is
particularly sensitive to over-fitting.

4.3 The average effect of treatment/variable for a given regression fit

Average Treatment Effect, or ATE, is commonly the parameter of interest in applications of causal
inference methods, such as propensity score methods (Rubin [1978]). In the potential outcomes
framework, the ATE is defined as E(Y (1)−Y (0)), where Y (1), Y (0) are the counterfactual outcomes
for an individual unit if they have A = 1 and A = 0, respectively. Consider n i.i.d. observations of
O = (W,A, Y ), where Y is an outcome, A is a binary treatment of interest, and W a set of potential
confounders. Under the randomization assumption and a positivity assumption, the ATE equals the
following statistical estimand:

ATE = EW {E(Y | A = 1,W )− E(Y | A = 0,W )}.

Let Q(a,W ) ≡ E(Y | A = a,W ), and assume that Q is known. Then, the estimate of the ATE
would be:

ÂTE =
1

n

n
∑

i=1

{Q(1,Wi)−Q(0,Wi)}.

Given an estimator QPn
of Q, we will estimate Q on the parameter-generating samples, and then

calculate the ATE on the corresponding estimation sample, resulting in the following data adaptive
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Figure 2: Distribution of (ψn − ψn,0)/se(ψn) (for n = 100 and 1000) with N(0,1) distribution for
comparison based on theorem 1. Dark line represents the mean of these standardized values, so the
difference between it and 0 is the standardized bias

.

target parameter:
ΨPn

(P0) = EBn
EP0

{QP 0
n,Bn

(1,W )−QP 0
n,Bn

(0,W )}.

Here QP 0
n,Bn

is the estimate of the regression of Y on (A,W ).

The data generating distribution is defined by W ∼ N(0, var(W ) = 4), A | W is binomial with
logit{P (A = 1 | W )} = −4 + 2 ∗W and Y | (W,A) ∼ N(Q(A,W ), V ar(Y | A,W ) = 0.25), where
Q(a,W ) = E(Y | A = a,W ) is shown in Figure 4.

The data-adaptive target parameter is defined in terms of an estimator QPn
. As above for the risk

estimation simulations we used the SuperLearner (SL) based upon the following learners: linear
model, stepwise regression based on AIC (stepAIC; Venables and Ripley [2002]), Bayesian glm
(linear) model (bayesglm; Gelman et al. [2012]), generalized additive model with smooth term for
covariate Hastie and Tibshirani [1990]; neural nets Venables and Ripley [2002]; and a null model
(intercept only).

We applied both algorithms 1 and 3 for sample size of n = 500.

4.3.1 Results

Examining the empirical distribution of the standardized differences, (ψn − ψn,0)/se(ψn) for the
ATE parameter, we see convergence to normal sampling distributions for both algorithms 1 and 3
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Figure 3: Results for estimation of ATE. Distribution of (ψn − ψn,0)/se(ψn) (for n = 500) with
N(0,1) distribution for comparison, with estimates based on both algorithm 1 and 3. Dark line rep-
resents the mean of these standardized values, so the difference between it and 0 is the standardized
bias

.

at n = 500.

Table 2: Simulation results for Estimating ATE using algorithms based on Theorem 1 and 3

.
type Ave Est. EBn

Ψ̂ Ave. True EBn
Ψ(P0) MSE Variance Coverage Prob (95% CI)

1 0.81 0.81 0.90 0.90 0.95
3 0.81 0.81 1.17 1.17 0.94

Table 2 shows the results of the simulations based on both algorithms 1 and 3, and as one can see,
the estimation is unbiased, and the coverage of confidence intervals based IC-based estimates of the
standard errors is close to perfect. Though algorithms 1 and 3 produced different data adaptive
target parameters and corresponding estimators, due to the linearity of the estimator Ψ̂P 0

n,Bn

(i.e.,

it is just a difference in sample means), ψn and ψ2
n have the same MSE.

4.4 Variable Reduction

We consider a situation that has an analogue in high dimensional omit data, where multiple testing
is often done to highlight a relatively small subset of say genes for further study, among the tens of
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Figure 4: E(Y | A = a,W ) for the ATE simulations

thousands of candidates in the data. The method evaluated in this simulation uses the parameter-
generating sample to selects a small subset of the original genes, and subsequently it uses the
estimation sample to estimate the effect of these genes on some phenotype. In this manner, it avoids
the need to apply multiple testing procedures that control a type-I error rate among very large
number of tests.

Let O = (A, Y = (Y1, Y2, ..., Yp)) where A is a binary vector of zeros and ones, and Y is a multivariate
outcome. The true distribution, P0 is generated based on a design where there are equal numbers of
A = 0 and A = 1, and for each (gene) j, the distribution of Yj , given A, is defined by the following
regression equation

Yj = B0j +B1jA+ ej j = 1, . . . , p. (2)

The coefficients (the B0j , B1j were generated by a multivariate normal distribution with E(B0) =
E(B1) = 0 and a variance covariance matrix with Cov(B0, B1) = 1 i = j and Cov(B0, B1) = .2 i 6=
j. Note, that these coefficients are fixed in the simulation, not random, so this is just a convenient
mechanism to generate a distribution of effect sizes, B1j for which there is a true ranking based on
the resulting P0. The errors ej were independent draws from a random N(0, σ2

e) distribution, and
we repeated the simulation both for different magnitudes of the residual error, (different σ2

e) but
also for increasing sample sizes.

We define our data adaptive parameter as:

ΨP 0
n,Bn

(P0) = EBn
EP0

(Y ∗
P 0

n,Bn

| A = 1)− E(Y ∗
P 0

n,Bn

| A = 0), (3)
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where

Y ∗
P 0

n,Bn

=
1

∑

j I(j ∈ SP 0
n,Bn

)

∑

j

I(j ∈ SP 0
n,Bn

)Yj

is an average of the gene-expression across a subset of genes, where this subset, S0
Pn,Bn

is determined
by a procedure on the parameter-generating sample. Specifically, for each parameter-generating
sample we simply rank the genes by B̂1j = EP 0

n,Bn

(Yj | A = 1) − EP 0
n,Bn

(Yj | A = 0), and the set

SP 0
n,Bn

is defined the top 15 j’s according to this ranking.

The estimator of (3) based on the estimation sample is simply

Ψ̂P 0
n,Bn

(P 1
n,Bn

) = EBn
{EP 1

n,Bn

(Y ∗
P 0

n,Bn

| A = 1)− E(Y ∗
P 0

n,Bn

| A = 0)}

and its influence curve is estimated as follows

ICP 0
n,Bn

(Y ∗, A) =

[

I(A = 1)

P 1
n,Bn

(A = 1)
− I(A = 0)

P 1
n,Bn

(A = 0)

]

(Y ∗ − EP 1
n,Bn

(Y ∗ | A)) (4)

where in this case P 1
n,Bn

(A = 1) = 0.5 by design.

The same procedure for deriving the data adaptive target parameter and estimator is repeated for
all 3 algorithms, with the corresponding methods for deriving the inference via the influence curve
carried out as described above. Note that the stability in the sets SP 0

n,Bn

across samples will decrease

as σ2
e increases. Thus, this provides a choice of algorithm for generating the parameter and a data

generating distribution that allows us to examine the relative performance of the three algorithms
as the parameter generating algorithm becomes more variable.

4.4.1 Results

The results of the simulation are shown in Table 3 for the set with σ2
e = 2. In this case, we observe

very good performance with regards to coverage probability for algorithm 1, even at relatively
modest sample sizes. On the other hand, for algorithms two and three, that have an overlap in
their parameter-generating and estimation samples, proper coverage is not obtained until relatively
large sample sizes. Part of this has to do with bias, and that can be seen in the distribution of
standardized estimates for the different algorithms (see Figure 5). The bias of algorithm 3 only
becomes more severe as the procedure defining the target parameter becomes more variable (see
Table 3). For all simulations, algorithm 1 shows very good performance with regards to statistical
inference, while apparently not having greater sampling variability.
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Table 3: Simulation results for Variable Reduction for the algorithms based on theorems 1-3
(ψn, ψ

1
n, ψ

2
n, repsectively).

Samples Methods True average Estimated average Cov Prob
ψn 2.243 2.247 0.826

n=100 ψ1
n 2.243 2.584 0.006

ψ2
n 2.632 2.568 0.014

ψn 2.483 2.484 0.912
n=500 ψ1

n 2.483 2.553 0.662
ψ2
n 2.487 2.557 0.686

ψn 2.515 2.511 0.916
n=1000 ψ1

n 2.515 2.584 0.774
ψ2
n 2.515 2.568 0.798

ψn 2.556 2.558 0.945
n=2000 ψ1

n 2.556 2.577 0.864
ψ2
n 2.557 2.578 0.876

ψn 2.515 2.514 0.956
n=10000 ψ1

n 2.515 2.519 0.949
ψ2
n 2.515 2.519 0.941
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Figure 5: Results of the simulation based on variable reduction, for σ2
e = 2. Distribution of (ψn −

ψn,0)/se(ψn) for n = 2000 and n = 10000, algorithms 1 and 3. Also displayed is the N(0,1)
distribution for comparison; the dark line represents the mean of these standardized values, so the
difference between it and 0 is the standardized bias.
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5 Some concluding remarks

Much scientific progress has been obtained by generating target parameters based on past studies,
and evaluating them on future studies. However, such costly splitting of a stream of data is by no
means necessary, and the proposed data adaptive target parameter and corresponding statistical
procedure studied in this article allows for general sample splits, and averaging the results across
such splits. Our formal results show that statistical inference is preserved under minimal conditions,
even though the estimators are now based on all the data. The price one pays is that the statistical
target parameter is an average of parameters generated by the different sample splits. To obtain
valid finite sample inference it is is important to utilize our corresponding variance estimator (1),
and that the sample size for the estimation sample is chosen large enough so that the second order
terms of a possible non-linear estimator are controlled.

We also showed that if the algorithm that generates the target parameter is not too adaptive to
the influx of data, then no sample splitting is necessary. Specifically, if the set of influence curves
generated by this parameter-generating algorithm when applied to an empirical distribution is a
P0-Donsker class, then statistical inference based on the method ψ2

n hat uses all the data to both
generate the parameter and the estimate it is asymptotically valid. There are a large variety of
such applications, including ones that use the data to fit a finite dimension vector of coefficients
that deterministically identifies a target parameter of interest. If the sample size is large and/or the
parameter generating algorithm is well understood so that our Theorem 3 can be formally applied,
this method should be considered as an important method.

Thus, gains in efficiency can be obtained with algorithm 2 (ψ1
n), while further gains in interpretability

of the target parameter can be obtained with algorithm 3 (ψ2
n), but the asymptotic validity of both of

these algorithms now relies on this Donsker class condition. One expects that a practical implication
of this Donsker class condition is that the asymptotic normality will kick in at later sample sizes
than it would for algorithm 1, but this requires further study as well. In particular, we observed in
our simulation examples that these two algorithms 2 and 3 might suffer from higher levels of finite
sample bias. Nonetheless, given the big data era, all three methods are important and should be
considered. In future work, we plan to address diagnostic tools that will assist the user to make this
choice between these algorithms, possibly based on running a semi parametric bootstrap.

In this article we demonstrated the methodology and theory for a few examples. These examples
demonstrate that data adaptive target parameters provide new approaches for analyzing data sets,
allowing us to target parameters one would not be able to a priori specify, allowing to tackle multiple
testing problems by allowing the data adaptive generation of relatively few null hypotheses of interest.
Instead of having to define a target parameter mapping, one can focus on thinking about a mapping
that maps data into a target parameter. There are many examples of interest that have not been
highlighted in this article. For example, one may select a target parameter based on its practical
level of identifiability, thereby arraigning that no power is wasted on target parameters that are not
supported by the data.
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