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Targeted Learning of an Optimal Dynamic
Treatment, and Statistical Inference for its
Mean Outcome

Mark J. van der Laan

Abstract

Suppose we observe n independent and identically distributed observations of a
time-dependent random variable consisting of baseline covariates, initial treat-
ment and censoring indicator, intermediate covariates, subsequent treatment and
censoring indicator, and a final outcome. For example, this could be data gener-
ated by a sequentially randomized controlled trial, where subjects are sequentially
randomized to a first line and second line treatment, possibly assigned in response
to an intermediate biomarker, and are subject to right-censoring. In this article we
consider estimation of an optimal dynamic multiple time-point treatment rule de-
fined as the rule that maximizes the mean outcome under the dynamic treatment,
where the candidate rules are restricted to only respond to a user-supplied subset
of the baseline and intermediate covariates. This estimation problem is addressed
in a statistical model for the data distribution that is nonparametric beyond possi-
ble knowledge about the treatment and censoring mechanism, while still providing
statistical inference for the mean outcome under the optimal rule. This contrasts
from the current literature that relies on parametric assumptions.

For the sake of presentation, we first consider the case that the treatment/censoring
is only assigned at a single time-point, and subsequently, we cover the multiple
time-point case. We characterize the optimal dynamic treatment as a statistical
target parameter in the nonparametric statistical model, and we propose highly
data adaptive estimators of this optimal dynamic regimen, utilizing sequential
loss-based super-learning of sequentially defined (so called) blip-functions, based
on newly proposed loss-functions. We also propose a cross-validation selector
(among candidate estimators of the optimal dynamic regimens) based on a cross-
validated targeted minimum loss-based estimator of the mean outcome under the



candidate regimen, thereby aiming directly to select the candidate estimator that
maximizes the mean outcome. We also establish that the mean of the counter-
factual outcome under the optimal dynamic treatment is a pathwise differentiable
parameter, and develop a targeted minimum loss-based estimator (TMLE) of this
target parameter. We establish asymptotic linearity and statistical inference based
on this targeted minimum loss-based estimator under specified conditions. In a
sequentially randomized trial the statistical inference essentially only relies upon
a second order difference between the estimator of the optimal dynamic treatment
and the optimal dynamic treatment to be asymptotically negligible, which may
be a problematic condition when the rule is based on multivariate time-dependent
covariates. To avoid this condition, we also develop targeted minimum loss based
estimators and statistical inference for data adaptive target parameters that are
defined in terms of the mean outcome under the {\em estimate} of the optimal
dynamic treatment.

In particular, we develop a novel cross-validated TMLE approach that provides
asymptotic inference under minimal conditions, avoiding the need for any em-
pirical process conditions. For the sake of presentation, in the main part of the
article we focus on two-time point interventions, but the results are generalized to
general multiple time point interventions in the appendix.



1 Introduction

Suppose we observe n independent and identically distributed observations
of a time-dependent random variable consisting of baseline covariates, initial
treatment and censoring indicator, intermediate covariates, subsequent treat-
ment and censoring indicator, and a final outcome. For example, this could
be data generated by a sequentially randomized controlled trial in which one
follows up a group of subjects, and treatment assignment at two time-points is
sequentially randomized, where the probability of receiving treatment might
be determined by a baseline covariate for the first-line treatment, and time-
dependent intermediate covariate (such as a biomarker of interest) for the
second- line treatment (Robins (1986)). Such trials are often called sequential
multiple assignment randomized trials (SMART). A dynamic treatment rule
is a rule that deterministically assigns treatment as a function of the available
history. If treatment is assigned at two time points, then this dynamic treat-
ment rule consists of two rules, one for each time point (Robins (1986, 2000,
1993, 1997)). The mean outcome under a dynamic treatment is a counterfac-
tual quantity of interest representing what the mean outcome would have been
if everybody would have received treatment according to the dynamic treat-
ment rule (Neyman, 1990; Rubin, 1974, 2006; Holland, 1986; Robins, 1987a,b;
Pearl, 2000). Dynamic treatments represent pre-specified multiple time-point
interventions that at each treatment-decision stage are allowed to respond to
the currently available treatment and covariate history. Examples of multiple
time-point dynamic treatment regimens are given in Lavori and Dawson (2000,
2008); Murphy (2005); Rosthj et al. (2006); Thall et al. (2000, 2002); Wagner
et al. (2001); Petersen et al. (2007); van der Laan and Petersen (2007); Robins
et al. (2008) ranging from rules that change the dose of a drug, change or aug-
ment the treatment, to making a decision on when to start a new treatment,
in response to the history of the subject.

More recently, SMART designs have been implemented in practice: Lavori
and Dawson (2000, 2004); Murphy (2005); Thall et al. (2000); Chakraborti
et al. (2010); Kasari (2009); Lei et al. (2011); Nahum-Shani et al. (2012a,b);
Jones (2010); Lei et al. (2011). For an extensive list of SMART'Ss, we refer the
reader to the website http://methodology.psuedu/ra/adap-treat-strat/projects.
For an excellent and recent overview on the literature on dynamic treatments
we refer to Chakraborti and Murphy (2013). Researchers have also aimed to
learn dynamic treatments from observational studies: Cotton and Heagerty
(2011); Orellana et al. (2010a); Robins et al. (2008); Rosthj et al. (2006);
van der Laan and Petersen (2007); Petersen et al. (2008, 2007); Moodie et al.
(2009). These observational and sequentially randomized studies provide an
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opportunity to learn an optimal multiple time-point dynamic treatment de-
fined as the treatment rule that maximizes the mean dynamic-regimen specific
counterfactual outcome over a user supplied class of dynamic regimens. The
reinforcement learning (i.e., computer science) and statistical literature have
made enormous advances in developing statistical methods that aim to learn
such optimal rules.

The literature on )-learning defines the optimal dynamic treatment among
all dynamic treatments in a sequential manner (Sutton and Sung (1998); Mur-
phy (2003); Robins (2003, 2004); Murphy (2005)): considering a two stage
SMART, the optimal treatment rule for the second line treatment is defined
as the maximizer of the conditional mean outcome, given the observed past,
over the possible second line treatments, and the optimal treatment rule for
the first line treatment is defined as the maximizer of the conditional mean
counterfactual outcome, given baseline covariates, over the possible values for
the initial treatment, under the assumption that the second line treatment
is assigned according to the just determined optimal rule for the second line
treatment. This characterization of the optimal treatment has its roots in
multi-stage decision theory and can be thought of as an example of dynamic
programming (Bellman, 1957). This optimal rule can be learned through fit-
ting the likelihood and then just calculating the optimal rule under this fit
of the likelihood.. This approach can be implemented with maximum likeli-
hood estimation based on parametric models. Since there is no need to fit
the whole likelihood, one can focus on just fitting the sequential regressions,
such as sequential linear least squared regression (see e.g., Murphy (2005)),
while Ernst et al. (2005) and Ormoneit and Sen (2002) use regression trees
and kernel regression estimators, respectively. Moodie et al. (2012) proposes
inverse propensity score weighting of the regressions in Q)-learning. Q-learning
is not limited to particular type of regression models or outcomes: e.g., Gold-
berg and Kosorok (2012); Zhao et al. (2011) apply Q-learning to the survival
outcome setting.

It has been noted (e.g., Robins (2004), Chakraborti and Murphy (2013))
that the estimator of the parameters of one of the regressions (except the first
one) when using parametric regression models is a non-smooth function of the
estimator of the parameters of the previous regression, and that this results in
non-regularity of the estimators of the parameter vector. This raises challenges
for obtaining statistical inference, even when assuming that these parametric
regression models are correctly specified. Chakraborti and Murphy (2013)
discuss various approaches and advances that aim to resolve this delicate issue
such as inverting hypothesis testing (Robins (2004)), establishing non-normal
limit distributions of the estimators (E. Laber, D. Lizotte, M. Qian, S. Murphy,
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submitted), or using the m out of n bootstrap.

(Murphy, 2003; Robins, 2003, 2004) develop so called structural nested
mean models tailored for optimal dynamic treatments. These models assume
a parametric model for the ”blip-function” defined as the additive effect of
a blip in current treatment on a counterfactual outcome, conditional on the
observed past, in the counterfactual world in which future treatment is as-
signed optimally. Each blip-function defines the optimal treatment rule for
that time point by simply maximizing it over the treatment, so that knowing
the blip functions, allows one to calculate the optimal dynamic treatment by
starting with maximizing the last blip function and moving backwards in time
till the first time point. In the original formulation of structural nested mean
models the future treatment in the blip-functions was set equal to some base-
line treatment (Robins, 2000), while Murphy (2003) and Robins (2003, 2004)
generalized this class of models to structural nested mean models tailored for
estimation of optimal dynamic regimens, by defining the future treatment as
the optimal treatment. These models are semi-parametric since they only rely
on a parametric model of the blip function (at least in a SMART), but they
aim to leave the nuisance parameters unspecified. These authors develop es-
timators for the unknown parameters of the blip-functions using estimating
equation methodology. The estimated blip functions now define an estima-
tor of the optimal rule. Statistical inference for the parameters of the blip
function proceeds accordingly, but Robins (2004) points out the irregularity
of the estimator, resulting in some serious challenges for statistical inference
as referenced above.

Structural nested mean models have also been generalized to blip functions
that condition on a (counterfactual) subset of the past, thereby allowing the
learning of optimal rules that are restricted to only using this subset of the
past (Robins (2004) and section 6.5 in van der Laan and Robins (2003)).

An alternative approach, referenced as the direct approach in Chakraborti
and Murphy (2013), uses marginal structural models for the dynamic regi-
men specific mean outcome for a user supplied class of dynamic treatments.
If one assumes the marginal structural models are correctly specified, then
the parameters of the marginal structural model map into a dynamic treat-
ment that is optimal among the user supplied class of dynamic regimens. In
addition, the MSM also provides the complete dose-response curve, i.e. the
mean counterfactual outcome for each dynamic treatment in the user-supplied
class. This generalization of the original marginal structural models for static
interventions to MSMs for dynamic treatments were developed independently
by (Orellana et al., 2010a; van der Laan and Petersen, 2007). These arti-
cles present inverse probability of treatment and censoring weighted (IPCW)
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estimators and double robust augmented [IPCW-estimators based on general
longitudinal data structures, allowing for right-censoring, time-dependent co-
variates and survival outcomes, and these articles also include data analysis
examples learning the optional rule for when to switch treatment based on
CD4-count. Double robust estimating equation based methods that estimate
the nuisance parameters with sequential parametric regression models using
clever covariates were developed for MSMs for static interventions in Bang
and Robins (2005) and and analogue targeted minimum loss-based estimator
(van der Laan and Rubin, 2006; van der Laan, 2008; van der Laan and Rose,
2012) for marginal structural models for a user supplied class of dynamic treat-
ments was developed in Petersen et al. (2013) building on the TMLE for the
mean outcome for a single dynamoc treatment developed in van der Laan and
Gruber (2012). Additional application papers of interest are (Hernan et al.,
2006; Cotton and Heagerty, 2011; Shortreed and Moodie, 2012) which involve
fitting MSMs for dynamic treatments defined by treatment-tailoring threshold
using IPCW methods.

Each of the above referenced approaches for learning an optimal dynamic
treatment rely on parametric assumptions: even the structural nested mean
models and the marginal structural models both rely on parametric models
for the blip-function and dose-response curve, respectively. As a consequence,
even in a SMART, the statistical inference for the optimal dynamic treatment
heavily relies on assumptions that are generally believed to be false, and will
thus be expected to be biased. Therefore, in this article, we aim to avoid
such assumptions and instead define the semi parametric statistical model for
the data distribution as nonparametric, beyond the possible knowledge on the
treatment mechanism (e.g., known in a RCT) and censoring mechanism. This
forces us to define the optimal dynamic treatment and the corresponding mean
outcome as parameters defined on this nonparametric model, and to develop
data adaptive estimators of the optimal dynamic treatment. In order to not
only consider the most ambitious fully optimal rule, we define V-optimal rules
as the optimal rule that only use a user-supplied subset V' of the available
covariates. This allows us to consider sub-optimal rules that are easier to
estimate and thereby allow for statistical inference for the counterfactual mean
outcome under the sub-optimal rule, i.e., analogue to the generalized structural
nested mean models whose blip-functions only condition on a counterfactual
subset of the past.

Our estimators of the blip-functions (that also define the V-optimal rule)
are based on sequential (analogue to Q-learning) loss-based super-learning
(van der Laan and Dudoit, 2003; van der Vaart et al., 2006; van der Laan
et al., 2006, 2007; Polley et al., 2012) which involves the application of a

4
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super-learner to fit each of the blip-functions that are defined after having
fitted the "previous” blip functions. The super-learner is defined by generating
a family of candidate estimators, a risk for each candidate estimator, and
selection among all candidate estimators based on a cross-validation based
estimator of this risk. Some of these candidate estimators could be based
on parametric models of the blip-functions (as in a structural nested mean
model), while others are based on available machine learning algorithms. By
previously established oracle inequality results on the cross-validation selector
established in the above mentioned references, our results guarantee that in
SMART the super-learner will be asymptotically equivalent with the estimator
selected by the oracle selector (selecting the best) and thereby outperforms
any of the parametric model based estimators and any of the other estimators
in the family of candidate estimators, under the assumption that non of the
parametric models are correctly specified, while it achieves the same rate of
convergence as the correctly specified parametric model otherwise. In this
manner, our sequential super-learner is at each stage doing an asymptotically
optimal job in fitting the blip-function relative to its user supplied class of
candidate estimators. Practical findings strongly suggest that this will also
result in superior performance in most practical situations relative to sticking
to one particular estimation procedure (Polley et al., 2012; van der Laan and
Rose, 2012).

Such an estimator of the blip-functions could be substituted in the formula
for the optimal dynamic treatment in terms of these blip-function. We also
propose a cross-validation selector that selects among candidate estimators
of the optimal dynamic treatment based directly on the performance of the
candidate rule (instead of the performance in fitting the blip-function). For
that purpose, we use cross-validation based on a loss-function whose risk equals
the mean outcome under the candidate rule, and we discuss oracle inequalities
for this cross-validation selector whose loss-based dissimilarity equals the mean
outcome under the candidate rule minus the mean outcome under the optimal
rule. We also develop cross-validated targeted minimum loss-based estimator
of the same risk in order to improve finite sample performance of the cross-
validation selector. In this manner, we target the fine-tuning of the fit of
the optimal rule w.r.t a measure of performance that directly measures the
performance of the rule in minimizing the mean outcome, the very measure
that defines the optimal rule. In particular, this cross-validation selector could
be used to select among different candidate estimators of the optimal dynamic
treatment indexed by a choice of estimator of the blip-functions.

Since we are not assuming parametric models, we are not able to obtain sta-
tistical inference for these optimal rules, although the proposed cross-validated
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risks for the blip-function at each stage provides a mean to assess the practical
performance of these blip-functions and thereby indirectly the corresponding
rules. However, we will show that the mean outcome under the optimal rule is
a pathwise differentiable parameter of the data distribution, indicating that it
is possible to develop asymptotically linear estimators of this target parameter
under conditions. In fact, we obtain the surprising result that the pathwise
derivative of this target parameter equals the pathwise derivative of the mean
counterfactual outcome under a given dynamic treatment rule set at the opti-
mal rule, treating the latter as known. By a reference to the current literature
for double robust and efficient estimation of the mean outcome under a given
rule, we then obtain a targeted minimum loss-based estimator for the mean
outcome under the optimal rule. Subsequently, we prove asymptotic linearity
and efficiency of this TMLE, allowing us to construct confidence intervals for
the mean outcome under the optimal dynamic treatment or its contrast w.r.t.
a standard treatment. Thus contrary to the irregularity of the estimators of
the unknown parameters in the semi parametric structural nested mean model,
we can construct regular estimators of the mean outcome under the optimal
rule in the nonparametric model.

In a SMART the statistical inference would only rely upon a second order
difference between the estimator of the optimal dynamic treatment and the
optimal dynamic treatment itself to be asymptotically negligible. This is a
reasonable condition if we restrict ourselves to rules only responding to a one
dimensional time-dependent covariate, or if we are willing to make smoothness
assumptions. To avoid this condition, we also develop targeted minimum loss
based estimators and statistical inference for data adaptive target parameters
that are defined in terms of the mean outcome under the estimate of the opti-
mal dynamic treatment (see van der Laan et al. (2013) for a general approach
for statistical inference for data adaptive target parameters). In particular,
we develop a novel cross-validated TMLE approach that provides asymptotic
inference under minimal conditions.

For the sake of presentation, we focus on two-time point treatments in
the main part of the article. In the Appendix we generalize these results to
general multiple time point treatments, and develop general (sequential) super-
learning based on the efficient cross-validated TMLE of the risk of a candidate
estimator. In the appendix we also develop a TMLE of a projection of the
blip functions on a parametric working model (with corresponding statistical
inference), which can be used as candidate estimators in our super-learners,
but also present a result of interest in its own right.
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1.1 Organization of article

The first part of this article concerns estimation and statistical inference for
the optimal dynamic treatment for a single time-point treatment. This estima-
tion problem in the context of randomized controlled trials, a binary outcome,
targeting the optimal rule using all the covariates, was handled through loss-
based super learning of the conditional additive effect of treatment given all
the baseline covariates in Polley and van der Laan (2009). In (Qian and Mur-
phy, 2011; Zhao et al., 2012) it was shown that the estimation of the optimal
dynamic treatment can be reduced to a classification problem. Rubin and
van der Laan (2012) identifies an entire family of such reductions to classifica-
tion for the binary outcome problem, and proposed a more efficient reduction.
In this paper, we target the blip-function that indirectly identifies the optimal
treatment, and target the optimal rule directly (where the IPCW-loss relates
to the classification problem formulation), which is also the approach we follow
for multiple time-point interventions.

In Section 2 we define the V-optimal rule for the point-treatment data
structure, and present the formal estimation problem to be addressed: i.e.
data adaptive estimation of the V-optimal rule, and statistical inference for
the mean counterfactual outcome under the V-optimal rule. In Section 3 we
present a data adaptive loss-based estimation procedure for the V-optimal rule,
using super-learning. The super-learner is based on a cross-validated estima-
tor of a measure of performance of the blip-function. In Section 4 we define a
super-learner based on a cross-validated estimator of the mean outcome of the
rule implied by the blip-function. In Section 5 we study the mean counterfac-
tual outcome under the V-optimal treatment as a statistical target parameter,
establish pathwise differentiability with known canonical gradient /efficient in-
fluence curve, and obtain a closed form expression of the expectation of the
efficient influence curve at misspecified nuisance parameters. The latter (gen-
eralized double robustness results) provides a key ingredient for analyzing the
TMLE. In Section 6 we present the TMLE of this target parameter, and in
Section 7 we present a formal theorem establishing asymptotic linearity of
the TMLE and corresponding confidence intervals based on this TMLE. The
implications of this theorem for the analysis of RCTs are discussed.

The second part of this article covers the two-time point treatment case,
and thereby in essence the multiple time point treatment case. This part
is organized in the same manner: Section 8 defines the estimation problem;
Section 9 presents a sequential data adaptive loss-based super learner of the
blip-functions for the V-optimal treatment rule, and a super-learner based
on a cross-validated estimator of the mean outcome under the candidate rule
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implied by the candidate blip function; Section 10 establishes the desired path-
wise differentiability of the mean counterfactual outcome under the V-optimal
rule and a closed form expression of the expectation of the efficient influence
curve under misspecified nuisance parameters; Section 11 presents the TMLE
of this target parameter; and Section 12 presents an asymptotic linearity the-
orem for this TMLE and corresponding statistical inference.

The third part of this article concerns statistical inference for data adap-
tive target parameters that are defined in terms of the mean outcome under
the estimate of the optimal dynamic treatment, thereby avoiding the consis-
tency and rate condition for the fitted V-optimal rule as required for asymp-
totic linearity of the TMLE of the mean outcome under the actual V-optimal
rule. Firstly, in Section 13 we present the asymptotic linearity theorem for
the TMLE for the mean outcome under the actual fitted dynamic treatment
regimen. In Section 14 we present a cross-validated TMLE (CV-TMLE) ap-
proach that provides asymptotic inference under minimal conditions for the
mean outcome under a dynamic treatment fitted on a training sample, aver-
aged across the different splits in training sample and validation sample. Both
results allow us to construct confidence interval that have the correct asymp-
totic coverage of the random true target parameter, but statistical inference
based on the CV-TMLE avoids an empirical process condition that can put a
brake on the allowed data adaptivity of the estimator.

Section 15 concludes with a summary, and some remarks, indicating possi-
ble directions for future research. The Appendix describes the generalization
of the two time-point treatment case to the general case and studies optimal
estimation of the risk for a candidate estimator of the V-optimal rule resulting
in sequential super-learning based on a CV-TMLE of the risk. In the ap-
pendix we also develop the TMLE of the projection of the blip-functions on a
user-supplied parametric working model.

2 Formulation of optimal dynamic treatment
estimation problem: single time-point treat-
ment

Suppose we observe n independent and identically distributed copies Oq, ..., O,
of O = (W,A,Y) ~ P,, where W are baseline-covariates, A = (A, As) €
{0,1}? is a subsequently assigned binary treatment A; and missing indicator
Ay, and Y is a final outcome of interest. Consider a model that makes no
assumptions on the marginal distribution Qw, = Qw (F) of W and the con-
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ditional distribution Qy,y = Qy(Fp) of Y, given A, W, but might assume a
model on the conditional distribution gy = g(Fp) of A, given W. In partic-
ular, the data might be generated by a randomized controlled trial in which
the outcome is not subject to missingness, in which case gy is known. Let’s
denote the collection of possible probability distributions of O with M, which
we refer to as the statistical model for the true data distribution F,. Let
Qo = Ep,(Y | A,W) denote the conditional mean of Y, given A, W.
Let V' be a function of W. Define the blip-function

Qo(V) = EP()(EPO(Y | Al = 1,A2 = 1,W) - EPO(Y | Al = O,AQ = 1,W) | V)
= EPO<Q0(17 L, W) o QO(Oa L W) | V)

This parameter of Py generates an optimal treatment rule V. — do(V) €
{0,1} x {1} for assigning treatment and missing indicator defined as

do(V) = (I(Qo(V) > 0),1).

Under a causal model, such as the Neyman-Rubin model (Neyman (1990);
Rubin (1974, 2006); Holland (1986); Robins (1987a,b)), or the structural causal
model (Pearl, 2000), which allows the representation of the observed data as
a missing data structure (W, A;Y = Y (A)) on the counterfactuals

X =(W,Y(0,0),Y(1,0),Y(0,1),Y(1,1)),

and assumes A is independent of Y (a), given W, for a € {0,1}? (i.e., random-
ization assumption), we have

Qo(V) = Ep,(Y(1,1) =Y(0,1) [ V),

and thus
do(V) = (I(Ep,(Y(1,1) = Y(0,1) | V) > 0),1).

In this case, dy assigns the causally optimal treatment based on the baseline
covariates V' and assigns "no missingness”. It follows that

do = arg max Epo Yd
deD

is the rule that maximizes the mean outcome over all possible dynamic treat-
ments D that are only a function of V' and that assign A(2) = 1.

Beyond estimation of this V-optimal rule dy, in this article we are also con-
cerned with statistical estimation and inference for EyY,, which is represented
by the following statistical target parameter ¥ : M — IR, defined as

U(Py) = Ep, {I(Qo(V)) > 0)Qo(1,1, W) + I(Qo(V) < 0)Qo(0,1, W)} .

9
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One can write this as U(P,) = Eg,,,Qo(do(V), W). We will also denote this
parameter with W(Qy), where Qo = (Qo, Qwo) is the relevant part of the data
distribution P, this statistical target parameter depends upon. Sometimes, we
will also denote it with W(dy, Qo, Qwo) to emphasize the dependence on the
rule doy, Qo(A, W), and Qw,. The definition of W(P,) relies on the so called
positivity assumption that go(1,1 | W) > 0 and ¢o(0,1 | W) > 0 a.e., since
otherwise the rule do(V) is not defined.
Under the causal model and randomization assumption we have

\D(PO) = Ep Yy, = rcrlleaDX Ep,Ya,

where the maximum is over all rules that are functions of V' and assign A(1) =
L.

By using that I(Qo(V) < 0) = (1 — I(Qo(V) > 0)), it follows that we can
also represent W as:

U(Qo) = EprQo(0,1, W)+ EpI(Qo(V) > 0){Qo(1,1,W)—Qu(0,1,W)}
= EPOQ(](O, 1, W) + EPOI(Q()(V) > O)Qo(‘/) (1)

The estimation problem is defined: we observe n i.i.d. copies of O =
(W,AY) ~ Py € M and we wish to estimate the V-optimal rule dy, and
its mean EPOYdo = \II(P()), where ‘I/(PQ) = EPOQO(O,:[,W) + EPOI<@0(V) >
0)Qo (V).

Throughout the paper we will use counterfactual notation to denote pa-
rameters since it simplifies notation and helps the presentation, as if we assume
a causal model and the randomization assumption, but, we always mean the
corresponding statistical parameter of the data distribution whose definition
only relies on the positivity assumption.

3 Data adaptive estimation of the V-optimal
rule: Targeting the V-adjusted blip-function

We propose to utilize the loss-based super-learning approach to estimate Qo (V),
which implies a corresponding estimator of the V-optimal rule do(V) = I(Qo(V) >
0). We will first present loss-functions, and subsequently, we present the loss-
based super-learning method (van der Laan and Dudoit, 2003; van der Vaart

et al., 2006; van der Laan et al., 2006, 2007; Polley et al., 2012).

10
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3.1 Loss functions

We propose the following loss-function directly inspired by (Rubin and van der
Laan, 2007):

Ly,0(@)(0) = (D1(Qo, 90)(0) = Q(V))*.

This loss function is indexed by nuisance parameters (Qo, go) required to eval-
uate

24(1) — 1, - _ .
Di(Qo, 90) = 1(A(2) = 1)— == (Y =Qo(A4, W))+Qo(1, 1, W)—=Qo (0,1, W).

go(A [ W)
In fact, D1(Qo, 90)—FEp, (Y (1,1)—Y (0, 1)) is the efficient influence curve for the
parameter Ep,(Y(1,1) —Y(0,1)), and it has the property that Ep,(D1(Q, g) |
V) = Qo(V), if either @ = Qo or g = go (and that 0 < g(1,1| W), 0 < ¢(0,1 |
W)). Due to this property it follows that if either D1(Q, g) = D1(Qo,g) or
Dl(Q? g) - DI(Q7 90)7 then

PyLq4(Q) = PoD1(Q, 9)* + PiQ*(V) — 2P D1(Q, 9)Q(V)
= PyD:(Q, 9)* + PiQ*(V) — 2RQo(V)Q(V)
= Py(Q — Q0)*(V) + PoD1(Q, 9)? — PyQ3(V).

Thus this proves that, if either D1(Q, g) = D1(Qo, g) or D1(Q, g) = D1(Q, go),
then the true risk of this loss function Lg ,(Q) equals Po(Q — Qo)*(V) up till a
constant (not depending on the candidate @), so that Q — PyLg ,(Q) is mini-
mized over Q by the true Q. Moreover, it can be shown that P, D1(Qy, go)Q is
an efficient estimator of PyQoQ demonstrating that the empirical mean of the
loss efficiently estimates the true underlying risk, making L, 4,(Q) a double
robust and efficient loss function for this true underlying squared error risk.
That is, P,Lq, . (Q) (and its cross-validated counterpart as used in cross-
validation) is a double robust locally efficient estimator of the true underlying
risk (up till the irrelevant constant), under regularity conditions.

A special choice of loss-function is obtained by setting Qq(A4, W) = 0 so
that D;(Qo, go) simplifies to

Di(90)(0) = I(A@2) = 1>% .

In this case, the loss-function L, (Q)(O) = (D1(g0)(0O) —Q(V))? only depends
on the single nuisance parameter gg, which would be known in an RCT without
missingness. However, even in such an RCT, we would recommend to use a
loss-function L, 4 (Q) based on an estimator @, or Ep (Y | A, W), so that
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the empirical mean of the loss-function is a more efficient estimator of the
underlying risk of Q.

Suppose that it is known that Y € [0,1] and Qo(V) € (0,1). Then it is
known that Qy(V) € (—1,1). More generally, suppose that it is known that
Qo(V) € (a,b). Define DY*(Q,g) = 2429=2 and Q3* = (Qo — a)/(b — a),
and define the loss

—L1,04(Q) = DI"(Q,9)10g Q" + (1 = D{*(Q, 9)) log(1 — Q).

By the same argument, it follows that, if either D;(Q,g) = D1(Qo,g) or
Dyi(Q, g) = D1(Q, go), then

PoLige(Q) = —F {Qg*’ log Q™" + (1 — Q") log(1 — Qa,b)}

showing that the true risk of this loss function is a Kullback-Leibler dissimi-
larity between Q*° and Qg’b. In addition, P,L1 g, 4(Q) is an efficient estima-
tor of this true underlying risk. Thus, this quasi-log-likelihood loss function
satisfies that argming PyL1g4(Q) = Qo if either D1(Q,9) = D1(Qo,g) or
D1(Q, g) = D1(Q, go). Analogue to above, we can define L; 4, (@) as the loss-
function that replaces D{*(Q, g) in Ly g, by D*(g) defined above.

We state the validity of these loss functions as a formal result.

Theorem 1 Assume 0 < go(1,1{W), 0 < go(0,1 | W), and that there exists
a,b with a < b < 0o so that Qo(V) € (a,b). Define the following two loss-
functions for the parameter Qq:

Lawa(@)(0) = (D1(Qo: 90)(0) = QV))*
Ligun(@) = = {Di*(Qo,90)log Q" (V) + (1 = D" (Qo, 90)) log(1 = Q“*(V)) |

We have

Qo = arg mén POLQ,Q<Q> if either D1(Q, g) = D1(Qo, g) or D1(Q,g9) = D1(Q, go),

and 0 < g(1,1|W), 0 < g(0,1 | W). The same result is true for Ly g .

3.2 Loss-based super-learning

For the sake of presentation, let’s consider a randomized controlled trial with-

out missingness so that we can use the loss-functions Ly, (Q) or Ly 4,(Q) for
Qo. We first need to generate a library of candidate estimators for Qo(V). The
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loss function L, (()) teaches us that we can apply any least-squares regression
algorithm to regress D;(go)(O) on V, and L; 4 (Q) teaches us that we can
apply any logistic regression algorithm regressing D‘f’b(go)(O) on V. In this
manner, we obtain a library of candidate estimators Qj of Qp, 7 =1,...,J,
where the estimators are viewed as mappings from the empirical distribution
P, of Oy,...,0, into the parameter space for Qy. These can include estima-
tors assuming a parametric regression model, or highly data adaptive machine
learning algorithms. This library of J estimators generates a family of can-
didate estimators Q, = > y @;Q; indexed by a weight-vector a. We can now
use loss-based cross-validation to select the optimal choice

a, = arg moin EBnPi,Bn Lgo(Qa(ngBn)),

where B,, € {0,1}" denotes a random split of the sample into a training sample
{i : Bn(i7) = 0} and validation sample {7 : B, (i) = 1}, P 5 and P, 5 denote
the empirical distributions of the training and validation sample, respectively,
and we used the notation Pf = [ f(0)dP(0). The final estimator of Qu(V) is
now defined as .
Qn = Qan (P ”)7

which is called the super-learner. This implies a corresponding plug-in esti-
mator d,(V) = (I1(Q,(V) > 0),1) of the V-optimal rule dj.

Due to the oracle inequality for the cross-validation selector «,, (van der
Laan and Dudoit, 2003; van der Vaart et al., 2006; van der Laan et al., 2006), if
none of the candidate estimators @, converges at the parametric rate 1//n to
Qo, then we have that Q,, (P,) is asymptotically equivalent (i.e. ratio of loss-

based dissimilarities with )y converges to 1) with the oracle selected estimator

Qa. (P,) w.r.t. the loss-based dissimilarity d(Q, Qo) = Epy{ L4 (Q)— Ly (Qo)},
where the oracle selector is defined as

oy — o mczn EBTLPOLgo(QOé(PS,Bn))

. 2
— argmin Bp, Py (Qu(PL5,)(V) = Qol(V))
This result only relies on the loss-function L, (Q) to be uniformly bounded in
O and Q, which is arranged by assuming the strong version of the positivity
assumption: there exists a d > 0so that 6 < go(1,1 | W), and § < go(0,1 | W),
with probability 1. If one of the candidate estimators converges at rate 1/y/n
(e.g., one of candidate estimators is based on a correctly specified parametric
model), then the super-learner also converges at rate 1/4/n, but in this case,
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it is not asymptotically equivalent with the oracle selector. These results still
hold if J = J(n) converges to infinity as fast as a polynomial power in n. The
same method can be applied with the quasi-log-likelihood loss function Ly g4,.

We could improve the cross-validated risk estimators, and thereby the
cross-validation selector, by using the estimated loss L, 4,(Q) or Li.q, 4
based on an estimator Di(Q,,go) of D1(Qo,g0). In that case, the cross-
validation selector is defined as:

an = a'rg mcgn EBn P’;,Bn LQn,Bn ,go (QO& (PT(L),BH ) ) I

where ), g, denotes the estimator of the nuisance parameters of the loss func-
tion based on the training sample P} 5 .

In an observational study, we would use the estimated loss Lg, ,,(Q) or
Ly g, 4. Finite sample oracle inequalities and asymptotic results for the result-
ing cross-validation selector based on such unified loss functions are presented
in van der Laan and Dudoit (2003); van der Laan and Petersen (2012); Diaz
and van der Laan (2013): in essence, one still obtains powerful oracle results
for the cross-validation selector but the rate of convergence is upper-bounded
by the product of the rates at which g, converges to gy and @),, converges to
(Qo. Thus in observational studies in which one has strong knowledge about
the treatment assignment mechanism or one knows that there is a single co-
variate (e.g., the outcome process at baseline) that blocks the effect of the
history of the subject on the outcome so that it is sufficient to only adjust
for this covariate when fitting the treatment mechanism, the cross-validation
selector may still be asymptotically equivalent with the oracle selector above
that treats gy as known, even if ),, converges to a misspecified Q).

Further improvement can be obtained by estimating the true squared error
risk PyLg, 4,(Q) with a cross-validated TMLE, since a TMLE respects the
global constraints of the model. In this case, oracle results have been obtained
in (van der Laan and Petersen, 2012; Diaz and van der Laan, 2013). The CV-
TMLE of risk is developed for the general multiple time point intervention
case in the Appendix.

4 Data adaptive estimation of the V-optimal
rule: Using performance of rule as criterion

We can generate a family of candidate estimators of the V-optimal rule by
generating a family of candidate estimators of the V-adjusted blip-function
with the estimation methodology of the previous section. In this manner,
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we obtain candidate estimators cij : Myp — D, 5 = 1,...,J defined by
d;(P,)(V) = I(Q;(P,)(V) > 0) based on an estimator Q; of the V-adjusted

blip-function Qo(V'). We can use a parametric family to combine estimators.

For example, one might define Q, = > i a;Q; for a vector of weights a, and

corresponding d, = I (Q; > (). In this manner, we generated a whole family of
candidate estimators {d, : a} of the V-optimal rule dy. It remains to propose
a data adaptive selector of a. In the super-learner of the previous section we

selected o based on the cross-validated estimate of a squared error risk of Q,
as an estimator of QQg. In this section, we consider an alternative criterion
for selection of a: namely, a cross-validated estimate of the data adaptive
parameter Ep, Ep Y5 (PO, ) This cross-validated estimate can be defined as a

n,bn

cross-validated empirical mean of an appropriate loss-function or one can use
a cross-validated TMLE (Zheng and van der Laan (2010, 2012); van der Laan
and Petersen (2012); Diaz and van der Laan (2013)).

4.1 Loss functions

Consider the double robust loss-function

~Loy((0) =T T

indexed by nuisance parameter (Q(A, W) = Ep(Y | A,W),g). We note that

(Y = Q(A,W)) + Qd(V), W),

EPOLQ,g(d>(O) = _EPO}/d if either g = go or Q — Q0~

This proves that this loss function is a valid loss function for the optimal rule
do: - B
dy = arg géig Ep,Lg ,(d) if either g = gy or Q = Q.

The loss-based dissimilarity of this loss-function is given by:
Epy Lo 4(d) — Ep,Lg 4(do) = Ep, Y, — EpYa > 0,

if either g = gy or @ = Qp. This loss-based dissimilarity provides a dissimi-
larity of a candidate rule d with the optimal rule dy, and the cross-validation
selector using this loss function is aiming to minimize this loss-based dissimi-

larity. If d(V') = I(Q(V') > 0), then this loss-based dissimilarity can be written
as:

Ep,(Ya=Ya) = Ep{I(Q(V)>0)—I(Qo(V) > 0)}Qo(V)
= EpI(d(V)# do(V)) | Qo(V) |-
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That is, for each V' with d(V') # do(V) it adds a contribution being equal to
the effect size at that V' given by | Qo(V) |. This risk dissimilarity also shows
that the optimal rule is only uniquely determined on the set {V : Qo(V) # 0}:
i.e., if for a particular V' treatment has no effect, it does not matter how the
rule is defined for the purpose of maximizing EY}.

In particular, we can consider the IPCW-loss function

[(A = d(V))

_Lg(d)(O) = g(A | W)

For this loss-function we have
_EPOLQO (d)(O) = EpYa.

The advantage of the double robust loss function relative to the IPCW-loss
function is that its empirical mean is a double robust efficient estimator of its
risk Ep, Y.

4.2 Loss-based super-learning

For the sake of presentation, let’s consider a randomized controlled trial with-
out missingness so that we can use the loss-function Ly (d). We can now use
loss-based cross-validation to select the optimal choice

Qpn = arg moin Ep, P;,BnLgo (da(PS,Bn))a

where B, € {0,1}" denotes a random split of the sample into a training
sample {i : By(i) = 0} and validation sample {7 : B,(i) = 1}, P}y and
P, . denote the empirical distributions of the training and validation sample,
respectively, and we used the notation Pf = [ f(0)dP(0). Recall d,(P,)(V) =
[(é(Pn)(V) > 0). The final estimator of Qu(V) is now defined as Q, =
éan (P,), which implies a corresponding plug-in estimator d,,(V) = I(Q, (V) >
0) of the V-optimal rule dp.

4.3 Oracle inequality for cross-validation selector

Since the loss-based dissimilarity Ep (Yy, — Ya) is a second order difference,
which, for example, can be bounded by || Q@ — Qo |lee P(] Qo(V) |<|| @ — Qo ||
), we apply the oracle inequality for so called quadratic loss-functions (see
(van der Laan and Dudoit, 2003; van der Vaart et al., 2006; van der Laan
et al., 2006)), so that the remainder term will be O(1/n) instead of O(1/y/n).
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However, this relies on a fundamental property of the loss-function, namely
that the variance of the dy-centered loss L, (d) — Ly, (dy) can be bounded by
its expectation. The following lemma provides the resulting result.

Lemma 1 Suppose a = infy | Qo(V) |> 0 where the infimum is taken over a
support of V., and ming go(A | W) > b > 0 a.e. for some b > 0. Consider the
discretized cross-validations selector in which we minimize over a set of K(n)
possible a-values, and we will still denote it with «,. In that case, we have the
following oracle inequality for the cross-validation selector «,, defined above:
for each § > 0,

(o)} < .
PO ) — Lyy(do)} + C(6) 85,

EOEBnPO{Lgo (dan (PS,Bn)) L
( o

(1 + (5>E0 IIEH EBnPO{Lgo< an

where C(§) < oo is a universal constant depending on 0, a, b, and M = sup, |
Qo(v) |.

Proof: Firstly, by assumption the loss-function is uniformly bounded in the
sense that supyep o | Lg,(d)(O) |< My < oo for some M; < oo. In addition,

we have that
VARPO{LQO (d) - LQO (do)}

31615 EPO{LHO (d) - Lgo (dO)}
which is shown as follows:
Eo{Lgy(d) = Lgy(do)}* = Eo{1(A = d(V)) = I(A = do(V))}* 2wy
Ey | I(A=d(V)) = I(A=d(V)) | i
< CEI(d(V) # do(V))

< CLEJ(d(V) # do(V)) | Qo(V)) |
= CIEO{Ydo S }/d}

< M27

The stated oracle inequality is now an application of the general oracle inequal-
ity for the cross-validation selector presented in (van der Laan and Dudoit,
2003; van der Vaart et al., 2006; van der Laan et al., 2006). O

This lemma relies on the strong assumption that Qo(V) is bounded away
from zero, since only under that assumption we can bound the variance of
the dy-centered loss by its expectation. Consider now the case that we do
not want to assume Qq(V) is bounded away from zero. We can obtain the
following bound:

Bo{Lyy(d) = Loy (do)}* < 4 [ Bo ,QO TGV Bl (@ = L)} (@)
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Suppose we now only assume that Eom < o00. Consider the proof of
the oracle inequality for quadratic loss-functions in van der Laan and Dudoit
(2003) or any of the other references (see page 20 of technical report 126,
www.bepress.com/ucbbiostat). It relies on dealing with bounding a remainder
term Ry ,, whose tail-probability can be bounded with Bernsteins-inequality

by:

— 6H,)?
P(Ry, > s | PT?BW,BTL) < exp (2 np (s + 0Hy) ) ’

(140)% 02 4+ My (s + 0 Hy)

where Hy, = Po{ Ly, (do, (P2 5, ))— Ly, (do) } and o7 is the variance of { Ly, (da, (P2 5. )~
Ly (do)}. In the proof in the above referenced articles, we could bound o} by
H, and thereby establish that the tail-probability is exp(—Cns), and thereby
that the remainder maxy, Ry, has an expectation that is O((log K(n))/n). In

this case, (2) shows that we can only bound o3 by the square-root of Hy. This
yields a tail-probability bound for P(Ry, > s | P, g,, Bn) of the form:

( n(s+ Hy)? )
exp | ———= - .
VH + (s + Hy)

From this we learn that if H,/n*? — 0, then Ry, = Op(H>* /n'/?), and if
H,./n?*/* — oo, then Ry, = Op(1/n). As a consequence, we can show that for
single split cross-validation, we obtain an oracle inequality of the same form as
above, but with the remainder term O(log K /n) in the case that H = min, H},
converges to zero slower than n~%3, while the remainder is Op(H%2®/n%?) if
H converges to zero faster than n=2/3. So in the latter case the remainder
is larger than the leading term in the oracle inequality. This allows us to
draw some conclusions regarding the behavior of the cross-validation selector
when Eyg(1/ | Qo | (V)) < oo. Based on the above, we claim that if the
loss-based dissimilarity of the oracle selected estimator converges at a slower
rate than n=2/3, then we have an oracle inequality as above, and thereby the
conclusion that the cross-validation selector is asymptotically equivalent with
the oracle selector. On the other hand, if the loss-based dissimilarity of the
oracle selected estimator converges at a faster rate than n=2/3, then the loss-
based dissimilarity of the cross-validation selected estimator might converge
to zero at a slower rate than n=2/3,

If these theoretical considerations have a practical analogue, then this sug-
gests that in the case that Qy(V) is not uniformly bounded away from zero,
this cross-validation selector might be inferior to the cross-validation selector
targeting Qo itself as presented in the previous section, if we expect rates of
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convergence for estimation of Qy faster than n='/3 (e.g., dimension of V is low),
while this cross-validation selector is asymptotically optimal otherwise (by be-
ing equivalent with the oracle selector). Future simulation studies will have to
shed more light on the comparison of these two cross-validation selectors.

4.4 CV-TMLE of risk and corresponding super-learner

Above we used the cross-validated empirical mean Ep, P, 5 Ly, (da(P) 5, )) as
an estimator of the data adaptive parameter EBREPO}/ZJDC( PO ) and thereby
as criterion for selecting . Instead, we can use the cross-validated TMLE of
this data-adaptive target parameter, which will be presented in the third part
of this paper. Since the cross-validated TMLE is a substitution estimator of
this data adaptive parameter and thereby also respects global constraints in
the statistical model, this can result in meaningful finite sample improvements

relative to using the DR-IPCW or IPCW loss function.

5 The efficient influence curve of the mean
outcome under the V-optimal rule: single
time-point treatment

The following theorem shows that ¥ : M — R with W(F,)) = Ep,Yy, is path-
wise differentiable with a specified canonical gradient, also called the efficient
influence curve (Bickel et al., 1997; van der Vaart, 1998; van der Laan and
Robins, 2003).

Theorem 2 Assume Py (0 < min(go(1,1 | W), g0(0,1 | W))) =1, Fy(| Y |<
M) =1 for some M < co. The parameter ¥ : M — R is pathwise differen-
tiable with canonical gradient D*(Qo, go) given by

D*(Qo,90) = D*(do, Qo; 9o)

A=), : .
= TalA|W) (Y = Qo(A,W)) + Qo(do(V), W) — ¥(Qo).

That is, D*(Qo, go) equals the efficient influence curve D*(d, Qo, o) for the
parameter V,(P) = EpYy = EpQ(P)(d(V), W) treating d as given, at d = dy:
D*(Q()? gO) = D*(d0> Q0> gO)

We will also denote this efficient influence curve D*(Qy, go) with D*(do, Qo, Qw.0, 90)
to stress its dependence on each of these components of Fy. The above the-
orem represents a surprising result at first sight. In general, if our statistical
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target parameter is EYj,, for some rule diy that depends on Fp, then the
dependence of the statistical parameter on the unknown rule, assuming d;q
is a smooth function of Fy, will generate another component to the efficient
influence curve beyond the efficient influence curve that treats dyo as known.
However, for our very special choice of optimal rule dy, due to the representa-
tion (1), as shown in our proof below, the contribution of the dependence of
the rule dy = I(Qo(V) > 0) on Py to the derivative of our target parameter
along paths through F, equals zero, so that the pathwise derivative is identical
to what it would have been if one treats the rule dy as known.

Proof of Theorem 2: Consider the mapping ¥(Q) = Eg,, [(Q(V) > 0)Q(V),
ignoring the term Eg,, Q(0,1,W) in the definition of EYj,, since that one
does not depend on the V-optimal rule dy. The pathwise derivative of ¥(Q)
is defined as LW(Q(e ))‘6: along paths {P(e) : ¢} C M. The derivative
w.r.t. € equals the sum of the three contributions % LEQuwel(Q(V) > 0)Q(V),
LB 1(Q(V) > 0)Qc(V) and L Eq,, 1(Q.(V) > )Q(V) where all derivatives
are at € = 0. The sum of the first two terms equals the pathwise derivative that
treats the rule dy as known. The latter pathwise derivative has a canonical gra-
dient given by the expression D*(dg, Qo, go) —Dpy 0.1 (PRy), where D*(dy, Qo, go)
is presented in the theorem and DEY“)J)(PO) is the efficient influence curve of
Eg,,Q(0,1,W). Thus, it remains to show that the third derivative equals zero.
Consider a path Qy (Y | A W) = (1 +eSy(Y | AW))Qy(Y | A, W) with
E(Sy | A,W) =0, S is uniformly bounded, and Qw,. = (1 + eSw(W))Qw
with ESy (W) = 0 and Sy uniformly bounded. Then
Qe(L, L, W)= [LY(1+eSy(Y|A=(1,1),W)dQy(Y | A= (1,1),W)
=FEY |A=(11), W)+ eE(YSy(Y | A Wyl A=(1,1),W),

and similarly for A = (0, 1). Under the assumption that there exists an M < oo
so that P(] Y |< M) = 1, it follows that the supremum norm Q.(W) — Q(W)
is bounded by C(M)e for some C(M) < oo, where Q(W) = Q(1,1,W) —
Q(0,1,W). Similarly, we can show that Eg,, (Q(W) | V) — Eq, (Q(W) | V)
is bounded by Ce for some C = C(M) < oo, uniformly in choices @ that are

uniformly bounded. As a consequence, it follows that the supremum norm of
Q(V)—Q(V) is bounded by a C'(M )e for some C'(M) < co. We now proceed

as follows: B B
| EI(Q(V) > 0)Q(V) — EI(Q(V) > 0)Q |
=| E{I(Qc(V) > 0) = I(Q(V) > 0)}Q(V) |
<EI|QV)|<Cle])[Q(V)],

since, if Q(V) > C | € [> 0, then Q.(V') > 0 and thus the difference between
the two indicators equals zero, and similarly, if Q(V) < —C | € |< 0, then
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also Q.(V') < 0 and thus the difference between the two indicators equals zero
again. Now, note that the last term is bounded as follows:

EI|QV) [<Cle)|QV) = EI(|Q(V) < C e[ QV)[>0)[Q(V)]
<SCle|EI(|QV) [<Clel, | QV)|>0).

Since for any random variable X we have P(0 <| X |[<¢€) — 0 as e — 0, it
follows that the last expression converges to zero as ¢ — 0. Thus, we have
shown

lim G{E[(Qe( ) >0)Q(V) — EI(Q(V) > 0)Q(V)} = 0.
O
We have the following property of the efficient influence curve, which will
provide a fundamental ingredient in the analysis of the TMLE presented in

the next section.

Theorem 3 For any Q with Qw = Qw,o and any g, we have

D*(Q,9) = ¥(Qo) — ¥(Q) + R(Q, Qo g, 90), (3)
where
R(Q,Q0,9,9) = FEp,(Q— Qo)(dg(V), W) (90 (g)(( )(’ IZI/’)W)

+Ep, {da(V) — dg,(V)} Qo(V)
= Rl (Q7 QOa g, gO) + R2(Q7 Q0)7

and do(V) = (IQ(V) > 0),1), but dg(V) — dg,(V) = I@Q(V) > 0) -
I{(Qo(V) > 0).
If g(do(V) | W) > & > 0 for some 6 > 0, then the first term Ri() in R()

can be bounded as follows:

2

S\ Br {QUia(V), W) — Qulda(V), W)}
V Erdo(da(V) | W) = g(da(V) | W)}2.

The second term Ry in R() can be bounded as

Ry = EPO {dQEV) on(Y)}?U(V) ~
< B (| Qo(V) <1 Q= Qo | (V)Qo(V > )
< BrI(| Qo(V) 1</ Q~ Qo | (V)| Q- Q| (V)
< \BR(Q— Qo ERT | (@o(V) 1<IQ Qo | (V)),
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or, by bounding by the supremum norm instead of L?-norm in the last-inequality,
as

Ry(Q,Q0) < [|Q—Qo) |l ErI(| Qo(V) <] Q—Qo | (V)).

Note that this theorem proves that R(Q, Qo, g, go) is a second order term.

Proof of Theorem 3: Recall that D*(Q,g) equals the efficient influence
curve for the fixed rule do(V) = (I(Q(V) > 0),1) at Q,g. For a fixed rule
d = dg(V), the expansion of PyD*(d,Q,g) for the efficient influence curve
D*(d,Q,g) of EY, is easily derived (see e.g., van der Laan (2012)), which

yields: (recall Qw = Qw)

RD*(Q,g) = Ep,Qo(0,1, W)+ EpI(Q(V) > 0)Qo(V)
_EP0Q<07 L, W) Ep I ( (V) )Q(V)

+Ep {Q(d(V), W) = Qo(do(V), W)} o(de ‘;)(gg()vf\%(v)lm
= Ep,Qo(0, 1, W) + Ep I(Qo(V) > 0)0o(V)

(
—Ep,Q(0,1,W) — Ep I (Q(
+EP0{Q<CZ_Q(V)’W) ( Q@
+Ep, {1(Q)(V) > 0) = I(Qo(V) > 0)} Qo(V

The bounds are obtained as stated in the theorem, using Cauchy-Schwarz
inequality. This completes the proof of the theorem. O

Note that, in a randomized controlled trial without missingness, in which
case one applies this result at g = go, we have R(Q, Qo, 9, g90) = R2(Q, Qo).

) > 00V (do (V)W) —gd (V)W)
go Q glagQ
(V), W)} g(dQ(V)\W)

6 Targeted minimum loss-based estimation of
the mean outcome under V-optimal rule:
single time-point treatment

Our proposed estimator is to first estimate the optimal rule dy, giving us an
estimated rule d, (V) = (I(Q,(V) > 0),1), and subsequently apply the TMLE
of EY; for a fixed rule d at d = d,,. This TMLE of the additive causal effect of
a single time point intervention has been previously developed: (Scharfstein
et al., 1999; van der Laan and Rubin, 2006; van der Laan and Rose, 2012).
Since the efficient influence curve satisfies a double robustness property, the
TMLE and the DR-IPCW estimator (defined as a solution of the efficient
influence curve based estimating equation) are double robust (Robins and
Rotnitzky, 1992; van der Laan and Robins, 2003).
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In a previous section we described a data adaptive estimator d,, of dy. We
now describe the TMLE for Wy(Py) = Ep,Yy = Ep,Qo(d(W), W) at a fixed
rule d, and our proposed TMLE is this TMLE applied to d = d,,. This TMLE
for a fixed dynamic treatment rule has been presented in the literature, but
for the sake of being self-contained it will be shortly described here. Firstly,
without loss of generality we can assume that Y € [0,1]. Let Q° be an initial
estimator of Qo(A, W) = Ep,(Y | A,W), and let g, be an estimator of go.
Since we only need to estimate Q3(W) = Qu(d(V'), W), this initial estimator
Q° could be based on the loss function

—L(Q) = I(A=d(V)) {Y log Q(A, W) + (1 — Y)log(1 — Q(A, W))},

so that it only measures the performance of Q° in estimating the function
Q3. Note that this is indeed a valid loss function for Qf = Qo(d(V'), W) since

Q¢ = argmings Ep,L(Q). In a randomized controlled trial, we can set g, = go.
Consider the submodel

LogitQ° (¢) = LogitQ° + ¢H (g,),
where H (g, ) (A, W) =1(Ay = 1,4, =d(V))/ga(A | W). Let ¢, = argmin, P, L(Q°(¢)),
which can be obtained with univariate logistic regression of Y on H (gn) using
Logit@Q? as off-set, and only using the observations with A; = d(W;). This

defines now an update Q* = Q%(¢,). The TMLE of Ep, Yy is defined as the
resulting plug-in estimator

Wa(Quns @) = D7 QuAVE), W)
i=1

Thus, our TMLE of ¥(Qo) = ¥4, (Qwo, Qo) is given by

Uy = Va,(Qwn, Q1) = Equ,, Qn(dn(W), W)).

This TMLE (d,,, Qw.., Q?) solves the efficient influence curve estimating
equation: )
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7 Asymptotic efficiency and linearity of the
TMLE of the mean counterfactual outcome
under V-optimal rule: single time-point treat-
ment

We now wish to analyze the TMLE ¢ = U(d,,, Qw.n, Q) of g = ¥(dy, Qwo, Qo) =
U(Qo). By Theorem 3, we have

_POD*(dny Qrm QW,m gn) - ¢0 - \P(dm QW,na QZ) + R(Qm Q07 9n, gO)-

Combining this with P, D*(d,, Q¥, Qwn, gn) = 0 yields

’l/}:; - 1/}0 = (Pn - P())D*(dru Qj” QW,nagn> + R(Qn; QO?gnugO)-

This provides a basis for proving the desired asymptotic efficiency of the
TMLE. That is, if D} = D*(d,,Q%, Qwn,gn) falls in a Py-Donsker class
with probability tending to 1 (van der Vaart and Wellner (1996)), Py{D; —
D*(Qo, o) }? converges to zero in probability, and R(Q,, Qo, gn, go) = op(n=1/%),
then it follows that

Yy — o = (P, — Po)D*(Qo, go) + op(1/v/n).

Thus, under these conditions, we have shown that the TMLE is asymptot-
ically linear with influence curve the efficiency influence curve D*(Q, go) =
D*(dy, Qo, go), thereby establishing that the TMLE is asymptotically efficient.

In our theorem below we generalize this result by allowing that Q7 (A, W)
is misspecified, even though the rule d,, and g, are assumed to be consistent
for dy and gp.

Theorem 4 Assume Y € [0,1], Fy(0 < min(go(1,1 | W), g0(0,1 | W))) =1,
D: = D*(d,, Q% QW,n,ign) falls in a Py-Donsker class with probability tending
to 1, Py{ D} — D*(dy, Q, Qwo, go)}* converges to zero in probability, and

Ry(Qn, Qo) = Ep, {1(Qn(V) > 0) — I(Qo(V)) > 0)} Qo(V) = op(1/v/n).
We refer to Theorem 3 for a second order representation of Ro(Qy, Qo). Then,
b = by = (P — Po)D*(do, Q, Qwo, 90) + R1(Qn, Qo, gn 90) + 0p(n~'/?).

If gn = go (i-e., RCT), then Ry(Qn, Qo, gn; go) = 0, s0 that ¢;; is asymptotically
linear with influence curve D*(do, Q, Qw.o, 9o)-
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For general g,, we also assume that

Ern{Qdo(V'), W) = Qo(do(V), W)}
= (P, — PO)DQ(P0> + 0P<1/\/ﬁ)7

for some function D,(Py)(O) € L3(Fy), and (using notation QW) = Q(d(V), W),
g' W) =g(d(V) | W), | £ I= vV FPof?)

1(Q — Qo)™ — (Q— Qo)™ ||| g — g |= op(1/y/n)
| & — gi™ ||*= op(1/y/n)

I (g0 — 90)® [lll g — g¢° II= op(1//n)

| (gn — 90)™ — (gn — g0)® ||= 0p(1/4/n)

| (@Qn — Q) Il (90 — 90)™ [|= 0p(1/y/n).

Then,

Vi — o = (P, — Po){D*(do, Q, Qwo, 90) + Dy(Po)} + 0p(1/v/n),  (4)

so that ¥ is asymptotically linear with influence curve D*(dy, Q, Qwpo, 90) +
Dg(PO)-

If g, is an MLE of gy according to a correctly specified model G for go with
tangent space T,(Py) at Py, then it follows that

Dy(Py) = —II(D*(dy, Q, Qwo, 90) | Ty(Fy)),

where 1(- | T,(Fy)) denotes the projection operator onto T,(Py) C L2(Fy) in
the Hilbert space L:(F).

Proof of Theorem 4: The first part of the Theorem has already been proven
above. We have

Ry(@n, Qos ns 90) = Br{Qu(dn(V), W) = Qo(dn(V), W) } 2ttt gt (OI)

o N gn
= Ep{Qu(da(V), W) = Q(dn(V), W) 2T en (L)

+EP0{Q(dn(V)> W) — Qo(dn(v), W)}gn(dn(V)\W)—go(dn(V)\W)

. - (@ f$§%gK)‘V¥J (V)W)
= Ep{Qn(da(V), W) — Q(dn(V), W)} £5 gn<dn<vggo'WT3

+Er{Q(do(V), W) = Qo(do(V), W)} el aulb@IT) 4 Ry,

where we will denote the first term on right-hand side with Ry, ,. Note that
Ryp,, can be decomposed in a sum of terms where, by using Cauchy-Schwarz
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inequality, these terms can be bounded by

1(Q — Qo)™ — (Q — Qo)™ |I[| g2 — gg~ ||
I g2 — ggm |

1 (g — 90)™ [IIl g™ — 96° |

| (90— 90)™ — (g0 — g0)™ || -

The first term Ry,, can be bounded by

1(@n = Q)" Il (90 — g0)™ II -

This completes the proof of (8). The last statement is a corollary of Theorem
2.3 in van der Laan and Robins (2003). O

7.1 Asymptotic linearity of TMLE in RCT:

Suppose the data is generated by a randomized controlled trial without miss-
ingness so that gg is known. In addition, assume that we have a univariate score
V' available, and we want to use the data of the RCT to learn the V-optimal
rule dy and provide statistical inference for Ep,Yy,. Since V' is 1-dimensional,
using kernel smoothers or sieve-based estimation to generate a library of can-
didate estimators for the super-learner based on loss function (e.g.) Lg,(Q)
will generate an estimator Q,, of Qo(V') that converges at a rate n~%/° under
a minor smoothness assumption on @, and higher rates of convergence would
be obtained under additional smoothness assumptions. As a consequence, in
this case Ry(Qn, Qo) = Op(n~*/°) or better. As a consequence, all conditions
of Theorem 4 hold, and it follows that the proposed TMLE is asymptotically
linear with influence curve D*(dy, Q, Qw.o, go), where Q(A, W) is the possibly
misspecified limit of Q*(A, W) in the TMLE. To conclude, randomized con-
trolled trials allow us to learn V-optimal rules at adaptive optimal rates of
convergence, and also allow valid asymptotic statistical inference for Ep, Yy,
for univariate V', and, for multivariate V' under additional smoothness assump-
tions on Qo(V).

7.2 Statistical inference

Suppose one is concerned with statistical inference for the target parameter
V1o = EpYs, — Ep Yo, where Y| is the counterfactual corresponding with
static intervention A = (0,1). Above we developed the TMLE for Ep,Yy,, and
we could use a separate TMLE for EYj, or we could use a TMLE of Qg (A, W)
targeting directly Ep,{Yy, — Yo} by using the clever covariate H(g,) = I(As =
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D{I(A1 = d(V)) — I(A1 = 0)}/gn(A | W). This results in a TMLE «7, of
Y1 0. By (a trivial generalization of) Theorem 4, if g, = go, then this TMLE
of Ep,Ys, — Ep,Y) is asymptotically linear with influence curve

IC(Py) = {D*(do, Q. Qwy, 90) — Dy, (Fo),

where Dpy, (Fy) = I(Ay = 1)I(A; =0)/go(A | W)(Y—=Q(A, W))+Q(0,1, W)—
Ep Y. In addition, if g,, is an MLE of gy according to a model, then the above
influence curve IC(Fp) is a conservative influence curve. Let IC, be an es-
timator of this influence curve IC(F,) obtained by plugging in the available
estimates of its unknown components. The asymptotic variance of the TMLE
Ui, of Y1 g = Ep, Yy, — Ep Yo can now be estimated with

1 n
2———2 I1C?*(0,).
Tn ne3 Cal0)

An asymptotic 0.95-confidence interval for v, ¢ is given by ¢}, £ 1.960,/y/n.
In particular, we can test a null-hypothesis Hy : 11 o = 0 to determine if there
is statistically significant evidence that an optimal treatment rule outperforms
the current standard treatment A = 0.

8 Formulation of optimal dynamic treatment
estimation problem: two time point treat-
ment

For the sake of presentation, we first consider the case of a two time-point
treatment. In the Appendix we present the general K time-point case. Sup-
pose we observe n i.i.d. copies Oy,...,0, of O = (L(0), A(0), L(1), A(1),Y =
L(2)) ~ By, where A(j) = (A1(j), A2(j)), Ai(j) is a binary treatment and
Ay(j) is a missing or right-censoring indicator at "time” j, j = 0,1. For a
time-dependent process X (), we will use the notation X (t) = (X(s) : s < t).
Let M be a statistical model that makes no assumptions on the marginal
distribution Qo z(oy of L(0), and the conditional distributions Qo ;) of L(j),
given A(j —1),L(j — 1), j = 0,1, but might make assumptions on the condi-
tional distributions go a¢;) of A(j), given A(j —1), L(j), j = 0,1. We will refer
to go as the intervention mechanism, which can be factorized in a treatment
mechanism gg; and censoring mechanism ggo as follows:

90(0) = HgO,l(Al(j) | A(j - 1)7E(j))90,2(142(j) | Al(])a/‘_l(j - 1)7L(j))~

27

Hosted by The Berkeley Electronic Press



In particular, the data might have been generated by a sequential multiple
assignment randomized trial (SMART) in which case go; is known.

Let (A(0), V(1)) be a function of (L(0), A(0), L(1)), and let V'(0) be a func-
tion of L(0). Let V =V = (V(0),V(1)). Consider dynamic treatment rules
V(0) = daoy(V(0)) € {0,1} x {1} and (4(0), V(1)) — da(A(0), V(1)) €
{0,1} x {1} for assigning treatment A(0) and A(1), respectively, where the
rule for A(0) is only a function of V(0), and the rule for A(1) is only a func-
tion of (A(0),V(1)). Note that these rules are restricted to set the censoring
indicators As(j) =1, j = 0,1. Let D be the set of all such rules. We assume
that V(0) is a function of V(1) (i.e., observing V(1) includes observing V'(0)),
but in the theorem below we indicate an alternative assumption. For any rule
d e D, let

V4(P) = Ep,Ya,
where Yy is a random variable with probability density

Pd(L<0)7A(0)7L<1)7A(1)7Y) _ _

=1(A=d(V))Qr0)(L(0))Qr)(L(1) [ L(0), A(0))Qy (Y | L(1), A(1)),
with respect to some dominating measure p. This probability distribution P
is the G-computation formula (Robins (1987b,b, 1997, 1999); Gill and Robins
(2001); Yu and van der Laan (2003)) for the counterfactual O, representing
the probability distribution O would have had, if contrary to the fact, A would

have been assigned according to the dynamic intervention d = (da(), da())-
Thus,

Ep,Ys = / yPa(y)du(y),

where

Py(y) = Fy(1(0), da) (v(0)), (1), day (v(1)), )
1(0),1(1)
is the marginal density of Y, under the joint distribution P;. We are concerned
with estimation of the V-optimal rule defined as

d():ar mapr Yd.
& MaX LiPo.a

We are also concerned with statistical inference for the statistical target pa-
rameter ¥ : M — R defined by

\D(PO) = EPo,dOYdo = Vg, (P(J)

This defines the statistical estimation problem addressed in the current (sec-
ond) part of this article.
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If we assume a structural equation model stating that

L) = fro)(ULo))

A(0) = fa(L(0), Ua())

L(1) = fra)(L(0), A(0), Urqwy)

A1) = fauy(L(1), A0), Uaqry)
Y o= fr(L(1), A1), Uy),

we can define counterfactuals Y, defined by the modified system in which
the equations for A(0), A(1) are replaced by A(0) = da)(V(0)) and A(1) =
daay(A(0),V(1)). One can now define the causally optimal rule as dj =
arg maxgep Ep, Yy If we assume a sequential randomization assumption stat-
ing that A(0) is independent of Uy, Uy, given L(0), and A(1) is independent
of Uy, given L(1), A(0), then we have that EyY; = Ep, Yy for all rules d, and
thereby that the statistical rule dy equals this causally optimal rule dj, and
thus that EyYy: = W(F). Similarly, we have such an identifiability result/G-
computation formula under the Neyman-Rubin causal model (Robins (1987a)).
In the remainder of the article, if for a static or dynamic intervention d,
we use notation Ly (or Yy, Oy) we mean the random variable with probability
distribution Py, so that all our quantities are statistical parameters. For exam-
ple, the quantity Ep,(Ya0)a1) | Va)(1)) defined in the next theorem denotes
the conditional expectation of Y,(g)aa1), given V4y(1), under the probability
distribution Py 4(0)e(1y (i-e., G-computation formula presented above for the
static intervention (a(0),a(1))). In addition, if we write down these parame-
ters, we will automatically assume the positivity assumption required for the
G-computation formula to be well defined. For that it will suffice to assume

By <0 < 52%[1)%} 9o,4(0) (9, UL(O))) =1
Fy (0 < 52{1(1)%} 90,41 (0,1 | L(D’A(O))) =L (5)

The next theorem presents an explicit form of the V-optimal individualized
treatment rule dy as a function of Fp.

Theorem 5 We assumed V(0) is a function of V(1). The V-optimal rule dy
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can be represented as the following explicit parameter of Py:

QQO(CL(O)»U(U) =
Ep,(Ya(0),40)=(1,1) | Va) (1) = v(1)) = Epr,(Ya©),4)=01) | Va)(1) = v(1))
dO,A(l)(A(O)av(l)) = (1(Q20(A(0),V(1)) > 0),1)
QlO( 0)) = EPO(YA() (1,1),do, A1) | V(0)) — Ep,(Ya A(0)=(0,1),do, A1) | V(0))
do,a)(V(0)) = (I(Qu(V(0)) > 0), 1),

where a(0) € {0,1}x{1}. IfV(1) does not include V(0), but, for all (a(0),a(1)) €
{{0, 1} x {1}}%,

E(Ya().a0) | V(0), Va) (1) = E(Ya),a01) | Va)(1)), (6)
then the above expression for the V -optimal rule dy is still true.

Proof: Let V; = (V(0),V4(1)). For a rule in D, we have

EpY;=Ep,Ep,(Ys| Va)
= Bv, (E(Ya@).a(1) | Va)I(a(1) = daay(a(0), Vo) (1)))) 1(a(0

) =

For each value of a(0), V,0) = (V(0), Vy)(1)) and dA(O)( (0)), the inner
conditional expectation is maximized over dag)(a(0), Vy)(1)) by doaq) as
presented in the theorem, where we used that V(1) 1ncludes V(O) This proves
that dy a1 is indeed the optimal rule for assignment of A(1). Suppose now
that V(1) does not include V'(0), but the stated assumption holds. Then the
optimal rule dy (1) that is restricted to be a function of (V/(0),V (1), A(0)) is
given by I(Q0(A(0),V(0),V (1)) > 0), where

Q20<a(0)7 U(O)u U(l)) =
Epy(Ya0),41=(1,1) = Ya(0),a0)=(0,1) | Va(o)(1) = v(1),V(0) = v(0)).

However, by assumption, the latter function only depends on (a(0),v(0),v(1))
through (a(0),v(1)), and equals Q2(a(0),v(1)). Thus, we now still have that
do,a)(V) = (I(Q20(A(0), V(1)) > 0),1), and, in fact, it is now also an optimal
rule among the larger class of rules that are allowed to use V(0) as well.

Given we found dg 41, it remains to determine the rule dy 4(0) that maxi-
mizes

d () (V(0))-

Ey, (EP(Ya(O) do.acry | Va(o) )) I(a(0) = da©)(V(0))
- EV(O)E<Y( )sdo, A1) | V( )) ( (O) = dA(0)<V(O))7
where we used the iterative conditional expectation rule, taking the conditional

expectation of V), given V(0). This last expression is maximized over d 4
by do a0 as presented in the theorem. This completes the proof. O
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9 Data adaptive estimation of the V-optimal
rule: two time-point treatment

We need to construct a data adaptive estimator of Qa0(a(0),v(1)) = Ep,(Ya()11—
Yoot | Va@)(1) = v(1)) and, given a resulting estimator d, a1y of do a(1), we
subsequently need to construct a data adaptive estimator of Q194(v(0)) =
EpO(YHdA(1> — Yo, | V(0) = v(0)) for a given dan) = dna@). For that
purpose we propose to use sequential loss-based super-learning defined by the
application of two subsequent super-learners. Each super-learner relies on the
specification of a hbrary of candidate estimators of ng a specification of loss
functions L; (Qd) for Q%), and cross-validation based on this loss function to
select among weighted combinations of the candidate estimators, 7 = 1, 2: here
Q% = @, does not depend on d. Our loss functions will be indexed by nui-
sance parameters that, in general, need to be estimated, but the loss-function
can be selected to be known in a sequential RC'T in which gy is known. We
first focus on the specification of valid loss-functions that can be used to both
generate candidate estimators and to use the cross-validation in the loss-based
super-learner. In the Appendix we develop sequential super-learning based on
a cross-validated TMLE of the risk-function, while in loss-based super-learning

the risk is estimated with a cross-validated empirical mean (which can be un-
stable, thereby motivating the CV-TMLE of risk).

9.1 Loss-functions

Define

LS1(Q0,QO)(Q2)<O> = h(a(0)7 V(l)) {D1<Q0790)(O> — QQ(A(O), V(l))}2 ,
where

Dy(Qos goa) = I(As(1) = >%<¥ En (Y | (1), A(1)))
| ) =

+Er, (Y | L(1), A(0), A(1) = (L, 1)) — Er, (¥ | L(1), A(0), A(1) = (0, 1)).

We have that Qo9 = arg ming, Poﬂ(o)Lgl(Q’g)(Qg) if either D1(Q, g) = D1(Qo, 9)
or D1(Q,g) = D1(Q, go), so that L¥ is a valid loss function under sampling
from the static-intervention specific G-computation distribution P 4. Our
proposed double robust loss function is obtained by applying the DR-IPCW
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mapping (van der Laan and Dudoit, 2003) to this loss function:

L2,D1(Qo,go)7Qoygo (Q )(O) 0
:Zh<a<o>,v<l IAQ) =alO) e (@2)(0)

90,4(0) (O)
- Z ha (QL_(O)(O)EQ (L o (@2) | A(0). L(0))
+Zh 1)) Eqy (LB, (0n.00(@2) | A0) = a(0), L(0)) ,

where a(0) sums over the two values in € {0,1} x {1}. This loss func-
tion is indexed by nuisance parameters gg, the stated conditional expecta-
tion under @y, given A(0), L(0), and the nuisance parameters required to
evaluate D1(Qo,go). In addition, this loss function is indexed by a weight
function h(), but each such choice defines a valid loss function. We have
Qoo = arg ming, PoLa p,(q,9)0, ,(Q2) if one of the following four scenarios ap-
plies:

L2,01(.9).0.9 = L2,01(Q0.9),Q0.9
L2,D1(Q,g):Q,g = L2,D1(Q,go),Qo,g
L2,01(Q.9),0.9 = L2,01(Q0.9).Q.90
L2,0,1(0.9).0.9 = L2,01(Q.90).Q.90-

Under any of these 4 scenarios we have
Po{L2.5,(0.0).0.0(Q2) — L2.0,(0.6).0.0(Q20)} = D> _ Poh(Q2—Q2)*(a(0), Vioy (1)),
a(0)

demonstrating that Lo D1(Q0.90),Q0.00 (@Q2) 1s indeed a valid double robust loss
function for QQog. A special choice is obtained by setting the nuisance parameter
Qo = 0 so that we obtain a simple IPCW-loss function:

L (@2)(0 %h % (D4 (90)(0) — QalA(0). V(1))?.
where
Du(go)(0) = I(Ay(1) = 1) 2 ~ 1y,

90,A(1)<O)

In this case, the loss-function Ly 4 (Q2)(O) only depends on the single nuisance
parameter go, which would be known in an RCT without missingness. How-
ever, even in an RCT, we would recommend to use a loss-function L, 4, (Q2)
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based on an estimator @),,, so that the empirical mean of the loss-function is a
more efficient estimator of the true risk.
For a given d (1), define

LY 4 b1 (d.00.00) (@D(O) = R(V(0))(D1(d, Qo, 90)(O) — QF(V(0)))?,

where

Dy(d, Qo, go) = 1(A5(0) = 1) 220 (Y — Ep (Y | L(0), A(0)))

90,4(0)(0)
+Ep,(Ya | L(0), A(0) = (1,1)) = Ep,(Ya | L(0), A(0) = (0,1)).
We have Qf, = arg minga Fo.a, ., LfDl (4.Q.9) (Qd) if either Dy (d, @, g) = D1(d, Qo, g)
or Di(d,Q,g,) = Di(d,Q, go), so that LY is a valid double robust loss function
under sampling from the post-intervention distribution F 4 4y corresponding
with the dynamic intervention d,(;). Our proposed loss function is obtained
by applying the DR-IPCW mapping to this loss function:

leD1(d Q0,90),Qo, 90(@ )( ) I(A<1)gOIAEL:EIO)<)V(1))) id@l(d’QO’gO)(Q‘f)
I(A(1) = dagy , e
I (LO’A( )((O)( (1 ))EQO (LY Dy (d.ogo). 0000 (@) | A(L), L(1))

+Eqy (L1a.01(4.00.90).0.00(@1) | A(0), A(1) = daqy(V(1)), L(1))

This loss function satisfies the same double robustness as presented above. In
particular, if we denote this loss function with L; 40,4 (@), then, if either
L17d7Q7g = L17d7Q07g or L17d7ng = leszagﬂ7 we have

Po{L1,4.04(Q1) — L1a.04(Q10)} = Poh(V(0))(QF — Q1)*(V(0)),

demonstrating that L 40,4,(@Q1) is indeed a valid double robust loss func-
tion for Q%, whose loss-based dissimilarity equals a squared error dissimilarity.
Again, a special choice is obtained by setting the nuisance parameter (o = 0
so that we obtain an IPCW-loss function:

_ (A1) = day(V(1)) Hd

Ly,44(Q9)(0) = o (O) h(V(0))(D1(g0)(0) — Q1(V(0)))?,
where
_ _ 2A1(0) -1

We state the double robust property of these loss functions in the following
theorem, even though the actual robustness is even better and stated above
showing that one only needs to correctly specify one of the two nuisance pa-
rameters of D;() and one of the two nuisance parameters of the DR-IPCW
mapping applied to L.
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Theorem 6 If either Q = Qo or g = go (and the positivity assumption at g
and go), then

Po{L204(Q2) — Lagg(Qa)} = Po Y h(Q2 — Q20)*(a(0), Vi) (1))

a(0)
Po{L1,40.4(Q1) = Liasn.@e(@l)} = Poh(V(0))(QF — Q10)*(V(0)),

where a(0) € {0,1} x {1}. As a consequence, we have

QQO = arg r%in POLQ,Q,Q(Q2)
2
Mo = arg win PyL1aq4(Q7)
1
if either g = gy or Q = Q.

Suppose that it is known that Y € [0, 1] so that Qq € (—1,1) and Qf, €
(—1,1). More generally, suppose that it is known that Q, Q{, € (a,b) for
some a < b. We define DI*(Q,g) = % € (0,1), and use the above
loss-functions but with the squared error (D; — Q9)? replaced by the quasi-
log-likelihood loss

L py0)(Q2) = —h { D@, ) 1og Q2 + (1 = DI*(Q, 9)) log(1 — Q2) }

a,b _
Similarly, we define D**(d, Q, g) = % and replace (D; — Q9)? by

L1 4.p,(4,09)(Q1) = —h {D?’b(d, Q.9)log Qf + (1 — DY*(d, Q, g)) log(1 — Q‘f)} :

Let’s denote the resulting loss functions with Ly o, and Ly 4, again. By the
same argument, these loss functions satisfy: if either @ = Qg or g = go, then

FPo{Lag¢(Q2) — Lagge(Q20)} ) .

= = > a0 Fol{Q2010g Q2 + (1 — Q20) log(1 — Q2)}(a(0), V(o) (1))
Po{L1,4,04(Q7) — L1.4.04(Q%)} B B

= —Poh{Q%,(V(0)) log Q{(V(0)) + (1 — Qf,(V(0))) log(1 — QF)}(V(0)),

again, demonstrating that these are valid double robust loss functions whose
loss-based dissimilarity now equals a Kullback-Leibner dissimilarity.
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9.2 Loss-based sequential super-learning

For the sake of presentation, let’s consider a sequentially randomized controlled
trial without missingness. In that case, we can use the loss-functions Ly g, (Q2)
and Ly 4.4,(Q%) for Qa0 and QY,, respectively.

We first need to construct a super-learner of Qay. This requires generating
a library of candidate estimators of Q. The IPCW-loss function Ly g, (Q2)
teaches us that we can apply any least-squares or logistic regression algorithm
to regress Di(g0)(O) on A(0), V(1) using weights h(A(0), V(1))/go,4(0)(O). In

A

this manner, we obtain a library of candidate estimators Qz,j of Qa, j =
1,...,J. ) )

This generates a family of candidate estimators Qo = > i ajC_ng obtained
by taking linear combinations of these estimators using a weight-vector . We
can now use loss-based cross-validation to select the optimal choice

0, = angmin By, Pl g, Lo go(Qan(Fp,)).

It can be decided to restrict a to be a vector of positive numbe:\rs and sum up
till 1. The final super-learner of Qg9 is now defined as Qg, = Q2.4, (P,). This
estimator @, implies an estimator d,, a1)(A4(0), V(1)) = (I(Q2.(A(0), V(1)) >
0), 1) of d07A(1).

Given this estimator ds) = dy 4(1), we now need to construct a super-
learner of Q%,. The loss-function L; 44,(Q%) teaches us that we can estimate
Q4, by applying any regression algorithm to regress D;(go)(O) onto V(0) using
weights I(A(1) = da@)(A(0),V(1))/go,41)(O). In this manner, we obtain a
library of candidate estimators @f’j of Q%,, j = 1,...,J. This generates a

family of candidate estimators Qj{a => i Osz‘fj. We can use loss-based cross-
validation to select the optimal choice

v, = angmin By, Pl Ly a0 (@10(P25,).

The final super-learner of Q, is defined as Qf, = Qi.4,(P,). The above
description of a particular super-learner Q¢, is applied to dj, A1) = dpa)-
The resulting estimator @y, = Qfr implies an estimator d, a)(V(0)) =
(1(@in(V(0)) > 0),1) of do o).

Thus, the above sequential loss-based super-learning approach based on the
two loss-functions for Qy and Q, provides us with a data adaptive estimator
d, of the V-optimal rule dy, fully utilizing the available machine learning
literature.
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The cross-validation selector for Qq satisfies the previously discussed or-
acle inequality and corresponding asymptotic equivalence with the oracle se-
lector under stated conditions (i.e., uniformly bounded loss function and the
size of the library can grow polynomial in sample size). This shows that the
super-learner is optimal in the sense that it asymptotically outperforms any
candidate estimator by simply including it in the library. Of course, this relied
on ¢y being known.

Regarding the cross-validation selector for Qq9, we now have to note that
Qa0 (i-e., dy A(1)) is another nuisance parameter of the loss-function for ),
and, as a consequence, the rate of convergence at which d,, (1) converges to
do, (1) will provide an upper-bound on the rate of convergence of the estimator
(1, as an estimator of Q1g.

As discussed previously, oracle results for the super-learner can still be
obtained when g is estimated, when we use the DR-IPCW loss function using
estimators @), g,, or if we estimate the desired full-data risk with CV-TMLE
as carried out in the Appendix. The advantage of using double robust loss
functions is that the second order terms in the finite sample oracle inequality
are now expressed in terms of product of the approximation errors of the two
nuisance parameters, and the further advantage of the CV-TMLE is that it is
a substitution estimator respecting global bounds thereby enhancing the finite
sample robustness of the risk-estimator.

The performance of the estimators Q¢, and Qa, of Q%, and Qa, respec-
tively, can be assessed with cross-validation, analogue to the use of cross-
validation to assess the performance of a super-learner in the regression con-
text.

9.3 Cross-validation based on performance of rule

As in our point-treatment section, given a collection of candidate estimators
do(P,) of dy, we can also select a with a minimizer of a cross-validated estima-
tor of @ — EBnEpOY;za( PO, ) For example, we could use the cross-validated

empirical mean Ep, Pl 5 Ly (do(P 5 ) of the IPCW-loss Ly, (d) = I(A =
d(V))/g0o(O)Y or the DR-IPCW L, ¢, loss defined as the efficient influence
curve of EY; (minus the EYj-constant so that it has expectation equal to
EYy). Of course, when the nuisance parameters of the loss are unknown,
then they are replaced by estimators based on the training samples: e.g.,
Eg, P, p Ly Pan)(cZa(PS’ 5,)- Alternatively, we can estimate this data adap-

tive target parameter EBnEPoY?ia(POB ) with the CV-TMLE, as we present in
part III of this article (analogue to Zheng and van der Laan (2010, 2012);
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van der Laan and Petersen (2012); Diaz and van der Laan (2013)).

10 The efficient influence curve of the mean
outcome under V-optimal rule: two time-
point treatment

In the next theorem we present a representation of W(F,) = EyYy, that ex-
plicitly shows how W (F,) depends on dy, which will allow us to establish the
pathwise differentiability with known efficient influence curve.

Theorem 7 Recall the definitions of Qs and Q.o in Theorem 5. We can
represent W(Fy) = Ep, Ya, as follows:

U(Py) = EYoi01 + Ev, )1 do,a0) (a(0) = (0,1), Vaoy=(01)) Q20(0, 1, Vao)=(0,1))
+FEy (o dO,A(O)( (0))Q10(V(0)).
Proof: We have

\IJ(P()) = EV(O)E(YE)Ldo,Au

| V(0)) + do,aw)(V(0))Q10(V(0))
= EVa(O):(O E(Yo +do, A1) | Va(o)

©=(0.1)) + Ev(0)do,a0)(V(0))Q10(V(0))
= Ev,0—00 EYor01 | Vao)=(0.1 ))+I(Q20( ( ) = (0,1), Vagoy=(0.1)) > 0)Q20(0, Va0)=(0.1))
+Ev (o do,A ) (V(0 ))Qw( (0)) )
= Ev, . 1)E(Y0101 | Va)=(0,1)) + do,aq)(a(0) = (0, 1), Vaoy=(0,1)) @200, Va0)=(0,1))
+Ev (0)do,a0)(V (0 ))Qm( (0))

= EY0101 + EV =0 d0,41)(a(0) = (0, 1), Va)=0.1))@20(0, Vao)=.1))
+Ev(0)do,a(0)(V(0))Q10(V(0)).

This completes the proof of the theorem. O
The following theorem presents the efficient influence curve of W.

Theorem 8 Assume that Py(| Y |< M) = 1 for some M < oco. The pa-
rameter ¥ : M — R is pathwise differentiable with canonical gradient given

by

D*(Ry) =Y _ Di(Po),
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where

Dy(Py) = Er,(Ya, | L(0), A(0) = do,a0)(V(0))) — Er,Ya,
1(A(0) = do,a)(V(0)))
90,4(0)(O)
x (Ep,(Yay | A(1) = do(V), L(1)) = Ep,(Ya, | L(0), A0) = do ae)(V(0))))

I(AQ1) = do(V))
[T;— 90.4((O)
That is, D*(Py) equals the efficient influence curve D§(d, Py) for the parameter

U, (P) = EpYy treating d as given, at the V-optimal rule d = dy: D*(Py) =
Di(dy, Ry).

Di(Ry) =

D5 (Fo) (V' = Ep,(Ya, | A(1) = do(V), L(1)))

Proof: The expression for W(Fy) presented in the previous theorem, and using
the same proof as applied for the point treatment case demonstrates that the
dependence of ¥(F,) on the rule dy is such that the pathwise derivative of ¥
w.r.t. dy equals zero. As a consequence, the pathwise derivative is identical
to the pathwise derivative of ¥, : M — R with W(P) = EpYj for a fixed d at
d = dy. The latter pathwise derivative has a known efficient influence curve
(Bang and Robins, 2005; van der Laan and Gruber, 2012) and is given by the
expression stated in the theorem. O

We have the following property of the efficient influence curve, which will
provide a fundamental ingredient in the analysis of the TMLE presented in
the next section.

Theorem 9 Let dg be the V-optimal rule corresponding with Q). For any Q, g,
we have

PyD*(Q, g) = 1o — V(Q) + R4, (Q, Qo 9, 90) + R2(Q, Qo)

where
R14(Q, Qo, 9, 90) = PoD*(d, Q, g9) — (Va(Qo) — Va(Q)),

U, (P) = EpYy is the statistical target parameter that treats d as known, and
D*(d, Qo, g0) 1is the efficient influence curve of this parameter Wy at Py. In
addition,

Ry(Q, Qo) = Way, (Qo) — Yy (Qo) )

= Eq,(dg,a0) — do,am))(a(0) = (0,1), Va)=(0,1)) Q20(0,
+Eq,(dg,a0) — do,a0

= Roa)(Q, Qo) + Raa0)(Q, Qo).
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The term Ry can be bounded as

Royqy = Eg, {[(Q2 >0) — [(Qm > O)} QQO(Oa L, Vaoz(o,l))
EQ0](| Q20(07 1, %1) |<| QZ - QQO | (07 1, %1))(220(07 1, %1)

< \/EQO(QQ - Q20)2(07 ]"%1)\/EPOI | (QZO ’<‘ QQ - QQO | (0, 17%1))7

or, by bounding by the supremum norm instead of L?-norm in the last-inequality,
as

Roaqy < [ (Q2—Q20)(0,1,4) [loo EryT | (Q20(0, 1, Vor) [<| Q2 — Qa0 | (0,1, Vo).

Stmilarly, the term Roz) can be bounded as

Roa)y = Eqo {[(?1(‘/(0)) > 0)__ I(Qlo(‘/(())) > 0_)} Qlo(V(O))
< Eg (] Qu(V(0)) [<] Q1 — Qo | (V(0)))Q10(V(0))

< /Eau(@ = Qu(VO)Er T [ (Qu(V(0) <] Qi = Quo | (V(0))),

or, by bounding by the supremum norm instead of L?-norm in the last-inequality,
as

VAN

Roa) < 11 Q1= Quo) lleo ErT | (Quo(V(0)) <] @1 — Qo | (V(0))).

From the study of the statistical target parameter W4, we know that PyD*(d, @, g) =
Uy(Qo) — ¥a(Q) + R14(Q, Qo, g, go), where Ry is a closed form second order
term involving integrals of differences @ — @)y times differences g — go (van der
Laan and Gruber (2012)), and the remainder R;() in the Theorem is just

Rl,dQ (Qa QO; g, gO)
Proof: By definition of R14(Q, Qo, g, g0) we have

P D*(Q,9) = PoD*(dg, Q. 9) = V4, (Qo) — Vi, (Q) + Riay (Q, Qo, 9, 90)
= Wy, (Qo) = Va, (Q) + {¥a,(Qo) — gy (Qo)} + Riay, (Q, Qo, 9, 90)
=1y — V(Q) + R2(Q, Qo) + Ri4,, (Q, Qo, 9, go)-

The bounding of Ry(Q), Qo) proceeds as stated in the theorem. O

11 Targeted minimum loss-based estimation
of the mean outcome under V-optimal rule:
two time-point treatment

Our proposed TMLE is to first estimate the optimal rule dy, giving us an
estimated rule d, (V) = (dn,a0)(V(0)),dn a1y(V (1)), and subsequently apply
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the TMLE of EY, for a fixed rule d at d = d,, as presented in van der Laan
and Gruber (2012).This TMLE is an analogue of the double robust estimating
equation method presented in Bang and Robins (2005): see also Petersen
et al. (2013) for a generalization of the TMLE to marginal structural models
for dynamic treatments.

In a previous section we described a data adaptive estimator d,, of dy. So
it remains to describe the TMLE for W,(FPy) = Ep,Yy at a fixed rule d, and
our proposed TMLE is this TMLE applied to d = d,,.

This TMLE for a fixed dynamic treatment rule has been presented in the
literature, but for the sake of being self-contained it will be shortly described
here. Firstly, without loss of generality we can assume that Y € [0,1]. Let
Q4. be an initial estimator of Ep, (Y | A(1) = d(L(1)),L(1)). Consider the
submodel LogitQ% (€) = LogitQ% + eHs(g,), where

I(AQ1) = d(i(l))
Hl 0 9n,40)(0)

Let €, be the estimator of ¢ obtained by fitting € with univariate logistic
regression of Y on Hs(g,) using LogitQs, as off-set. This defines a targeted
estimator Q% = Q4 (e,).
Regress Q on L(0), A(0) = da(0)(L(0)) which defines an initial estimator
L of Q4 = EPO(Yd | L(0)) = Ep,(Q20 | L(0), A(0) = da)(L(0))). Consider
the submodel LogitQ4, (¢) = Logthln + €H(g,), where

I(A(0) = da)(L(0)))
gn,A(0)<O) ‘

H2(9n) =

Hl(gn) =

Let €, be the estimator of e obtained by fitting ¢ with univariate logistic

regression of Q¢ on H,(g,) using LogitQ? as off-set. This defines a targeted

d*

estimator Q% = Q%,(e,) of Q). Let Qr()n, be the empirical distribution

of L;(0), and let Qd* (QL n>Q1na d:;) The TMLE of ¥y = EpY; =
V4(Qr(0),0, Qo Q%) = EQ, o, leo( (0)) is defined by the plug-in estimator

1~ ~
U =0(Q) = - QL(Li(0))
i=1
Thus, our TMLE of ¥(Qg) = ¥4, (Qw0, Qo) is given by

1/1;2 = lI]dn(QL(O),TL? Q%f? ng ) EQL(O) dn (L(O))

Recall that D*(d,Q¢, g) is the efficient influence curve for the target pa-
rameter £Y; treating d as fixed, and that we showed that D*(dy, ng, go) is
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the efficient influence curve of the target parameter EY,;, where dy is the V-
optimal rule. The TMLE (d,,, Q% = Q%*) described above solves the efficient
influence curve estimating equation:

PnD*(dn, an*a gn) - 0

n

12 Asymptotic efficiency of the TMLE of the
mean outcome under V-optimal rule: two
time-point treatment

We now wish to analyze the TMLE ¢ = W(d,, Q%*) of 1y = ¥(dy, Q) =
U(Qp). By Theorem 9, we have

_POD*(dna Qﬁn*7 gn) = wo - \Il<dn7 Qin*> + R(Qn7 QO; dn, gO)
Combining this with B, D*(d,, Q%*, g,) = 0 yields

w:; - wo = (PTL - PO)D*(dnu an*agn> + R(Qnu QOJg’ﬂJgO)'

This provides a basis for proving the desired asymptotic efficiency of the
TMLE. That is, if D} = D*(d,,, Q}, g,) falls in a Fy-Donsker class with proba-
bility tending to 1, Py{ D} — D*(dy, Qo, go) }* converges to zero in probability,
and R(Qn, Qo, gn, go) = op(n~Y/2), then it follows that

Uy, = tho = (P — Po) D" (do, Qo, 9o) + op(1/v/n).

Thus, under these conditions, we have shown that the TMLE is asymptotically
linear with influence curve the efficiency influence curve, thereby establishing
that the TMLE is asymptotically efficient.

In our theorem below we generalize this result by allowing that Q7 is mis-
specified, even though the rule d,, and ¢, are assumed to be consistent for dy
and go.

Theorem 10 AssumeY € [0,1], go(a(0),a(1), L(1)) > 0 for all (a(0),a(1)) €
{{0,1} x {1}}*. D} = D*(d,,Q%, g,) falls in a Py-Donsker class with proba-
bility tending to 1, Po{D} — D*(dy, Q,,go0)}* converges to zero in probability,
Qr) = Qr0)0, and o

R2(Qna QO) = OP(l/\/ﬁ)ﬂ

where Ry() is defined and bounded in Theorem 9. Then,
770:; H wO a (Pn < PO)D*(dO’ Q’ QW,O’ gO) + Rldn(an QOa Gn,s gO) + OP(n_l/Q)’
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where Rig = PoD*(d, Qn, gn) — (Ya(Qo) —Va(Qy)), as defined in Theorem 9. If
Gn = go (i.e., RCT), then Ryg,(Qn, Qo, gn, go) = 0, so that ¥ is asymptotically
linear with influence curve D*(dy, Q, go)-

For general g, we also assume the following second order term condition:

Rldn (Qn7 Q07 9n, gO) - Rldn (Qv QO: Gn, gO) = OP(]'/\/E)

In addition, we assume the following asymptotic linearity condition on a smooth
functional of gy, :

Rldn(Q7 QO’gnaQO) = (Pn - P(])DQ(PO) + OP(l/\/ﬁ)’

for some function D,(Py)(0) € L3(P).
Then,

= tho = (Po — P){D"(do, Q. go) + Dy(Fo)} + op(1/v/n). (7)

If g, is an MLE of gy according to a correctly specified model G for gy with
tangent space T,(F) at Fy, then it follows that

DQ(PO) = _H(D*(d()a Q, 790> ’ Tg(PO))7

where T1(- | T,(Fy)) denotes the projection operator onto T,(Py) C L3(Py) in
the Hilbert space L:(F).

The proof of this theorem is a straightforward consequence of the template
presented before the theorem.

12.1 Asymptotic linearity of TMLE in SMART

Suppose the data is generated by a sequentially randomized controlled trial
and there is no missingness so that gy is known. In addition, assume that
V(0) and V(1) are both univariate scores, and assume condition (12) so that
the optimal rule dy (1) based on (A(0),V(0),V (1)) is the same as the opti-
mal rule dy (1) based on A(0), V(1): e.g., V(1) is the same score as V/(0) but
measured at the next time-point, so that it is reasonable to assume that an
effect of V(0) on Y will be fully blocked by V(1). Suppose we want to use
the data of the RCT to learn the V-optimal rule dy and provide statistical in-
ference for Ep,Yy,. Since both V(0) and V(1) are 1-dimensional, using kernel
smoothers or sieve-based estimation to generate a library of candidate estima-
tors for the sequential loss-based super-learner of the blip-functions (Q19, Q)
described in previous section, we can obtain an estimator Q, = (Qi,, Q2n)
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of Qo = (Q19, Qo) that converges at a rate such as n~?/® under the assump-

tion that )19, Q20 are continuously differentiable with a uniformly bounded
derivative, or at a better rate under additional smoothness assumptions. As
a consequence, in this case Ro(Qn, Qo) = Op(n~*5) at minimal. As a conse-
quence, all conditions of Theorem 10 hold, and it follows that the proposed
TMLE is asymptotically linear with influence curve D*(dy, Q, go), where Q is
the possibly misspecified limit of Q4"* in the TMLE. To conclude, sequentially
randomized controlled trials allow us to learn V-optimal rules at adaptive op-
timal rates of convergence, and allow valid asymptotic statistical inference for
EpYy,. If V(j) is higher dimensional, then one will have to rely on enough
smoothness assumptions on the blip-functions in order to guarantee that our
super-learner Q,, (and thus d,) is still such that Ry(Q,, Qo) = op(1/y/n).

If there is actual missingness or right-censoring, then gy = go1902 factors in
a treatment mechanism ¢y; and censoring mechanism ggo, where gg; is known,
but ggo is typically not known. Having a lot of knowledge about how censoring
depends on the observed past might make it possible to obtain a good estimator
of gpo. In that case, the above conclusions still apply, but one now estimates
the nuisance parameters of the loss-function (e.g., one uses a double robust
loss-function in which goe is replaced by an estimator).

12.2 Statistical inference

Suppose one is concerned with statistical inference for the target parame-
ter Y19 = EpYa, — Ep, Yo, where Yj represents the counterfactual outcome
Y(0,1),(0,1) for the static intervention that sets both treatments equal to 0, and,
as always, sets censoring to "no censoring”. Above we developed the TMLE
for Ep,Yy,, and we could use a separate TMLE for £Y), or by modifying the
TMLE described for Ep,Y,; by using clever covariates that are the difference
of the clever covariates one would use for E'Y; and EY), we can use a TMLE
directly targeting 11 9. This results in a TMLE ¢7 , of ¢ o. By a slight general-
ization of Theorem 4, if ¢g,, = go is known, this TMLE of ¥4 o = Ep, Y4, — Ep, Yo
is asymptotically linear with influence curve

IC(P0> - {D*(donJQO) - D*(d - 07@790)7

where D*(d = 0, Qq, go) is the efficient influence curve of EYj (i.e, d = 0 repre-
sents the static intervention A = ((0,1),(0,1))). If g, is an MLE according to
a model with tangent space T,(F%), then the TMLE is asymptotically linear
with influence curve

1C(Py) = II(IC(Ry) | T,y(Fo)),
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so that one could still use /C(F) as a conservative influence curve. Let IC,
be an estimator of this influence curve IC(F) obtained by plugging in the
available estimates of its unknown components. The asymptotic variance of
the TMLE ¢{ , of 919 can now be (conservatively) estimated with

1 n
2 _ -~ 2 .
o= ;1: 1C2(0;).

An asymptotic 0.95-confidence interval for 1, ¢ is given by ¥y, +1.960,/ V.
In particular, we can test a null-hypothesis Hy : 11 o = 0 to determine if there
is statistically significant evidence that an optimal treatment rule outperforms
the current standard treatment A = 0.

13 Statistical inference for mean outcome un-
der data adaptively determined dynamic
treatment

Let d : Mxp — D be an estimator that maps an empirical distribution into
an individualized treatment rule. Let d, = d(P,) be the estimated rule. Up
till now we have been concerned with statistical inference for Ep Y,,, where
dy is the unknown V-optimal rule while d,, is a best estimator of this rule.
As a consequence, statistical inference for Ep Yy, based on the TMLE relied
on consistency of d, to dy, but also relied on a rate of convergence at which
d, needs to converge to do: i.e., Ro(Qn, Qo) = op(1/y/n). In this section
we present statistical inference for the data adaptive target parameter g, =
Vy,(Po) = EpYals_y, - That is, we construct an estimator ¢ = U*(P,) of
U jp,)(Fo) and a confidence interval 1, £ 1.960,/+/n so that

Po (Witp (Po) € Wip,)(Pa) £ 1.965(P,)/v/n ) = 0.95, as n — oo.

Note that in this definition of the confidence interval the target parameter is
itself also random variable through the data P,.

Statistical inference will be based on the same TMLE of U,(F) at d = d,,,
and our variance estimator will also be the same, but since the target is not
U, (Fy) but Wy, (F), there will be no need for any consistency or rate condition
on d,. As a consequence, this approach is particularly appropriate in cases
where V' is high dimensional so that it is not reasonable to expect that d,
converges to dy at the required rate. In addition, even when statistical inference
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for Ep, Yy, is feasible, one might be interested in statistical inference for the
mean outcome under the actual concretely available rule d,, instead of under
the unknown rule dj.

As previously shown, we have Py D*(dn, Q},, gn) = Yon—1p+Ra, (@}, Qo, gns 9o)
and P,D*(d,,Q%, g,) = 0, which yields

¢7*L - 770071 = (Pn - PO)D*(dna Qq*pgn) + Rdn(ij Q079n790>-

Analogue to Theorem 10 we now have the following theorem.

Theorem 11 Assume Y € [0,1]. Let d(P,) € D with probability tending to
1, and assume the positivity assumption infgep Py(go(A = d(L),L) > 0) = 1.
Let on = Vy,(Po) = EpYals—y, be the data adaptive target parameter of
interest. Consider the TMLE (Q7, g,) of Va,(Qo) treating d,, as fized, and

Uy = Va,(Qy) is the TMLE of vo,. Let R14(Q,Qo, 9, 90) = PBoD*(d,Q, g) —
{Ua(Qo) — ¥a(Q)}, as defined as in Theorem 9.

Assume D} = D*(d,,QF, gn) falls in a Py-Donsker class with probability
tending to 1, Po{ D} — D*(dy, Q, go)}* converges to zero in probability for some

do € D, Qroy = Qr0),0-
Then,

w:l - wo = (Pn - PO)D*(d07 Q7 QW,O)gO) + Rldn(Qna QOagnng) + Op(n_l/Z).

[f 9n = 9o (7;'6'7 RCT); then Rldn(Qna QOagnagO) = 07 so that w; is asymptotz'—
cally linear with influence curve D*(dy, @, go)-

For general g, we also assume that the following second order term con-
dition:

Ria,(Qn, Qos n, 90) — R4, (Q, Qo, gn, o) = op(1/v/n).

In addition, we assume the following asymptotic linearity condition (for a
smooth functional of gy, ):

R4, (@, Qo, 9n; 90) = (P = Fo) Dy(Po) + 0p(1/V/n),

for some function Dy(Py) € LE(Py).
Then,

U — %o = (Pn — Po){D"(do. Q, 90) + Dy(Po)} + op(1/v/n). (8)

If g,, is an MLE of gy according to a correctly specified model G for go with
tangent space T,(Py) at Py, then it follows that

Dy(Fy) = —I(D"(do, Q: , g0) | Ty(F0)),
where I1(- | T,(Fy)) denotes the projection operator onto T,(Py) C Li(Fy) in
the Hilbert space LE(Py).
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14 Statistical Inference for average of sample-
split specific mean counterfactual outcomes
under data adaptively determined dynamic
treatments.

Let D be an index set for a collection of individualized treatment rules, and
for each d € D, we have a statistical target parameters ¥, : M — IR, defined
by V,(P) = EpYy. Let d: Myp — D be an estimator that maps an empirical
distribution into an individualized treatment rule, and thereby a choice of
target parameter. Consider a cross-validation sample split random vector B,, €
{0,1}", and for asplit By, let P 5 be the empirical distribution of the training
sample {i : By (1) = 0} and P} 5 is the empirical distribution of the validation
sample {i : B,(i) = 1}. In this section, we are concerned with presenting
a method that provides an estimator and statistical inference for the data-
adaptive target parameter

2/JOn = EBn\DCZ(pO

n,Bn)

(Fo)-

Let J be the number of possible values of B,,. Thus for each of the J train-
ing samples one applies the estimator d, giving a target parameter value
W P, )(Po), and our target parameter 1, is defined as the average across

these J target parameters. Below we present a cross-validated TMLE ¢ of
this data adaptive target parameter 1y,,. We will be able to establish statistical
inference for this parameter 1)y, , not only without relying on a consistency or
rate condition on the estimated rule as achieved in the previous section, but
also removing the reliance on the empirical process condition (i.e., Donsker
class condition) that was needed in any of the previous theorems. That means
that in a sequentially randomized controlled trial, we obtain valid asymptotic
statistical inference without any conditions, even when d, is a highly data
adaptive estimator of a V-optimal rule for a possibly high dimensional V.

The next subsection defines the general cross-validated TMLE for data
adaptive target parameters. Subsequently, we present an asymptotic linearity
theorem allowing us to construct asymptotic 0.95-confidence intervals. Finally,
we present the cross-validated TMLE for the two time-point treatment case
in detail.
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14.1 Cross-validated TMLE

For each target parameter W,, let D5(F) be its efficient influence curve at
Py. Assume that Wy(Py) = ¥4(Q4) only depends on P, through a parameter
Q4, and assume that D;(Py) = Di(Q¢, gd) depends on Py through Q2 and
a nuisance parameter gd. Define a second order term RY(Q? Q4¢, g%, gd) as
follows:

POD:;(Qda gd) = \de<P0) - ‘Pd(Qd) + Rd(Qda an gda gg)

Let Q¢ ¢¢ be initial estimators of Q¢ and g¢, respectively. Let L4(Q?) be a
valid loss function for Q¢ so that Q¢ = argmings PyL4(Q%), and let {Q%(¢) : €}
be a submodel through @) at ¢ = 0 with a univariate or multivariate parameter
€ so that the linear span of the generalized score includes the efficient influence
curve at (Q4, g9):

>7

e=0

Di(@" ") € (5 1(Q"(¢)

where (f) = {>_,B;f; : B} denotes the linear space spanned by the compo-
nents of f. Let Qd(e) be this submodel through Q% using §%. For the single

time point treatment case, we define

ew = argmin B, Pl LU(Q" (P, )(€))|

~ Y
d=d(P? , )

but for the multiple time-point treatment case, we use the sequential TMLE
algorithm of the TMLE for EYjpo o) but where the €’s are determined based

on the cross-validated empirical risks averaging over the training samples. In
a later subsection, we demonstrate this in detail.

For notational convenience, we use the notation Q(P? ;) = QP 5, (P)g.),
and similarly, we define §(P) 5 ) = gd(P S’Bn)(Pfl{ 5,). For each split B,, we
define the corresponding updates Q* (Pl ,€,) = Q(PYp )(en). The key as-
sumption about €, and a corresponding update Q*(Pg B, €n) is that it solves
the cross-validated empirical mean of the efficient influence curve:

E5,Pls Do (@ (Fls,. ). 6(Fls)) = or(1/vm).  (9)

As shown below, the sequential TMLE updating algorithm for the multiple
time point intervention case indeed satisfies this equation with op(1/y/n) re-
placed by 0.

The proposed estimator of 1, is given by

Ui = Bs Vi, (@ (Poy, ).
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In the current literature we have referred to this estimator as the cross-
validated TMLE (Zheng and van der Laan (2010, 2012); van der Laan and
Petersen (2012); Diaz and van der Laan (2013)). The only twist relative to
the original CV-TMLE is that we change our target on each training sample
into the training sample specific target parameter implied by the fitted rule
on the training sample, while in the original CV-TMLE formulation, the tar-
get would still be Wy (Fy). With this minor twist, the (same) CV-TMLE is
now used to target the average of training sample specific target parameters
averaged across the J training samples. This utilization of CV-TMLE was
already used to estimate the average (across training samples) of the true risk
of an estimator based on a training sample in (van der Laan and Petersen,
2012; Diaz and van der Laan, 2013), so that this represents a generalization
of that application of CV-TMLE to general data adaptive target parameters
as proposed in van der Laan et al. (2013).

14.2 Statistical inference based on the CV-TMLE

Let’s now proceed with the analysis of this CV-TMLE ¥} of 1y,. A key
identity is given by:

EBnPOD*( . (Q(PYp, ). 4(Pp,)) = Ep, Vo, 1(Po) =y
+EBn (Q ( )7Q07g< n,Bn)790)~

This proves

5 ¥on = BB, = PPy, (@ (P c0) 672, )
+0p(1/y/) + i, Rigpn (@ (PL5,), Q. 6(PY,). 00)

Regarding the empirical process term we have the following lemma.

Lemma 2 Assume that the supremum norm of D7, ., )(@ (P g, €n), 9(P5.))
15 bounded by some M < oo with probability tendzng to 1, and that

PO{D:Z(PT?,BH)(QA*(PS,BM €n)s g(ngBn)) — D;O(Qdo, g“lo)}2 — 0 in probability.

Then,
Eg,(P,p, — P )DC*,(PO (Q*<P£,Bna €n), §(PY p.)) = (Pu — Po) Dy (Q™, g%)
+op(1/+/n).
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Thus, under this very mild consistency condition, we have

U — Yo = (P — PO)DZO(QdO,Qd )+ OP(l/\/ﬁ)
+EBnRUz(pgan)(Q (Prg,)s Qo 9(Pr 5,): 90)-

Suppose now that Q% = Q% and g% = g, and

Ep, Rjpo . J(Q (PR g,), Qo §(P),): 90) = op(1/v/n).

Then, it follows that

U = Yon = (Pu = Po) D5 (Q0°, 95°) + op(1/V/n).

In general, we only assume that g% = gf)lo, and

EBnR(i(Pg}BnﬂQA*( B,) Q. 9( an) 9) — Ep, R (Q Qo, §( an) 90)
= op(1/v/n).

In many applications, due to linearity of (Q — Qy) — R4(Q,Qo, 9, go), this
difference is represented by an integral involving the product of a difference
Q*(PS’ ,) — @ and a difference §(P) 5 ) — go. In that case, this assumption
correspond with a second order term being op(1/+/n), where the second order
term might be bounded by an L*-norm of a difference Q*(Pg B,) — @ times an
L?>norm of a difference Q(Pg 5,) — go- In addition, we assume the following
asymptotic linearity condition on g:

Ep, Ripo , (@ Qo, 4( Py g,)s90) = (Po — Fo)Dy(Fo) + op(1/v/n).
Then, we can conclude:

Uy = Yon = (P = P){ D, (Q, 90) + Dy(Fo)} + op(1/v/n).
This proves the following theorem.

Theorem 12 Let D be an index set for a collection of individualized treatment
rules, and for each d € D, we have a statistical target parameters Vg, : M —
R, defined by Wy4(P) = EpYy. Assume infgep Po(go(A = d(L), L) > 0) =
1Let d : Myp — D be an estimator that maps an empirical distribution into
an individualized treatment rule, and thereby a choice of target parameter.
Consider a sample split random vector B,, € {0,1}", and for’ a split B, let
PY . be the empirical distribution of training sample {i : Bn(i) = 0} and
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PS,BH be the empirical distribution of the validation sample {i : B,(i) = 1}.
The data-adaptive target parameter is defined as follows:

Yon = Ep, ipn , (o).

For each target parameter Y, let D}(Py) be its efficient influence curve at
Py. Assume that Wy(Py) = V4(Q4) only depends on Py through a parameter
Q2, and assume that D}(Py) = D3(Q4, gd) depends on Py through Q3 and a
nuisance parameter gi. Define a second order term R%() as follows:

PODZ(Qdmgd) = qjd(PO) - \de(Qd) + Rd(Qda nggdagg)

Let (Q4,0) — LYQ)(O) be a wvalid loss function for Q% so that Q4 =
arg mings PyL4(Q%), and let {Q%(€) : €} be a submodel through Q at € = 0
with a univariate or multivariate parameter € so that the linear span of the
generalized score includes the efficient influence curve:

Di@" g") € (G LAQ"e) )

Let Qd(e) be this submodel through Qd usmg g For notational convenience,
we use the notation Q(PO B,) = QU2.5, )(P? B,), and similarly, we define

J(Pp) = § d an)(PO ). For each split Bn, we define the correspond-

ing updates Q* (P g, €n) = Q(Pan)(en). Let €, be computed so that it
solves/satisfies the following equation:

Ep,P, 5, Dipo , (Q" (P, ), 3(Py,)) = or(1/v/n). (10)
The proposed estimator of Vg, is given by
Un = Ep, Vipo  1(Q"(Papy,cn).

Assume that the supremum norm of Dd(PO )(Q*(PT?B ven), G(P)g)) is
bounded by some M < oo with probability tendzng to 1, and that

PO{DE(POB )(Q*(P:;Bn, en),g(]33]3n))—D§0(Qdo,gdo)}2 — 0 in probability. T hen,

i =t = (P, = R)DG Q. 4™) + 0n(1 /)
+EBchZ(P2’Bn)(Q*( n,Bn ) Q07 ( an) gO)
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In general, we will assume g = go, and

Ep, Ripn . (Q (Pp,.€0). Q0. 9(P5,).90) = Ep, Ripo . 1(Q.Q0,9(F} 5,), 90)
— op(1/v/),

and the following asymptotic linearity condition on §:

Ep, Ripo (@, Q0,4( Py g.),90) = (Pu = Po)Dy(Po) + 0p(1/+/n).
Then,

Un = ton = (Po = PO{D3,(Q, 90) + Dyg(Fo)} + 0p(1//n).

Suppose g is known and §(P,) = go. Consider the estimator

. 2
02 = 5, Py, { Dipn  (Q"(Php, ). 9(Pp)) |
of the asymptotic variance o5 = Py{D} (Q, go)}* of the CV-TMLE ;. An
asymptotic 0.95-confidence interval for 1)y, is given by ¢ + 1.950,,/v/n. This
same variance estimator and confidence interval can be used for the case that
go is not known and §(P,) is an MLE of gy according to some model. In that
case, the theorem tells us that it is an asymptotically conservative confidence
interval.

14.3 CV-TMLE of the mean outcome under data adap-
tive V-optimal rule: two time-point treatment

Let d be the data adaptive estimator of the V-optimal rule dy, as presented
in a previous section. Firstly, without loss of generality we can assume that
Y € [0,1]. Let’s denote the realizations of B, with j = 1,...,J. Let Qap;
be an initial estimator of ngj = Ep,(Y | A(1) = d,;(L(1)), L(1)) based on
the training sample P,?], and similarly let d,,; and g,; represent the estimated
rule and estimated intervention mechanism based on this training sample P,?],

j=1,...,J. Consider the submodel Logitégw €) = Logit@znj + €Hs(gn;),

(
where _
HAQ) = dyy (D))
Hl anjA (O)

HQ(gnj) =
Let
= argmln— Z Lo nj sz( €)),
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where

—Loyj(Q2) = I(A(1) = dnj(L(1))) {Y log Q2(L(1)) + (1 = Y) log(1 — Q2(L(1)) } -

This estimator of € can be obtained by fitting € with univariate logistic regres-
sion of Y on Hs(gy;) using Logit@m as off-set, but where observations Y; in
validation sample are coupled to a corresponding offset Qa,;(L;(1)) and co-
variate Ho(gn;)(L;) based on the corresponding training sample. This defines

a targeted estimator Q2( 05 €an) = Qanj(€an) for each j = 1,...,J. We will
denote this targeted estimator with @3, ;, and note that it only depends on P,
through the training sample P,?j and €g,,.

Regress Qa,; on L(0), A(0) = dyj a0 (L(O)) Which defines an initial estima-
tor Quyy of Q5 = En,(Va,, | L(0) = Er,(Q% | L(0), A(0) = duj.a(L(0))).
Consider the submodel LogitQ1,;(€) = Logthlnj + €H1(gn;), where

I(A(0) = dunj a0 (L(0))).

Hi(gn;) =
1< J) gnj7A(0)(O)
Let
= argmm— Z L1 nj le( )
where
Ll nj(Ql

- I(A(0) = duja00)(V (0)) { Qany 1og Q1 (L(0)) + (1 = Qany) log(1 — Qu(L(0))}

This defines a targeted estimator Ql( iy €ln) = Q1nj(€1n) of Q‘fgj, j=1,...,J.
We will denote this targeted estimator with anj and note that it only depends
on P, through the training sample Py; and ej,,.

Let Qr(o)n; be the empirical distribution of L;(0) for the training sample
P).. This defines an estimator ¢, = Qro)njQin; = PajQin; of Va0 =

Wy, (Py) for each j = 1,...,J. The cross-validated TMLE is now defined as

* 1 J *
¢n = Wj Zj:l ¢nj'
This CV-TMLE solves the cross-validated efficient influence curve equa-

tion:
J
Z n]? gn])7

where Q;; = (Q7,;, Q3 QL(O)M) only depends on P, through P?; and ¢, =
(€1n, €2n). Our general asymptotic linearity Theorem 12 can thus be immedi-
ately applied to this CV-TMLE.

K. |
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Recall that in the second part of the article, we suggested using a CV-
TMLE to estimate the risk Ep, Ep, Yy PO ) for a candidate estimator d, and

to define a cross-validation selector accordingly, resulting in a particular type
of super-learner. Thus the above description of CV-TMLE defines this desired
estimator, and could thus also be used to define this super-learner.

15 Concluding remarks

This article investigated nonparametric estimation of a V-optimal dynamic
treatment, statistical inference for the mean outcome under the V-optimal rule,
and statistical inference for the (data adaptive target parameter defined as the)
mean outcome under a data adaptively determined V-optimal rule (treating
the latter as given). We proposed sequential loss-based super learning with
novel choices of loss-functions to construct such a nonparametric estimator of
the V-optimal rule. When applied in sequentially randomized controlled trials,
at each stage, this method is guaranteed to asymptotically outperform any
competitor (w.r.t. loss-based dissimilarity) by simply including it in the library
of candidate estimators. In this sequential loss-based super-learner the cross-
validation is used to optimize the performance in fitting the V-adjusted blip-
function itself. We also proposed a cross-validation selector (and corresponding
super-learner) that aims to optimize the performance of the fitted rule itself in
maximizing the mean outcome. The latter seems to be more targeted towards
our goal, but theoretical results regarding the cross-validation selector tell a
more complex story, suggesting that only when V is higher dimensional, the
latter can be expected to be superior. We plan to carry out simulation studies
to shed light on this important issue.

We proved a surprising/useful result stating that the mean outcome under
the V-optimal rule is represented by a statistical parameter whose pathwise
derivative is identical to what it would have been if the unknown rule would
be treated as known. As a consequence, the efficient influence curve is imme-
diately known, and any of the efficient estimators for the mean outcome under
a given rule can be applied at the estimated rule. In particular, we demon-
strate a TMLE, and present the asymptotic linearity theorem. However, the
dependence of the statistical target parameter on the unknown rule affects
the second order terms of the TMLE, and, as a consequence, the asymptotic
linearity of the TMLE requires that a second order difference between the es-
timated rule and the V-optimal rule converges to zero at a rate faster than
1/4/n. We show that this can be expected to hold for rules that are only a
function of one continuous score (such as a biomarker), but when V' is higher
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dimensional, only strong smoothness assumptions will guarantee this, so that,
even in an RCT, we cannot be guaranteed valid statistical inference for such
V-optimal rules.

Therefore, we proceeded to pursue statistical inference for so called data
adaptive target parameters. Specifically, we presented statistical inference for
the mean outcome under the dynamic treatment regimen we fitted based on
the data. We now show that statistical inference for this data adaptive target
parameter does not rely on the second order term condition anymore, and
only requires that the data adaptively fitted rule converges to some fixed rule.
However, even in a sequentially randomized controlled trial, the asymptotic
linearity theorem still relies on a Donsker class condition that limits the data
adaptivity of the estimator of the rule. So, even though the assumptions are
much weaker, they can still cause havoc when V' is high dimensional in finite
samples, and possibly, even asymptotically.

Therefore, we proceeded with the average of sample split specific target
parameters, as in general proposed in (van der Laan et al., 2013), where we
show that statistical inference can now avoid the empirical process condition.
Specifically, our data adaptive target parameter is now defined as an average
across J sample splits in training and validation sample of the mean outcome
under the dynamic treatment fitted on the training sample. We present a
cross-validated TMLE of this data adaptive target parameter, and we estab-
lished an asymptotic linearity theorem that does neither require a consistency
or rate condition on the estimated rule, nor does it require the empirical pro-
cess condition. As a consequence, in a sequential RCT, this method provides
valid asymptotic statistical inference without any conditions, beyond the re-
quirement that the estimated rule converges to some fixed rule. In future work
we hope to address the practical performance of these methods in a simulation
study and apply it to actual data sets of interest, generated by observational
as well as randomized controlled trials.

In the current article we defined the treatment as binary at each time point.
Consider now a treatment that has k possible values. In that case, we can
define a vector of binary indicators, ordered in a user-supplied manner, that
identify the treatment. We can now just apply the results for the multiple
time-point treatment case in the Appendix, since this represents a special
case in which at some time-point there are no inter mediate time-dependent
covariates between two subsequent binary treatments. As a consequence, our
results also apply to this case.

It might also be of interest to propose working models for the mean outcome
Ep,(Yy, | S) under the optimal rule, conditional on some baseline covariates
S C W. This is now a function of S, but we would define the target parameter

o4
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of interest as a projection of this true underlying function on the working
model. It would now be of interest to develop TMLE for this finite dimensional
pathwise differentiable parameter, and we presume that similar results as we
found here might appear. Such parameters provide information about how
the mean outcome under the optimal rule are affected by certain baseline
characteristics.
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Appendix

A Formulation of optimal dynamic treatment
estimation problem: multiple time point
treatment

Suppose we observe n i.i.d. copies Oy, ...,O, of
O = (L(0), A(0), L(1), A(1), ..., L(K), A(K), Y = L(K + 1)) ~ Py,

where A(j) = (A1(j), A2(7)), A1(j) is a binary treatment and A,(j) is a missing
or right-censoring indicator at "time” 7, j = 0,1..., K. For a time-dependent
process X (), we will use the notation X(¢) = (X(s) : s < t). Let M be
a statistical model that makes no assumptions on the marginal distribution
Qo,0) of L(0), and the conditional distributions Qo r;) of L(j), given A(j —
1),L(j—1),5=1,...,K+1, but might make assumptions on the conditional
distributions go (j) of A(j), given A(j —1),L(j), j =0,..., K. We refer to go
as the censoring and treatment mechanism or simply intervention mechanism.
We note that we can factorize gy as follows in a treatment mechanism goa)
and censoring mechanism go4(2):

#(0) = Tmac(4i0) | 2G), AG - 1)

Hgo,Az(j)(A2(j) | L(j)az‘_ll(j)aAQ(j - 1))

= gOA(l)(O)gOA(Z)(O)-

The data might have been generated by a sequential multiple assignment ran-
domized trial (SMART) in which case goa(1) is known. In addition, in such
a SMART it might be known that right-censoring at time j only depends
on the past through the past censoring and treatment history in which case
nonparametric and root-n-consistent estimators of goa(2) are directly available.

_ Let V/(0) be a function of L(0) and let (A(j — 1),V (j)) be a function of
(A(G=1), L)), i =1,....,K. Let V.=V = (V(0),V(1),...,V(K)). Consider
dynamic treatment rules V/(0) — da()(V(0)) € {0,1} x{1}, (A(j—1),V(j)) —

dag)(A(G —1),V(j)) € {0,1} x {1}, j = 1,..., K, that are restricted to make
the treatment rule only depend on L(j) through V (), and to deterministically
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set the censoring indicators As(j) =1, 7 = 0,..., K. Let D be the set of all
such dynamic treatments.

We will also assume that V' (0) is a function of V(1) (i.e., observing V(1)
includes observing V/(0)), and V' (5) is a function of V(j+1), 7 =1,..., K — 1.
Under this assumption d4(j) is only a function of V(j) since A(j — 1) is itself
a function of V'(j). Therefore, we will also use notation d4;(V'(j)) instead of

dagy(A(j — 1),V (j)). For any rule d € D, let
Uy(P) = Ep,Y,

denote the mean outcome of Y; under dynamic treatment d, where Lg; =
(La(0),...,Yy; = Lg(K + 1)) is a random variable with probability density

Py(L(0), A(0), ..., L(K), A(K),Y) . .
= I(A =d(V))Qro)(L(0)) T}, Qi (L(k) | L(k — 1), A(k — 1)),

with respect to some dominating measure p. This probability distribution
P, is the G-computation formula for the counterfactual O, representing the
probability distribution O would have had, if contrary to the fact, A would have
been assigned according to the dynamic intervention d = (day, ..., dax)) €
D. Thus,

Ep,Ya= / yPa(y)du(y),

where

Pa(y) =D Pa(l(0), dag) (v(0)), ..., 1K), day(v(K)), 9)
I(K)
is the marginal density of Y; under the joint distribution P; of O,;. We are
concerned with estimation of the V-optimal rule defined as

do = arg I}lleag( EP()’de.
That is, dy is the rule that maximizes the mean outcome under rule d over all

treatment rules d € D. We are also concerned with statistical inference for the
statistical target parameter W : M — IR defined by

\P(PO) = EPo,dOYdo = Wy, (PO)

These two estimation problems define the statistical estimation problem ad-
dressed in this appendix.
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If we assume a structural equation model stating that L(0) = f70)(Uro))
A(k) = fauw(L(k), A(k — 1), Uaw)), Lk +1) = fruwny(L(k), A(k), Urge+y),
k=0,...,K, we can define counterfactuals Y, defined by the modified sys-
tem in which the equations for A(k) are replaced by A(k) = daw)(V (k)), k =
0,..., K. One can now define the causally optimal rule as dj = arg maxgep Ep,Yy.
If we assume a sequential randomization assumption stating that A(k) is in-
dependent of (Ury : j = k+1,...,K + 1), given L(k), A(k — 1), then we
have that EyYy; = Ep, Yy defined above, for all rules d, and thereby that the
statistical rule dy defined above equals this causally optimal rule df. In this
case, EoYyg: = W([Fp). Similarly, we have such an identifiability result under
the Neyman-Rubin causal model (Robins (1987a)).

In the remainder of the article, if for a static or dynamic intervention d,
we use notation Ly (or Yy, O4) we mean the random variable with probability
distribution Py, so that all our quantities are statistical parameters. For exam-
ple, the quantity Ep, (Yack) | Vax—1)([K)) defined in the next theorem denotes
the conditional expectation of Y5k, given V(x—1)(K), under the probability
distribution P z(k) (i.e., G-computation formula presented above for the static
intervention a(K)). In addition, if we write down these parameters, we will au-
tomatically assume the positivity assumption required for the G-computation
formula to be well defined. For that it will suffice to assume

Py (0 < min goau (6,1 | L(k), Ak — 1))) =1, k=0,...,K. (11)
6e{0,1}

B Characterization of V-optimal rule in terms
of blip-functions

The next theorem presents an explicit functional form of the V-optimal indi-
vidualized treatment rule dy as a function of P,. We will use notation do 4;x)
for (do,a@y : 1 = j,...,k) and for a process X we use X(k :1) = (X(s) : k <
s <1).

Theorem 13 We assumed V (k) is a function of V(k+1), k=0,..., K — 1.
The V -optimal rule dy can be represented as the following explicit parameter
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Of Po.'

Qr10(a(K —1),0(K)) =
Ep,(Yar—1),a000=1,1) | Va@e—1)(K) = v(K))
) —EPO(Ya< ~D A=) | Vagr-1)(
do.ar) (A(K — 1), V(K)) = (I(Qk10(A(K — 1), V(K)) > 0),1)
Qro(a(K —2),v(K —1)) =
Epy (Ya(r—2),A(K-1)=(1,1).doaxe) | Va(r-2(K —1) = v(K — 1))
—Ep, (Ya(r—2),A(K-1)=(0,1),dg_a(rc) | Va—2)(K — 1) = v(K — 1))
do,a(x-1)(A(K = 2), V(K — 1)) = (I(Qxo(A (K 2)7V(K -1 1
Qr+r0(a(k —1),v(k)) =
Epy(Ya(e—1),a0=(1,1).do aks150) | Vate—1) (k) = v(k))
) —Epy (Ya(—1),400=(0,1)do ks 1.10) | Vath—1) (k) = v(k))
dz,A(k’)}({A(k— 1),V (k) = (I(Qrr10(A(k — 1),V (k) > 0),1)
—K,...,0.

~—
~—
V
~—r
~—

Recall that a(k) € {0,1} x {1} for all k =0,..., K. If V(k) does not include
V(k—1), but, for all a(K) € {{0,1} x {1}}¥,

E(Yaw) | V(0), ..., Va(K)) = E(Yax) | Va(K)), (12)
then the above expression for the V -optimal rule dy is still true.

The proof is analogue to the proof of Theorem 5.

C Sequential super learning of VV-optimal rule

Estimation of dy requires estimation of Q1,9, which then yields an estimator
dn, a(k) of do,a(k), and, subsequently, we need to estimate Q o treating d,, (k)
as given. This process is iterated: given d, a¢.k), We estlmate QJO, ] =
K, ..., 1. Finally, the estimator of Q‘f”b maps into an estimator of dy 4). We
refer to such an estimation procedure as a sequential estimation procedure and
our estimator of dy will follow this approach.

As a consequence, the estimation problem that needs to be addressed is
given by: for a given k € {1, K + 1}, the estimation of sz for a given dy-
namic rule d, where Qk only depends on d through ds.k). For that purpose
we use the super-learning framework. This relies on the specification of a risk
function RQd(Po) which uniquely characterizes the true parameter Q¢ o as the
minimizer: Qf, = arg mings Rge(Fy). In some cases we use a representa-

tion Rga(Fy) = Ep Lgy.q0(QF) for a specified loss function L, ,, indexed by
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nuisance parameters o, go- In addition, we need to construct a library of
estimators Qk ; of ka j =1,...,J. This generates a family of candidate

estimators Qk,a => y oszg?j obtained by taking linear combinations of these
estimators using a weight-vector «, but the user can decide on the kind of
parametric family to combine the library of estimators. We now also need
a cross-validated estimator Rp, =~ of 1 /B P Rga (Pp) in order to select

among the candidate estimators Q. Here b indicates a sample split in a
training sample T}, and validation sample V, Pn y, PO »p are the empirical dis-
tribution functions of the validation and training sample respectively, and
Qanp = QQ(PSJ,) is the estimate based on the training sample. We can now

define the cross-validation selector

o, = arg mln RQk
a?

It can be decided to restrict a to be a vector of positive numbers and sum
up till 1. The proposed super-learner of Qio is defined as Qi,an<P’ﬂ)7 or, one

could, define it as & S ég,an(Pgﬁb). For example, if the risk function allows
the loss-function representation, then we have

éi,n BZ nb LQusns Qka( r?b))'

As we will see in the case that gg is known it will be possible to select an IPCW-
loss function L, (Qf) that does not depend on unknown nuisance parameters,
and this IPCW-loss function is just a weighted squared error or weighted log-
likelihood loss so that the cross-validated risk estimator is just a weighted cross-
validated sum of squared residuals or weighted cross-validated log-likelihood.

In the following sections we will propose risk functions R(gg(Po), determine
the efficient influence curve of these risk functions, and propose IPCW, DR-
IPCW, and (double robust) TMLE of this risk function, and its corresponding
cross-validated versions CV — IPCW, CV — DR — IPCW  and CV-TMLE.
The CV-IPCW and CV-DR-IPCW estimators are defined as cross-validated
empirical means of an [IPCW and DR-IPCW loss function, respectively. The
CV-IPCW estimators rely on a consistent estimator of gy, which is certainly
appropriate for SMART, while the CV-DR-IPCW and CV-TMLE are double
robust in the sense that these estimators are consistent if either gy or a part of
() is consistently estimated. The latter two estimators are also asymptotically
efficient estimators of the risk if both nuisance parameters are consistently
estimated. The CV-DR-IPCW can become an unstable estimator in finite
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samples, while the CV-TMLE is a substitution estimator respecting the global
constraints of the model, resulting in potentially important improvements in
practical performance. In addition, we discuss how to generate a library of
candidate estimators, and we will see that IPCW-loss function can be utilized
for that purpose, allowing the incorporation of standard software, and we
develop TMLE of projections on parametric working models as alternative
candidate estimators to be included in the library of estimators.

D Risk function for V-optimal rule

The following theorem presents a squared error risk function of Qg’o

Theorem 14 Define

Di(Q, 9)(Oak-1ya,,,) = I(Aa(k) = 1)22 04V g,

9a(k) (0)
— Bq(Vae . | LK), Ak — 1) = a(k — 1)), A(K)}
+E(Yag— 1dk+1 | L(k), A(k — 1) = a(k — 1), A(k) = (1,1))
_E< (k—1)dy 1y | L(k)v (k ) C_L<I€ - 1)7A(k> = (O’ 1))

We have
Ep,(Di(Q: 9)(Oate-1yd,,, | Va(k)) = Qf joya (@(k — 1), Va(k)),
if either D1(Q, g) = D1(Qo, g) or D1(Q,g) = D1(Q, go). Define
L 0.9 @t1) = (D1(Q, 9) — Qi)

and

Rge (Di(@,9), o) = i
2 ah-1) BPoae gy, Pt (@(k = 1), Va(k)) L, (0.4 (Qit1) (Oage-vy, ., )-
[f either Dl(@? g) o Dl(QU7 g) or Dl(Q7 g) = Dl(Qa gO); then

Rge (Di(Q, 9), F)
3 Ea(kfl) EPO,a(k—l)gk+1hk+l (Z_)l(Q> 9) QQO k+1Qk+1 + Qk+1)
T Ea(kfl) EPO,a(k—1)¢k+1hk+1{Qg,k+1 - +1}2

+ 2 at-1) EPo,a(k,l)ng hi1{D1(Q, g)* Qo kel

Therefore, Zf either Dl(Qag) - Dl(@(bg) or Dl(Qag) - DI(Q790>7 then
Qf 1 = arg min Rgy , (D1(Q, 9), P).

k+1
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Define
Zath-1)dy,, = Pirar (D1(Q, 9) — Qk:-i—l) (Oa(k-1)dy,,)-

Then, this squared error risk can be represented as:

Rge (Di(@,9), Ro) = > EnZag-vya,,-
a(k—1)

The following theorem presents a log-likelihood risk function of Qz,o-

Theorem 15 Suppose Q¢ € (a,b) for a known a < b. Define DY(Q,9)(Q,9) =
(D1(Q, 9)—a)/(b—a). If either D1(Q, g) = D1(Qo, 9) or D1(Q, 9) = D1(Q, o),

then )
Ery(D(Q, 9)(Oate1ia,) | Valk)) = Qo

where QO v = (Qf 1 —a)/(b—a) € (0,1). For notational convenience, in our
presentation below QO wr1> D1(Q, g) are already standardized so that Q&kﬂ €
(0,1) and Ep,(D1(Q, 9)(Oaw-1ya,,,) | Va(k)) = Qf iy if either D1(Q,g) =
D1(Qo,g) or D1(Q, g) = D1(Q 9o)-

Define
Dl(Q g)(Qk—H) Dy (Q, g)log QZH + (1 — D1(Q, g)) log(1 — Qiﬂ)-

Define

RQg+1(D1(Q79)aPO) = Z EPO@()C_I)Qk_‘_lhk-‘rngl(Q,g)(Qg+1)(0é(k—l),dk+l)'

a(k—1)

If either D1(Q, g) = D1(Qo, g) or D1(Q,g) = D1(Q, g0), then

Rae (D1(Q.9), Po) = > EPO@(’“*Uithk""ng& (Q41) (Oatr-1ydy,,)-

a(k—1)

Therefore, if either D1(Q, g) = D1(Qo,9) or D1(Q, g) = D1(Q, go), then

Qi1 = argmin Rey (D1(Q.9), Py).

k+1

Define )
Zé(kfl)dk+1 = hk+1Lgl(Q,g)(QZ+1)-

Then, this quasi-log-likelihood risk can be represented as:

Rge (D1(Q,9), R) = > EnZag-vya,,-
a(k—1)
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E Sequential regression representation of risk
function treating D; as given

If we treat D; = D1(@Q, g) as given, then the risk parameter can be represented
as the following statistical parameter of Fy:

Rge (D1, Py) = > EpZag-n,,,
a(k—1)

In other words, RQiH(Dl’ Py) is an average over a(k — 1) of the expectation

of a counterfactual outcome of Z = hyy1 LY, (Qf.) under intervention (a(k —
1)d; ). Our proposed estimators of risk are two stage estimators in the sense
that we first estimate D;(Qo,go) and given this estimator Dy,, we estimate
RQZ+1(D1"’ Py) with estimators developed for the latter parameter treating
Dy, as given. In a later section, we will also define the risk as a parameter

Py — RQzH(Dl(Q(PO), 9(P)), Py) and develop estimators directly targeting
this parameter (up till a term constant in Q¢,,). In the sequel we will use
the notation d;;; to indicate the rules {daq : I =4,...,j} and similarly A(k :
K)=(A(l):l=k,...,K). We also use the short-hand notation d;, = (d; : | =
k,...,K). Finally, if we write I(A(k) = d;.;), then that represents short-hand
notation for the indicator that A(k) equals the values assigned by the rule d
as function of L(k).

Theorem 16 Let d = d(a(k — 1)) = (a(k — 1)gaw)dyy1) be this particu-
lar intervention on (A(0)..., A(K)) which leaves A(k) random as under P,
and note that this intervention is indezed by a choice a(k — 1). Define Z =

bt (A(k = 1), V(K))Lb, (Q1,,)(O). Let

QN = Ep(Z | AK — 1), A(K) = dg, L(K))

Qo) = Ep(QF ]| A(K —2), A(K — 1) = dg_1, L(K — 1))

Q%5 | = Ep( Z’;+i)|A<y—2> A —1) = d;1, L(j — 1))
K.

O R 05 ”( L(0)).

Note that for j — 1 = k,
Ep(QY s | Atk — 1), A(k) = dy, L(k)) = Ep(Q% 5y | A(k — 1), A(k), L(k)).

We have
Rge (D1, P = > QY

a(k—1)
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This follows from the fact that Q%]fl) = FE(Zy| A(j—2),L(j — 1)), and, thus
U = E(Zs| L(0)), and Q4" = EpZs.

This provides us with a representation of the risk-parameter RQﬁH (D1, P) =
RQiH(Dl’ Qz) as a function of P through Qz(P) = (Qé(j(k*l)) :j=0,..., K+
1,a(k —1)). The TMLE will be a plug-in estimator obtained with a targeted
estimator Q7 ,, of Qzp.

F Efficient influence curve of risk function

In order to develop an efficient estimator of RQﬁH(Dl’ Py) for a given Dy, we
need to know the efficient influence function. The following theorem presents
this efficient influence function.

Theorem 17 Let g* be the intervention mechanism defined by d = (a(k —
1)gaydyy1)- The efficient influence curve ofli’Qgle (D1, Ry) is given by D5 (D1, Ry) =
k+1

ZK+1 D* J(Dl,PO), where

7=0
ES gSK 7d
D\ R) = > Z —
HIKH( e a(k—1) gO:K(O)< Oics1)
d (DbPO) - § 903 ( )(QZ j+1 Q% )
Q wr1d gog 1( ) J J

a(k—
j=K+1,...,1
gg+170(D1,P0> = Z {Q%,l - de,o}‘
a(k—1)
Note that for j — 1 < Kk, g;:jfl/QO:jfl = I(A(j — 1) = doj-1)/9051(0),
and for j —1 >k, g5 1/g051 = [(A(k —1) = a(k —1),A(k+1: K) =

i—1
dry1.x)/ Hg;ék,l:o 9A®G)-
For j > k, we have

< (Dy,By) = Iri-1\Y))

Qs1d 90:j-1(0)
For j <k,
1
>k’cl '(D17P0): Z —( Z,j+1 QZ])
k107 () 90:j-1(0)
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G CV-IPCW and CV-DR-IPCW estimators
of risk of candidate estimator.

In this section we define an IPCW and DR-IPCW estimator of RQZ+1 (Dy, Fy),
and, subsequently, we define their cross-validated counterparts for a candidate
estimator Qf, .

G.1 IPCW-estimator of risk
Recall the represntation RQﬁH(PO) = Za(k—l) Ep, Za(k-1)dy,,» Where

Z = hpa (A(k = 1), V(k))(D1(Q, 9)(O) = Q1) *(A(k — 1), V (k).
Let g = Hj:O,j;ék gag)- An IPCW-estimator is given by:

) 1 [(Ai(k—1) = alk — 1), Ak +1: K) = d,.,,)
Rep e = 435 —

i=1 a(k—1)

1N Ak +1: K) = dy.y)
n gn,—k‘(Oz)

=1

Z;

Notice that this estimator is nothing else than an IPCW-empirical mean of

squared errors. One can also use the stabilized IPCW-estimator RQﬁH’ SIPCWon

[(Ai(k+1:K)=d} 1)
gn,—k(0) ‘

obtained by dividing the above IPCW-estimator Rga  rpow:, by LD

G.2 TIPCW-loss function, and cross-validated IPCW-estimator
of risk of candidate estimator

Define

G +1:K) = dy)
9-x(0)

We refer to this as the IPCW-loss function indexed by nuisance parameters

D1(Q, g),9. The above IPCW-estimator can be represented as

Lrpew,p:,g)@41)(0) = Z(Dy, Qi) (13)

~d
Rga  rpown = Palipcw,ping.(Qlyr)-

The cross-validated IPCW-estimator for a given estimator @z 41 18 given by

B

1 _
_ 1 d
Réz+17cv_[pcm/7n - EE P’n,bL[PCWaDl,n,bvgn,b(Qk’-‘rl,n,b)'
b=1
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If g, = go, then, under very weak regularity conditions, we have that R i, OV 1PCWn ™

B ~ . . . . .
5> b1 PoL1pcw,D1o.g0 (@141 ) 15 asymptotically linear with influence curve

Lipcw,Dio.g0 (Qngl) — Py Lipow,Dig.g0 (QiJrl)’ where Dyg = Dy (Q7 gO)a and thereby B
converges at 1/y/n-rate to a normal distribution. Note that & Zle PoL1pew,Diogo(Qfts1np) =

= 25:1 RQﬁH,n,b(Dl(Q’ 90), Fo), so that this is indeed the desired result.

G.3 DR-IPCW loss-function, and estimator of risk.
Consider the efficient influence curve D7, (D1, Py) of Rga, (D1, Py) defined
k41 1

in Theorem 17, and note that it can be represented as Lp, 0og0(Qiiq) —
Rgi. (D1, By). We refer to Lp, 4(Qf,,) as the DR-IPCW loss function in-

k41
dexed by nuisance parameters (D;,@,g). Therefore, an estimating equation

based estimator based on solving the efficient influence curve estimating equa-
tion in the target parameter is given by:

_ _ Ad
Rga | pr-1Pewn = PoliDi,.Qugn (Qhyr)-

G.4 CV-DR-IPCW estimator of risk
The CV-DR-IPCW for a given estimator @i o is defined as:

B
R: sy Q. 1.4)
Q%H,CVfEE,n B 1,6 D1.n.b,Qn bsGn,b \ X k+1,n,b/
b=1

H CV-TMLE of risk of candidate estimator.

H.1 TMLE of risk.

Define the intervention d = d(a(k — 1)) = (a(k — 1), gaw), dj4,) and let g* =
g*(a(k — 1) be the corresponding stochastic intervention on A(K). Suppose
that Z is standardized so that E(Z | L(K), A(K)) € (0,1). Let Z = Z, be
an estimator obtained by plugging in an estimator Dy, of D1(Qo, go). Let
)% k1o = Z. Firstly, fit a logistic regression of Q% x,, on A(K) and L(K),
and set A(K) = dg. This is an initial estimator Q% x_,,, of Q% s, = E(Zy |
A(K — 1), L(K)). Let LogitQ x4 ,(€) = LogitQ% 1 , + €Cx11(gn), where

_ QZ;K<O))

CK+1 (g> QOK(O) :
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Let -
€n, = arg mein PTLL(Q%,K—}—l,n(E))?

where

—L(Q% k1) = . _ )
I(A(K) = dg) {QdZ7K+2, log Q%,KH + (1 - Q%,K—f—?) log(1 — Q%,KH)} .

The update Q% sy, = @z x+1.n(€n) is the targeted estimator of Q% ;.

Forj = K,... k+1, fit alogistic regression of Q% ,, on A(j— 1) L(j—1)
and set A(j— 1) = d;j_y. This yields an initial estimator Q% ; , of Q% . = E(Zy |
A(j—2),L(j —1)). Let LogitQ% ; ,(¢) = LogitQ% ;. + €C;(gn), Where

N Jrsj-1
C](.g) - 90:;‘71(0)'

Let _
€, = arg mEin PnLQdeHM (QdZ,j,n(E))7

where

Lo, (@) =
I(A(j—1) = j—1 {szﬂnk)g QdZ,j,n + (1 - Z]+1n10g(1 %jn)} .
Define Q% ;,, = Qzjn(en). This results in a targeted estimator Q% of
E(Zqg| A(k — 1), L(k)). Regress Q%,,, on A(k—1), L(k —1) and set A(k —
1) = a(k — 1). This results in an initial estimator Qaz(f;;ll)d of Q%(’ifl)d
E(Zak-1)4,,, | Ak = 2),L(k — 1)) for each a(k — 1) € {0,1}. For each
a(k —1) € {0,1}, let LogthZk D) = Logtha(k D91 e (g,), where

a(k—1 1
Ck( )(9) = —QO:k:fl(O).
Let
= argmin Z Py Loy Hln(Q%{i;}”(@),
a(k—1)
where

~a(k—1)d
_LQ?kH,n <QZ(J€771) ) T
I(A(k —1) = a(k - 1)) { Gk 10 gQZk D (1- Q% i1.n log(1 — Q%{I,z;l)d)} .

This defines QZ]an = Qzlznl (€,) for each a(k — 1) € {0,1}.
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Let 7 = k — 1. Given the collection of targeted estimators szfl :L)d* for

each a(j : k — 1) € {0,1}*7J, we fit a logistic regression of Qaz(;flid* onto
A — 1), L(j — 1) and set A(j — 1) = CL(] — 1) for each a(j — 1) € {0,1}.
This yields an initial estimator QZ] Lik—1)d an(j Lik—1)d _ = E(Zy(j-1. k—1)dy 4 |
A(j —2),L(j — 1)) for each a(j — 1 : k — 1). leen a(j + k— 1) for each

a(j—1) € {0,1}, let Logit@“(j.*l:kfl)d( )= LogthZJ Lk=1)d | eCy (—Lik= 1)(gn),

Z,j,n
where 1
= 1k1) ) = .
/ ( ) 90:j—1(0)
Let
€, = arngiIl Z P, LQZ(J ks 1yax az(é nl tk—1) d(e)),
a(j—1:k—1) ot
where

LQa(m 1)ds (Qz] . Dd) =I(A(j—1)=a(j — 1))
k—1)dx* a 1:k—1)d k—1)dx Aa(j—1:k—1)d
{QZ;H ’n,) Qz(in +(1- QZ?—!—I n ) log(l— Qz(j',n ) )}

This defines QZJ Lkl Q“(j-fl:k*l)d(en) for each a(j — 1 : k—1) €
{0, 1}k,

This process is iterated from j = k — 1 to j = 1, giving us Q%(’(l)ifl_l)d* for
each a(0: k—1).

Finally, _azsgilfl_l)d* =15, Q%((l)l:l D4 (L,(0)), for each a(0: k — 1),

Our final TMLE of RQﬁH(RJ) is given by > ., 1) %(”Sml)d*.

By construction, this TMLE solves the efficient influence curve equation
P.D5s (Din, Q% s 9n) = 0, for the risk-parameter 7z — RQgH(Dl,QZ),

k+1 ’

where Q7 = (Q75" V" . j=0,...,K + La(k - 1)).

H.2 CV-TMLE of risk

Split the sample, and let @),,;, denote the estimator of ) based on the b-th
training sample, b =1, ..., B, and let P,;b, Pﬁvb denote the empirical distribu-
tions of the b-th validation and training sample, respectively. The following
describes the CV-TMLE of Zb (P, (D1,Qz0). Define the outcome Z

with the nuisance parameters ﬁtted on the training sample:

Zyp = WAk = 1), V (k) (D1(Qup: 9n0)(O) = Qi1 np)* (Alk — 1), V(K)).

74

http://biostats.bepress.com/ucbbiostat/paper317



Firstly, based on P?,, fit a logistic regression of Q% 4, on A(K) and L(K),
and set A(K) = dg. This is an initial estimator Q% ;,; ,,, of Q% r1y = E(Zq |
A(K—1), L(K)). Let LOgitQ%,KH,n,b(e) = LOgitQ%,KJrl,n,b"‘GCKH(9n,b)7 where

9r:x(0))
C = JmRA7
Kt (g> gO:K(O)
Let
= argmlnz bL QZK-I—lnb( ))
where
_L(QdZ,K-l—l,n.b) =

[(A(K) = dK) {Q%,K—M,n,blog Q%,K+1,n,b + (1 - Q%,K—H,n,b) 10%(1 - Q%,Kﬂ,n,b)} ‘

The update Q% Ky = = Qz.x+1np(€n) is the targeted estimator of Q% K for
eachb=1,...,B.

For j = K ,k -+ 1, based on Py, fit a logistic regression of QZJHM
on A(j — 1), L(] - 1) and set A(j — 1) i—1. This yields an initial esti-
mator QZMb of Q% = E(Za | A(j —2),L(j — 1)). Let LogitQ%,, ,(€) =
LogitQ% ; ., + €C; (gmb) where

QZ: —1
Cj g) = J

B 90:3'—1(0).
Let
_argmlnzp wlag o ( 0%jm0(€))s
where
L (@) -

I(A(J - 1) =dj 1) {Q%Tj-&-l,mb log Q%,j,n,b +(1— 7C§(:j+1,n,b log(1 — Q%,j,mb)} :

Define Q*Z’jLn’b = ngvn’b(en). This results in a targeted estimator QF ttmb
of B(Zy | A(k —1),L(k)). Regress Q% 1, on Ak —1),L(k — 1) and set
A(k—1) = a(k —1) based on P}, This results in an initial estimator Q“Z(izllgd

f@%iil = EB(Z, (h-1)dy., | A(k—2), L(k —1)) for each a(k —1) € {0,1} and
b. For each a(k—1) € {0,1} and split b, let LogthZ(Z nlb (€) = Logit@%{izgd—k

eC2* (g, 1), where
1

Ca(kfl) _ '
k (g) gO:k71(0>
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Let
. ~a(k—1)d
€ = arg min Z ZPé,bLQ%’ka,n,b(QZ(,k,n,g (€)),

a(k—1) b

where

~a(k—1)d
_LQZ K 1,m, b(QZ(k nll)) ) = ](A(k - 1) = a(l’f - 1))
a(k—1)d
{QZk+1nb10gQanb +(1- k+1nb10g(1 - Z(k’nll)J )} '

This defines QaZUZ nlbd* = Q5 z;lbd(en) for each a(k — 1) € {0,1} and b.

Let j = k — 1. Given the collection of targeted estimators Q Z;fl i)d* for
each a(j : k —1) € {0,1}*77 and sample split b, based on P?,, we fit a logistic
regression of QZJ keLde oo A(j—1),L(j — 1) and set A(j — 1) = a(j — 1)

,J+1,n,b
for each a(j — 1) € {0,1}. This yields an initial estimator ng nlbk Dd of

QZ] Lk—1)d _ E(Za(j—l:kfl)dk-i,-l | A(] — 2)7L(] —1)) foreach a(j —1:k—1).
Given a(j : k — 1), f01'" each a(j — 1) € {0,1}, let LOgitQaZ(;nlbk Ud( ) =
LogitQ}71*~ 1)d+605(j_1:k_1)(9n,b)7 where

,7,m,b
1 1
Coli—1k=1) gq) = .
! (9) 90:]'71(0)
Let
. 1:k—1)d
€n = argiin Z Zpé,b Qi s (QZznb ) (€)),
a(j—1:k—1) b
where
k—1)d . .
~Lgaona (@5 ) = 1(AG = 1) = a(j ~ 1))
h—L)dx 1k—1)d k—1)dx 1:k—1)d
{QZ;H,Bb 0g Qi+ (1= Q3 i) log(1 — Q4750 |
This defines sznlbk g Qaz(znlbk V() for each a(j — 1 : k—1) €

{0, 1}*7+1 and b.

This process is iterated from j = k — 1 to j = 1, giving us Q%(?:i_bl)d* for
each a(0 : k — 1) and b. Finally, Q5 h ' =1 Zz L QR (L(0)), for
each a(0 : £ — 1) and b. Our final CV-TMLE of 520 RQkJrl(PS,b)(Dl’PO) is

p ~a(k—1)d*
given by % ) o Za(k—l) QO,(n,b -
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I Candidate estimators for super-learner

Consider a parametric working model mg for Q¢ +1- We could fit this working
model by minimizing the empirical risk of the IPCW-loss function:

6, = arg mﬁin PnLIPCW,Dn,gn(mB)

1 K I(Ak+1:K)=dpy) _
i 0 P v e ITCNRE RS

This can be fitted with standard software since it is just a regression of the
outcome D1(Qy, g,)(0;) on Ay(k — 1), Vi(k) with weights w; = I(A;(k + 1 :
K) = dy1)/gn—(O)hi1 (Ai(k — 1), Vi(k)), i = 1,...,n. Similarly, if we use
the quasi-log-likelihood loss L* in the definition of Z = hy11L}) 0 (Qf41),
it follows that the working model mg can be fitted with weighted logistic re-
gression. Thus for each candidate parametric working model, this generates a
candidate estimator of Q¢ ;. These candidate estimators are aiming to esti-
mate mg, defined as the minimizer of the true squared error risk R, ,(D1o, Fo)
between mg and Qg’k +1- The consistency of these candidate estimators as an
estimator of this mg, relies on consistency of g,,.

One could also minimize the DR-IPCW empirical risk or the TMLE of the
risk of mg. In this case, the consistency of the candidate estimators as estima-
tors of mg, relies on the consistency of either g, or (),, but implementation
may require some programming. However, if mg is linear, then the minimizer
By, will still exist in closed form, and, even when mg is not linear, if one utilizes
typical iterative algorithms, then one will only need to use the estimate of the
(B-specific risk at limited number of candidate values. The advantage of using
the TMLE estimator of the risk of mg instead of the IPCW or DR-IPCW es-
timator of risk is that it results in a more robust and efficient estimator of the
desired mg, defined as the minimizer of the true risk. In the next subsection,
we develop an actual TMLE of 3y, and also contrast it to using a TMLE for
the (-specific risk and then minimizing this risk.

In addition, consider any machine learning algorithm for fitting a regres-
sion (i.e, conditional mean) of an outcome (i.e. Dj,) on covariates (i.e.,
Ai(k+1: K),Vi(k)). By simply assigning this algorithm weights w;, it results
in a candidate estimator of Q¢ ; based on the IPCW-loss function. In this
manner, we can generate a library of candidate estimators of Qgﬁk 41 ranging
from estimators based on a large variety of parametric working models and
highly data adaptive estimators. They form the library of candidate estimators
in the super-learning algorithm for fitting Q&k 41

7
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I.1 TMLE of blip-function projected on a working model

Consider a working model {mg : 8} for Q3 , | = Ep,(Yak-1)(1-0)dy,, | Va(k)).
Define

Fo = argmin Y Erhu(atk = 1), Va(k)(@QF jsr — mp)*(alk — 1), Va(k)).

a(k—1)

In this subsection, we will develop a TMLE of ;. The parameter can be
represented as follows:

Bo = argmin > Ephir (@(k—1), Va(k){Yatr-1)1d, ., — Yath—1)0d,,, —ma(alk—1), Va(k))}*.
a(h—1)

Let’s assume that mg = Z o Bje; for a set of basis functions e;. Let h =
(ej:j=0,...,p)" and let hi . = hhpyi. The parameter 3 is defined by the
following equation:

> Enhi o (Yag-1a-oy,,, — Mg (alk — 1), Va(k))
a(k—1)

Equivalently, it is defined as the solution

Z EPth—i-lmﬁo( (k 1 Z EPO I<:+1 k 1) V<k))Ya(k*1(1*0)dk+1'
a(k—1) a(k—1)

Given our linear model for mg,, the latter equation can be solved explicitly:

Bo = C(Po) ™ ®(Ry),

where
Z EPOh;;+1 C_L ),Va(k))ya(k—l)(l—o)ng,
a(k—1)
and
C(Py) = Y Bphj h"(a(k—1),Va(k)) = > Ephppahh’ (@(k—1),Va(k)).
a(k—1) a(k—1)

Note that C(Fy) is a (p+ 1) X (p+ 1)-matrix. This presents (3, as a parameter
of {Pakya,,, : a(k)}. Let Dj(F) be the efficient influence curve of ®(F) and
note that

Q(F) = > a1y EroZage—1)(1-0)d,
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where Z = hj_ Y.

One component of the efficient influence curve of fy is given by C(FPy) ™' D} (F).
Let D} (FPy) be the (p+ 1) x (p + 1) efficient influence curve of C'(Fy), which
is nothing else than the matrix whose (i,j)-th element is the efficient in-
fluence curve Dg, ; (Fo) of 324 1y Epfurieiej(@(k — 1), Va(k)). The ef-
ficient influence curve of the matrix-valued parameter C(P)~! is given by
—C(P))'Dg(Py)C(Py)~'. This shows that the efficient influence curve of
the parameter 3 = C'(P)"'®(P) at P = B, is given by:

D(Py) = C(Py) "' Dj(Py) — C(Po) ™' D5 (Po)C(Po) ™' ®(Fy).

This proves the following theorem.
Theorem 18 Letd, = di(a(k—1)) = (a(k—1)1d,, ) and dy = do(_(k 1)) =
(a(k—1)0d;,,). Let Z = thY ((p+1)-vector) and Z = hyp100" ((p+1) ¥
(p+ 1)-matriz). Define Q% ; = Ep(Zqy | A(] - 2) L(j—-1),j=K+1,...,0,
and QY . = Ep(Za | A(j—2),L(j —1)), j = ,0. The (p+ 1)—dimensz’onal
efficient influence curve of 3y = C(Py)~'® (PO) is given by

Di(Py) = C(Py) ™ Dy (Po) — C(Po) ™ D (Po)C(Po) ™' @(Fy),
where the (p + 1)-dimensional D}(F) = ZK+1{D¢]1( 0) — D} ;0(F0)}, and

the (p+ 1) x (p+ 1) matriz DE(Py) = f: D¢ ;(Ry), are defined as follows:
for 6 € {0,1}

Discaath) = 3 SEEEE= I - Q)
Dy ;s5(P) = Z I(A(j—lgi'.:c?;(gc)z(k )>>(Qz]+1 deéj)
a(k—1) -l

j=K+1,...,1
D} os(Po) = Z {Q%,

and

o) B > ](A(k_l):_§k_1”<Z—@z“f )
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For j > k+ 1, we have

I(A(k+1:j—1) =ds(a(k —1)))
90:j—1(0)

D;j,é(PO) - (Q%‘fjﬂ - Q%‘fj)‘

For 3 <k+1, we have

* 1 M M
D j6(Fo) = Z .—(Q?,j—l-l - Qéﬁ,j)'
a(j:k—1) go:j_l(O)

Above we already presented a TMLE for Cy;(Fo) = > ;1) ErZ (L, J)age—1)
and q)a(k) (Po) = Zﬁ(kfl) EPOZé(kfl)a(k)glkJrl and thus (I)(PQ) == ¢1<P0) - (I)()(Po)
Let C! and ¢; be these two TMLEs. In a later Section K we also present
the TMLE directly targeting ®(P,) instead of plugging in separate TMLESs of
Doy (Fo) for each a(k) € {0,1}. We propose to estimate $ with the plug-in
TMLE:

R (e

The TMLEs C and ¢), are constructed so that the efficient influence curve
equations P,Dg(Qy,, 9,) = 0 and P,D}(Q;, 9,) = 0, and, as a consequence,
the efficient influence curve P,Dg(Q, gn) = 0 is solved as well. This TMLE is
not really a substitution estimator since we used separate TMLE for the com-
ponents C(Fp) and ®(F) and also separate TMLE for each C;;(F), but each
of these components is estimated with a double robust efficient substitution
estimator.

I.2 Estimation of working model by minimizing TMLE
of risk

Recall that
Bo = arg mﬁin Z Ep, Z(B)ak)dy >
a(k)
where
2(8) = bt {Y — mp)2
For a given f3, let I?;,(53) be a TMLE, as presented above, of Ro(3) = ;) ErZ(B8)a(k)d,.., -
One can now define 3} = argming R} (). Even though this might seem to be
a very computer intensive method, typical iterative algorithms for minimizing
R () will only require knowing the function at the current value and past-
values (so that one has a sense of slope). Therefore, one would compute the
values R} () on the fly, thereby minimizing the number of times one needs
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to compute the (-specific TMLE. The advantage of this approach seems to
be that it allows us to use a single TMLE targeting Ry(/3), while the above
method relies on separate TMLEs for the normalizing matrix and ®(F).

J Oracle results

Let’s consider a randomized controlled trial so that gy is known (assum-
ing no censoring). In that case, we can use the known ITPCW-loss-function
Lipow,g (Qf.,) obtained by setting D1(go) = (24(k) — 1)/go,ag)Y - The loss-
based dissimilarity of this loss-function is given by

Po{L1pow,g(Qh11) — géPCW,Qoi(ng,qu%)} =
Za(k—l) PO,&(k—l)hk+1 (Qk+1 - Qo,k+1) (Od(k—l))>

for the squared error loss, and similarly for the log-likelihood version. Consider
the super-learner based on this loss function. Due to the oracle inequality for

the cross-validation selector ay,, if none of the candidate estimators Qf, , , con-

verges at the parametric rate 1/y/n to Qf ., then we have that @gH,an(P@)
is asymptotically equivalent (i.e. ratio of loss-based dissimilarities with Qg

converges to 1) with the oracle selected estimator édn(Pn), where the oracle
selector is defined as

&, = argmin Ep, PoLipcw,g(Q4(P) 5.))

- Ad 0 Ad 2
— argminBp, > Pohisa ((Qhira(Pls,) = Qhir) (@lk = 1), Va(k)).

a(k—1)

This result relies on the loss-function Lipcw,g, (Qf.) to be uniformly bounded
in O and Q¢ 41, Which is arranged by assuming the strong version of the posi-
tivity assumption. If one of the candidate estimators converges at rate 1/y/n
(e.g., one of candidate estimators is based on a correctly specified parametric
model), then the super-learner also converges at rate 1/y/n, but in this case,
it is not asymptotically equivalent with the oracle selector. These results still
hold if J = J(n) converges to infinity as fast as a polynomial power in n. So
this proves that the super-learner is asymptotically optimal in the sense that it
outperforms any competitor estimator of the blip-function by simply including
this competitor in the library of estimators that defines the super-learner.

We could improve the cross-validated risk estimators, and thereby the
cross-validation selector, by using the estimated loss Lipcw,q, ¢ (Qf, 1) based
on an estimator Di(Q,, g0) of D1(Qo, go)-
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In an observational study, we could use the estimated DR-IPCW loss
LpRr—1PeW,D1n,Qn.gn (Q441). Finite sample and asymptotic results for the re-
sulting cross-validation selector are presented in (van der Laan and Dudoit,
2003; van der Vaart et al., 2006; van der Laan et al., 2006): in essence, one
still obtains powerful oracle results for the cross-validation selector but the
rate of convergence is upper-bounded by the product of the rates at which
gn converges to go and @), converges to ()o. Thus in observational studies in
which one has strong knowledge about the treatment assignment mechanism
or one knows that there is a single time-dependent covariate (e.g., the outcome
process at that time point) that blocks the effect of the past on the outcome
so that it is sufficient to only adjust for this single time-dependent covariate
when fitting the treatment mechanism (and the past treatment regimen), the
cross-validation selector may still be asymptotically equivalent with the oracle
selector above that treats gg as known, even if (),, converges to a misspecified
Q.

We also obtained oracle inequalities for the super-learner based on the CV-
TMLE of the risk ((van der Laan and Petersen, 2012; Diaz and van der Laan,
2013)).

K CV-TMLE of risk of candidate estimator of
blip function.

Above we treated D; as given in the definition of the risk, resulting in the
two stage estimator that first estimates D;(Qo, go) and then applies the CV-
TMLE for the risk parameter that treats D; as given. In this section, we
directly target the risk parameter as a parameter of the data distribution.
The following theorem presents the risk function as a parameter of F.

Theorem 19 Consider

Qb k1= Er(Yag—1),A0=11)dagesnrey | Vate—1)(K) = v(k))
—Epy (Ya(k—1),406)=(0).dages 110, | Vate—1) (k) = v(E)).

Define B B
Zy = hk-&—lQ(lgil and Z = QZHY'

Define the following risk function for Qg’kﬂ:

RQgH(Po) =1 Z Zoa(k—1) — 2 {Za(k—mng - Za(k—1)o¢k+1} -
a(k—1)
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We have _
Za(k—1) thk+1(Qk+1 Qo k+1) (O a(k— 1))

RQz+1(P0)+EoZ k—1) hk-i—l{on-H} (O a(k— 1))

Therefore, )
Qg’kﬂ = arg g&in Rag (Fy).

k+1

Let Dy, _ 1)(PO) = Zf 0 Dsx_1y;(Fo) be the efficient influence curve of
EoZoae-ry- Let Q7" = E(Zoage—ry | L(j — 1), A(j — 2)) for j = 0,....k.
We have

I(A(j—1) =a(j — 1))(Qa(k 1) QZk 1))

9osj1 Zo,j+1

D;;(k—n,j(PO) =

j=0,....k Let Dy, Dide, (B) = Z]Kng D3 k-1y0q,,, Pe the efficient influ-

ence curves of EoZgk-1)14,,, and EoZak-1)0d,,, respectlvely Let QZ (kF)dis1 _

E<Za(k 4k+1 ‘ L(] - 1) A(j - 2)) We have

* I(A = (a(k). dy.) :
ﬁ(k)dkHJ(PO) - gO:jc_Ll(O) — (QZ,j+1 B QZ,J‘ );
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j =0,...,K +1. The efficient influence curve of RQiH(PO) is given by
(

D*_erl Py) = Z]K:ng DZ?ZHJ(PO)’ where
Qk+lj(P0) = Z D -1),;(P0) + Dige—1yg, .5 (F0) = Dik-1)04,., .5 (Fo)
HAU—UZ@U—U) k=)
= Qi — Qu )
I(A(j—1)=a(j — 1)) ~ak—1)1d a(k—1)1d
+ (Q Gpq Q k+1)
i w0 e
IA(G—1)=a(j — 1)), ~a(k-1)0d,,, a(k=1)0d,.
_Z 9% j—l(O) (QZ]—I—I Q )
a(k—1)
1 ~a(jk—1) k1)
= (@) — Q)
a(j:k—1)(1-0)d;, , (Z(]k) 1)(1-0)d, 4,
EOY @ g e
a1y J0:3= 1( )
i=0,... .k
Qk+1 j(PO) = Z {Dg(k—l)ldk+1,j(P0) - D;(k—1)04k+17j(P0)}
a(k—1)
_ 3 U= da - ) A0 EAE -
a(k—1) 90:j-1(0)
(Q(;(k DA(K)dy, Qa(k 1)A(k) dkH)
J+1
. I(A(k + 17.7 - 1) = C_ik;—i—l))AQ(k) (2A1(k) >(Q dk+1 Q k)dk+1)
90:j-1(0) A 7
- I(A(k + 17.7 - 1) = C_ik;—i—l))AQ(k) (2A1(k) )(Qdk+1 Qdk+1)
P 90:j-1(0) 2t
j=k+1,..., K+ 1.
Thus, we have shown the following result.
Theorem 20 The efficient influence curve ofRQz+1 (Py) is given by Dz?‘éﬂ (Ry) =

84

http://biostats.bepress.com/ucbbiostat/paper317



Z]K:Bl Dfa  (Ry), where

Ic+17

G B =Y (@Y - )

(k1) 90:j-1(0)
k—1)(1-0)dy,,  ~a(j:k—1)(1—0)d, 4
+ Z ]Srjl )( )d k+1 Qj(J )( ) k+ )
a(jk—1) go:j— 1
7=0,...,k
_ I(A(k + 17] - 1) — C—lk+1)A2(k>(2A1(k) - 1) Adk41 A1
Q’““ j(PO) B 9o:j-1(0) (QjH Rz )

j=k+1,... K+1

K.1 Sequential regression representation of risk

We have
RQk+1 (Py) = Z {EOZO,Zz(kfl) + EoZak-1)1dy,,, — EOZa(kq)ong} .
a(k—1)eA(k—1)
Consider

> {EoZag-1)1g,,, — EoZak-1)04,,, }-
a(k—1)

We now present a sequential regression representation of the latter quantity.
Firstly, regress Z = 2hk+1Qk+1Y on A(K), L(K), and set A(K) = dg, which
yields Q% x.y = Ep(Z | A(K — 1), L(K)). Now, regress Q% ., on A(K —
1), L(K — 1), and set A(K — 1) = dg_;. This yields Qzx = Ep(Zy | A(K —
2), L(K —1)). Now, regress Qz r on A(K —2) and L(K —2) and set A(K —2) =
dg o, giving Q% i, = E(Zyq | A(K —2), L(K —2)). So in this way, we obtain
Qzrio = BE(Zg |A(k), L(k + 1)). Now, regress the latter on A(k), L(k) to
obtain E(Zy | A(k), L(k)) and compute

QL = B(Zy | A(k) = 1, A(k — 1), L(k)) — E(Zy | A(k) =0, A(k — 1), L(k)).

This represents Q% = E(Z1-04,,, | A(k — 1), L(k)). Now regress the latter
on A(k — 1), L(k — 1). Now, set A(k —1) = a(k — 1) giving QZk D00
for each a(k — 1). Regress sz DO-0desr n A(k — 2),L(k — 2) and set
A(k — 2) = a(k — 2) for each a(k — 2). This results in sz 2k=1)(1-0)d

E(Za(k,Q:k,l)(l_o)dkH | A(k — 3),L(k — 2)). Iterate this, giving us for each
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a(k — 1), Q%(?:kfl)d = Ep(Za@k-1)1-0)4,,, | L(0)) and finally averaging over
L(O) ylelds E'p(Z—(;€ 1)(1- O)dk+1)

Note that in this sequential regression algorithm we started regressing a
difference Q(Zl’;fi)ld. Alternatively, one uses the iterative regression to evaluate
Ep(Za(k,l)MHl) separately for § € {0, 1}, and one takes the difference at at
the end.

We have a separate sequential regression representation for Za(k—l) e A(k—1) EoZo a(k—1)-

K.2 Corresponding TMLE based on sequential regres-
sion representation of risk

E EoZsk-1)(1-0)d, -

)

Firstly, regress Z = QthQZ k1Y on A(K), L(K) and set A(K) = dg, which
yields an initial estimator of Q% ., = E(Yy | A(K — 1),L(K)). Consider
a submodel LogitQ% ,,, ,(€) = LogthZ Ki1n T €Cryi(g), where Cry1(g) =
IA(k+1:K) = dkH)Ag(K)(ZAl(K) —1)/g0.x(O), and let €, be the MLE
obtained with logistic regression of Z onto Ck 1, using Q% 41 as off-set,
and only using observations with Ax = dg. Define the targeted estimator

2 1 = O ornlen) of Ep(Ya,, | ACK — 1), L(K)). Set j = K. Now,
regress Q% ,, on A(] —1),L(j — 1), and set A(j — 1) = d;_;, which yields
an initial estimator Q% of Q% . Consider the submodel LogitQz,;n(e) =
LogitQz.;n+€C;i(9), Where Ci(g ) THAk+1:5—=1) =dp 1) A (k) (2A:1 (k) —
1)/90.j—1(O). Let €, be the MLE as defined above. This yields a targeted
estimator Q% ;,, = Qz;n(en) of E(Yg, | A(j—2),L(j —1)). Tterate this from

j = K,...,k + 1, resulting in an initial estimator of Q’;?ﬁl = E(Ya,, |

A(k) = a(k), A(k — 1), L(k)) for each choice of a(k). Consider submodel

LogitQy i1 ,(€) = LogitQy Y, | +€Cri1(g), where Ciy1(g) = Ao(k)I(As (k) =

a(k))/gox(O). Let €, be the MLE, and define sz)d* = Q'™ (¢,). This

k+1,n +l n
d d
has thus resulted in a targeted estimator of QZ k + =it ond Q 2 k+ =01 The

Consider the term

dk+1

difference QZ i is a targeted estimator of QZ H)ld’““ = E(Za(;i,):l’dk+1 |

A(k = 1), L(k)) — E(Z (=04, ., | A(k —1),L(k)). Regressing the difference

(1-0) dk+1*

Qzrsin fl(k: 1), L(k—1) and setting A(k—1) = a(k—1) yields in initial

estimator QZk \, D004 - construct Q%ﬁlz;l)(l_o)d* = _2(72;1)(170)4"’“ (€,) using

clever covariate Cr(9) = 1/go.x—1 as above, using standardization and logistic

)(1=0)dj; 1%

regression. Iterate this, giving for each a(k — 1), Q Zl n , and finally
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)(1=0)dje a(k—=1)(1-0)dj 1 1 *

=1 Zl ) QZ’M (L;(0)). Our estimator of this risk-

QZOn
a(k—1)(1=0)dj, , , *
term is thus > ;o QZOn e

Similarly, we obtain the estimator Zrz(k—l) ng]j‘”*, so that the TMLE of
our risk is given by the sum of these two estimators.

K.3 IPCW
We have

RQgH (Po) = Z {EOZO,a(kfl) + EoZak-1)1dy,,, — EOZa(kfl)ngH} .
a(k—1)eA(k—1)

An IPCW-estimator is given by

— i(k—1 k—1)
RQk+1,IPCWn - Zz IZa(k 1) gok 1(0() ZOl( k—l—l)

T(A; (k=1)=a(k— 1)A(k:+1 K)=d, ) (2A:(k)—1)
+ Zz 1Za(k 1 —H Z( Z+1)

5(0;)
1 11 )=, ) (24 (k) —1)
—n Zi:l gO:k—l(Oi) O’Z(QkJFl) + go: K](Cgl) Zi (QkJrl)

= I(A(k+1:K)=d;_, ) (2A(k
Let Lipew(Qf 1) = —L o5 Zo(Qyy) + 2 JEAOZ0 7((0d ). Then
this IPCW-estimator can be represented as P, Lpcw,g, (Q4 +1)- We can also
use a stabilized [PCW-estimator. The CV-IPCW estimator is defined as

RQ)kH,CV IPCWn — 1/B Zb Pn bL]PCWgn b(Qk+1 n b)

K.4 Double robust estimating equation based estimator
of risk.

Consider the efficient influence curve D*— (Pg) of RQzH(PQ) and note that

it can be represented as L, 4,(Q%, ;) — RQd (Py). Therefore, an estimating
equation based estimator based on solving the efficient influence curve esti-
mating equation in the target parameter is given by:

~d
RQ%+17EE7TL = PnLQn7gTL (Qk+1)'
The cross-validated estimating equation based estimator for a given estimator
Qz 41 is defined as:

B
R — LIy L (Qs100)
QZ+17CV—EE,7’L - B n,bQn b,9n,b k+1,n,b/"
b=1
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K.5 Asymptotic linearity of CV-estimators of true con-
ditional risk

Consider R G, OV-TMLE" The true risk-parameter is defined as

B
1
Ron=7> Ror,  (Po)
b=1

We obtained a representation Ry, ,(Qo) for some @y (parameter of P, i.e.
sequential regressions) for this parameter, which has efficient influence curve
Qk+1 (Qg,go) We then constructed an estimator @}, = Qnp(€n) of Qo

based on training sample Pob and MLEs ¢, so that

Z Pﬁb Dy Qn,b<€n)7 Gn)-

Qkt1,m,

Our proposed CV-TMLE was defined as R}, = + 25:1 Rae | (Qnp(€n), gnp)-
We also have the identity: -
B

R:L - RO,n = Z PO *k+1 Qn b(En gnb Z Qn bs QOagn b?g())

b
Combining these two identities yields:

R, — Ry, =

Mm

Qk in <anb(€n)7 gn,b)

b:
4+ Z Rpy (@ 4, Qo5 gnp, 90)-

For example, if g, = go, then the remamder term equals zero. Or, if @), and
gnp are both consistent, one might assume Rp,(Q}, 4, Qo; gn,b, 90) = 0p(1//n).
Under such an assumption, we have

B
R — Ry = %Z(P;b — Po)Dga  (Qnpl(€n), gnp) + op(1/v/n).

k+1,n,b
b=1

Since this cross-validated empirical process term is asymptotically normally

distributed under minimal assumptions, this provides asymptotic linearity un-
der very weak conditions. Specifically, if PO{Dz?d (Qnp(€n), gns)—Dia (Q, 9o) }*
k+1,n,b k+1

converges to zero in probability, then

R, — Ry = (P, — R) ggﬂ(@go) +op(1/v/n),
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In particular, we can estimate the asymptotic variance of R} — Ry, with

Sy}

o Z Pos{Dg,  (@ualen), gnp)}>

b=1

An asymptotic 95 % confidence interval is given by R’ + 1.960,,/1/n.

L Pathwise differentiability of the mean out-
come under V-optimal rule: multiple time-
point treatment.

We already proved the following theorems for the two time-point treatment
case. Since the proofs are a complete analogue, we will just state the theorems
without proof.

Theorem 21 For notational convenience, let suppress the ax =1 since it is
1 always. Recall the definitions of Qjo, j = 1,..., K + 1. We can represent
V() = Ep, Ya, as follows:

U(Py) = EnYa=o + Y, Eva(ydo.ag) (@i — 1), Va(7))Qj110(@(j — 1), Val)) | ar—1)0 -

J=0

Theorem 22 Assume that Py(| Y |< M) = 1 for some M < oo. The pa-
rameter ¥ : M — R is pathwise differentiable with canonical gradient given

by

D(Py) = S Dy(Py).
where
Dy(FPo) = L(0), A(0) = do,a0)(V(0))) = Ep, Yo

(EPO (Ydo | Edo(k)) - EPO (}/do | Edo (k - 1))

0A])<O)

En(Yay |
N <1141<>: WV (1))
=1,...,K+1.

k

That is, D*(Py) equals the efficient influence curve D§(d, Py) for the parameter
U, (P) = EpYy treating d as given, at the V-optimal rule d = dy: D*(Py) =
D{(doy, Fy).
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L.1 TMLE of mean outcome under VV-optimal rule: mul-
tiple time-point treatment.
Our proposed TMLE is to first estimate the optimal rule dy, giving us an
estimated rule d,(V) = (dn.a@©)(V(0)),...,dn aux)(V(K)), and subsequently
apply the TMLE of EY, for a fixed rule d at d = d,, as presented in van der
Laan and Gruber (2012). In a previous section we described a data adaptive
estimator d,, of dy, so that the TMLE presented in van der Laan and Gruber
(2012) provides us with the TMLE of EyYy,. The asymptotic linearity theorem
for this TMLE is just a copy of Theorem 10.

L.2 TMLE and CV-TMLE of mean outcome under data-
adaptively determined dynamic treatment: multi-
ple time-point treatment

The presentation of the TMLE of Ep,Y,, and the CV-TMLE of Ep, Ep, YCZ(PO o)

(treating CZ(P,(; 5,) as fixed) are presented in a complete analogue fashion as
for the two time-point treatment case, and is therefore omitted here.
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