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Variable Importance and Prediction Methods
for Longitudinal Problems with Missing

Variables

Ivan Diaz, Alan E. Hubbard, Anna Decker, and Mitchell Cohen

Abstract

In this paper we present prediction and variable importance (VIM) methods for
longitudinal data sets containing both continuous and binary exposures subject to
missingness. We demonstrate the use of these methods for prognosis of medical
outcomes of severe trauma patients, a field in which current medical practice in-
volves rules of thumb and scoring methods that only use a few variables and ignore
the dynamic and high-dimensional nature of trauma recovery. Well-principled
prediction and VIM methods can thus provide a tool to make care decisions in-
formed by the high-dimensional patient’s physiological and clinical history. Our
VIM parameters can be causally interpreted (under causal and statistical assump-
tions) as the expected outcome under time-specific clinical interventions. The
targeted MLE used is doubly robust and locally efficient. The prediction method,
super learner, is an ensemble learner that finds a linear combination of a list of
user-given algorithms and is asymptotically equivalent to the oracle selector. The
results of the analysis show effects whose size and significance would have been
not been found using a naive parametric approach, as well as improvements of up
to 0.07 in the AUROC.



1 Introduction

A primary goal in evidence-based medicine is to design prognosis tools that take into account
a possibly large set of measured characteristics in order to predict a patient’s most likely
medical outcome. An equally important goal is to establish at each given time point which
of those measured characteristics is decisive in the development of the predicted outcome. In
the statistics literature these two goals have been called prediction and variable importance
analysis, respectively. In addition to understanding the underlying biological mechanisms
related to positive medical outcomes, the joint use of these tools can help doctors devise
the optimal treatment plan according to the specific characteristics of the subject, simul-
taneously taking into account hundreds of variables collected for each patient. Despite the
current ability to measure a patient’s clinical history in detail, medical practice still involves
care decisions based on physician’s experience and rules of thumb that use only a few vari-
ables and therefore fail to take into consideration the possible intricate relations between all
the measured underlying factors that determine a patient’s health status. In the last years
researchers in the fields of biostatistics and bioinformatics have become increasingly more
interested in developing mathematical and computational tools that help make optimal care
decisions based on all the collected information about a patient’s health status and history
which are currently beyond the computational ability of the clinician at the bedside. Because
of the large number of variables and the complexity of the relations between them, predic-
tion and variable importance would be impossible to achieve without the use of complex
statistical algorithms accompanied by powerful computers able to carry out a large number
of computations in large data sets within reasonable time frames that help doctors make the
right treatment decisions in a timely fashion.

From a technical and practical point of view prediction and variable importance are
different goals whose optimal achievement requires the use of different tools. The objective in
prediction is to specify a well defined algorithm that is capable of doing accurate predictions,
where accuracy can be defined in a variety ways. For prediction it is only relevant whether the
prediction algorithm is accurate or not, it is unnecessary to use the intermediate calculations
of the algorithm to find statistical or causal relations between the variables involved. In fact,
variable importance measures defined in terms of these calculations are often inappropriate
(e.g., with parametric models or non-probabilistic predictors), since their validity depends on
correctness of the model assumed or their statistical aptness is tied to certain conditions (e.g.,
empirical process conditions) that may not be known. On the other hand, variable importance
(VIM) methods are aimed to measure the degree to which changes in the prediction are caused
by changes in each of the predictor variables. VIM methods often provide a ranking of the
most likely causes of a the predicted outcome, and are intended to supply doctors with tools
for making treatment decisions. This difference between prediction and VIM has two main
consequences. First, VIM problems are of a causal nature, whereas prediction problems are
merely associational. Second, in order to help the decision making process, VIM parameters
must be as informative as possible, having an interpretation in terms of the expected change
in the outcome under a given intervention. As explained below, a meaningful interpretation
can only be obtained through an intelligible characterization of VIM as a statistical (or causal)
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parameter defined as a mapping from a honest, tenable statistical model into an Euclidean
space.

Current practice in biostatistics and bioinformatics involves the use of machine learning
algorithms for prediction and the posterior computation of VIM quantities based on its output
and intermediate calculations (see e.g., Breiman, 2001; Olden and Jackson, 2002; Olden et al.,
2004; Strobl et al., 2007, for discussions on random forests and neural networks variable
importance). Because these measures are defined in terms of an algorithm that was targeted
to perform well at prediction, they result in variable importance measures that can seldom
be considered estimates of a well defined causal or statistical parameter. As an example,
consider the case of regression and classification trees (e.g., random forests), where the VIM
for a variable X is defined as the difference between prediction error when X is perturbed
versus the prediction error otherwise (Breiman, 2001; Ishwaran, 2007). The relevance of this
quantity as a measure of VIM is unclear because: 1) it does not represent a statistical or
causal parameter, 2) it does not have an interpretation in terms of the mechanistic process
that generates the data, and 3) its interpretation may be difficult to communicate to the
public, even the public trained in statistics. As an example of the technical difficulties arising
from this practice, Strobl et al. (2007) discuss the “bias” of random forest VIM measures,
missing the fact that bias can only be defined in terms of a target statistical parameter, which
is never specified in random forest VIM analysis. Additionally, no formal inference (p-values)
methods exist for regression and classification trees based VIM.

Furthermore, an algorithm designed to perform well at prediction is not guaranteed to
also do a good job at estimating VIM measures, because good performance is defined differ-
ently for each goal. Performance in prediction is typically assessed through quantities like the
area under the ROC, the false positive rate, or the expected risk of a sensible loss function.
Performance in estimation of Euclidean parameters is assessed in terms of statistical proper-
ties like consistency and efficiency (related to bias and variance). Prediction algorithms are
designed to perform well at estimating the entire regression model, resulting in an incorrect
bias-variance trade-off for each VIM measure.

However, defining VIM parameters in terms of causal relations for continuous variables
poses additional technical challenges. When researchers using causal inference methods are
faced with exposures of continuous nature, the most common approach is to dichotomize
the continuous exposure and consider the effect of its binary version on the outcome. This
approach suffers from various flaws. First, the causal parameter does not answer questions
about plausible modifications to the data generating mechanism. Stitelman et al. (2010)
show that the additive causal effect of a dichotomized exposure compares an intervention
in which the density of the exposure is truncated below the dichotomization threshold with
an intervention in which the density is truncated above it. Such interventions are seldom
realistic, and might not be of great interest for specific applications. Second, even if trun-
cation interventions are realistic, the data analyst still has to choose a cutoff point for the
dichotomization. Most of the times the decision about such cutoff point is data-driven (i.e.,
comparing quantiles), or made completely arbitrarily. This practice renders a parameter that
is dependent on the data, making its interpretation in terms of the original, continuous expo-
sure even more difficult. For instance, if VIM measures for continuous outcomes are defined
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in terms of a dichotomization, it is often possible to define the right cutoff point that makes
the continuous variable more important than a given binary variable of reference. It is thus
necessary to argue why the chosen cutoff point makes these VIM measures comparable.

In this paper we explore a VIM problem in which it is necessary to rank a list of both
continuous and binary variables in terms of their importance for developing a medical out-
come, which is a very common problem in variable importance analysis. We use state of the
art methods for causal inference to solve prediction and VIM problems and illustrate the use
of our methods using a medical application, but the methods we develop and the arguments
we present are completely general and can be applied to any prediction or VIM problem
(e.g., the analysis of ecological data, genomics, educational and social research, economics).
For prediction, we use a machine learning technique called super learning , which uses cross
validation to choose an optimal convex combination of a list of prediction algorithms pro-
vided by the user. The properties of this method have been extensively studied through
analytical calculations as well as simulations by van der Laan and Dudoit (2003) and van der
Laan et al. (2004, 2007), among others. We define VIM measures in terms of appropriate
interventions in a causal model, which results in parameters that have a clear interpretation
in terms of the expected outcome under a clinical intervention. VIM measures with causal
interpretation are more relevant than their machine learning/modeling counterpart because
they attempt to discover the factors that must be intervened upon in order to obtain a signifi-
cant improvement in the outcome, and not just the factors that are associated to the outcome
in question. We define VIM measures that respect the continuous or binary nature of the
variable, and are comparable in the sense that their mathematical definition is equal up to
first order, providing a valid ranking of the variables in terms of their causal importance. In
order to find VIM estimators with the best possible statistical properties we use the tools for
efficient inference in semi-parametric models described by Bickel et al. (1997); van der Laan
and Robins (2003), and van der Laan and Rose (2011) among others, which allow us to use
asymptotically linear estimators of the VIM parameters that are consistent and efficient in
the non-parametric model (under regularity conditions).

We demonstrate the use of these techniques in an example predicting clinical outcomes
and evaluating the VIM of a set of competing variables in severe trauma patients. Trauma
is the leading cause of death between the ages of 1 and 44, according to the World Health
Organization. The vast majority of these deaths take place quickly and much of the initial
resuscitative and decision-making action takes place in the first minutes to hours after injury
(Hess et al., 2006; Holcomb et al., 2007). In addition, it is clear that as patients progress
through their initial resuscitation, the relative attention paid to different physiologic and
biologic parameters and indeed the interventions themselves are dynamic. Different variables
are important and drive future outcome in the first 30 minutes after injury than at 24 hours
when a patient has survived long enough to receive large volume resuscitation, operative
intervention and ICU care. While these dynamics are intuitive, most practitioners do not
have the ability to know which parameters are important at any given time point. As a
result, often the same vital signs and markers are followed throughout the patient’s hospital
course independent of whether they are currently relevant. This results in practitioners who
are often left making care decisions without knowledge of the current patient physiologic
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state and which parameters are important at that moment. Left with this uncertainty and
awash in constantly evolving multivariate data, practitioners make decisions based on clinical
gestalt, a few favorite variables, and rules of thumb developed from clinical experience. To
aid in prediction, the medical literature is filled with scoring systems and published associ-
ations between these variables (physiology, biomarker, demographic, etc.) and outcomes of
interest (Krumrei et al., 2012; Lesko et al., 2012; MacFadden et al., 2012; Nunez et al., 2009;
Schöchl et al., 2011). While numerous, these published statistical associations, given the re-
ported methodology, often report misspecified and overfit models. In addition most of these
statistical predictive models do not account for the rapidly changing dynamics of a severely
injured patient, and fail to take into account the statistical issues discussed in the previous
paragraphs. An ideal system would mimic the clinical decision making of an experienced
practitioner by providing dynamic prediction (changing prediction at iterative time points)
while evaluating the dynamic importance of each variable over time (Buchman, 2010). This
then would mimic the implicit understanding a clinician brings to a patient where it is clear
that the necessary focus of care must change over time.

The paper is organized as follows. In section 2 we describe the structure of the data and
introduce the statistical problem using causal inference tools to define statistical parameters
that measure the importance of a variable with respect to an outcome of interest. In section
3 we present various estimators for the variable importance parameters previously defined,
and briefly describe the super learner (van der Laan et al., 2007), an ensemble learner whose
asymptotic performance is optimal for prediction. In section 4 we describe the problem of
prognosis for trauma patients and the dynamic importance of clinical factors, demonstrate
the use of the methods previously presented, and compare the results with an approach
that utilizes stepwise regression to estimate VIM measures and provides a comparison with
common statistical practice. Finally, in section 5 we provide some concluding remarks.

2 Data, problem formulation, and parameters of inter-

est

In order to estimate the effect of a variable A on an outcome Y controlling for a set of
variables W , it is common practice among data analysts to estimate the parameter β in a
parametric regression model E(Y |A,W ) = m(A,W |β) for a known function m, for example,

E(Y |A,W ) = β0 + β1A+ β2W. (1)

It is also common to assume more complex models for the relation between (A,W ) and Y
(e.g., by varying the amount of interaction terms, functional form of m, or by using smoothing
techniques), but the linear regression example suffices to introduce the problem. Under model
(1), the estimate of β1 is interpreted as the expected change in Y given a change of one unit
in A:

β1 = E{E(Y |A+ 1,W )− E(Y |A,W )}. (2)

Under small violations to the assumptions of model (1) the estimate of β1 cannot be inter-
preted as in (2) anymore, therefore we note that the interest of the researcher is to estimate
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the right hand side of this equation, not β1. Consider for example the following models:

E(Y |A,W ) =β
(1)
0 + β

(1)
1 A+ β

(1)
2 W + β

(1)
3 AW (3)

E(Y |A,W ) =β
(2)
0 + β

(2)
1 log(A) + β

(2)
2 W. (4)

If the true conditional expectation is given by model (3), but (1) is estimated instead, neither

the estimate of β1 in model (1) nor β
(1)
1 in (3) represent the quantity in the right hand side

of (2), which is now given by β
(1)
1 + β

(1)
3 E(W ). On the other hand, if the true model is (4),

the parameter of interest is now given by β
(2)
1 {E(log(A+ 1))− E(logA)}.

In order to avoid these flaws, in this paper we will define parameters in terms of char-
acteristics of the probability distribution of the data under a non-parametric model, as in
equation (2). This practice allows the definition of the parameter of interest independently of
(possibly) misspecified parametric models, and avoids dealing with different interpretations
of regression parameters under incorrect model specifications.

The causal interpretation of statistical parameters (e.g., equation (2)) requires additional
untestable assumptions about the distribution of counterfactual outcomes under a hypotheti-
cal interventions that are often encoded in a structural equation model (NPSEM Pearl, 2000).
In the remaining of the section we will describe the observed data, and define the variable
importance measures. We will now introduce the example that motivated the development of
these tools, and that will be analyzed in section 4. Since there is little knowledge about the
causal structure of these data, we will introduce the variable importance measures by defin-
ing them in terms of predictive variable importance. We will then provide the assumptions
(NPSEM) that must be met in order to give them a causal interpretation. If the assumptions
in the NPSEM do not hold, the estimates do not have a causal interpretation and must not
be used to make treatment decisions. In that case, there are two main uses of these estimates.
First, they can be used as tools for determining the best set of predictors variables by ruling
out those whose with a zero non-significant variable importance. Second, they may be used
as a tool for formulating causal hypothesis that may be tested in a subsequent randomized
study or in an observational study in which the necessary causal assumptions are met.

Example. The data analyzed in this example were collected as part of the Activation
of Coagulation and Inflammation in Trauma (ACIT, see e.g., Bir et al., 2011; Cohen et al.,
2009a,b) study, which is a prospective cohort study of severe trauma patients admitted to a
single level 1 trauma center. Several physiological and clinical measurements were recorded
at several time points for each patient after arrival to the emergency room. These variables
include demographic variables (e.g., age, gender, etc.), baseline risk factors (e.g., asthma,
chronic lung disease, Glasgow coma scale, diabetes, injury mechanism, injury severity score,
etc.), longitudinally measured variables that account for the patient’s treatment and health
status history (e.g., respiratory and heart rate, platelets, coagulation measures like prothrom-
bin time and INR, activated protein C, etc.), and an indicator of the occurrence of death at
each time interval. Because these data are often collected in a high-stress environment, it is
common that some variables are missing for some patients at a given time point. The list of
variables we analyzed presented in Appendix A.

Assume that observations on each patient are recorded at times t0, t1, . . . , tJ , where t0 = 0,
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and let T denote the time of death of a patient. The observed data for each patient is given
by the random variable

O = (L0, C1, L1, Y1, . . . , CJ , LJ , YJ),

where L0 denotes a set of baseline variables recorded at admission to the hospital, Lj =
(Lj1, . . . , LjK) denotes a set of variables measured at time tj, Cj = (Cj1, . . . , CjK) where Cjk
denotes an indicator of missingness of Ljk, and Yj = I(tj < T ≤ tj+1) denotes an indicator
of death occurring in the interval (tj, tj+1], for j = 0, . . . , J − 1. Once death occurs the
random variables in the remaining time points of the vector O become degenerate so that
this structure is well defined.

For the analysis of the ACIT data we have classified the variables Ljk in two non-mutually
exclusive categories: baseline and treatment variables. Baseline variables (L0) are causally
related to the outcome but can seldom be manipulated by the physician and are rarely of
interest as possible care targets. Although baseline variables are not of interest in themselves,
controlling for them is crucial when estimating the effect of treatment variables, which are
often longitudinal variables that represent possible targets for clinical care. The label of each
variable according to this classification is shown in Table 3 of Appendix A.

We will define VIM measures in terms of the effect of Ljk on Yj′ , for all j′ ≥ j and for
all k. That is, we are interested in importance of a variable recorded at time point tj on
the hazard of death in each of the subsequent time intervals (tj, tj+1], . . . , (tJ−1, tJ ]. This
approach has the advantage that VIM can be seen as a dynamic process in which the factors
that are decisive for developing/predicting a clinical outcome change as a function of time.
The problem of variable importance for these data can thus be transformed into a series of
cross-sectional problems as follows. For each patient still at risk at tj′ , denote

A ≡ Ljk

C ≡ Cjk (5)

W ≡ (L0, Cj−1, Lj−1)

Y ≡ Yj′ ,

and
Q̄(A,C,W ) ≡ E(Y |A,C,W ), g(A|C,W ) ≡ P (A|C,W )

φ(C|W ) ≡ P (C|W ), QW (W ) ≡ P (W ).

Without loss of generality we will assume that the variable A is either binary or continuous
in the interval (0, 1). Recall that

E(Y ) = EQW

(
Eφ{Eg[Q̄(A,C,W )|C,W ]}|W

)
. (6)

If A is continuous it is possible to replace the conditional density g(A|C,W ) by g(A−δ|C,W ),
and the probability of missingness φ(C|W ) by I(C = 1), obtaining

EWEg{Q̄(A+ δ, 1,W )|C = 1,W}.
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We define the variable importance measure for continuous variables as

Ψc(Q̄, QW , g) ≡ EWEg{Q̄(A+ δ, 1,W )|C = 1,W} − E(Y ), (7)

Indeed, this is a reasonable measure of conditional dependence, since for (A,C) ⊥⊥ Y |W we
have Ψc(Q̄, QW , g) = 0. On the other hand, Ψc(Q̄, QW , g) 6= 0 measures the amount in which
small changes of δ in A affect the expectation of the outcome. Likewise, variable importance
measures for binary variables are defined as

Ψb(Q̄, QW , g) ≡ EWEg{Q̄(A,C,W )|C = 1,W}+δ{E[Q̄(1, 1,W )−Q̄(1, 0,W )]}−E(Y ), (8)

where the first two terms come from replacing g(A|C,W ) by g(A|C,W )+(−1)Aδ and φ(C|W )
by I(C = 1) in equation (6). The true value of these parameters will be denoted ψc,0 and
ψb,0, respectively.

Comparability We argue that the previous variable importance measures for continuous
and binary variables are comparable up to first order. First of all, note that, under the
appropriate differentiability assumptions, for continuous A we have

Ψc(Q̄, QW , g) ≈ EW{Q̄(A, 1,W )|C = 1,W}+ δ
d

dδ
EWE{Q̄(A+ δ, 1,W )|C = 1,W}

∣∣∣∣
δ=0

.

This expression and (8) both have the form a+ δ× b, where b can be seen as the appropriate
slope of E{Q̄(A,C,W )} as a function of its first argument, providing an argument that, at
least in first order, these two VIM measures are comparable.

Underlying causal model In order to give a causal interpretation to the parameters
defined in the previous paragraphs, a series of assumptions about the structure of the data
generating process must be true. We will present those assumptions in terms of a non-
parametric structural equation model (NPSEM Pearl, 2000), given by

L0 =fL0(UL0)

Cjk =fCjk
(Cj−1, Lj−1, L0, UCj

) j = 1, . . . , J ; k = 1, . . . , K

Ljk =CjkfLjk
(Cj−1, Lj−1, L0, ULj

) j = 1, . . . , J ; k = 1, . . . , K (9)

Yj =fYj(C̄j, L̄j, L0, UYj) j = 1, . . . , J,

where, for a random variable X, fX denotes an unknown but fixed function, UX denotes all
the unmeasured factors that are causally related to X, and X̄j = (X1, . . . , Xj) denotes the
history of X up until time tj. As pointed out by Pearl (2000), this model assumes that the
data O for each patient are generated by the mechanistic process implied by the functions
fXj

with a temporal order dictated by the ordering of the time points tj. In addition, this
NPSEM encodes two important conditional independence assumptions:

Ljk ⊥⊥ Ljk∗|(L0, Lj−1) ∀j, k∗ 6= k, (10)

Ljk ⊥⊥ L̄j−2|(L0, Lj−1) ∀j, k. (11)

7
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Assumption (10) means that the variables Ljk at time tj are drawn simultaneously as a
function of the past only, and that contemporary variables do not interact with each other.
This is a very strong assumption for which there is no support in the severe trauma literature:
the causal structure between variables measured contemporaneously is not well understood
yet. Assumption (11) means that the value of a variable Ljk is only affected by the immediate
past, and is not directly affected by any of the variables measured before or on time tj−2.

As a consequence of these assumptions, the problem of estimating the causal effect of
each Ljk on each Yj′ for j′ ≥ j can be seen as a series of cross-sectional problems as follows.
Note that Ljk∗ for k∗ 6= k are not confounders of the causal relation between Ljk and Yj′ .
To illustrate this, consider the NPSEM encoded in the directed acyclic graph of Figure 1,
in which for simplicity we assume that all covariates are observed (i.e., C variables are not
present) and that J = K = 2. It stems from the graph that the variable L22 plays no role
as a confounder of the causal effect of L21 on Y2. Thus, for fixed j, j′ ≥ j, and k, and for

L0

L11

L12 L21

L22

Y1 Y2

Figure 1: Directed acyclic graph, the arrows in blue and red denote the relations that con-
found the causal effect of L21 on Y2

each patient still at risk at tj′ , using the notation introduced in (5), it suffices to consider the
following simplified NPSEM:

W = fW (UW ), C = fC(W,UC), A = CfA(W,UA), Y = fY (A,C,W,UY ), (12)

where the U variables denote all the exogenous, unobserved factors associated to each of
the observed variables, and the functions f are deterministic but unknown and completely
unspecified. Some additional consequences of NPSEM (12) are:

(1) The missingness indicator C is allowed to depend on the covariates measured in the
previous time point. In this way we take into account that a variable can be missing
as a result of the previous health status of the patient, and also that it can be strongly
correlated with previous missingness indicators.

(2) Missingness is informative. A patient’s missingness indicator C is allowed to affect the
way Y is generated, therefore acknowledging that missingness can contain information
about the health outcome (e.g., sicker patients who will die earlier might be more likely
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to have missing values because information stops being recorded during life-threatening
situations).

Continuous Variables. Consider an intervened system in which the variables are gener-
ated by the following system of equations

W = fW (UW )

CI = 1

AI = fA(W,UA) + δ (13)

Y I = fY (AI , CI ,W, UY ),

which, for a small positive δ, can be interpreted as a model in which there is no missingness,
and the distribution of the exposure variable AI is shifted to the right by δ units. This type of
intervention has been previously discussed in the literature (Dı́az and van der Laan, 2011a),
and belongs to a wider class of interventions known as stochastic interventions (Korb et al.,
2004; Didelez et al., 2006; Dawid and Didelez, 2010). The parameter E(Y I)− E(Y ) can be
causally interpreted as the expected reduction in mortality rate gained by an increase of δ
units in the variable A for each patient. Since the counterfactual data OI = (W,CI , AI , Y I)
are not observed, E(Y I) is not estimable without further untestable assumptions. Under the
randomization assumption (see, e.g., Rubin, 1978; Pearl, 2000) that

(C,A) ⊥ Y I |W, (14)

and the positivity assumption

g0(A|W ) > 0, and φ0(1|W ) > 0 for all A and W, (15)

the expectation E(Y I) is identified as E(Y I) = EWE{Q̄(A + δ, C,W )|C = 1,W}, and
the parameter of interest is defined as (7). A proof of this result under the randomization
assumption is presented by Dı́az and van der Laan (2011a). That proof follows the arguments
for identification of general causal parameters given by Pearl (2000), who provides a unified
framework for identification of counterfactual parameters as function of the observed data
generating mechanism.

Binary Variables For binary variables, following the structural causal model described in
(12), the VIM parameter is defined according to the following intervened system:

W = fW (UW )

CI = 1

AI =

{
1 with probability g(1|1,W ) + δ

0 with probability g(0|1,W )− δ
Y I = fY (AI , CI ,W, UY ),

9
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where 0 < δ < supw g(0|1, w) is a user-given value. Under randomization assumption (14),
and the positivity assumption

0 < g0(1|W ) < 1, and φ0(1|W ) > 0 for all W, (16)

the expectation of Y I is identified as a function of the observed data generating mechanism as
E(Y I) = EWE{Q̄(A,C,W )|C = 1,W}+ δ{E[Q̄(1, 1,W )− Q̄(1, 0,W )]}, and the parameter
of interest is defined as (8).

In the following sections we will discuss double robust estimation methods for these pa-
rameters.

3 Estimation and prediction methods

We will first discuss the consistent and efficient estimation of the VIM parameters defined in
the previous section, and then we will proceed to discuss prediction methods for Q̄0, g0 and
φ0.

3.1 VIM estimation

In order to define semi-parametric VIM estimates that have optimal asymptotic properties
we first need to talk about the efficient influence function. The efficient influence function is
a known function D of the data O and P0, and is a key element in semi-parametric efficient
estimation, since it defines the linear approximation of all efficient regular asymptotically
linear estimators (Bickel et al., 1997). This means that the variance of the efficient influ-
ence function provides a lower bound for the variance of all regular asymptotically linear
estimators, analogously to the Cramer-Rao lower bound in parametric models. The efficient
influence functions of parameters Ψc and Ψb are presented in Appendix B.

We will use targeted minimum loss based estimators (TMLE, van der Laan and Rubin,
2006; van der Laan and Rose, 2011) of the parameters Ψc and Ψb. TMLE is a substitution/plug-
in estimation method that, given initial estimators (Q̄n, QW,n, gn) of (Q̄, QW , g), finds updated
estimators (Q̄∗n, Q

∗
W,n, g

∗
n) and defines the estimator of Ψ as

ψn = Ψ(Q̄∗n, Q
∗
W,n, g

∗
n).

TMLE is an estimation method that enjoys the best properties of both G-computation es-
timators (Robins, 1986) and the estimating equation methodology (see e.g., van de Geer,
2000; van der Laan and Robins, 2003). On one hand, TMLE is similar to G-computation
estimators (e.g., Ψ(Q̄n, QW,n, gn)) in that it is a plug-in estimator, and therefore produces
estimates that are always within the range of the parameter of interest (e.g., it is always
in the interval [0, 1] if the estimand is a probability). On the other hand, under regularity
conditions and consistency of (Q̄n, gn, φn), it is asymptotically linear with influence function
equal to the efficient influence function:

ψn − ψ0 =
n∑
i=1

D(P0)(Oi) + oP (1/
√
n).
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As a consequence, TMLE has the following properties:

• It is a substitution/plug-in estimator.

• It is efficient if Q̄n, gn, and φn are consistent for Q̄0, g0, and φ0, respectively.

• It is consistent if either Q̄n or both gn and φn are consistent. This property is referred
to as double robustness.

• It is more robust to empirical violations of the positivity assumptions (15) and (16).

In Appendix B we describe an iterative procedure that transforms the initial estimates Q̄n and
gn into targeted estimates Q̄∗n and g∗n such that Ψ(Q̄∗n, g

∗
n, Q

∗
W,n) is a TMLE of Ψ(Q̄0, g0, QW,0),

and discuss in more detail the properties of the TMLE. An R function that computes the
TMLE of ψ0 can be found in http://works.bepress.com/ivan_diaz/5/.

Estimating equation (EE), Gcomp/IPMW, and unadjusted estimators In addi-
tion to the TMLE we will compute three additional estimates of the VIM, for comparison
with other estimation methods. The first estimator, the estimating equation (EE) method-
ology, is an estimator that uses the efficient influence function of the parameter in order
to define the estimator as the solution of the corresponding estimating equation. Because
the EE is also asymptotically linear with influence function equal to the efficient influence
function, it is consistent and asymptotically efficient. However, the estimating equation that
defines the EE may not have a solution in the parameter space, in which case the EE does
not exist. The second estimator, a mixture of the G-computation formula and the inverse
probability of missingness weighted estimator IPMW (Gcomp/IPMW) represents a choice
that could have been made in common practice in statistics. The Gcomp/IPMW estimator
uses initial estimators φn and Q̄n of φ0 and Q̄0 obtained through step-wise regression, and is
defined as

ψc,n,GI =
1

n

n∑
i=1

{
Ci

φn(Wi)
Q̄n(Ai + δ, 1,Wi)− Yi

}
ψb,n,GI =

1

n

n∑
i=1

{
Ci

φn(Wi)
Q̄n(Ai, 1,Wi) + δ[Q̄n(1, 1,Wi)− Q̄n(0, 1,Wi)]− Yi

}
,

for Ψc and Ψb, respectively. This estimator is consistent only if both the model for φ0 and
the model for Q̄0 have been correctly specified. The unadjusted estimator is identical to the
Gcomp/IPMW estimator but including only the intercept term in the vector W .

Since the consistency of the initial estimators of Q̄0, g0 and φ0 is key to attain estimators
with optimal statistical properties (i.e., consistency and efficiency), we will carefully discuss
the construction of such estimators in the next subsection. In particular, the next subsection
deals with the construction of an estimator for Q̄0, the predictor of death in our working
example.
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3.2 Prediction

As explained in the previous section, the consistency of the initial estimators Q̄n, gn and ψn
determine the statistical properties of the estimators of ψc,0 and ψb,0. Common practice in
statistics involves the estimation of models like

logit Q̄(A,W ) = β0 + β1A+ β2W + β3AW. (17)

This approach that has gained popularity among researchers in epidemiology and biostatis-
tics, partly because of the analysis of its statistical properties requires simple mathematical
methods, and partly because it is readily available in every statistical software. Neverthe-
less, as it is also well known among their users, parametric models of the type described by
(17) are rarely correct, and their choice is merely based on their computational advantages
and other subjective criteria. This practice leads to regression estimator whose usefulness is
highly questionable given that the assumptions it entails (linearity, normality, link function,
etc.) do not originate in legitimate knowledge about the phenomena under study, but rather
come from analytical tractability and computational convenience.

In this paper we will use the super learner (van der Laan et al., 2007) for estimation of Q̄0,
g0, and ψ0. Super learner is a methodology that uses cross-validated risks to find an optimal
combination of a list of user-supplied estimation algorithms. One of its most important the-
oretical properties is that its solution converges to the oracle estimator (i.e., the candidate in
the library that minimizes the loss function with respect to the true probability distribution),
thus providing the closest approximation to the real data generating mechanism. Proofs and
simulations regarding these and other asymptotic properties of the super learner can be found
in van der Laan et al. (2004) and van der Laan and Dudoit (2003).

To implement the super learner predictor it is necessary to specify a library of candidate
predictors algorithm. In the case of the conditional expectations Q̄0, φ0, and g0 for binary A,
the candidates can be any regression or classification algorithm. Examples include random
forests, logistic regression, k nearest neighbors, Bayesian models, etc. For estimation of the
conditional densities g0 we will also use the super learner, with candidates given by several
histogram density estimators, which yields a piece-wise constant estimator of the conditional
density. The choice of the number of bins and their location is indexed by two tuning
parameters. The implementation of this density estimator is discussed in detail by Dı́az and
van der Laan (2011b), and will be omitted in this paper.

4 Data Analysis

In this section we analyze the data described in the example of Section 2. The sample size
was n = 918 patients, and measurements of the variables described in Appendix A were taken
at 6, 12, 24, 48, and 72 hours after admission to the emergency room.

The main objective of the study was the construction of prediction models for the risk
of death of a patient in a certain time interval given the variables measured up to the start
of the interval, as well as the definition and estimation of VIM measures that provide an
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account of the longitudinal evolution of the relation between these physiological and clinical
measurements and the risk of death at a certain time point.

The data set was partitioned in 6 different data sets according to the time intervals defined
by the time points in which measurements were taken, each of these 6 datasets contained
only the patients that were at risk of death (alive) at the start of the time interval. Each
of the continuous covariates was rescaled by subtracting the minimum and dividing by the
range so that all of the covariates range between zero and one. The methods described in
the previous sections were applied to each variable in each of these datasets.

The candidate algorithms for prediction of death used in the super learner predictor are
as follows:

• Logistic regression with main terms (GLM)

• Stepwise logistic regression (SW)

• Bayesian logistic regression (BLR)

• Generalized additive models (GAM)

• Earth (Earth)

• Sample mean (MEAN),

from which the first three represent common practice in epidemiology and statistics, GAM
and Earth are algorithms that intend to capture non-parametric structures of the data, and
the sample mean is included for contrast.

Table 1 shows the coefficients of each candidate algorithm in the super learner predictor
of E(Yj|L̄j, C̄j, L0). The variability in these coefficients shows that no single algorithm is
optimal for prediction at each time point, and that each algorithm describes certain features
of the data generating mechanism that the others are not capable of unveiling.

0-6hr 6-12hr 12-24hr 24-48hr 48-72hr 72+hr
GLM 0.0000 0.0000 0.0000 0.0318 0.0259 0.0000

SW 0.0000 0.1889 0.0000 0.0000 0.2073 0.1787
BGLM 0.3318 0.0586 0.1049 0.1329 0.0313 0.2750

GAM 0.5118 0.7525 0.8951 0.8353 0.7201 0.2487
Earth 0.1563 0.0000 0.0000 0.0000 0.0154 0.1298

MEAN 0.0000 0.0000 0.0000 0.0000 0.0000 0.1678

Table 1: Coefficients in the Super Learner

Figure 2 presents the ROC curves for the cross-validated super learning predictions of
death, as well as the cross-validated predictions based on a logistic model with AIC-based
stepwise selection of variables, for comparison with common practice. The super learner
prediction methods outperforms the stepwise prediction in all cases, with AUC ROC (area
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under the ROC curve) differences ranging from 0.02 to 0.07. Though this differences might be
small, an interpretation of their meaning reveals the clinical relevance of a slight improvement
in prediction. The AUC ROC can be interpreted as the proportion of times that a patient
who will die obtains a higher prediction score than a patient who will survive. In practice, an
AUC ROC difference of 0.02 means that in 100 pairs of patients (pairs formed by one patient
who will die and one who will not) the super learner classifier will correctly classify two pairs
more than the step-wise classifier, which could potentially lead to live-saving treatments for
these two patients.

0−6 hours

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

SL AUC  = 0.88
SW AUC  = 0.85

6−12 hours

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

SL AUC  = 0.87
SW AUC  = 0.82

12−24 hours

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
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0.
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SL AUC  = 0.87
SW AUC  = 0.8

24−48 hours

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
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SL AUC  = 0.86
SW AUC  = 0.8

48−72 hours

0.0 0.2 0.4 0.6 0.8 1.0
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SL AUC  = 0.8
SW AUC  = 0.78

72+ hours

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

SL AUC  = 0.79
SW AUC  = 0.75

Figure 2: ROC curves of cross-validated prediction for the super learner (SL) and the logistic
step-wise regression (SW), for different time intervals.

The VIM-TMLE measures that were significant at 0.05 were ranked according to their
magnitude. Table 2 presents the first five (whenever five or more were significant) most
important variables for prediction of death at each time interval, according to the TML
estimator presented in Section 3. Recall that all the continuous variables were re-scaled
between zero and one; the value δ = 0.01 was used for all the estimates. The interpretation
of the values in the first row of Table 2, for example, is that if APC were to increase by
1% for every patient, the mortality rate in the first time interval would be augmented by
2%. The TMLE and the EE produced generally similar results, whereas the Gcomp/IPMW
estimator produced results that are somewhat different and not significant more frequently.
Note that several of the Gcomp/IPMW point estimates coincide with the TMLE and EE, but
p-values generally larger. This could be due to the fact that the TMLE and EE are efficient
estimators, and therefore provide more powerful hypothesis tests. In light of the superior
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theoretical properties of the TMLE and EE, we prefer to rely on estimates obtained through
these methods.

Time of Var. Var.
death Name Time TMLE EE G-comp/IPMW Unadjusted

0-6 hrs.

APC 00 0.0205(0.023) 0.0183(0.043) 0.0235(0.386) 0.1063(<0.001)
INR 00 0.0216(<0.001) 0.0193(0.002) -0.0011(0.722) 0.0345(<0.001)
PT 00 0.0248(<0.001) 0.0248(<0.001) -0.0011(0.698) 0.0400(<0.001)
ISS 00 -0.0314(<0.001) -0.0319(<0.001) -0.0242(<0.001) -0.0244(0.002)

6-12 hrs.

SBP 00 0.0041(0.010) 0.0041(0.011) 0.0020(0.108) 0.0340(<0.001)
PT 00 0.0076(0.001) 0.0074(0.001) 0.0019(0.426) 0.0376(<0.001)

BDE 00 0.0098(0.028) 0.0114(0.011) 0.0120(0.004) 0.0796(<0.001)
FV 06 -0.0139(0.047) -0.0394(0.018) -0.0394(0.141) 0.0199(0.349)

ATIII 06 -0.0160(0.026) -0.0323(0.009) -0.0434(0.072) 0.0199(0.340)

12-24 hrs.

SBP 00 0.0031(0.034) 0.0030(0.037) 0.0018(0.220) 0.0317(<0.001)
PT 00 0.0051(0.025) 0.0048(0.031) 0.0019(0.377) 0.0357(<0.001)
FV 06 -0.0134(0.050) -0.0246(0.008) -0.0327(0.562) 0.0276(0.140)

DDIM 00 0.0140(0.042) 0.0134(0.054) 0.0142(0.331) 0.0955(<0.001)
PC 06 -0.0224(0.001) -0.0394(0.008) -0.0286(0.349) 0.0262(0.221)

24-48 hrs.

PT 00 0.0080(<0.001) 0.0080(<0.001) 0.0026(0.124) 0.0313(<0.001)
DDIM 00 0.0134(0.026) 0.0133(0.028) 0.0144(0.504) 0.0770(<0.001)

ISS 00 -0.0229(<0.001) -0.0232(<0.001) -0.0211(<0.001) -0.0155(0.020)
HR 12 0.0346(<0.001) 0.0136(0.118) -0.0030(0.922) 0.0570(<0.001)

APC 00 0.0429(<0.001) 0.0432(<0.001) 0.0226(0.310) 0.0761(<0.001)

48-72 hrs.

CREA 00 0.0028(0.030) 0.0028(0.030) 0.0007(0.301) 0.0204(<0.001)
PT 00 0.0089(<0.001) 0.0089(<0.001) 0.0017(0.210) 0.0241(<0.001)

DDIM 12 0.0140(0.049) 0.0122(0.095) 0.0481(0.885) 0.0605(<0.001)
PC 06 -0.0164(0.012) -0.0190(0.010) -0.0252(0.075) 0.0381(0.035)
RR 24 0.0187(0.002) 0.0148(0.012) 0.0057(0.749) 0.0644(<0.001)

72+ hrs.
CREA 00 0.0027(0.002) 0.0027(0.002) 0.0007(0.291) 0.0168(<0.001)

ISS 00 -0.0142(0.005) -0.0149(0.003) -0.0145(0.008) -0.0085(0.124)
PTT 00 0.0220(<0.001) 0.0219(<0.001) 0.0017(0.012) 0.0220(<0.001)

Table 2: VIM estimates for the most important variables for prediction of death at each time
interval according to TML estimate (p-values in parentheses and truncated at 0.001).

In addition to the previous tables, Figure 3 shows heat maps of the VIM measures. For
example, Figure 3a shows the importance of each of the variables measured at baseline on the
outcome between 0-6 hours, 6-12 hours, 12-24 hours, 24-48 hours, 48-72 hours, and 72+ hours.
Additionally, the dendrogram plotted in the left margin of Figure 3a shows a hierarchical
clustering of the variables according to the profile of their effect on the longitudinal outcome.

At each time point, variables that less than 15% of observed values were not included in the
analysis. For this reason, and because missingness was more common in later measurement
times, the number of variables included in Figure 3 decreases as the time of measurement
increases. Additionally, the output for variables measured at 48 and 72 hours is not shown
because none of the results were significant.
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Figure 3: VIM estimates of measured variables according to TMLE. ‘***’ indicates p-value
≤ 0.001, ‘**’ indicates 0.001 < p-value ≤ 0.01, and ‘*’ indicates 0.01 < p-value ≤ 0.05.

These graphs confirm the hypothesis that the main drivers of recovery after trauma are
dynamic over time. For example, the variables in the top of Figure 2 (APC, HCT, CREA,
HGB), measured at baseline, do not have an immediate effect on the hazard of death in the
first six hours, but result very relevant to predict the outcome between 6 and 24 hours. Note
that these variables are mostly related to the coagulation cascade and inflammation. On
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the other hand, variables like HR and RR that are related to the general health status of a
patient play an important role only when measured 12 after admission.

Due to the severity of the missingness at later time points, it is not possible to perform
a comparison of the time trajectory of each variable based on these data. However, these
results provide useful tools to formulate hypothesis that may be tested in subsequent studies.

5 Discussion

In this paper we addressed the problem of estimating variable importance parameters for
longitudinal data that are subject to missingness. We present variable importance parameters
that have a clear interpretation either as purely statistical parameters or as causal effects,
depending on the assumptions about the data generating mechanism that the researcher is
willing to make. These are important characteristics that advance the field in various fronts.
First, unlike VIMs derived from machine learning and data-adaptive predictors (e.g., random
forests), the VIMs defined in this paper have a concise definition as statistical parameters,
which allowed the study of its mathematical properties and ultimately led to the construction
of estimators with desirable statistical properties like consistency and efficiency. Second,
the assumptions required to give a causal interpretation to statistical parameters are often
concealed, and the language used attempts to imply causal relations without clearly stating
the necessary assumptions. The framework we present endows the user with the necessary
tools to decide whether it is correct or not to interpret the estimates in terms of causal
relations. Additionally, the parameters that we present have a purely statistical interpretation
as a measure of conditional dependence, interpretation that must be used when there is not
enough knowledge about the causal structure. We provide a methodology that can be used to
compare continuous and binary variables in terms of their effect on an outcome, guaranteeing
that the results will be mathematically comparable.

We illustrate the use of the methods through the analysis of an example related to recovery
after sever trauma, and present the results of the analysis. These analyses provide a significant
contribution to the field of trauma injury, by bringing state-of-the-art statistical methods to
a field in which the large dimensionality of the problem constitutes a limiting factor for
understanding the intricate relations between the variables involved. We propose a “black-
box” prognosis algorithm (super learner) that can take into account the complexity of the
problem, and represents an alternative to the scoring methods based on rules of thumb that
are currently used in this setting. The results of the variable importance analysis corroborate
the hypothesis that recovery after severe trauma is a dynamic process in which the decisive
factors change over time, and provides provisional answers to various questions about recovery
after severe trauma. Because the structural causal assumptions required are not met, the
estimated VIMs can only be used as predictive performance measures and used to postulate
hypothesis about causal relations that can be tested in more carefully designed studies. An
additional advantage of a more carefully designed study is the possibility of performing a
detailed comparison of the trajectories of each variable, using data that is not subject to
missingness, or in which the amount of missingness is controlled.
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We proposed a TMLE and an estimating equation estimator. Both of these estimators
are doubly robust and efficient under certain regularity and consistency conditions of the ini-
tial estimators, but the TMLE has the theoretical advantage that it is a bounded estimator.
However, we did not observe any relevant difference between them in the illustration example.
Dı́az and van der Laan (2011a) have already compared these two estimators through a sim-
ulation study under no missingness of the treatment variable, finding no difference between
them. We proposed the G-comp/IPMW, an additional estimator that represents an easy al-
ternative to the TMLE or EE. Although we found various differences in the magnitude of the
estimates between the TMLE and the G-comp/EE, the main discrepancy was with respect
to the standard errors and p-values. We hypothesize that these differences are a consequence
of the inefficiency of the G-comp/IPMW, which results in hypothesis tests with less power.
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Appendix A

The variables analyzed in the ACIT study are presented in Table 3.

Variable Type Description
Age Baseline Age in years
GCS Baseline/Treatment Arrival Glascow Comma Score
ISS Baseline/Treatment Injury Severity Score
Asthma Baseline Indicator of previous Asthma
COPD Baseline Indicator of previous Chronic Obstructive Pulmonary Disease
OCLG Baseline Indicator of Other Chronic Lung Disease
CAD Baseline Coronary Artery Disease
CHF Baseline Congestive Heart Failure
ESRD Baseline End Stage Renal Disease
CIRR Baseline Cirrhosis
DIAB Baseline Diabetes
HPAN Baseline Hypoalbuminemia
Gender Baseline Gender
MECH Baseline Injury mechanism: blunt or penetrating
HR Treatment Heart Rate
RR Treatment Respiratory Rate
SBP Treatment Spontaneous Bacterial Peritonitis
BDE Treatment Base Deficit/Excess
BUN Treatment Blood Urea Nitrogen
CREA Treatment Creatinine
HGB Treatment Hemoglobin
HCT Treatment Hematocrit
PLTS Treatment Platelets
PT Treatment Prothrombin Time
PTT Treatment Partial Prothrombin Time
INR Treatment International Normalized Ratio
FV Treatment Factor III
FVIII Treatment factor VIII
ATIII Treatment Antithrombin III
PC Treatment Protein C
DDIM Treatment D-Dimer
TPA Treatment Tissue Plasminogen Activator
PAI Treatment Plasminogen Activator Inhibitor
SEPCR Treatment Soluble Endothelial Protein C Receptor
STM Treatment Soluble Thrombomodulin
APC Treatment Activated Protein C

Table 3: Variables in the ACIT data set
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Appendix B

The efficient influence function of parameters (7) and (8) are given by

Dc(Q̄, QW , g, φ)(O) = Dc1(Q̄, g, φ)(O) +Dc2(Q̄, g, φ)(O) +Dc3(Q̄, QW , g)(O) (18)

Db(Q̄, QW , g, φ)(O) = Db1(Q̄, g, φ)(O) +Db2(Q̄, g, φ)(O) +Db3(Q̄, QW , g)(O), (19)

respectively, where

Dc1(Q̄, g, φ)(O) =
C

φ(1|W )

g(A− δ|1,W )

g(A|1,W )
{Y − Q̄(A, 1,W )}

Dc2(Q̄, g, φ)(O) =
C

φ(1|W )

[
Q̄(1, A+ δ,W )− Eg{Q̄(1, A+ δ,W )|C = 1,W}

]
(20)

Dc3(Q̄,QW , g)(O) = Eg{Q̄(1, A+ δ,W )|C = 1,W} − Y −Ψc(Q̄,QW , g),

and

Db1(Q̄, g, φ)(O) =
C

φ(1|W )

(
δ

2A− 1

g(A|1,W )
+ 1

)
{Y − Q̄(A, 1,W )}

Db2(Q̄, g, φ)(O) =
C

φ(1|W )
[Q̄(A, 1,W )− Eg{Q̄(A, 1,W )|C = 1,W}] (21)

Db3(Q̄,QW , g)(O) = δ{Q̄(1, 1,W )− Q̄(0, 1,W )}+ Eg{Q̄(A, 1,W )|C = 1,W} − Y −Ψb(Q̄,QW , g).

Result 1 provides the conditions under which these estimating equations have expectation
zero, therefore leading to consistent, triply robust estimators.

Result 1. Let D be either Dc or Db presented in equations (18) and (19). We have that

EP0{D(O|φ, g, Q̄, ψ0)} = 0

if either (Q̄ = Q̄0 and φ = φ0) or (Q̄ = Q̄0 and g = g0) or (g = g0 and φ = φ0).

Recall that an estimator that solves an estimating equation will be consistent if the
expectation of the estimating equation equals zero. As a consequence of this result, and
under the conditions on Q̄, g and φ stated in Theorem 5.11 and 6.18 of van der Vaart (2002),
an estimator that solves the efficient influence function D will be consistent if either two of
the three initial estimators are consistent, and it will be efficient if all of them are consistently
estimated. Mathematical proofs of the efficiency of these estimators are out of the scope of
this paper, but the general theory underlying their asymptotic properties can be found in
van der Laan and Robins (2003), among others.

Appendix B.1 TMLE algorithm

In order to define a targeted maximum likelihood estimator for ψ0, we need to define three
elements: (1) A loss function L(Q) for the relevant part of the likelihood required to evaluate
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Ψ(P ), which in this case isQ = (Q̄, g, QW ). This function must satisfyQ0 = arg minQEP0L(Q)(O),
where Q0 denotes the true value of Q; (2) An initial estimator Q0

n of Q0; (3) A parametric
fluctuation Q(ε) through Q0

n such that the linear span of d
dε
L{Q(ε)}|ε=0 contains the efficient

influence curve D(P ) defined by either (18) or (19), depending on whether A is continuous
or binary. These elements are defined below:

Loss Function
As loss function for Q, we will consider L(Q) = LY (Q̄) + LA(g) + LW (QW ), where LY (Q̄) =
Y log{Q̄(A,W )} + (1 − Y ) log{1 − Q̄(A,W )}, LA(g) = − log g(A|W ), and LW (QW ) =
− logQW (W ). It can be easily verified that this function satisfies Q0 = arg minQEP0L(Q)(O).

Parametric Fluctuation
Given an initial estimator Qk

n of Q0, with components (Q̄k
n, g

k
n, Q

k
W,n), we define the (k+ 1)th

fluctuation of Qk
n as follows:

logit Q̄k+1
n (ε1)(A,W ) = logit Q̄k

n(A,W ) + ε1H
k
1 (C,A,W )

gk+1
n (ε1)(A|W ) ∝ exp{ε1Hk

2 (A,W )}gkn(A|W )

Qk+1
W,n(ε2)(W ) ∝ exp{ε2Hk

3 (W )}Qk
W,n(W ),

where the proportionality constants are so that the left hand side terms integrate to one, for
continuous A

Hk
1 (A,C,W ) =

C

φn(1|W )

gkn(A− δ|, 1W )

gkn(A|, 1,W )
,

for binary A

Hk
1 (A,C,W ) =

C

φn(1|W )

(
δ

2A− 1

gkn(A|1,W )
+ 1

)
,

Hk
2 (A,W ) = D2(P

k)(O), and H3(W ) = D3(P
k)(O), with D2 and D3 defined as in (20) and

(21). We define these fluctuations using a two-dimensional ε with two different parameters ε1
and ε2, though it is theoretically correct to define these fluctuations using any dimension for
ε, as far as the condition D(P ) ∈< d

dε
L{Q(ε)}|ε=0 > is satisfied, where < · > denotes linear

span. The convenience of the particular choice made here will be clear once the targeted
maximum likelihood estimator (TMLE) is defined.

Targeted Maximum Likelihood Estimator
The TMLE is defined by the following iterative process:

1. Initialize k = 0.

2. Estimate ε as εkn = arg minε PnL{Qk
n(ε)}.

3. Compute Qk+1
n = Qk

n(εkn).

4. Update k = k + 1 and iterate steps 2 through 4 until convergence (i.e., until εkn = 0)
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First of all, note that the value of ε2 that minimizes the part of the loss function corresponding
to the marginal distribution of W in the first step (i.e., −Pn logQ1

W,n(ε2)) is ε12 = 0. Therefore,
the iterative estimation of ε only involves the estimation of ε1. The kth step estimation of ε1
is obtained by minimizing Pn(LY (Q̄k

n(ε1))+LA(gkn(ε1))), which implies solving the estimating
equation

Sk(ε1) =
n∑
i=1

{[
Yi − expit{logit Q̄k

n(Ai,Wi) + ε1H
k
1 (Oi)}

]
Hk

1 (Oi) +D2(P
k
n )(Oi)−∫

AD2(P
k
n )(Yi, a,Wi) exp{ε1D2(P

k
n )(Yi, a, Ci,Wi)} gkn(a|1,Wi) dµ(a)∫

A exp{ε1D2(P k
n )(Yi, a, Ci,Wi)} gkn(a|1,Wi) dµ(a)

}
(22)

where

D2(P
k
n )(O) = Q̄k

n(A+ δ, 1,W )−
∫
A
Q̄k
n(a+ δ, 1,W )gkn(a|1,W ) dµ(a).

The TMLE of ψ0 is defined as ψn ≡ limk→∞Ψ(P k
n ), assuming this limit exists. In practice,

the iteration process is carried out until convergence in the values of εk is achieved, and an
estimator Q∗n is obtained. Under the conditions of Theorem 2.3 of van der Laan and Robins
(2003), a conservative estimator of the variance of ψn is given by

1

n

n∑
i=1

D2(Q̄∗n, QW,n, g
∗
n, φn)(Oi).
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