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A Scalable Supervised Subsemble Prediction
Algorithm

Stephanie Sapp and Mark J. van der Laan

Abstract

<blockquote>Subsemble is a flexible ensemble method that partitions a full data
set into subsets of observations, fits the same algorithm on each subset, and uses
a tailored form of V-fold cross-validation to construct a prediction function that
combines the subset-specific fits with a second metalearner algorithm. Previous
work studied the performance of Subsemble with subsets created randomly, and
showed that these types of Subsembles often result in better prediction perfor-
mance than the underlying algorithm fit just once on the full dataset. Since the
final Subsemble estimator varies depending on the data used to create the subset-
specific fits, different strategies for creating the subsets used in Subsemble re-
sult in different Subsembles. We propose supervised partitioning of the covariate
space to create the subsets used in Subsemble, and using a form of histogram re-
gression as the metalearner used to combine the subset-specific fits. We discuss
applications to large-scale data sets, and develop a practical Supervised Subsem-
ble method using regression trees to both create the covariate space partitioning,
and select the number of subsets used in Subsemble. Through simulations and real
data analysis, we show that this subset creation method can have better prediction
performance than the random subset version.</blockquote>



1 Introduction

Procedures using subsets of observations from a full available data set are promising tools for

prediction with massive data sets. By operating on subsets of observations, computations can take

advantage of modern parallel computational resources. Much recent research work has focused on

proposing and evaluating the performance of different subset prediction procedures.

A classic subset prediction method is bagging, or bootstrap aggregating, developed in Breiman

(1996). In bagging, one subsamples a large number of fixed size bootstrap samples, fits the same

prediction algorithm on each bootstrap sample. The final prediction function is given by the simple

average of the subset-specific fits.

Recently, Zhang et al. (2013) proposed two subset methods for estimating the parameter of a para-

metric prediction model: an average mixture (AVGM) procedure, and a bootstrap average mixture

(BAVGM) procedure. Both procedures first partition the full data set into disjoint subsets, and es-

timate the parameter of interest within each subset. To obtain the final parameter estimate, AVGM

takes a simple average of the subset-specific estimates. BAVGM first draws a single bootstrap sam-

ple from each partition, re-estimates the parameter on the bootstrap sample, and combines the two

estimates into a so-called bootstrap bias corrected estimate. To obtain the final parameter estimate,

BAVGM takes a simple average of the subset-specific bootstrap bias-corrected estimates.

Another recent classification method using subsets was discussed in Lin and Kolcz (2012). This

case study explored using subsets of observations to train classification algorithms, and combining

the results linearly. The authors mention the possibility of weighting each classifier if different

underlying algorithms are used, but recommend simple averaging if the same underlying classifier

is trained on different subsets of observations.

A key drawback of each of the above subset methods is that they do not differentiate between the

quality of each subset-specific fit. To address this, Sapp et al. (2014) proposed the Subsemble

method. Subsemble is a general subset ensemble prediction algorithm that partitions a full data set

into subsets of observations, fits one or more underlying algorithm on each subset, and combines

the subset-specific fits through a second metalearner algorithm using a clever form of V -fold cross-

validation, thus accounting for the quality of each subset-specific fit. Previous work studied the

performance of Subsembles created from randomly selected subsets of observations. In particular,

Sapp et al. (2014) demonstrated that such random subset Subsembles have good performance in

practice, and often provide better prediction performance than fitting the underlying algorithm only

once on a full available data set.

Note that the final Subsemble estimator varies depending on the data used to create each subset-

specific fit. As a result, different strategies for creating Subsemble’s subsets will result in different

Subsembles. In this paper, we introduce a different method for partitioning a data set into the

subsets used in Subsemble. In particular, we propose the use of Supervised Subsembles, which

create subsets through supervised partitioning of the covariate space, combined with a form of
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histogram regression as the metalearner used to combine these subset-specific fits. We also develop

a practical Supervised Subsemble method, which employs regression trees to both partition the

observations into the subsets used in Subsemble, and select the number of subsets to use. We

discuss computational independence properties of our proposed methods that are advantageous

for applications involving big data, and show through simulations that our proposed version of

Subsemble can result in further improved prediction performance.

The remainder of our paper is organized as follows. We review the Subsemble method in Section 2.

The Supervised Subsemble approach for creating subsets, along with associated metalearner, is

presented in Section 3. We describe the practical Supervised Subsemble method using regres-

sion trees in Section 4. Simulation and real data analysis results are discussed in Section 5. We

summarize and conclude in Section 6.

2 The Subsemble method

Subsemble is a general subset ensemble prediction algorithm that partitions a full data set into sub-

sets of observations, fits the same underlying algorithm on each subset, and combines the subset-

specific fits through a second metalearner algorithm using a clever form of V -fold cross-validation.

Subsemble begins by partitioning n iid training observations (Xi,Yi) into J disjoint subsets. Next,

Subsemble fits the same underlying prediction algorithm Ψ̂ on each subset, resulting in J subset-

specific estimators Ψ̂ j, where Ψ̂ j is defined as Ψ̂ applied to the j-th subset. Finally, Subsemble

combines the subset-specific fits by minimizing cross-validated risk with a second metalearner

algorithm Φ̂, through a tailored version of V-fold cross-validation.

The V folds used in Subsemble are constructed to preserve the assignment of observations to sub-

sets used in the J subset-specific estimators. Instead of simply partitioning the n observations into

V folds, we instead partition each individual subset into V folds. The optimal combination of the

subset-specific fits is then determined by applying the metalearner algorithm Φ̂ to the n redefined

observations (X̃i,Yi), where the redefined input vector X̃i = {Ψ̂ j,v(i)}
J
j=1(Xi) consists of the J pre-

dicted values obtained by evaluating, at Xi, the J subset-specific estimators trained when the fold

containing observation i was left out. The final prediction function is then the best metalearner

combination of the J subset-specific fits.

The Subsemble procedure has a variety of desirable properties. Any underlying algorithm and

metalearner algorithm, including both parametric and nonparametric methods, can be accommo-

dated. The quality of each subset-specific fit is taken into account in the final combination func-

tion. In particular, rather than taking a naive average of the subset-specific fits, Subsemble uses

cross-validation to differentiate fit quality and learn the optimal weighted combination. By us-

ing cross-validation, Subsemble is also able to take advantage of the cross-validation’s theoretical

performance guarantees. Specifically an oracle result for Subsemble, given in Sapp et al. (2014),
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provides a theoretical guarantee that Subsemble performs as well as the best possible combination

of the subset-specific fits.

3 Supervised Subsemble

3.1 Supervised partitioning of the covariate space

To obtain the subsets used in Subsemble, we propose partitioning of the covariate space to create

J disjoint subsets of covariates, S1, . . . ,SJ , such that any given vector of covariates belongs to

exactly one of the J subsets. Numerous methods to achieve a partitioning of the covariate space

are available. For example, the unsupervised k-means algorithm could be used to first cluster the

observations into J clusters based on only their covariates, with these J clusters also forming the

J subsets. In general, supervised partitioning methods also consider the outcome variable, thus

creating a partitioning that is directly predictive of the outcome.

Compared to randomly selecting the subsets, constructing the subsets to be similar internally and

different from each other results in locally smoothed subset-specific fits when fitting the same

algorithm on each subset. In particular, each subset-specific fit is in fact tailored for the associated

partition of the covariate space. More specifically, the subset-specific fit Ψ̂ j associated with S j is

tailored for the partition S j, and we would not expect Ψ̂ j to be a good fit for observations with

covariates in some other S j′ , where j 6= j′.

3.2 Modified histogram regression metalearner

To reflect the above observation, we propose using a modified version of histogram regression as

the metalearner used to combine the subset-specific fits. The usual form of histogram regression,

applied to our J subsets S j, would output a local average of the outcome Y within each subset. In-

stead of this standard form of histogram regression, our version of histogram regression outputs the

associated Ψ̂ j for each subset S j. In addition, our version of histogram regression includes a coef-

ficient and intercept within each subset. Concretely, we define our proposed histogram regression

metalearner Φ̂ for combining the subset-specific fits as follows:

Φ̂(Ψ̂)(x) =
J

∑
j=1

I(x ∈ S j)

(

β 0
j +β 1

j Ψ̂ j(x)

)

(1)

The value of the functional form of Equation 1 is its generalization to using more than one under-

lying algorithm. That is, applying multiple prediction algorithms to each subset. That is, instead
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of applying a single underlying algorithm Ψ̂ to each subset, the Subsemble procedure readily ac-

commodates applying L underlying algorithms Ψ̂1, . . . ,Ψ̂L to each subset. The generalization of

Equation 1 gives us the following histogram regression metalearner Φ̂ for combining these multiple

subset-specific fits as follows:

Φ̂(Ψ̂1, . . . ,Ψ̂L)(x) =
J

∑
j=1

[

I(x ∈ S j)

(

β 0
j +

L

∑
ℓ=1

β ℓ
j Ψ̂ℓ

j(x)

)]

(2)

3.3 Computational independence of subsets

Note that the computations Subsemble performs on each subset are always independent, even in the

cross-validation training steps. This is because the partitioning of the n observations into J subsets

remains the same during cross-validation. As a result, leaving out a fold v from a subset j produces

all the data assigned to the j-th subset in the cross-validation training set. However, with randomly

constructed subsets, minimizing the cross-validated risk to learn the optimal combination of the

subset-specific fits requires access to all the data.

The Supervised Subsembles proposed here have the additional benefit of preserving the subset

computation independence. That is, if subsets are known a priori, by keeping the subset assign-

ments fixed, computations on the subsets of the Supervised Subsemble described in this section

remain completely computationally independent across the entire procedure.

To see this, let βn to be the cross-validation selector of β . Then by definition of the cross-validation

selector,

βn = argmin
β

n

∑
i=1

{

Yi − Φ̂β (X̃i)

}2

Using the fact that each observation i belongs to exactly one subset S j, we rearrange terms as

follows:

= argmin
β

J

∑
j=1

∑
i:i∈S j

{

Yi − Φ̂β (X̃i)

}2

From the definitions of Φ̂ and X̃i,

= argmin
β

J

∑
j=1

∑
i:i∈S j

{

Yi −
J

∑
j′=1

[

I(Xi ∈ S j′)

(

β 0
j′ +

L

∑
ℓ=1

β ℓ
j′Ψ̂

ℓ
j′,v(i)(Xi)

)]}2

Again, since each observation i belongs to exactly one S j,

= argmin
β

J

∑
j=1

∑
i:i∈S j

{

Yi −

[

β 0
j +

L

∑
ℓ=1

β ℓ
j Ψ̂ℓ

j,v(i)(Xi)

]}2
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Finally, since the observations i : i ∈ S j are disjoint for different j, terms involving each β j can be

minimized independently:

=

{

argmin
β j

∑
i:i∈S j

(

Yi −

[

β 0
j +

L

∑
ℓ=1

β ℓ
j Ψ̂ℓ

j,v(i)(Xi)

])2}J

j=1

Thus, each term β j can be estimated by minimizing cross-validated risk using only the data in

subset S j.

We are thus able to estimate the coefficient associated with each subset independently, using only

data within that subset. Consequently, unlike the randomly constructed subsets, we avoid needing

to recombine data to produce the final prediction function.

4 SRT Subsemble: Supervised Regression Tree Subsemble

4.1 Motivation

The Supervised Subsembles proposed in the previous section maintain computational indepen-

dence across subsets. However, this assumes that both the number of subsets, and the partitioning

of the covariate space, are provided. In this section, we propose the a practical Supervised Regres-

sion Tree Subsemble (SRT Subsemble) algorithm, which uses regression trees with Subsemble as

a practical and computationally feasible way to determine both of the number of subsets, and the

partitioning of the covariate space to create the subsets.

To motivate our approach, we first discuss relevant concerns about constructing covariate space

partitions when dealing with large-scale data set applications. For big data, splitting data up can

be a significant computational concern. As a result, it is preferable to avoid approaches that, when

creating different numbers of subsets, first split the full data set into, for example, two partitions,

and then recombine the data in order to determine a way to split the data into three partitions.

Instead, it is better to work with greedy methods, which enforce that once the data has been split,

any further splits will only divide an already existing partition.

4.2 Constructing and selecting the number of subsets

Classification and Regression Trees (CART), developed by Breiman et al. (1984), recursively par-

tition the covariate space by creating binary splits of one covariate at a time. Concretely, using

covariate vector Xi = (X1
i , . . . ,X

K
i ), the first iteration of CART selects a covariate Xk, and then

creates the best partition of the data based on that covariate. As a metric to measure and select the
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best covariate split for a continuous outcome, CART fits an ANOVA model and uses the between-

groups sum-of-squares metric. The best split is then selected to maximize this between-groups

sum-of-squares. For additional details, we refer the reader to Breiman et al. (1984).

The first iteration of CART thus creates the first partition of the data based on two regions S1
1 =

I(Xk ≤ c1) and S2
1 = I(Xk > c1). Subsequent splits are obtained greedily, by repeating this pro-

cedure on each new partition. For example, the second iteration of CART selects a covariate Xk′ ,

and partitions S1
1 into S1

2 = I(Xk ≤ c1, Xk′ ≤ c2) and S2
2 = I(Xk ≤ c1, Xk′ > c2). For a given par-

titioning, the standard prediction function from CART outputs the local average of the outcome Y

within each subset.

To partition the covariate space and select the number of subsets for Subsemble, we apply CART as

follows. First, we simply run the CART algorithm on the data set, resulting in a sequence of nested

partitionings of the covariate space. That is, the CART algorithm outputs a sequence of sub-trees:

a first tree with a single root node, a second tree with two nodes, a third tree with three nodes, and

so on, ending with the full tree with M nodes. We treat the m nodes of each m-th sub-tree as a

candidate partitioning into m subsets.

Next, we explore the sequence of M possible partitions (sequence of sub-trees) produced by CART,

beginning at the root. For each candidate number of subsets 1, . . . ,M, we fit the associated Super-

vised Subsemble. Concretely, with m subsets, we create L subset-specific fits Ψ̂ℓ
j for each subset

j = 1, . . . ,m, and create the overall prediction function according to Equation 2. Note that we use

CART to create the subsets S j that appear in Equation 2. Finally, we select the best number of

subsets as the Subsemble with minimum cross-validated risk.

4.3 Computational advantages

Our proposed SRT Subsemble retains the desirable subset computational independence discussed

in Section 3, while also creating the subsets used in Subsemble in a computationally friendly way,

as well as providing a criteria for choosing the number of subsets to use in Subsemble.

As a consequence of this subset computational independence, note that in fitting a sequence of

Subsembles in a series of sub-trees, each subsequent Subsemble only requires computation for the

two new nodes at each step. That is, given the Subsemble fit with, say, m subsets, computing the

next Subsemble with m+1 subsets only requires computation for the two new nodes formed in the

m+1-st split of the tree. This is due the fact that the nodes are computationally independent in the

SRT Subsemble framework, plus the fact that at each split of the tree, all nodes remain the same,

except for the single node in the m-th tree that is split into two new nodes in the m+1-st tree.
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4.4 Implementation flexibility

There are several paths that can be taken when applying the SRT Subsemble process in practice.

These user-selected options allow SRT Subsemble to be quite flexible, with decisions made to suit

the application at hand. There is no one best approach, instead the options will be determined

based on the application/constraints/desired properties. We briefly discuss these options.

First, the user must decide how to build and explore the tree. One possibility is to simply build a

very large tree, resulting in a full tree with M nodes, build a Subsemble for each sub-tree 1, . . . ,M,

and through this process simply locate the Subsemble with the lowest cross-validated risk among

the sequence of sub-trees outputted by CART. Alternatively, a greedy process can be used. Instead

of calculating cross-validated risk for all sub-trees of a very large tree, the cross-validated risk can

be tracked while the tree is being built-out. That is, after each additional split to the tree, build

the associated Subsemble, calculate its associated cross-validated risk, and stop adding additional

splits when some stopping criteria is achieved. As an example, the stopping criteria could be an

increase of the cross-validated risk.

Second, the user must decide where in the tree to start building Subsembles. The most obvious

approach is to start with building a Subsemble at the root node of the tree. That is, building a

Subsemble with only one subset containing all observations. For small- to moderate-sized data

sets, where computational considerations are of less concern, this is a good choice. However, for

large-scale data sets, it may be preferable to first split the data into partitions of some desired size,

and only then start building Subsembles. This approach would allow the user to take advantage of

multiple independent computational resources, since each partition of data could be transferred to

a dedicated computational resource, since all subsequent computations remain independent from

other partitions.

5 Data analysis

5.1 Preliminary observations

We next present results from comparing the performance of SRT Subsemble with the version of

Subsemble using randomly created subsets. We discuss further implementation details in the next

subsection.

Before presenting our simulated and real data set results, we first discuss a few preliminary ob-

servations, through simple examples, which show that there are certainly scenarios in which SRT

Subsemble results in better performance than the random subset version of Subsemble. To see

this, consider an actual histogram with a single covariate, where the outcome is simply the mean

in various subsets of that covariate. Further, suppose we use a single underlying algorithm Ψ̂,

7
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which simply takes the mean outcome among observations. In this case, it is clear that the SRT

Subsemble procedure will produce superior prediction performance, as compared to the random

subset version of Subsemble.

We also note that using homogeneous subsets presents desirable behavior for more subsets with

fewer observations. With SRT Subsemble, as subsets become smaller, they also become more ho-

mogeneous. As a result, data-adaptive prediction algorithms can still result in good fits. In contrast,

when using random subsets, aggressive data-adaptive algorithms often sacrifice performance from

over-fitting when subsets become too small. We also note that using homogeneous subsets allow

less data-adaptive prediction algorithms to achieve good fits within each subset. In particular, we

do not need to use aggressive algorithms within each subset to get a good fit.

5.2 Implementation details

As mentioned above, we compared the performance of SRT Subsemble with the version of Sub-

semble using randomly created subsets. In both methods, we estimated β coefficients to minimize

cross-validated risk, and used the same four underlying algorithms for the purposes of this demon-

stration: linear regression, lasso, regression tree, and random forest. Additional details about the

methods compared are discussed below.

For SRT Subsemble, we used the following procedure to build the tree used in SRT Subsemble.

We used the R package rpart (Therneau et al. (2012)) to build a full tree. In the rpart package,

the splits and size of the tree built are controlled by four parameters: minsplit (minimum number

of observations needed for a node to split), minbucket (minimum number of observations in any

node), cp (complexity parameter), and maxdepth (maximum depth of any node in the tree). Since

we used V = 10-fold cross-validation to select the optimal number of subsets, we set minbucket=
2V to ensure a sufficient number of observations in each node to perform this cross-validation. For

the remaining parameters, we used rpart’s defaults: minsplit = 3×minbucket, cp = 0.01, and

maxdepth = 30.

We then selected the best number of subsets for the SRT Subsemble by building a Subsemble as

in Equation 2 at each sub-tree outputted by rpart, starting at the root node with only one subset,

and selecting the Subsemble with the lowest estimated cross-validated risk among the sequence of

sub-trees outputted by rpart.

For the random subset Subsembles, we first built the same number of Subsembles as those that we

explored with the SRT Subsemble. That is, if the SRT Subsemble explored a full tree with M nodes,

we built random subset Subsembles with 1, . . . ,M nodes. We then combined the subset-specific

fits according the the following equation:

Φ̂(Ψ̂1, . . . ,Ψ̂L)(x) =
J

∑
j=1

(

β 0
j +

L

∑
ℓ=1

β ℓ
j Ψ̂ℓ

j(x)

)
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To select the optimal number of subsets for the finally selected random subset version, we simply

selected the Subsemble with the lowest oracle risk; that is, the lowest true risk on the test data. Note

that this is not possible in practice, and is included here only for illustration purposes. Observe that

we are comparing the SRT Subsemble to the best conceivable random subset version of Subsemble.

In particular, this includes the version with only a single subset: a combination of the underlying

algorithms fit on the full available data set (i.e., the SuperLearner method of van der Laan et al.

(2007)).

5.3 Description of data sets

In the studies that follow, we used four small- to moderate-sized data sets (Synthetic 1, Synthetic

2, Yacht, Diamond) to evaluate the practical performance of Subsemble. All datasets have one

real-valued output variable, and no missing values.

The first two datasets are simulated. We created this pair of synthetic data to demonstrate one

scenario in which the SRT Subsemble provides better performance (Synth 1), and another scenario

in which the random subset Subsemble yields better performance (Synth 2). The first synthetic

dataset exhibits significant greater local behavior than the second synthetic dataset. Both simulated

data sets have 2 input variables X1,X2 ∼ N(0,9), and random error ε ∼ N(0,1). The outcome

variable for each simulated data set is generated as follows:

Synth 1:

Y = ε + sin(X1)+2log(|X1|)+3
√

|X1|+ sin(0.5πX1)

Synth 2:

Y = 2+ ε + sin(X1)

Note that in practical applications, we do not know the true data generating distribution a priori.

In particular, for datasets with many covariates, it becomes challenging even to visualize the data,

and thus impractical to determine ahead of time whether or not the data exhibits significant local

behavior. As a result, the two synthetic data sets presented here merely serve for illustrative pur-

poses, to provide the reader with some general intuition for the performance of the SRT Subsemble

method.

The second two datasets are publicly available real-world data, and are the same data sets studied

in the analysis of Sapp et al. (2014). These data sets illustrate actual data from applications in

which the SRT Subsemble method performs better than the random subset Subsemble. The yacht

dataset, available from Bache and Lichman (2013), has 308 observations and 6 input variables.

The diamond dataset, described by Chu (2001), has 308 observations and 17 input variables.

9
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5.4 Results

For the synthetic data sets, we simulated training and test sets of 1,000 observations, and repeated

the experiment 10 times. For the real data sets, we split the data sets into 10 folds, and let each fold

serve as the test set. Mean Squared Prediction Error (MSPE) results were averaged across the 10

trials for both simulated and real datasets. We also performed a t-test for the difference in means

between the two methods. The average number of subsets used in each method, as well as the

maximum number of subsets (size of the full tree built) are also included. Results are presented in

Table 1.

Table 1: MSPE comparison results for SRT Subsemble, and oracle-selected version of Subsemble

with random subsets. Underlying algorithms used were: linear regression, lasso, regression tree,

and random forest. The method with lowest MSPE for each each dataset is in bold. The Sig /

Max column indicates the significance level of a t-test for the difference in means between the two

methods, and the maximum number of subsets considered.

Dataset SRT Random Oracle Sig / Max

Synth 1 MSPE 1.21 1.45 <0.01

# Subsets 6.3 2.5 7.5

Synth 2 MSPE 2.84 1.40 <0.01

# Subsets 7.4 1.4 9.8

Yacht MSPE 1.19 2.96 0.01

# Subsets 3.2 1.7 3.5

Diamond MSPE 1.30 e5 2.10 e5 <0.01

# Subsets 3.1 2.1 5.0

From Table 1, we see that the SRT Subsemble method significantly performs better than the oracle-

selected random subset version on three of the four data sets: synthetic dataset 1, the yacht data,

and the diamond data. In fact, for all datasets, the two methods are significantly different at the

0.01 level.

We emphasize that while the SRT Subsemble method is viable in practice, the comparison oracle-

selected random subset Subsemble is not, since it utilizes the test data to select the number of

subsets to minimize the MSPE on the test data. The fact that the SRT Subsemble method achieves

lower MPSE than this oracle-selected random subset version show clearly that SRT Subsemble can

often significantly outperform any random subset version, including a single subset.

6 Discussion

In this paper, we introduced Supervised Subsembles and proposed the SRT Subsemble method.

Supervised Subsembles partition the covariate space to obtain subsets, use a modified form of
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histogram regression as the metalearner used to combine the subset-specific fits. We described

how Supervised Subsembles preserve computational independence of the subsets throughout the

entire algorithm. SRT Subsemble is a practical method to both construct the covariate partitioning,

and select the optimal number of subsets. We explained the desirable computational properties

of SRT Subsemble, as well as the flexibility it provides in implementation. Finally, we presented

simulated and real data set results, which demonstrated that the SRT Subsemble method can result

in better prediction performance than comparable random subset Subsembles.

Future research should explore more practical suggestions and concrete recommendations for im-

plementing and using SRT Subsemble in practice on large-scale datasets. For example, with big

data, it is probably impractical to build a very large tree. While we give some ideas in this paper re-

garding stopping criteria, additional work should be done to determine improved stopping criteria.

Determining the starting node is another interesting area for future work. That is, for very large

data sets, starting at the root node is likely not feasible. As a result, future study should examine

criteria for selecting this starting point.

Modifying the CART algorithm used in SRT Subsemble is another area for future work. Rather

than simply using the default CART algorithm to build a tree, and then exploring the Subsembles

associated with the resulting sub-trees, future work should consider instead directly incorporating

Subsembles into the CART procedure. For example, future work could consider using a different

metric to determine the best covariate split, such as the associated Subsemble’s cross-validated

risk.
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