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Sieve Plateau Variance Estimators: A New
Approach to Confidence Interval Estimation
for Dependent Data

Molly M. Davies and Mark J. van der Laan

Abstract

<blockquote>Suppose we have a data set of n-observations where the extent of
dependence between them is poorly understood. We assume we have an estimator
that is squareroot-consistent for a particular estimand, and the dependence struc-
ture is weak enough so that the standardized estimator is asymptotically normally
distributed. Our goal is to estimate the asymptotic variance of the standardized
estimator so that we can construct a Wald-type confidence interval for the esti-
mate. In this paper we present an approach that allows us to learn this asymptotic
variance from a sequence of influence function based candidate variance estima-
tors. We focus on time dependence, but the method we propose generalizes to data
with arbitrary dependence structure. We show our approach is theoretically con-
sistent under appropriate conditions, and evaluate its practical performance with
a simulation study, which shows our method compares favorably with various ex-
isting subsampling and bootstrap approaches. We also include a real-world data
analysis, estimating an average treatment effect (and a confidence interval) of ven-
tilation rate on illness absence for a classroom observed over time.</blockquote>



1 Introduction

For the sake of defining the challenge addressed in this paper, let’s first suppose one observes
realizations of n independent and identically distributed (i.i.d.) random variables. Consider a particular
estimator 1, of a specified target parameter ). Statistical inference can now proceed in a variety
of ways. Suppose we can prove the estimator is asymptotically linear with a specified influence
function, i.e. v, — 1y can be written as an empirical mean of the influence function applied to the
observation, plus a second order term assumed to converge to zero in probability at a rate faster than
v/n. In that case, it is known that the y/n-standardized estimator converges to a normal distribution
with asymptotic variance o2 equal to the variance of the influence function. An estimator of o2,
which we denote 02, provides an asymptotic 0.95-confidence interval v,, & 1.96 W. One way
to estimate o is to estimate the influence function and set 02 equal to the sample variance of the
estimated influence function values. We could also use other approaches such as the nonparametric
bootstrap or subsampling.

In this paper, we are concerned with obtaining valid statistical inference when the data are
known to be dependent, but the precise nature of that dependence is unknown. Specifically, we
are interested in a method that will work well for estimators of relatively complex parameters one
finds in semiparametric causal inference applications. We assume throughout that the estimator
behaves in first order like an empirical mean of dependent random variables. We refer to such
an estimator as (generalized) asymptotically linear and these random variables as (generalized)
influence functions. In addition, we assume the dependence between influence functions is sufficiently
weak so that the y/n-standardized estimator converges to a normal distribution with mean zero and
variance o3. We focus on time dependence, as it is well-represented in the literature. However,the
methods we propose are generally applicable. Dependence could be spatiotemporal, for example,
or over a poorly understood network. We discuss such extensions throughout. We limit ourselves to
the case of positive covariances, but again, the method has a natural extension to general covariance
structures.

Numerous blocked bootstrap and subsampling approaches have been developed to accommodate
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unknown time dependence, and there are comprehensive book-length treatments of both (see for
example Lahiri [2013] for blocked bootstrap approaches and Politis et al. [1999] for subsampling).
These approaches involve estimating a tuning parameter b. In the context of blocked bootstraps, b
corresponds to the size of the contiguous blocks resampled with replacement, or to the geometric
mean of the block size in the case of stationary block bootstrapping. Blocked bootstraps have been
shown to perform well when the optimal b is known or can be effectively estimated from the data.
However, these estimators are sensitive to the choice of b, which is frequently difficult to estimate.
The bootstrap approach also relies on some important regularity conditions not always met by
all asymptotically linear, normally distributed estimators. For example, if the influence function
depends on the true data generating distribution through densities, there is a literature warning
against the application of a nonparametric bootstrap, and refinements and regularizations will be
needed. See Mammen [1992] for a comprehensive discussion and examples.

In subsampling, b corresponds to the size of the contiguous subsample. One of subsampling’s
most attractive features is that it requires very few assumptions: the size of the subsample must
be such that as sample size n — oo, b — oo and b/n — 0; and the standardized estimator
must converge to some limit distribution. One need not know the rate of convergence nor the
specific limit distribution. However, finite sample performance can be heavily dependent on the
choice of b, which must be large enough to capture dependence, yet small enough to adequately
approximate the underlying target distribution. Finding an optimal b for any given estimator is a
nontrivial undertaking [Politis and Romano, 1993], and for more complex estimators, the sample
sizes required in order to adequately estimate 1)y in each subsample can be impractically large.

We present a method of learning from sequences of ordered, sparse covariance structures on
influence functions, where dependence decreases monotonically with distance. We assume there
exists an (unknown) distance threshold 7 ; for each time point ¢ such that any observation farther
than 7, ; away from observation ¢ is independent from observation ¢. Our proposed procedure seeks
to select a variance estimate close to what we would have obtained had we known the true distance

thresholds (7p; : t = 1, ..., ). Assume for a moment this dependence structure is constant across
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time, i.e. 7o, is equal to some positive integer 1 for all ¢. Theory tells us a variance estimator
ignoring this dependence will result in a biased estimate, and the magnitude of this bias will
decrease as the number of nonzero covariances used in the variance estimate increases, until all
true nonzero covariances are incorporated. Estimates assuming nonzero covariances beyond this
will be unbiased, but will become more variable. This simple insight provides the rationale for our
proposed approach. Intuitively, Sieve Plateau (SP) variance estimation searches for a “plateau’ in
a sequence of variance estimates that assume increasing numbers of nonzero covariances. While
our approach requires stronger assumptions than subsampling, its performance does not depend
heavily on additional tuning parameters. It can also be used with complex estimators that require
substantial sample sizes for proper estimation, and in settings where contiguity of the dependence
structure is incompletely understood.

The remainder of this paper is organized as follows. In section 2, we define the formal estimation
problem. In section 3, we introduce SP variance estimation and the intuitive rationale behind the
approach. In section 4, we provide a more formal justification for why our proposed method
works and state conditions upon which our method relies. Section 5 describes several specific
implementations of our proposed approach within the context of estimating the variance of a
sample mean of a time series. We also present results of an extensive simulation study, which
demonstrate our approach works well in practice and consistently outperforms subsampling and
blocked bootstrapping in a context where they are known to perform well. In section 6, we present
a real data analysis, estimating the Average Treatment Effect (ATE) of ventilation rate on illness
absence in an elementary school classroom. We also discuss why subsampling and blocked bootstraps
are ill-suited to this particular estimation problem. We conclude with a discussion.

Notation conventions. The distance between two points = and y is denoted d(z, y). Parameters
with subscript O are features of the true data probability distribution. Subscript n indicates an
estimator or some quantity that is a function of the empirical distribution. If f is a function of the
observed data and P a possible probability distribution of the data, then P f is the expectation of f

taken with respect to P.
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2 Target Parameter

Let O = (Oy,...,0,) be a data set consisting of n time-ordered observations on a certain random
process. Let P be the probability distribution of O. Let vy be a real valued feature of Fj, i.e.
1o = W(P}) for some mapping ¥ from the statistical model for P into the real line. We are given
an estimator 1,, based on O. We assume dependence structure in O is sufficiently weak so that 1,
satisfies an expansion 1
Vn — tho = E;Di(o;eo) + 7,
where 7, is a second order term assumed to converge to zero in probability at a rate faster than
v/n. The functions D;(O; 6,) are called influence functions. They have expectation zero under P}’
and depend on the unknown £ through some parameter 6. For clarity, we often notate them as
D;(6)), but it is important to remember that they are functions of O. Assume there is a function f
that assigns a measure S = f(O) to each unit observation O, and define s; = f(O;),i=1,...,n.
Assume for all s; there exists a bounded 7 ; such that d(s;, sj) > T, implies the covariance
PyDy ;Do ; = 0. Define €2, ; = € ; to be the set of j such that d(s;, s;) < 7. Define

o2 = VAR {% Zl Di(eo)} = % 2]6%; Pl {Di(60)D;(60)} . (1)
In many cases one might also assume o3, — o5 in probability for some fixed o3, but this is not
necessary. We assume that as n — oo, E(rn\/ﬁ)Q — 0and 0y, Z(n) = oo, /0> Di(0o) =4
N(0,1). These assumptions imply that as n — oo, the standardized estimator converges weakly to

a mean zero normal distribution with variance one, i.e.
Ton v/, — o) = 051 Z(n) + op(1) =4 N(0,1).

If 02 converges to a fixed o2, then Z(n) =4 N(0,02) and \/n(v, —tbg) =>4 N(0,02). Thus 1//n
denotes the rate at which 1),, converges to 1. This paper is concerned with estimating o3, so we
can construct an asymptotic 0.95-confidence interval ¢, == 1.96 \/%, where o2 is an estimator
of o2 .

Consider estimators of the form
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1 n n

on(m) = =D Y 0r (i, 5)Di(6) Ds(6n), 2)

i=1 j=1
where T in a parameter space 7" is an n-dimensional vector defining d.(i,j) = I{d(s;,s;) <
7;}. Our conditions require the size (as measured by entropy) of the parameter space 7" remains
controlled as n — oo. An extreme example would be 7 such that 7, = A foralli = 1,...,n
and a constant A > 0. More generally, one might parametrize 7; = 7;(\) for a fixed dimensional
parameter A, or one might assume 7" is a union of a finite number of such parametric subsets. An
influence function (IF) based oracle estimator of (1) is defined as (2) using 0, = d,.

It will be convenient for us to define the notion of an arbitrary 7 being ’at least as large as’
T0. Let Q, = {j : d(s;,s;) < 7;} be the set defined by 7;. Define T C T as the set of T where
d-(1,7) > 04,(3,7) for all 4, j. Thus, T}, contains 7, and all other 7 such that for all 4, any element
in €2, ; is also in €2,,. When we say T ’contains’ 7, we mean 7 is an element of 7;. In classical
time series where dependence decays over time, it also makes sense to say 7 is at least as large as

7o when 7 € Tj,.

3 Sieve Plateau Estimators

Suppose we have a collection of vectors (7, : k), a proportion of which are in 7},. Consider
the associated collection of variance estimators (02 (7,) : k). Under conditions similar to those
required for asymptotic normality of 1, estimators based on 7, € T will be unbiased (see
Theorem 2). Suppose we could order these variance estimators so that they start out making too
many independence assumptions and end up making too few. A smoothed version of this ordered
sequence would give a curve with a plateau in the tail. In particular, since we are assuming all true
covariances between influence functions are positive, we would expect this curve to be monotone
increasing. We propose finding the plateau of this smoothed curve and using this knowledge to
estimate o2, . The general approach is as follows.

Construct a sieve of variance estimators.

1. Formulate a set of vectors {7, : k} in T that covers a range of covariance structures starting
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with independence of all influence functions or some other appropriate lower bound and
ending with covariance structures 7 € 7. These vectors can reflect true knowledge about
the dependence in one’s data. For instance, in the case of time dependence, if one knows
the dependence lag between all influence functions is constant, a simple sequence of vectors
could assume increasing constant dependence lags, starting with 0 and ending with an upper
bound 7’. Alternatively, one might believe the dependence structure is either constant or
fluctuates smoothly over time according to seasonal trends. Note it is not necessary for 7 to
be an element of {7, ; : k}. We describe more complex approaches to generating T vectors

in section 5.
2. For each 7,1, compute o2 (7, ) as defined in equation (2).

3. Order the variance estimates so that they become increasingly unbiased for o2. A valid

ordering need not be perfect. For example, we could define a matrix M.,

> Whose (i, j)-th
element is D;(0,,) D;(0,) if 6, , (i, j) = 1 and zero otherwise. One could order the variance
estimates by L fit (average of absolute values) between its corresponding M. , and the
matrix that assumes independence, starting with the smallest estimated L, fit and ending
with the largest. We use this ordering in our simulation study. One could also order according
to another complexity criterion. In our practical data analysis, for example, we compare
L, fit ordering with ordering by a rough approximation of the variance of each estimator
ai(Tn,k) in the sequence (see equation (3)). One could also order by the number of nonzero
pairs directly. This works reasonably well in time series, but could be more problematic in

settings with higher dimensional dependence. We implemented this ordering in our practical

data analysis, as well.
Find the plateau where variance estimators are unbiased.

4. Estimate a monotone increasing curve from the ordered sequence using weighted isotonic
regression. We use Pooled Adjacent Violators (PAV) for this purpose (Turner [2013]; Robertson
et al. [1988]), weighting each variance estimate according to the inverse of an approximation

6
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of its variance (see equation (3)). Here we rely on the fact that covariances are known to be
positive. Without this assumption, one would have to use other nonparametric regression

methods.

5. Find the plateau where the variance estimates are no longer biased. To do this, we estimate
the mode of the PAV smoothed curve by first estimating its density using a Gaussian kernel
with bandwidth selected according to Silverman [1986] (pg 48, eqn. 3.31). Then we take
the maximum of that estimated density. We have found this approach works well under a
wide range of sieves and true dependence structures. We can use this estimated mode as a
variance estimate in its own right, or we can use it to locate the beginning of the plateau and
then take as our estimate either the value of the PAV curve at this location or the value of the
closest sample variance estimate to that location. We refer to estimators using the mode as
’mode-based’; those using the value of the PAV curve as ’step-based’; and those using the
closest sample variance estimate in the sequence as ’sample-based’. In principle, because the
mode-based estimator takes advantage of additional averaging, we would expect it to be less
variable than the sample-based estimator. Our simulation results and practical data analysis
appear to confirm this intuition. We have observed that the difference between step-based

and mode-based estimators is negligible under the three orderings mentioned above.

In practice, the choice of upper bound 7’ is critical to the success of this procedure. It must be
true that 7/ approximates elements in 7y as n — oco. Preferably, the tail of the ordered sequence
contains a number of T, ;, that approximate elements in 7}. In many applications where one feels
comfortable assuming some form of central limit theorem, a sufficiently maximal 7" will not be

difficult to formulate.
3.1 Variance of Variance Estimators

For the sake of determining the weights in the PAV-algorithm, we need a reasonable approximation
of the variance of each variance estimator in the sieve. We use the following shorthand notation

in this section. Let D;; denote D;(#)D;(¢), and D,;, denote D;(6)D;(0)Dy(0)D,(0). Let €;;
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be the union of {2; and ;. In the context of time-ordered dependence, this would correspond
to the union of the two time intervals [O(i — ), ..., O(i)] and [O(j — 7;), ..., O(j)] implied by a
candidate 7. Define an indicator function (3, 7, k, ) = I {€;; N Qi = (0}, which equals one when
the intersection between (2;; and €, is empty. We have found that the following metric works well
in practice as an approximation of the variance of variance estimators of the form (2).

¥ 3020k )0 ®
This choice is inspired by formal calculations approximating the true variance and the use of
working models for the components of this approximation. We provide more detail in Appendix
A. In general, given that we have assumed the covariance between unit observations is positive
and decreases with distance, the variance of variance estimators defined in equation (2) is roughly
driven by the number of dependent pairs {(7, j) : d-(¢,j) = 1} as well as the number of intersecting
non-empty unions {2;;. We also propose using (3) as an ordering scheme, as it will tend to put the
more unbiased estimators in the tail of the sequence.

At first glance, one might assume calculating (3) for a sizable sequence of variance estimates
to be computationally impractical. This is certainly true if one uses a naive approach. We have
found that careful attention to symmetry, among other things, can reduce computation time by
several thousand fold. We discuss this further and provide optimized code suitable for generalized

dependence structures in this paper’s supplementary materials.

4 Supporting Theory

Theorem 1 establishes conditions under which a generalized SP-variance estimation procedure is
consistent for o2, . Beyond an ordering of the sequence concentrating unbiased variance estimators
in the tail (a model assumption), the consistency of the SP-variance estimator relies on uniform
consistency of (02(7) : T € T), a process indexed by 7 € T, as an estimator of its limit process
(o2.(T) : T € T), where o2, (T) = o, if T € Ty. Since this uniform consistency condition is
nontrivial, Theorem 2 considers a particular dependence structure on the influence functions for

which we formally establish uniform consistency and consistency of the variance estimator under
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entropy conditions restricting the size of 7.
Theorem 1. Recall T' = Ty U Ti. Assume the following.

1. sup, ¢y |02(7) — 03, (7)| = 0 in probability for a o3, (T) process, where o3, (T) = o3, for

TGT().

2. We are given a mapping 7 that takes as input a process (o*(7) : T € T)) and maps it into an

element of T. This mapping has the following properties:

(a) T(al (1) : T €T) € T, with probability tending to 1;

(b) continuity: T(c2(1) : 7 € T) — 7(0,(7) : T € T) converges to zero in probabiliry.

n

Then 1, = 7(02(7) : 7 € T) converges to 7(a2, (7)) : 7 € T') € T, with probability tending to 1,

and thus P(t, € Ty) — 1 and 02(7,) — 0, — 0 in probability as n — oo.

Proving Theorem 1 is straightforward. Note that 7 represents the algorithm that is able to map
the limit process (o3, (7) : 7 € T) into a desired plateau value o2, (7°) with 7 in Tj, where Tj
defines the plateau of (o2, (7) : 7 € T). The additional continuity condition 2b on 7, combined
with the uniform consistency of (¢2(7) : 7 € T) to (¢2,(7) : 7 € T), then establishes that o2(7,,)
is consistent for o2, . In our concrete example of the SP method, we have that 7 is given by the
composition of (1) ordering the set of variance estimators (o2(7) : 7) in some way, (2) applying
the weighted PAV algorithm to this ordered sequence, and (3) finding its plateau value.

The conditions of Theorem 1 highlight an underlying tension between selecting 7' large enough
to ensure it contains a nonempty 7T, but not so large that (¢2(7) : 7 € T) fails to approximate
its limit process (02, (7) : T € T) uniformly in T It also demonstrates the concrete challenge in
coming up with 7. One needs to construct an algorithm that can map an unordered set of variance
estimators, a subset of which are consistent for o2, , into a consistent variance estimator.

Theorem 2 shows that under a particular type of dependence structure on the influence functions,
the crucial uniform consistency assumption in Theorem 1 holds, and o2 (7,) is consistent for the
true variance o, as long as 7, — 7" — 0 for a 7" € T}, with probability tending to 1. Theorem

9
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2 also gives a good rate of convergence for the variance estimator (essentially 1/+/n in many
applications). One could weaken the entropy condition stated below while still preserving the
asymptotic consistency of the variance estimator, but with a slower rate. However, for the sake
of having reliable confidence intervals in finite samples, a good rate of convergence for o2(7,) is

important.

Theorem 2. Let F = {(7,0) : 7 € T,0 € O}. Assume (0,,, T,) € F with probability tending to
1. Let || - || be some norm or semimetric on F. Define T to be such that forall T € T, T < 7"
Assume max; |Q; r«| < K for some K < oo. Define the index set A = {(i,j) i € {1,...,n},j €
; ru }. Define

Y Fi{0r(i,5)Dij(6a) — 62, (1. ) Dy (61)}.

(3,7)€EA

S|

dy[(7,0),(11,01)] =

Leto?(t)=1/n > ijyea 0r (4 7) Dij(0n), and oa.(T)=1/n>", ZjGQi,.,- Py{D;;(8y)}. Consider
an estimator T, and corresponding variance estimator c2(T,) of o3,
Assume:

n—oo

1. dp[(Tn, 00), (10, 600)] =25 0 in probability, where PP (0 € Ty) 2= 1.

2. || (7, 0n) — (72, 60) || 7— 0 in probability as n — oc.

3. Sparsity: For each (1,0) € F and (i,7) € A= {(i,7) : 07u(i,j) = 1}, there exist at most
K (universal constant in n) other elements (k,() € A for which 6,(i,j)D;;(0) depends on

5+ (k, £)Dye(6).

4. Linkage: For each (T,0) € F and all integers p > 0, for all (i, j) € A we have
{F} (5,.(@',j)Dij(9))p}1/p < C|| (7,8) || for a universal C' < .

5. Bounded entropy: 31 > 0 so that the entropy integral [ Vg N(e, F, || - ||7)de < oo.

Then,
o3 (Rl ag)ss0p {dn [(Tnv On), (Ty, ‘90)] } +Op {1/\/ﬁ} )

and thus converges to zero in probability as n — oc.

10
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As a side-result, if we also have sup,. || (7,0,) — (7,60y) ||7— 0 in probability, and

r(n) = supd,[(T,0,), (T,60)] 7% 4)
TeT

in probability, then
sup | o3 (1) — 05,(7) |= Op{r(n)} + Op{1/Vn}.

Theorem 2 is proved in Appendix B. The linkage condition is a weak one, as shown in van der
Laan [2014]. It allows us to link the entropy condition (5) on F to the desired entropy of the
functions d. (¢, j)D;;(0). The sparsity condition (3) essentially corresponds with assuming that
D;(#) is independent of (D;(6) : j & Qru;), uniformly in 6. Our proof hinges on establishing
the asymptotic equicontinuity of a process (Z,(7,6) : (7,6)), the mean-zero centered empirical
average of 0,(¢,7)D;;(#). This independence allows us to formally analyze this process. If the
sparsity condition does not hold marginally, but holds by conditioning on certain characteristics of
the observed data, one could simply apply this theorem with Fj being this conditional distribution.
In that same spirit, a refined theorem that significantly weakens the sparsity condition can be
obtained by first orthogonally decomposing the process Z,, (7, ) into Z, (1, 0) = 2%21 E[Z,.(T,0) |
H(m)|—E[Z,(7,0) | H(m—1)], for an increasing sigma-field H (m) so that H(M) = (O1,...,0,),
and H(0) is empty; and second, applying the proof in Appendix B for weak convergence of
Z,(7,0) to each m-specific process E[Z,(7,0) | H(m)] — E[Z,(7,0) | H(m — 1)] conditional
on H(m — 1). Now one only needs the sparsity assumption conditional on #(m — 1). This is the

approach used in van der Laan [2014]. The resulting more general theorem assumes the necessary

conditions for each m.

S Simulation Study: Variance of the Sample Mean of a Time Series

We undertook a simulation study to examine the effectiveness of our proposed SP variance estimation
approach and compare its performance to other existing methods in estimating the asymptotic
variance of the sample mean under several types of time-dependent data generating distributions.

Section 5.1 describes the simulated time series. Section 5.2 describes the three main types of

11

Hosted by The Berkeley Electronic Press



SP variance estimators we implemented and briefly outlines the existing estimators to which we

compared their performance. In section 5.3, we discuss our results.
5.1 Simulated Time Series

We simulated three main types of moving average (MA) time series. The first consisted of processes
with constant dependence lag structure over time, i.e. O(t) = u(t) + fru(t — 1) + Pou(t — 2) +
o Bru(t — 1), u(t) ~ N(0,1),t = 1,...,n, where the vector 3 = (/31, ..., 5,,) Was constant
across all time points. This corresponds to a () that is constant over time and equal to the length
of the vector 3. We used three different 5 vectors: 0.9, (0.9, 0.5, 0.1), and (0.9, 0.7, 0.5, 0.3, 0.1),
with associated asymptotic variances of the standardized sample mean of 3.61, 6.25 and 12.25,
respectively.

We also simulated two additional types of MA time series where the true dependence lag varied
with time. In one simulation, (7o(¢) : ¢ = 1, ..., n) had positive linear drift, starting with 74(1) = 0
and ending with 7y(n) = 7. The asymptotic variance of the standardized sample mean for this
type of time series is approximately 6.68. In another simulation, (7o(¢) : t) had a periodic structure
bounded between 1 and 5, with either one or two periods. The associated asymptotic variance of
the standardized sample mean for this time series type is approximately 7.12.

We simulated 16,384 instances of each time series type at each sample size of 250, 500, 750,

and 1000, for a total of 393, 216 iterations in our simulation study.
5.2 Types of SP Variance Estimators

The idea behind SP variance estimation is quite general: generate an ordered sequence of proposed
dependence relationships that can approximate the truth (a ’sieve’), then use smoothing techniques
to find the plateau in the ordered variance estimates. We implemented three different SP estimators,
all using an L, fit ordering.

Model-based 7. Perhaps one knows the dependence structure in one’s data adheres to a particular
pattern. For instance, one might know the dependence lags increase over time. This estimator

takes advantage of such knowledge. When the true dependence lags were constant over time,

12
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{7Tnx : k} consisted of constant-valued n-length vectors of dependence lags, starting with constant
values of zero (assuming independence) and ending with an upper bound of constant values of
10, comfortably exceeding the maximum true dependence lag value of 5 for this type of simulated
time series. When true dependence lags had positive linear trend, {7, : k} was a collection of
randomly generated nondecreasing n-length vectors, each with a unique combination of starting
and ending values. The starting values were bounded between 1 and 7, the ending values between 2
and 18, and the maximum span between starting and ending values was 10. When true dependence
lags fluctuated periodically, {7, : k} were all periodic n-length vectors, each with a unique
combination of number of periods (ranging from 1 to 6), phase shift, and minimum and maximum
values (bounded between 1 and 12 in this simulation study).

Constant 7. There are probably more instances where one has limited specific knowledge
about the dependence structure in one’s data other than some notion of sparsity. One approach in
this case is to use a sequence of constant-valued n-length 7 vectors. We found we could improve
performance by incorporating some small decision criteria regarding determining a maximum

constant value. The algorithm is as follows:

1. For {7, : k} constant in time, start with 7,,(¢) = 0 for all time points and compute (2).
Continue increasing this constant value and computing the corresponding variance estimate
until the first decreasing result or the constant value exceeds some large upper bound (30
in the present study). Let 7' be the constant dependence lag vector associated with the last

variance estimate in the sequence.

2. Estimate the plateau value of the resulting sequence using weighted PAVA and density

estimation. Denote this result 2.

3. Let T,ax be a constant vector of the maximum credible dependence lag we expect to observe
(we used 10 in this study). If 7/ < 7y,., then 52 1s our variance estimate. Otherwise, our

estimate is the minimum of Efl and (2) with 7 = Tax.

Kitchen sink. Another reasonable response to having limited specific knowledge beyond some

13
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degree of sparsity is to generate a diverse set of vectors {7, : k}. In our simulation, at each
iteration we randomly generated a large collection of about 28,985 unique dependence lag vectors
that were constant, linearly increasing, linearly decreasing, periodic, and random walks bounded
between zero and five.

We compared these SP variance estimators with the following methods: an oracle benchmark,
(2) with 7 = 7y; variance estimates (2) with constant n-length vector 1., equal to 10 for all time
points; and an i.i.d. IF-based estimator, as in (2) with constant n-length vector T equal to O for all
time points. We also compared our performance to the stationary block bootstrap (SBB), circular
block bootstrap (CBB), and subsampling (SS), with block and subsample sizes selected in three
different ways: (1) data-adaptively according to the algorithm in Patton et al. [2009]; (2) enforcing
this data-adaptively selected block size to be at least 10; and (3) using a constant proportion as a

function of sample size (b = 0.1n, SBB and CBB only).
5.3 Simulation Results

Our simulation results confirm our proposed approach works well in practice. All SP estimators
outperformed all variants of the SS, CBB and SBB estimators included in our study. This was true
across all sample sizes and time series types. It is possible some of this performance advantage
can be attributed to less than optimal estimated block sizes. However, estimating an optimal b
is difficult, and not necessarily tractable for other parameters of interest. Our simulation can be
viewed as a comparison of these algorithms as they are typically used.

Table 1 compares average normalized MSEs, (02 — 62)” /o2, across estimators and sample
sizes. Overall, the SP "kitchen sink’ sample-based estimator performed best, with the corresponding
mode-based estimator a close second. As expected, the mode version was slightly less variable and
more biased than its sample-based counterpart. Notably, both of these estimators had normalized
MSEs that were actually smaller on average than the oracle benchmarks at the smallest sample
size n = 250. The other SP estimators were close competitors, particularly when n > 250. The
modified constant 7 estimator was the least computationally intensive of the SP estimators we

implemented, and performed admirably even when the simulated time series did not have constant
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To. When the dependence lag exhibited linear drift, for instance, the modified constant 7 estimator
actually outperformed the (correct) model-based 7 estimators. For very large sample sizes and a
rich collection of proposed dependence relationships, the time required to compute each variance
estimate and its PAV regression weight for a "kitchen sink’-type estimator could become nontrivial.
In such settings, the modified constant T estimator could be an attractive alternative. However, it
may be difficult to implement in settings where underlying dependence is more complex or is not

well understood.

estimator

overall

n = 250

n = 500

n = 750

n = 1000

oracle, IF-based

SP ’kitchen sink’ (sample)
SP ’kitchen sink’ (mode)
SP constant 7 (IC)

SP model-based (mode)
SP model-based (sample)

SS,b> 10

SS, data-adaptive b

CBB., b > 10

CBB, data-adaptive b

SBB, b > 10

SBB, data-adaptive b

Tmaz»> 1IF-based
CBB,b=0.1n
SBB,b = 0.1n

iid, IF-based

0.230 (-0.020)
0.236 (-0.019)
0.248 (-0.073)
0.263 (-0.015)
0.274 (-0.023)
0.279 (0.006)
0.403 (-0.110)
0.407 (-0.115)
0.408 (-0.114)
0.413 (-0.120)
0.492 (-0.139)
0.499 (-0.151)
0.592 (-0.045)
0.987 (-0.125)
1.186 (-0.204)
3.600 (-0.677)

0.434 (-0.038)
0.426 (-0.019)
0.424 (-0.086)
0.473 (-0.022)
0.491 (-0.032)
0.508 (0.004)
0.676 (-0.141)
0.680 (-0.153)
0.669 (-0.148)
0.675 (-0.161)
0.807 (-0.183)
0.802 (-0.205)
1.109 (-0.086)
1.028 (-0.146)
1.251 (-0.226)
3.625 (-0.679)

0.224 (-0.020)
0.230 (-0.017)
0.243 (-0.073)
0.259 (-0.015)
0.272 (-0.022)
0.276 (0.007)
0.403 (-0.111)
0.406 (-0.116)
0.409 (-0.116)
0.413 (-0.121)
0.490 (-0.140)
0.502 (-0.152)
0.578 (-0.043)
0.987 (-0.123)
1.186 (-0.202)
3.599 (-0.677)

0.150 (-0.014)
0.162 (-0.019)
0.179 (-0.069)
0.179 (-0.013)
0.188 (-0.020)
0.188 (0.006)
0.294 (-0.098)
0.298 (-0.101)
0.305 (-0.102)
0.309 (-0.105)
0.368 (-0.122)
0.379 (-0.130)
0.387 (-0.030)
0.971 (-0.117)
1.160 (-0.198)
3.591 (-0.676)

0.114 (-0.010)
0.127 (-0.020)
0.146 (-0.066)
0.139 (-0.012)
0.146 (-0.019)
0.144 (0.005)
0.238 (-0.088)
0.243 (-0.091)
0.250 (-0.091)
0.255 (-0.094)
0.304 (-0.111)
0.313 (-0.117)
0.295 (-0.022)
0.961 (-0.112)
1.149 (-0.192)
3.584 (-0.675)

Table 1: Simulation results. Normalized MSE with respect to the (02 —02)? Jod.

Normalized bias with respect to the true variance is in parentheses.

true variance,

Boxplots in figures 1 and 2 clearly illustrate the performance differences between the SP and
the blocked sub/resampling estimators. Subsampling with b > 10 was the best of the latter group,
with normalized MSEs on average 2/3 larger than those of the SP ’kitchen sink’ sample-based
estimator. The corresponding CBB estimator had nearly equal performance. Enforcing the block
size to be at least 10 did not seem to affect either very much. The corresponding SBB estimators
performed substantially less well, with normalized MSEs on average 22% larger than those of
subsampling and a little more than twice that of the SP ’kitchen sink’ sample-based estimator.
Figure 3 examines block sizes as a function of time series type, sample size and normalized bias.
Most b were less than 20, but the range of b was substantial, from 2 to 87. Not surprisingly, large
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block sizes tended to be associated with negative bias overall. Average b increased with increasing
max{ T}, a reassuring sign that the algorithm we used to select b was performing reasonably.

The remaining estimators performed substantially less well. As expected, the estimator ignoring
dependence did poorly and significantly underestimated the variance. The 7,,,,, estimators also did
not fair well. They were not defined in a way that prevented them from giving negative variance
estimates, which they did on rare occasions at the smallest sample size of n = 250. They improved
substantially as sample size increased, and at n = 1000, had slightly better average normalized
MSEs than the best performing SBB estimator. The CBB and SBB estimators with block size

= 0.1n had very poor performance, a sobering reminder of the sensitivity of these algorithms to
block size selection. Clearly, one should not resort to ad hoc methods for selecting b.

Table 2 lists the coverage of the confidence intervals using each of the estimators of the variance
of the sample mean, overall and by sample size. With the exception of SBB with b = 0.1n, all
estimators that assume some form of dependence had adequate coverage. However, SP estimators
did have better coverage overall than the sub/resampling estimators, especially at smaller sample
sizes. That SS and CBB had reasonable coverage suggests the algorithm we used to estimate b

worked as expected.

estimator overall n =250 n =500 n=750 n=1000

SP model-based (sample)  0.946 0.942 0.946 0.947 0.948
SP constant 7 (IC)  0.944 0.939 0.943 0.945 0.946
oracle, IF-based  0.943 0.938 0.944 0.946 0.947

SP ’kitchen sink’ (sample)  0.943 0.940 0.943 0.944 0.945
SP model-based (mode)  0.942 0.938 0.942 0.944 0.945
SP ’kitchen sink’ (mode)  0.936 0.931 0.936 0.938 0.940
Tmaz, IF-based  0.932 0914 0.932 0.939 0.942
SS,b>10 0.929 0.918 0.928 0.932 0.936

SS, data-adaptive b 0.928 0.917 0.928 0.932 0.935
CBB,b> 10 0.928 0.918 0.927 0.932 0.935

CBB, data-adaptive b 0.927 0.915 0.927 0.931 0.935
SBB,b>10 0.923 0.909 0.923 0.928 0.931

SBB, data-adaptive b 0.921 0.906 0.921 0.927 0.930
CBB,b=0.1n 0913 0.908 0912 0914 0916
SBB,b=0.In 0.896 0.890 0.896 0.897 0.900

Table 2: Coverage probabilities
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Figure 1: Boxplot of overall standardized bias for a subset of estimators. Boxplots are ordered vertically
(top is best, bottom is worst) according to average normalized MSE.
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Figure 2: Boxplot of standardized bias by sample size for a subset of estimators. Boxplots are ordered
vertically (top is best, bottom is worst) according average normalized MSE.
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Figure 3: Diagnostic plots of subsample size for SS estimator with b estimated data-adaptively.

6 Practical Data Analysis: Average Treatment Effect for a time series

Environmental Health applications are an area in which SP variance estimation has the potential to
be very useful. Not only are exposures and outcomes frequently dependent in time and/or space,
but environmental health studies often inform public policy. Reliable, theoretically sound standard
error estimates are crucial in this setting.

In this section, we examine the relationship between ventilation rate (VR, the rate at which
outdoor air is brought indoors) and illness absence for a single elementary school classroom
followed over two years. These data are a subset of a much larger data set consisting of 162
classrooms in three California school districts. In each room, daily VRs (in units of liters per
second per person, L/s/p) were estimated using measurements transmitted every five minutes
from Ethernet-wired sensors. Daily counts of the number of students per classroom absent due
to illness were also collected, along with other classroom level demographic covariates. These are
the largest, most detailed school-based VR data in the scientific literature to date. We refer the
reader to Mendell et al. [2013] for technical details regarding the sensors used in this project, how

the VRs were estimated, and how the schools were sampled for inclusion in the original study.
6.1 School Ventilation Rates: Public Health Significance

According to the Environmental Protection Agency, the average American (including children)

spends about 90% of her time indoors [Klepeis et al., 1996]. Indoor air can contain many irritants
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and pollutants that adversely affect human health. These can include chemical emissions from

the building and its various components (paint, carpet, cleaning product residue, etc.) as well as
potentially infectious emissions from the room’s occupants. Proper ventilation decreases the indoor
concentrations of these potentially harmful substances. Scientists have found associations between
lower VRs and adverse human health outcomes (see for instance Li et al. [2007]; Seppinen et al.
[1999]). School-age children spend more time in school than in any other indoor environment
besides home [Klepeis et al., 1996]. As of 2010, in the state of California alone there were approximately
6,224,000 students in 303,400 K-12 classrooms [California Department of Education, 2012], all
spending on average six to seven hours per day inside classrooms.

Given that a significant percentage of the general population is habitually exposed to the indoor
environment of schools and that we know there is a connection between insufficient ventilation
and human health, one might assume the current VR guidelines are informed by scientific studies
involving human health outcomes. Surprisingly, this is not the case. Historically, VR guidelines
were designed to improve the perceived odor of a room [Mendell and Fisk, 2014]. While there
have been efforts over the years to incorporate health concerns into recommended guidelines, these
efforts have been relatively ad hoc in nature. The larger goal of the study from which these data
are drawn was to provide a more rigorous scientific basis for VR threshold guidelines in school

classrooms [Mendell et al., 2013].
6.2 Observed Data and Target Parameter

In this subsection, we first familiarize the reader with the observed data. We then introduce the
target parameter and its estimator within the context of i.i.d. observations. Next, we outline the
assumptions we are willing to make that permit us to use this version of the estimator, even though
our data are clearly not i.i.d. Here we highlight the challenges inherent to any estimation problem
in this subject matter area. We discuss the limitations of using this estimator, but contend that the
implied statistical parameter is still interesting. However, we would like a robust standard error
estimate. We use SP variance estimation to do this.

Our outcome of interest, Y (¢), is the total number of children absent specifically due to illness
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on day ¢. Figure 4 shows that while illness absence was not a rare event, the majority of the days
in our study had no illness absences. The maximum number of illness absences we observed was
four.

Let A(t) be a binary indicator equal to one when the average estimated VR taken over the
seven calendar days prior to time ¢ is at least 7.1 L/s/p (the current recommended threshold for
classrooms, ASH [2010]), and zero otherwise. This is our exposure of interest. VRs on minimum
days were excluded from analyses, when they were less likely to reach equilibrium. The classroom
in analysis had at least one minimum day per week. Days with C'O, values considered implausible
for a typical occupied room (below 600 or above 7000 ppm) were also excluded. The majority
of VRs included in this analysis (78%) did not meet the recommended threshold. A histogram of
VRs included in our analysis (figure 4) shows the distribution of VRs varied substantively, with
minimum and maximum values of 2.44 and 25.76 L/s/p, respectively. One convenient statistical
property of VR in this study (and thus of our exposure of interest) is that daily VRs are independent
of past illness absence rates and can be considered conditionally independent of past VRs as well,
once one controls for season. The choice of this exposure metric is guided by a sensible evaluation
of what little is known with respect to lag times from exposure to disease development for diseases
most associated with illness absence in schools. We direct readers to the original paper for a more
full discussion. Figure 4 plots Y'(¢) as a function of seven-day average past VR, where it appear
lower exposure values are associated with more non-zero Y ().

Let W (t) denote a vector of real-valued covariates measured before exposure. In this study,
W (t) consisted of two variables: an indicator of winter season, and classroom enrollment count.
Season is an important potential confounder (common cause of both exposure A(t) and outcome
Y (t)) in this study. The observed classroom is naturally ventilated with no air conditioning, thus the
primary means by which outside air is brought indoors is via windows, which are more likely to be
closed when it is cold outside. We would therefore expect VRs to be lower in winter. There might
also be a higher baseline illness rate during winter months, regardless of VR threshold attainment.

We control for this potential confounding effect by including an indicator variable equal to one
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when ¢ is a winter day, and zero otherwise. The total number of students present each day during
the exposure window is another important factor, as this represents the number of children at risk
of being absent in the near future who were actually exposed. Unfortunately, we were unable to
obtain this information. Because illness absence counts were typically quite low (about 64% of
observed days had no illness absences, with the majority of nonzero counts less than 3, see figure
4 for a histogram), we felt a reasonable proxy for the total number at risk was the average number
of children enrolled in the previous seven calendar days. Classroom enrollment ranged between 22

and 26 students.
6.3 Estimating an Average Treatment Effect using TMLE

We would like to learn about the effect of the current recommended VR threshold on classroom
illness absence. Specifically, we want to estimate the magnitude of the difference in daily illness
absence counts when the average VR over the previous seven calendar days always meets or
exceeds the current guidelines of 7.1 L/s/p versus when it never meets 7.1 L/s/p. To do this, we
estimate an average treatment effect (ATE). The ATE was originally defined within the potential
outcomes framework introduced by Rubin (1974) as a missing data problem, but can also be
defined using nonparametric structural equation modeling (Pearl, 2010) in terms of interventions
on a structural causal model. We use Targeted Maximum Likelihood (TML, van der Laan and
Rubin [2006], Gruber and van der Laan [2010], Gruber and van der Laan [2012]) to estimate the
ATE and an ensemble machine learning algorithm called Super Learner [Polley and van der Laan,
2012] to estimate the relevant portions of the likelihood.

TML and Super Learner are both components of a general approach called Targeted Learning
[Rose and van der Laan, 2011]. Super Learner is a generalization of the stacking algorithm first
introduced by Wolpert [1992] within the context of neural networks and later adapted by Breiman
[1996] to the context of variable subset regression. It works by combining predictions from a
diverse set of competing prediction algorithms using cross-validation, thus eliminating the need
to pick a single prediction algorithm a priori. Theory guarantees Super Learner will perform

asymptotically at least as well as the best algorithm in the competing set [van der Vaart et al.,
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2006, van der Laan et al., 2007]. TML is a procedure for estimating parameters of semiparametric
models. They are loss-based defined substitution estimators that work by updating initial estimates
in a bias-reduction step targeted toward the parameter of interest instead of the overall density.
Provided specific assumptions about the data generating process are met, TML estimators are
efficient and unbiased.

We briefly summarize the formal definition of the ATE within the context of TML and i.i.d.
data, as this is the version of the estimator we will use. Let O; = (Oy,...,0,,) be a data set
consisting of n i.i.d. draws from the random variable O = {W, A, Y'}. O has true probability
distribution F,, contained in the statistical model M. W is one or more covariates, A is a binary
treatment or exposure, and Y is a bounded, real-valued outcome. The ATE is defined as the
marginal difference in Y if A is set deterministically to 1 versus if A is set deterministically to
0. Under the assumptions of no unmeasured confounding and positivity, the ATE can be written in

terms of the observed data distribution F; as
TE =Ep{Eo[Y|A =1W]—EyY|A=0W]} (5)

Let Qy(A, W) = Eo[Y|A, W], and let go(A, W) be the true probability of A given W. The
influence function for (5) is

pry = { U - 0y - Quam} +aaw) - Qo) - v o)

A TML estimator W(P) of (5) solves the efficient influence function (i.e. the canonical gradient)
of (5), P,D(P*) = 0, which is (6) applied to the empirical distribution that has been updated so
as to make the optimal bias variance trade-off, denoted P. The variance of this efficient influence
function gives the asymptotic variance of the TML estimator of (5).

Of course, we do not have i.i.d. data. Rather, we observe a discontinuous time series O™ =
{O(t) : t} of n observations over a particular time span, with true joint data generating distribution
Pg'. Van der Laan (2014) derived identifiability results and TML estimators for target parameters
like the ATE when the data are observed over time on an interconnected network. While these

estimators represent a significant advance in semiparametric causal inference for dependent data,
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they do require one to have some specific knowledge of the underlying dependence structure and
are thus difficult to use in this context. Nevertheless, we believe the dependence in our data is weak;
the statistical parameter formulated with respect to an i.i.d. data-generating process is interesting,
and an estimate of it will provide scientists with useful information. Below, we summarize what
we know about the data generating process we observe, what we are comfortable assuming, and
what we are willing to assume for the sake of moving forward.

We believe O™ has a martingale-type dependence structure. Specifically, let O(t) = {O(t), O(t—
1),...,0(1)}, and in an abuse of notation, let O(t — 7;) = {O(t),O(t — 1), ..., O(t — 7;)} for some
t-specific positive integer 7; that is substantially less than both the sample size n and the total time
span covered by the sample. We are willing to assume Fj' can be factorized as

Fy =[] R{omiow} =[] n{ow)ot —n)},

te’T teT

where P, is common across all ¢. We do not know the true dependence lags (7 : t). We feel quite
comfortable assuming the time dependence in our likelihood does not come from the distribution
of the covariates W (¢) or the exposure mechanism go{ A(t), W (t)}, for reasons stated above. We
believe the randomization assumption holds, since daily VR is not in any way related to past illness
absence counts. The problematic relevant portion of the likelihood is Q. Specifically, in order
for the i.i.d.-formulated TMLE to be well defined, we must be willing to assume @0 1S common
across time (i.e. it is not indexed by t); and Eo[Y (t)[A(t — 7,), W (t — 7)] = Eo[Y (1) |A(t), W (t))].
(Since W (t) varies quite slowly over time, for all practical purposes we can treat it as equivalent
to W (t — 7;).) While we may feel confident that the large majority of Y (¢) only depend on VRs
captured within A(¢), it is not impossible for Y (¢) to be a function of VRs in the more distant past
for some ¢. In addition, some Y (¢) may be dependent on illness absence counts in the recent past.
We have no way of knowing the true dependence lag in either case. However, as we stated above,
we still believe an ATE estimator that makes the necessary assumptions about @, will produce an
interesting, useful result, even if we cannot be sure a causal interpretation is appropriate.

The library of learners used in our ATE TML estimation procedure included generalized linear
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models (with and without interactions); a step-wise GLM; Generalized Additive Models using
cubic smoothing splines, parameterized by equivalent degrees of freedom (2, 4 or 6) [Hastie,
1991]; and multivariate adaptive polynomial spline regression [Stone et al., 1997]. To achieve a
uniformly bounded loss function, predicted values for all algorithms were truncated to the range
of the observed data. Note that these data are not amenable to traditional time series approaches

because of their inherently discontinuous nature.
6.4 Estimating a Standard Error

Because these results could be used to inform future policy, we feel it is important to obtain a
robust standard error estimate. We use SP variance estimation to do this. We assume the influence
functions in our analysis are dependent in time in a way we don’t fully understand. We are
comfortable assuming this dependence is bounded in time and that all true covariances are positive.
We do not know enough about the underlying dependence to use a model-based T approach. The
SP approach assuming constant 7 is possible, but less convenient given the temporal discontinuities
in these data. We therefore implement the ’kitchen sink” SP variance estimator, using an upper
bound on the temporal extent of the dependence of any two influence function values of max(7) =
21. This threshold encompasses the vast majority of incubation periods for infectious respiratory
diseases [Lessler et al., 2009]. Our ’kitchen sink’ sieve consisted of the following sequences of T

vectors.

1. Winter step functions. Time points in winter may have different dependence lags than in

nonwinter: 7(t) = a; I(t € winter) + aoI(t ¢ winter), (a1, as) € {0,1,...,21}% a1 # as.

2. Seasonally periodic functions. Periodic 7 vectors were generated so that periodicity corresponded

with winter season.

3. 7(t) depends on Y (¢). Time points with more extreme average illness absence may be
dependent on more past time points than those with less extreme average illness absence

(or vice versa).
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4. 7(t) depends on past VR. Days with more extreme VRs may have had more lasting influence

on future Y (¢) than days with less extreme VRs.

For demonstration purposes, we implemented nine types of SP "kitchen sink’ variance estimators.
We used mode, step and sample-based versions, and we ordered by L; fit, complexity (defined
using equation (3)), and the number of nonzero D;; pairs included in the estimator.

Subsampling and blocked bootstraps are not well suited to this estimation problem for a number
of reasons. The computation time required to repeatedly re-estimate the ATE would be considerable.
Also, estimating an optimal b would be complicated by the inherently discontinuous nature of the
data. Furthermore, one of our confounders, winter, occurs in two large contiguous blocks, one for
each year. In order to avoid positivity violations, b would have to be larger than the length of winter.
We have no way of knowing whether or not an optimal b this large even exists. Using SP variance

estimation is much more convenient and computationally efficient in this context.
6.5 Results

Our TML estimate of the ATE is —(.186. This means that on average, illness absence counts when
the average VR over the preceeding seven calendar days at least met the current recommended
threshold were 0.186 less than illness absence counts when the preceeding VR failed to meet the
recommended threshold of 7.1 L/s/p. Given that the mean illness absence count is 0.48, this is a
potentially consequential finding, and may suggest increasing the average VR in this classroom
to at least 7.1 L/s/p could substantively reduce illness absence rates. The 0.95 confidence interval
ignoring time dependence is (—0.35, —0.02) (p-value = 0.03). The naive practitioner might be
tempted to assume the results are both practically and statistically significant. However, our "kitchen
sink’ SP estimated standard errors are much larger, providing us with a more realistic sense of the
uncertainty of our ATE estimate. Table 3 lists variance estimates, p-values and confidence intervals
for each of the SP variance estimators. The variance estimates are all more than three times as large
as the 1.1.d. IF-based estimate and produce confidence intervals containing zero, and p-values that
are no longer significant. They are also in relative agreement with one another. Figure 5 provide a
visual illustration of the estimation procedures, where we can clearly see a plateau in each case.
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ordering type o2 0.95 CI p-value

n

(none) iid. IF-based 1.592 (-0.351,-0.021)  0.027

number of nonzeros mode 5.760 (-0.500, 0.128) 0.245
value of longest plateau  5.774  (-0.500, 0.128)  0.246
sample value at longest plateau  5.905  (-0.503, 0.132)  0.251

L4 fit mode 5.798 (-0.501,0.129)  0.247
value of longest plateau  5.825  (-0.501, 0.129) 0.248
sample value at longest plateau  6.003  (-0.506, 0.134)  0.255

complexity mode 5.752 (-0.499, 0.127) 0.245
value of longest plateau  5.763  (-0.500, 0.128)  0.245
sample value at longest plateau  5.992  (-0.506, 0.134) 0.254

Table 3: ATE variance estimation. Results ignoring dependence, and SP estimators, ordering by number
of non-zero elements in the estimator; L; fit; and complexity. All SP estimators are of the ’kitchen sink’
variety, utilizing 12, 956 unique dependence lag vectors.
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Figure 4: Descriptive plots of (a) 7-day average VRs (L/s/p), (b) daily illness absence counts, and (c) a
scatterplot of daily illness absence as a function of prior 7-day average VR.

Overall, the practical significance of our ATE estimate is mixed. Its magnitude suggests that
meeting the threshold may have a positive effect on illness absence rates, but our more realistic SP-
based standard error estimates should give us pause. Furthermore, collapsing a bounded, continuous
exposure into a binary one can make interpretation of results somewhat challenging. A curve
examining a range of potential thresholds may be a more informative target parameter. This will
require using the full data, which include multiple schools, each with multiple, possibly interdependent

classrooms, and is future work.

7 Discussion and Future Directions

Our original goal in our simulation study was to verify our proposed SP variance estimators could
do at least as well as subsampling and blocked bootstrap estimators in a setting where these existing

estimators have been well-studied. The chief advantage of the SP approach would then be its
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Figure 5: Visualizations of SP variance estimation approaches when ordering by (a) L1fit, (b) complexity,
and (c) the number of nonzero D;; pairs included in the estimator. (d) shows the estimated densities of each
PAV curve.
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general utility: it can be used in situations where sub/resampling are ill-suited. Our simulations
showed that in the familiar setting of sample means of time series, all three SP approaches substantively
outperformed their competitors, both in bias and variance.

We also presented a practical data analysis, estimating an ATE for the effect of VR threshold
attainment on subsequent illness absence counts in an elementary school classroom. This is an
important public health issue, and a good example of a setting where sub/resampling would be
difficult to use. We showed that in this case, properly accounting for time dependence gave larger,
likely more realistic standard error estimates.

SP variance estimators do rely on more assumptions than subsampling, many of which are not
testable, and bootstraps can, in some circumstances, capture second order features that influence
function-based methods will miss [DasGupta, 2008]. However, if one feels confident that the
assumptions we require are reasonable, our approach appears to be an excellent alternative to
blocked resampling and subsampling strategies. It avoids the challenge of estimating the nuisance
parameter b and can result in significant computational savings.

Another important advantage of SP variance estimation is that it can be implemented even when
one has limited understanding of the ordering of one’s data. Dependence can have much more
complex structure than what we have presented here. For example, spatiotemporal dependence

is common in ecology and environmental health, and applications in internet advertising and
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infectious disease epidemiology often involve dependent observations on a poorly understood
network. The SP ’kitchen sink’ estimator could be particularly useful in these settings.

A limitation of our approach as it is implemented here is that we require monotonic dependence.
While monotonic dependence is common, there are applications where this requirement is not
met. Health care settings with finite resources, for instance, or plant species distributions where
organisms have an inhibitory effect on their immediate surroundings are some examples. Extending
the SP variance estimation algorithm to settings with nonmonotonic covariance is an important area

for future work.

APPENDIX A. Approximating the Variance of Variance Estimators

We illustrate how we derived (3) by first deriving an approximation of the true variance of a sieve
element when this element is in the plateau, and then using a working model on this approximation.
We use notation previously defined above in section 3.1.

Consider the variance of an estimator of the form (2) with arbitrary 7 € 7{. Note that if
Qi; N Qe = 0, then Py Dyjre = (PyDyj) (P)'Dye). We make the following assumption on the

independence structure of the observed data:

1 o n
Eo [on(T)] = — > 02(6.)0- (k. () P Dijue
1,5,k 0

1 - - N
= Z ’7(27]7 kag)é‘r(zaj)(sT(kﬂg)PO DijPO Dk?g
n 1,7,k,0
1 N N )
+E Z[l _7(%.]7kag)](;T(Zaj)éT(kag)Po Dijkf (7)
1,7,k,0

1 -
B Z 07 (2, 7)0+(k, €)' Dij Py Dy + o(1).

i7j7k:7£

Specifically, we assume the term (7) is negligible. Given this assumption, we can approximate the

variance of (2) as
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Var [0721(7')} =[E, {JZ(T)}z - {]EOO'Z(T)}Q
{Z 07 (i, §)6- (K, O) Py Dijie — Y _ 074, §)0-(k, 0) Py Dy Py DM}
1,9,k,0 1,7,k 0

N Z {1—~(i,4,k, 0)}0-(3,5)0-(k, 0) { Py Dijue — Py Dy Py Dy}t .

1,7,k

Let p(i,4,k,l) = PJDijwe — P} D;;jPJ Dye. Suppose for the sake of illustration we define the
following working models for p: o = PyD?, common across i; p; = Pj'D;;, common across
{(4,7) : 0.(4,5) = 1,i # j}, and py = P D;jxe, common across {(¢, 7, k, 0) : 0,(i,7) = 0.(k, ) =
1, v(i,7,k,¢) = 0}. We could estimate these quantities by taking empirical averages across the
relevant elements. An estimator of p; for an arbitrary 7 is given by p1,, = {>_, ;0-(i,7)1(i #
DDA, 06, )1 # j)}. Similarly, o2 = 1/n Y, D2, and

pon = Zi,j,k,e 07 (i, 7)0- (K, €)(1 _7(i7j7k7£>)Dijk£
S ke 00 )0 (ke O{L =i .k O}

This defines p, (i, j, k, ¢) for each (4, j, k, ) as having three possible values: a2, p; , or pa,,. The

corresponding variance estimator using this working model is
Var {O‘Z(‘T)} = 1/n2 Z {1 - 7(17]7 k? é)}(ST(Z?])(ST(ka E)pn(27]7 ka é)
irjoke,
Assuming common p across all time points is in most cases inappropriate. However, it does show
us that the variance of the sieve elements can be viewed as proportional to (3), 1/n* 37, . {1 —
(i, 7, k, 0) }0- (7, j)0-(k, £). We have found using (3) works well in practice as both a basis for a

weight in PAV algorithms and as a sieve ordering.

APPENDIX B. Proof of Theorem 2

We start by proving the last result of the theorem. Define the process (Z,,(7,0) : (7,0) € F) by

=230 ST DD 0) - BEDD,0))

i=1 jeQ; ,
We have

o2 (T) =02, (T) = {Za(7,0,) = Zn (7, 00) } + Zn (T, 0) + Z > Py{D:D;(6,,) — DiD;(60)}.
o ®)
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By condition (4), the last term in equation (8) converges to zero in probability uniformly in 7. We
note that Z,,(7, ) can be represented as
L Z S 16 € 2{D0)D;(0) ~ Py DD, (0)}
=1 ]EQ1 p
showing Z,(7,0) isa sum over A = {(i,7) : i = 1,...,n,j € Q; +«}. Let n* be the size of A.

Then Z, (7, 6) can be represented as
u Z fk(Tv 6) - P(;Lfk(Tﬂ ‘9)7

where fi.(7,0) = n"D;uyD;ky(0) and k — (i(k), j(k)) maps the index % into the corresponding
index (i(k), j(k)) that makes up the index set A = {(¢,7) : j € €, r« }. By the sparsity condition
(3), linkage condition (4) and entropy condition (5), Theorem 3 in van der Laan [2014] proves that
the process (/nZ,(t,0) : (1,0) € F) is asymptotically equicontinuous, so that, in particular, the
following holds: if || (75, 6,) — (7, 60) ||z— 0 in probability, then /n{Z, (7, 0,) — Z.(T,00)} =
op(1), and

sup | Zu(7,0) |= Op(1/v/n).

(,0)eF

As a consequence, we can conclude that if sup,. || (7,6,) — (7, 600) ||— 0 in probability, then
vnsup, |Z,(1,60,) — Z,(7,600)] = op(1), and we also have sup, |Z,(7,6)| = Op(1/y/n).
Condition (5) thus establishes that \/n sup.,. | Z,, (T, 6,,)—Z, (7, 0y)| = op(1). This proves sup,. |02(7)—
05n(T)| =1(n) + Op(1//n).

We now prove the consistency of o2(,) as an estimator of o3, when || (6,,, 7,) — (6o, 70) || = 0
and d,, (7, 0,), (T2, 00)] — 0 in probability for a 70 € Tj (we can act as if the latter holds with

probability 1, by a standard simple argument). Firstly, we note that 02, = o2, (7). Now we have

1
U%(Tn)_agn(ﬂ?) = Zn(Tn, Qn)_Zn(Tga 90)+Zn(7'797 90)“‘5 Z {P(;Lf(i7j),7'n,9n _Pélf(i,j),rg,eo}- )
(i,7)€A

By the asymptotic equicontinuity of Z,, we have Z,(7,,0,) — Z,(7°,600) = op(1/y/n), and
Z,(12,60) = Op(1/4/n). The third term in equation (9) equals d,[(7,6,), (772, 6y)], which is

assumed to converge to zero in probability. Thus, this proves that o%(7;,) — 02, — 0 in probability.
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