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Testing the Relative Performance of Data
Adaptive Prediction Algorithms: A

Generalized Test of Conditional Risk
Differences

Benjamin A. Goldstein, Eric Polley, Farren Briggs, and Mark J. van der Laan

Abstract

In statistical medicine comparing the predictability or ?t of two models can help
to determine whether a set of prognostic variables contains additional information
about medical outcomes, or whether one of two different model ?ts (perhaps based
on different algorithms, or different set of variables) should be preferred for clin-
ical use. Clinical medicine has tended to rely on comparisons of clinical metrics
like C-statistics and more recently reclassi?cation. Such metrics rely on the out-
come being categorical and utilize a speci?c and often obscure loss function. In
classical statistics one can use likelihood ratio tests and information based crite-
rion if the comparisons allow for it. However, for many data adaptive models such
approaches are not suitable and people have traditionally used cross-validation to
choose between models in such settings. In this paper we propose a test that fo-
cuses on the “conditional” risk differences (conditional on the models being ?xed)
for the improvement in prediction risk, which is valid under cross-validation. We
derive Wald-type test statistics and con?dence intervals for cross-validated test
sets utilizing the independent validation within cross-validation in conjunction
with a test for multiple comparisons. We show that this test maintains proper
Type I Error under the null ?t, and can be used as a general test of relative ?t for
any semi-parametric model alternative, using most any loss function. We apply
the test to a candidate gene study to test for the association of a set of genes in a
genetic pathway.



1 Introduction

An important question in statistical medicine is whether the addition of a set
of predictors improves the overall prediction of an outcome. Often in these
scenarios the unit of interest is not a single predictor but instead a set of pre-
dictors (e.g. SNPs in a gene, a set of laboratory values). Numerous metrics
and procedures have been developed to assess prediction. Discrimination
and reclassification statistics are often used to assess an added predictor to
a model. Model building tools such as likelihood ratio tests and Akaike In-
formation Criterion/Bayesian Information Criterion (AIC/BIC) can be used
to choose between a model with and without an added predictor. Further-
more, many fields have developed domain specific tests (e.g. gene based
tests). While numerous, these methods are all somewhat specialized. Eval-
uation metrics like C-statistics [1] and Net Reclassification Improvement
(NRI; [2]) often require the outcome to be categorical. Model building tools
while more general require one to be able to specify the number of degrees
of freedom, not always feasible when more complicated learning algorithms
are used. While domain specific tests are able to leverage specific data
structures, they do not always generalize well to other data settings.

Instead, we propose a general test for assessing whether a predictor or set
of predictors improves model performance relative to an alternative baseline
model or a null model where the comparison can be based on a wide variety
of loss functions. Like many evaluation tools the proposed test involves
deriving a set of predicted values using the original set of predictors and
comparing those to the predicted values using the additional predictors.
Inherent in this process is the derivation of a prediction model. It is well
recognized that simply applying the prediction model to the same data that
was used to derive the model will result in over-estimation of the predictive
accuracy, referred to as optimism [3]. A straightforward approach would
be to have an independent set of data that one can use as a validation set.
However, in medical studies data is often limited, and setting aside a set
of data is not an optimal use of resources. In these scenarios the typical
approach is to apply cross-validation. While cross-validation (CV) produces
unbiased estimates for the expectation of the loss [4], it only recently has
become clear how to derive consistent estimates of the sampling distributions
for types of risk estimates that CV provides [5]. It has been noted that if
the parameter of interest is the risk of a fitting procedure as opposed to a
fixed previously estimated model (referred heretofore as unconditional risk),
there is generally an overestimation of the variances of the estimate if the
variance estimate assumes the cross-validated loss over the entire data set
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is independent; in fact [6] showed that the variance of the unconditional CV
risk is non-identifiable.

In a pure testing context, [7] developed an algorithm using a combination
of a machine learning algorithm and permutation methods to develop a gen-
eral test of independence of an outcome and a vector of associated predictors.
For testing, the main limitation of this method involves very long computa-
tion times, as the combination of the permutation with cross validation and
machine learning methods can require impractical computation times. In
addition, because it is a test of independence, it does not generalize to more
general goodness-of-fit tests, such as the comparison of a semi-parametric
model fit to a simpler parametric model fit. In this paper, we propose a
method that relies on the asymptotic sampling distribution of a risk estima-
tor to avoid the permutation and derive inference on the relative ability of
competing models to predict the outcome, as defined by the particular loss
function of interest. We present methodology that both conducts tests of the
risk difference for each validation fold, we as well as estimates and inference
of the average risk across folds. Though the methodology can be applied to
general comparisons of the ability of estimated models to fit future data, one
particularly interesting example concerns a general test of the joint associa-
tion of a large vector of predictors with an outcome. Specifically, combining
the general CV procedure with a particular (optimal) combination of statis-
tical learners, one can create a powerful data-adaptive test of the association
of an outcome with a vector or predictors within a semi-parametric model.
As more and more studies move from traditional parametric models with
clear modes of inference, to the use of supervised semi-parametric models
for high dimensional problems, the implications of such a testing framework
is widely applicable, in applications of high dimensional clinical data and
bioinformatics.

The paper starts with a definition of the parameter of interest, the con-
ditional risk, in Section 2 and we present this first in the context where
one has an independent validation set. In Section 3 we then place this test
within the context of estimation generalized semi-parametric models and
discuss the motivation for using the super learner [8] procedures for con-
structing predictors. In Section 4 we introduce our procedure for drawing
inferences on the risk differences via cross-validation. We report the results
of a simulation study in Section 5 and illustrate a potential use of the pro-
posed procedure via an application to genetic data in Section 6. We then
finish with some concluding thoughts.
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2 Estimation and Inference of Conditional Risk

Before deriving the formalities of the statistical procedure, one can describe
our proposal very simply. First, after dividing the sample randomly (and
appropriate to the design) into V validation samples, we derive the esti-
mated risk for competing fitted models in each validation sample, where
theses models have been fit on the corresponding training sample. We then
derive estimates and joint inference of these V risk differences (estimates,
tests, confidence intervals). Then, we examine the average differences of
the CV-risk across the V folds, and provide corresponding inference for this
quantity as well. For the former, we need nothing but the standard central
limit theorem for our results; for the latter, to derive a CLT we need some
modest conditions [5]. We discuss both because, for the average CV-risk,
these conditions can be violated in some practical situations, whereas the
procedure that does not average across the folds still performs well. Though
the details are important, these two approaches are very simple, and po-
tentially very powerful for investigating a wide variety of relevant model
comparisons.

Define the observed data as Oi = (Yi, Xi) ∼ P0, i = 1, . . . , n where Yi is
the outcome of interest and can be a real number or class variable and Xi

are a p-dimensional vector of predictors. The unknown model representing
E(Y |X) is denoted by m(X). The function is defined by the learning algo-
rithm used to estimate the model. Depending on the nature of the algorithm
and final estimated model, all, some or none of the input vectors may be
used to estimate E(Y |X).

Once the learning algorithm is fit to the data, define m̂(X) to be a
prediction based on this model for a randomly drawn (new) X . The so-
called conditional risk (that is fixing the prediction model, m̂(·), and looking
at its performance in future random draws from the target population) is
defined as [5]:

θ(m̂) ≡ E[L(Y, m̂(x))] (1)

for a user-chosen loss function, L, where the expectation is taken w.r.t P0.
Let the plug-in estimate of the risk be, for an i.i.d. sample of Oi of size n
(independent of that used to derive m̂) be:

θn(m̂) ≡ 1

n

n∑
i=1

L(Yi, m̂(Xi)).

In this case, because the estimator is just a simple average of i.i.d. random
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variables the asymptotic normality of this estimator is trivially established.
More generally (and relevant to the average risk), the asymptotic normality
can be established via showing the estimator is a so-called asymptotically
linear estimator, and thus can be written as:

√
n(θn(m̂(·))− θ(m̂(·)) =

1√
n

n∑
i=1

IC(Oi; m̂) + op(1/
√
n) (2)

or the standardized difference of the estimate and truth can be written as an
i.i.d. sum of a random variable called the influence curve, IC(Oi; m̂) plus a
second order term. Then, the asymptotic variance of the estimated risk is:

var[θn(m̂)] =
var[IC(O; m̂)]

n
.

In the case of average risk, or the case of risk within each validation fold,
the IC is simply IC(O; m̂) = L(Y, m̂(x))− θ(m̂).

In this case, the goal is to develop a test of two competing models for
estimating m(·). Comparisons of model fits can cover a wide variety hy-
potheses. A couple examples on which we focus are the added improvement
of a set of predictors of one model fit relative to another, and the relative
fit between two competing fitting procedures (e.g., parametric versus data
adaptive procedure).

Regarding a statistical test, it is clear that a null of equality will never
be true unless one uses the same set of predictors and the same fitting proce-
dure; otherwise one model will always fit better. Thus, for the implied nulls,
of whether a data adaptive procedure provides a significantly improved fit
relative to a pre-specified parametric model, one can never hope for perfect
type I error rate under the null. However we can consider a base model or
fitting procedure as the referent (i.e. “null”) and construct a one-sided test
of the form:

H0 : θ(m̂1) ≥ θ(m̂0), (3)

with null (typically simpler) model m̂0(·) and alternative m̂1(·).
The parameter of interest which motivates the test is Ψ{θ(m̂0), θ(m̂1)} =

θ(m̂0) − θ(m̂1), estimated by plug-in estimator Ψ{θn(m̂0), θn(m̂1)}, or Ψn

for short, which leads naturally to a Wald-type statistic:

Tn =

√
nΨn√

varn[ ˆIC(O; m̂0)− ˆIC(O; m̂1)]
, (4)

where ˆIC(O; m̂1) = L(Y, m̂1(X))− θn(m̂1).
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As [5] showed, Ψn, under the null will by asymptotically normally dis-
tributed with variance 1, given it also provides consistent estimators for the
sample variance of Ψn. One can derive an equivalent level α confidence
interval for this risk difference as:

Ψn ± z1−α/2

√
varn[ ˆIC(O; m̂0)− ˆIC(O; m̂1)]

n
. (5)

where z1−α/2 is the 1−α/2 quantile of the standard normal distribution.
Possible loss functions include standard ones like squared-error (`2), ab-

solute error (`1), or less common ones such as negative log-likelihood, and
AUC based loss [9]. The only requirement is that the loss function is convex
which excludes missclassification loss [5].

Before we turn to the specific implementation using cross-validation, we
first discuss using the SL algorithm/theory for estimating when the goal
is either a test of association of a vector of covariates and outcome in a
semi-parametric model or to have a standard by which to compare a smaller
sub-model via a goodness-of-fit test.

3 Optimal Estimation of Semi-parametric Models

As suggested in the outset, the utility of such a test is in the scenario where
one does not know the true functions m1 and m0, and instead needs to esti-
mate them adaptively. When m1 and m0 are known and can be estimated
using a parametric model, a likelihood ratio test or information based crite-
rion will be optimal and sufficient. However, in the more common scenario
where they are unknown, a range of machine learning algorithms are avail-
able, many of which are semi-parametric.

Ideally, we want to choose a procedure for deriving m̂1 that is not ar-
bitrary, but has some optimality properties with regards to doing “as good
as job as possible” at fitting the true model of E(Y |X). Therefore, when
compared to a fit from a null model (or some smaller model), we want to
have maximal power for detecting departures from this null. Though no
theory exists for driving an optimal estimator of the predictor among all
possible estimators in a semi-parametric model, we can at least define a
gold standard among a finite set of competitors. As others have done [8] we
define the gold standard as the so-called Oracle Selector, defined as, given
the data, the algorithm that chooses the estimator with the lowest true risk
among all tried competitors. Let the risk of the Oracle Selector be defined
as θ(m̂∗) based on an independent training sample of size nTr. An estimator

5
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that converges in risk to the Oracle Selector will result from maximizing the
true Ψj ≡ θ(m̂0)− θ(m̂j) over different competing estimators, j, or

m̂∗ = argmax
j

Ψj

Thus, such a procedure should also result in a relatively powerful test com-
pared to other procedures used to derive m̂1.

As shown in [8] stacking procedures (particularly those that combine a
wide variety of algorithms from very simple/smooth to highly data-adaptive),
as implemented in the SuperLearner algorithm, meet this criterion. In stack-
ing one uses a cross-validation procedure to combine a user-specified set of
candidate prediction algorithms. The SL algorithm is available as a sta-
tistical package [10] in the R programming language. As [8] showed, the
SL performs asymptotically equivalently (w.r.t. expected risk difference),
up to a second order term, as the Oracle Selector. In addition, the Ora-
cle Inequality suggests that this relative optimality occurs if the number of
learning algorithms included as candidates in the SL is polynomial in sample
size, and none of its candidate learners (and oracle estimator) converges at a
parametric rate. If one of the candidate learners is actually the true model,
however, and thus converges at a parametric rate, the SL will converge at
an close to parametric rate, implying there is not much cost for estimating
under a much bigger model. Thus the SL theory encourages the use of a very
large number of possible learning algorithms. If stacking is used to derive
m̂1 then the Oracle Inequality can be invoked as a heuristic argument as to
why the resulting test is relatively powerful compared to other procedures
that would use a different procedure for estimating m̂1.

4 Cross-validated Multiple Testing Procedure

Given a procedure described (for simplicity) as designed for an indepen-
dent test set, we now turn to the more relevant situation where a single
data set must serve both purposes: construction of the m̂0, m̂1 models,
and subsequent estimation of the cross-validated risk, and the calculation
of the its sampling variability. As proposed in [5], we use V-fold cross-
validation, where the data are divided into v = 1, . . . , V equal-sized testing
sets. For each independent test set, v, the prediction models, (m̂0, m̂1), are
fit (trained) on the corresponding training set and then the test statistic (4),
is constructed on the test set. Thus, we fit both m̂−v

0 , and m̂−v
1 within each

cross-validation fold and then apply this predictions to the corresponding
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testing data set to get the test-statistic of interest, or:

Tv =

√
nV Ψv

nV√
varvnV

[ ˆIC(Ov; m̂−v
0 )− ˆIC(Ov; m̂−v

1 )]
, (6)

where it is indexed to emphasize that the relevant predictor models are fit
on the training data, but the difference in the risk estimates, Ψv

nV
done

on the testing data, which has sample size nV = n/V . We first discuss a
procedure, where the CLT follows without any special conditions - that is,
we treat each validation sample as the basis of a separate test and estimate,
and combine them only via standard multiple testing procedures. We then
discuss estimating an average risk across the folds which does require some
mild conditions for the asymptotic distributional results to hold.

4.1 Estimates by Validation Sample

For each of the v = 1, ..., V test statistics, T vn , we can derive a corresponding
p-value of the null as pv = Q0(T

v
n ) = 1− Φ(T vn ), where Φ(·) is the standard

normal distribution function. To draw inference we can perform a multiple
testing correction across the V tests, rejecting the null hypothesis if the
minimum corrected p-value is less than the prescribed α. In practice, due
to the relatively few number of tests, we find that the standard Bonferonni
correction is not overly conservative - obviously it could be generalized to
other procedures. Therefore, in the same way that we derive inference from
the fold with the greatest association (i.e. risk difference) in (6), we can
similarly choose that same fold as our estimate of the risk difference. To get
appropriate coverage we calculate Bonferonni corrected confidence intervals.
This leads to a global confidence interval for the set of CI’s across folds,
giving global coverage 1− α of

Ψv
nV
±z1−α/2/V SE(Ψv

nV
)

where SE(Ψv
nV

) =
√
varvnV

[ ˆIC(Ov; m̂−v
0 )− ˆIC(Ov; m̂−v

1 )]/nV
(7)

Thus, by defining the parameter of interest as the conditional risk, one
gets V-different estimates of an experiment where two different competing
procedures are used to generate predictors for which the risks are estimated.
Of course, in practice it makes the most sense to use the cross-validated
estimated of the risk, as this will coverage to the true risk faster.
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4.2 Averaging across validation samples

Instead of joint inference across the V-folds keeping the validation estimates
separate, we can also combine them into an average conditional risk:

Ψn =
1

V

V∑
v=1

Ψv
nV

=
1

V

V∑
v=1

E(L[Y, m̂−v
0 (X)]− L[Y, m̂−v

1 (X)])

(8)

As [5] showed, under conditions in theorem 3, this estimate is asymptot-
ically normally distributed with variance consistently estimated by:

σ2n =
1

V

V∑
v=1

σ2v,n

where σ2v,n = varvnV
[ ˆIC(Ov; m̂−v

0 )− ˆIC(Ov; m̂−v
1 )]/nV , or the estimated vari-

ance of the risk difference within each validation fold. Thus, one can derive
a Wald-type confidence interval and test statistic just as above, e.g.,

T =
Ψn

σ2n
.

Thus, this provides a single overall test and/or confidence interval that might
be a more efficient summary of the evidence related to the guiding hypothesis
of interest. However, it does require more assumptions, and these are not
trivial. For instance, the competing procedures are such that, for some P0,
m̂−v

1 (X)→ m̂−v
0 (X), as sample size gets large, then the asymptotic linearity

may not hold. However, in these cases, it is because the null is “too” true,
and thus we have proposed a simple solution to this degenerate case where
the data-adaptive choice for deriving m̂1 gets very close to the null procedure
m̂0. Thus, the situation hurts the asymptotics, but not in a substantive way
that hurts the inferences from the estimate of the conditional risk difference,
since the evidence so strongly points to the null.

4.3 Finite Sample Considerations

While the asymptotic statistical inference is straightforward when one views
the parameter of interest as the difference in conditional risks, it still begs
the question of the finite sample performance of this procedure as a function
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of the number of splits, V , one should choose. The performance of the test
will be a function of two competing goals: 1) having the training samples as
large as possible in order to get closer convergence of the fit, m−v

1,n to the true
model, and 2) having the validation samples as large as possible in order to
get estimates of Ψv

nV
with variances as small as possible as well as being able

to invoke the asymptotic sampling distribution under the null. Obviously, for
this latter reason, V must be small enough to invoke asymptotic normality
of Tv. In practice we have found a validation sample size of at least 30 to
be necessary.

4.4 “Marginal” Risk Differences

One might want to derive a test of competing procedures, where one does
not condition on the estimates of the predictors, but estimates how the
competing procedures (algorithms) do in repeated samples. So, as opposed
to average conditional risk, the parameter of interest is the average un-
conditional risk difference, but where the experiment involves not just the
estimation of risk from a fixed prediction model, but where it also involves
re-fitting of the prediction model as well, something we will refer to as aver-
age marginal risk differences. The most complete discussion of this problem
was performed by [6]. The authors showed that the variance of the loss can
be broken down into three components:

(1) The variability of the prediction within each validation block

(2) The covariance between predictions within each block

(3) The covariance between predictions in different blocks

The first value is the parameter of interest, however the empirical variance
of m̂(Xi) is biased by the other two values. In later work the the authors
estimated the maximum between block variance as 0.7 and suggested a t-
statistic with a correction based on this value [11]. In our own previous work
we suggested a Wald test that also required a correction to maintain proper
error control [12]. [13] presented a method of moments estimator that while
nearly unbiased, depends on the distribution errors and knowledge of the
learning algorithm.

Therefore the work of [5] is important in that it avoids these issues by
proposing a type of random parameter, the conditional risk, which both has
some appeal as the quantity of interest (typically, for practical performance
of an estimated predictor, one is interested in how a fixed model fit will do
in the future) and also avoids these intractable problems.

9
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5 Simulation

Simulations were performed to examine 1) the asymptotic sampling distri-
bution of the cross-validated risk estimates, 2) to examine the type I error
rate when the base model provides a better fit, and 3) to examine the cover-
age of the confidence interval. The simulations all had the same structure,
which complies with the experiment under which the theory is developed for
the asymptotic distribution of the risk estimator.

5.1 Methods

(1) Generate a random sample of size n from the data generating distribu-
tion and break into V equal validation samples of size nV = n/V with
corresponding training samples of size n− n/V ;

(2) For each training sample, estimate the models using both the base model
and the alternative model, resulting in V pairs of model fits. These are
the sets (m̂−v

0 , m̂−v
1 , v = 1, .., V ) discussed above, and are considered the

set of fixed predictors of which we evaluate the sampling distribution of
the risk estimates in future draws from the target population;

(3) For each of the V leave-out sets, calculate the risk difference, Ψv
nv and

associated standard error;

(4) Calculate the Wald test from (6) and the associated p-value (using a
Bonferonni correction). Using the most significant Wald test and the
average of the Ψv

nv calculate the corresponding CI from (7);

(5) To derive the “true” risk for each of these 2*V predictors, we draw
a very large sample using the same distribution, representing a target
population; this is used to calculate the true risks, or θ(m̂−v

0 ), θ(m̂−v
1 )

for each v, the corresponding risk differences, Ψ{m̂−v
0 ), θ(m̂−v

1 )}, the

average risks (e.g., m̄0 = 1
V

∑V
v=1 θ(m̂

−v
0 )), and the difference of these

average risk differences;

(6) To estimate the sample distribution and performance repeat (1) - (4)
1000 times, drawing new samples and generating new fits. Compare the
mean of the risk differences, coverage probabilities for confidence inter-
vals, and rejection (at 0.05 level) probability, to the true risk difference
from (5).

We present results for two sample sizes (n = 100, 1000) and V equal to
5 (though other n and V were explored) within four simulations.

10
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• Simulation I: The base model contain x1 and x2 where x2 has an
association (b = 1) with Y . The alternative model adds x3 which
is not associated with Y , i.e. a null association. Both models are
estimated using basic linear regression and the risk is calculated under
squared-error loss;

• Simulation II: The base model contain x1 and x2 where x1 has an
association (b = 0.5) with Y . The alternative model adds x3 which is
also associated Y , i.e. a true association. Y is categorical and both
models are estimated using basic logistic regression and the risk is
calculated under absolute-error loss;

• Simulation III: The base model was the same as in simulation I and
was estimated using linear regression. The alternative model used the
same X and was estimated under SL using linear regression, general
additive model, decision tree and an intercept model, i.e. an overly
complex model. Absolute-error loss was used to calculate the risk;

• Simulation IV: Both models contain only x1 with the true E(Y | X)
shown in Figure 1, based on a piecewise constant model. The base fit
is miss-specified using only linear regression where the alternative is
fit under a SL using linear regression, general additive model, decision
tree and an intercept function. The risk is calculated under squared-
error loss.

1000 simulations were performed. We report bias (estimated risk differ-
ence vs “true” risk difference, type 1 error (based on a 1 tailed test), and
coverage probability.

5.2 Results

Tables 1 and 2 show the results, and are as predicted based on the theory: 1)
the coverage probabilities of the risk differences with independent validation
samples achieves close to the specified coverage rate, 2) when the base model
is correctly specified (and is a simple parametric model) then the procedure
has a very high probability of failing to reject the null hypothesis (that is,
it suggests the simpler model is a sufficient/superior fit, 3) if the null model
is miss-specified, the procedure has very high power.

When looking across the validation folds, the Bonferonni corrected statis-
tic provides slightly conservative coverage and type 1 error rate. However
the need for such a statistic is seen when one simply takes the empirical
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Figure 1: True model E(Y |X) and closest quadratic approximation - i.e.,
the limit of the null estimator used in Simulation 4

variance across the validation folds. In this scenario the coverage is not
always appropriate particularly when the base model is correctly specified
(simulations I & III). As noted by [6] there are additional correlation com-
ponents embedded in V-fold CV. These correlation components likely add
second order terms to the IC calculation (equation (2)).

We note, that when the sample size is relatively small, so the validation
sample is very small (20 in this case), then borrowing across the validation
samples to get an average risk gives better performance, both with respect
to coverage and power. This is the major advantage of performing CV as
opposed to a simple sample split.
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6 Data Analysis

Gene based tests represent a unique application of this procedure. Genes
are comprised of individual bases of DNA referred to as single nucleotide
polymorphisms (SNPs). A typical gene may consist of 10s or 100s of SNPs.
Typical methodology involves testing individual SNPs in a gene to determine
whether variation in the gene as a whole may be associated with the outcome
(typically disease) of interest. Gene based tests attempt to associate the
set of SNPs comprising the gene and many different procedures have been
proposed [14]. Of particular relevance, the unit of interest in a gene based is
not any individual SNP but instead the collection of SNPs. Therefore we are
less interested in defining a specific parametric model for the relationship
between the SNPs and the outcome of interest.

To illustrate the flexibility of the proposed method we will show how it
can be used as a gene based test for association. We return to a data analysis
we previously performed where we explored whether genes from the stress
response pathway, a set of predefined genes, are associated with Multiple
Sclerosis (MS) [15]. Using a combination of machine learning procedures
and logistic regression we identified one gene, CRHR1, to be associated with
disease. However, at the time we were unable to formally test this associa-
tion. Using the proposed method, we revisted this analysis.

In brief the data consist of a candidate gene study on 2,722 people. In
the dataset the stress response pathway consists of 409 SNPs comprising 10
genes across the genome. In univariate testing rs171442 in CRHR1 has the
smallest p-value (p < 0.003). However the association is no longer signifi-
cant after controlling for multiple testing using the Benjamini-Hochberg [16]
method to control the False Discovery Rate (padjusted = 0.42).

Since our interest was only among the 10 genes (and not the 409 SNPs),
we tested each gene individually. A SuperLearner was fit using a library
consisting of RandomForests, LASSO, GLM and K-Nearest Neighbours along
with an intercept. Twenty-fold cross-validation was performed and the p-
value based on (6) was calculated in each fold. The results for the entire
pathway and each individual gene is shown in table 3.

All Genes BDNF BDNFOS CRHBP CRHR1 CRHR2 GDNF HCRTR1 HCRTR2 OPRD1 OPRK1
0.0111 0.6528 1.0000 1.0000 0.0061 0.6058 1.0000 0.1185 1.0000 0.7442 0.2028

Table 3: P-values for the overall stress response pathway as well as each
individual gene. The overall pathway shows a significant association as does
the CRHR1 gene.
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The overall pathway had a significant association (p < 0.012) as did the
the CRHR1 gene. After adjusting the multiple testing, the association was
marginal for each test (padjusted < 0.061). To examine whether all of the
association resided in the CRHR1 gene we compared the overall pathway
to just the CRHR1. Not surprisingly there was no association (p = 1.0)
confirming that CRHR1 is the only gene in the stress response pathway
associated with MS. The use of the other loss functions resulted in similar
conclusions. Overall, this formally confirms the conclusions in the original
paper that we were only able to make by suggestion [15].

7 Conclusion

In this paper we have implemented an estimation and inferential procedure
based on the theory developed in [5] for testing the risk difference in two
competing fitted prediction models. The proposed test can be interpreted
as a comparison of the fit of two models or test of association for a set of
predictors. It can also be used as a goodness of fit test for a semi-parametric
or data adaptive model. This test of risk difference can be based upon al-
most any loss function. In constructing the test we utilized the independent
validation sets that exist within V-fold cross-validation. This work then
also addresses an open question in statistical learning: how to draw infer-
ence about the added predictive value from cross-validation. Previous work,
both theoretical and empirical, has shown, that while cross-validation pro-
duces an unbiased estimate of the risk, the variance estimate is improper.

The test has important application to statistical medicine. Many studies
are interested in whether a set of values (e.g. biomarkers, clinical measure-
ments etc.) improve the assessment of an outcome. Typical methods for
such assessment (e.g. ROC, recalibration statistics), rely on the outcome
being binary (generally disease state). However, this is not always the case
as one may want to predict a continuous outcome such as a laboratory value
or a survival outcome. Moreover these methods each use a specific loss func-
tion that the user has little control over. The proposed method allows for
such assessment under any convex loss function. The test can be interpreted
as a test of association for the set of predictors, similar to likelihood ratio
tests or information based methods, but not restricted to nested models or
models where one knows the degree of freedom. This allows one to use any
semi-parametric model to estimate the functional form and derive inference
on the overall fit. If that model has certain optimality properties, as does the
SL stacking based algorithm, then the test represents an asymptomatically
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most powerful goodness of fit test for semi-parametric models.
In our example we applied the test to a previous analysis of a candidate

gene study. The scientific question was the association of particular genes
with disease state, as opposed to simply individual SNPs. A previous anal-
ysis concluded that only the CRHR1 gene in the stress response pathway
was associated with MS, but this could not be quantified. Our formal test,
confirmed this conclusion.

This procedure also presents a means to test a group of variables for
association with an outcome. [17] showed that if any of the variables in a
prediction model are associated with the outcome then a test for predic-
tion will always be significant. While, intuitive, as our data analysis shows,
often no individual predictor will be associated either because of issues of
multiple testing or because a parametric model cannot be adequately speci-
fied. In this case, semi-parametric methods, like SuperLearner, become more
valuable. Moreover, in this data analysis, the unit of interest for inference
was less focused on the individual SNPs, but more focused on the gene and
pathway level, for which no general test would exist.

While this test has great application and is fairly intuitive, it is limited by
the ability to derive a strong predictive model. Depending on the learning
algorithm used one may reach different conclusions. It is for this reason
that we framed the test within the context of semi-parametric models with
optimality properties. While the test is robust to the size of the validation
set, too small of a set size will result in an anti-conservative test. We also
have limited this work to hypothesis testing and have not provided a means
to estimate a confidence interval for a cross-validated risk, also a potentially
interesting quantity.

In all, this test fills a gap both in the machine learning literature as well
as the statistical medicine literature.
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