


We now have estimates resulting from estimators f̂1,j1 and f̂2,j2 applied to
each training sample for all j1, j2. We can simultaneously optimize over αA(0)

and αA(1) to maximize the CV-TMLE of the mean outcome under the fitted
rule. The final estimated latent functions at the first and second time points
are given by

∑
j αn,A(0),j f̂1,j(Pn) and

∑
j αn,A(1),j f̂2,j(Pn), respectively. This

method seems to be most targeted towards our goal, namely maximizing the
mean outcome under the estimated rule. We note that αA(1) need not equal
any of the convex combinations αnuisv,A(1) used to obtain each dnuisn,v,A(1), but we
can establish oracle inequalities that will ensure that αn,A(1) performs at least
as well as each αnuisv,A(1) in terms of mean outcome for the final output optimal
rule. We leave deeper consideration of this cross-validation scheme to future
work.

6 Simulation methods

Section 6.1 and Section 6.2 respectively introduce the data and methods for
estimating the optimal rule d0 in the one and two time point case.

6.1 Single time point

We start by presenting two single time point simulations. In our earlier tech-
nical report we directly describe the single time point problem (van der Laan,
2013). Here, we instead note that a single time point optimal treatment is a
special case of a two time point treatment when only the second treatment
is of interest. In particular, we can see this by taking L(0) = V (0) = ∅, es-
timating Q̄2,0 without any dependence on a(0), and correctly estimating Q̄1,0

with the constant function zero. We can then let I(A(0) = dn,A(0)(V (0))) = 1
for all A(0), V (0) wherever the indicator appears in our calculations. Because
the first time point is not of interest, we only describe Q̄2,0 and the second
time point treatment mechanism for this simulation. We refer the interested
reader to our earlier technical report for a thorough discussion of the single
time point case.

6.1.1 Data

See Section 8.1.1 of our companion article. We remind the reader that static
treatments (treating everyone or no one at the second time point) have ap-
proximately the same mean outcome of 0.464. The optimal rule has mean
outcome EP0Yd0 ≈ 0.536 when V (1) = W3 and the optimal rule has mean
outcome EP0Yd0 ≈ 0.563 when V (1) = (W1,W2,W3,W4).
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6.1.2 Estimation methods

We assume that the treatment and censoring mechanisms are known. For
ease of interpretation, we consider two estimates of EP0

[
Y |Ā(1),W

]
: (i) a

naive estimate of 1/2 for all A(1),W , and (ii) the true conditional expectation
EP0

[
Y |Ā(1),W

]
. We note that (i) is slightly different from an IPCW estimator

in that it contains a term which stabilizes the inverse weighted outcome term in
the (cross-validated) empirical or CV-TMLE estimate of risk. This stabilized
approach should do slightly better in our simulation since the conditional mean
of Y given Ā(1),W is approximately centered around 0.5. In practice we
always recommend using a double robust approach, even if just an intercept-
only best guess of the conditional mean as we do here. When the outcome is has
mean a 6= 0, one can always (approximately) mean-center the outcome before
estimating the optimal rule. This turns out to be equivalent to misspecifying
EP0

[
Y |Ā(1),W

]
to be the constant function 1/2.

We estimate Q̄2,0 using both a misspecified parametric model and a li-
brary containg both parametric and machine learning methods. We always
recommend using data adaptive methods to estimate Q̄2,0 in practice, but
use the misspecified parametric model to demonstrate the robustness of using
the mean outcome as the risk criterion. We only consider the misspecified
parametric model when V (1) = W3. In particular, we use the parametric fit:

Q̄2,n(a(0), w3) = β0 + β1w3

where β is chosen to minimize either the empirical mean-squared error or
the TMLE estimate of mean outcome. Neither of the risk estimates for the
misspecified parametric model uses cross-validation. For the parametric fit we
take the estimate of EP0 [Y |Ā(1),W ] to be the constant 1/2

We also use super-learner to estimate Q̄2,0. Table 2 shows the methods
used from the SuperLearner package in R (Polley and van der Laan, 2012) and
the corresponding estimating methodology with which they were estimated.
The multivariate adaptive regression splines algorithm was only used for V =
W1, ...,W4. We separately consider the candidates generated according to the
squared error and surrogate log loss functions, and also consider a candidate
library that includes both the squared error and surrogate log loss function
methods.

To generate convex combinations of predictors we maximize the CV-TMLE
or CV-DR-IPCW estimates of mean outcome (see our companion paper for a
description of the estimating equation based CV-DR-IPCW estimator). We
approximate solutions to the resulting optimization problems using the Sub-
plex routine in the nloptr package in R (Ypma, 2014; Rowan, 1990). We use
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Loss function Method R function

Squared error

Bayesian GLM SL.bayesglm

Generalized additive model SL.gam

Generalized linear model SL.glm

Generalized linear model, interactions SL.glm.interaction

Multivariate adaptive regression splines SL.earth

Sample mean SL.mean

Neural network SL.nnet

Stepwise regression SL.step

Forward stepwise regression SL.step.forward

Stepwise regression, interactions SL.step.interaction

Weighted log

Generalized additive model SL.gam

Generalized linear model SL.glm

Generalized linear model, interactions SL.glm.interaction

Neural network SL.nnet
Recursive partitioning SL.rpart

Table 2: Candidate estimators used to estimate Q̄2,0. See the SuperLearner
package documentation for more details (Polley and van der Laan, 2012).
SL.earth only used for V = (W1, ...,W4).

thirty starting values selected randomly from the simplex to avoid sensitivity
to intitial conditions, and also include the selection of α based on the weighted
log loss criterion as an initial value. We also consider minimizing the cross-
validated empirical risk functions derived from the squared error and weighted
log loss functions. We do not truncate the latent functions, though we note
only the empirical MSE blip function estimates can be unbounded, and this
should not cause problems in our data set because the outcome is bounded. We
compare the mean outcome under the rules generated by several combinations
of candidate libraries and criteria for choosing the convex combination.

To evaluate the performance of the described methods we will use the mean
performance of the estimated rule as a criterion, which is given by EP0Ydn for
a given rule dn. We estimate EP0 using 106 Monte Carlo simulations.

6.2 Two time points

Having already compared several different methodologies in the single time
point setting, we use the two time point setting to show that our proposed
method can sequentially learn a rule with good performance in practice.
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6.2.1 Data

See Section 8.1.2 of the companion article. We remind the reader that static
treatments yield mean outcomes EP0Y(0,1),(0,1) = 0.400, EP0Y(0,1),(1,1) ≈ 0.395,
EP0Y(1,1),(0,1) ≈ 0.361, and EP0Y(1,1),(1,1) ≈ 0.411. The true optimal treatment
has mean outcome EP0Yd0 ≈ 0.485 when V (0) = L(0) and V (1) = (A(0), L̄(1)).

6.2.2 Estimation methods

As in the single time point case, we treat the intervention mechanism as
known. As in the single time point case, we consider two stabilized classes
risk estimates instead of the IPCW estimator (see Section 6.1.2). Rather than
estimate EP0 [Y |Ā(1), L̄(1)] when estimating d0,A(1), we consider two extreme
cases, namely plugging in either the truth or the constant function 1/2 for the
desired expectation. Once the rule dn,A(1) at the second time point has been
estimated, we estimate EP0 [Ydn,A(1)

|A(0), L(0)] by either plugging in the truth,
which can be computed analytically using the G-computation formula, or the
constant function 1/2. In our simulations we only consider the cases where
either both or neither of the sequential regressions is estimated correctly. All
simulations use the IPCW mapping to relate the full data loss function to the
observed data distribution (see Appendix A).

We use the candidate library in Table 2, with the exception that the Bayes
GLM algorithm was excluded from these runs due to an occasional error from
the software and the multivariate adaptive regression spline model was also
excluded. The convex combinations for the sequential super-learners are se-
lected using the cross-validated empirical risk resulting from the surrogate log
loss function and the CV-TMLE estimate of the negative mean outcome risk.
The weights 1/g0,A(0)(O) and I(A(1) = dn,A(1)(O))/g0,A(1)(O) were incorpo-
rated into the procedures for estimating d0,A(1) and d0,A(0) by weighting the
candidate algorithms and the empirical risk optimization problem. The fitted
rule dn,A(1) used to weight the losses for estimating d0,A(0) was not fitted on the
training samples as we recommended in Section 4.2 due to time constraints.

7 Simulation results

7.1 Single time point

7.1.1 Incorrectly specified parametric model, V (1) = W3

Using the TMLE estimate of the mean outcome under the fitted rule as a
risk estimate appears to be more robust to model misspecification than the
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(a) Mean performance of the estimated rule when the estimate
En[Y |Ā(1),W ] of EP0

[Y |Ā(1),W ] is correctly and incorrectly specified.
Both the TMLE and the DR-IPCW −EP0Yd risk estimates outperform
the empirical mean-squared error risk criterion. Error bars indicate 95%
confidence intervals to account for uncertainty from Monte Carlo draws.
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(b) Linear boundaries learned by minimizing the TMLE of the negative
mean outcome and the MSE when EP0

[Y |Ā(1),W ] is estimated with the
constant 1/2. The x-intercepts from the least-squares fits are above the
plot, and the x-intercepts from fits which maximize the expected mean
outcome are below the plot. Green indicates positive slope, blue indi-
cates negative slope. The TMLE nearly learns the linear classifier which
maximizes the mean outcome under the fitted rule.

Figure 1
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mean-squared error criterion.
Figure 1a shows that estimators which use the estimated mean outcome

under the fitted rule as a the criteria to select β outperform the estimators
which use the mean-squared error. Figure 1b demonstrates why the TMLE-
based estimator outperforms the MSE-based estimator by such a large margin.
In particular, we see that the near-quadratic shape of Q̄2,0 is not well-described
by a linear fit. Nonetheless, linear classifiers which have x-intercepts near
W3 = −1 with negative slope or x-intercepts near W3 = 1 with positive slope
correctly estimate the optimal treatment in the interval between ±1 and one of
the two intervals ±(1,∞). The TMLE-based estimator approximately learns
one of these two decision boundaries, while the MSE-based estimator does
not. In practice it is unlikely that such gross misspecification will occur for
a one-dimensional Q̄2,0. Nonetheless, for more complex or higher dimensional
Q̄2,0 it is likely that correctly specifying Q̄2,0 will be infeasible.

See the toy example presented in Qian and Murphy (2011) for another
example of when using a classification approach performs better than using a
blip function based approach.

7.1.2 Data adaptive methods

It remains to show that the mean outcome criterion performs well for selecting
α when data adaptive methods are used to estimate Q̄2,0. Figure 2a and Figure
2b respectively give performance results of the super-learner based methods
when V (1) = W3 and V (1) = W1, ...,W4.

In this simulation the CV-TMLE for the mean outcome performs well
when EP0 [Y |Ā(1),W ] is correctly specified, while the CV-DR-IPCW is out-
performed by all other methods for selecting α regardless of the specification
of EP0 [Y |Ā(1),W ]. Combining both the weighted classification and the regres-
sion libraries perform well in all cases. The regression methods with the MSE
risk criterion also performs well for all settings of our simulation. Correctly
specifying the estimate of EP0 [Y |Ā(1),W ] improves performance for all can-
didate libraries and choices of the convex combination vector α. Comparing
the weighted classification and blip function approaches is difficult given the
different candidate library sizes, but both perform well overall.

Multivariate adaptive regression splines appear do the best of all algorithms
in the super-learner library when V (1) = W1, ...,W4, though only slightly
better than the super-learner fits which do not require a priori specification
of a single algorithm. The super-learner outperformed all other algorithms
in the candidate library. The super-learners perform similarly to the neural
network algorithm when V (1) = W3 and outperforms all other algorithms in
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Figure 2: Mean performance of the estimated rule when the estimate En[Y |Ā(1),W ]
of EP0 [Y |Ā(1),W ] is correctly and incorrectly specified. Error bars indicate 95%
confidence intervals to account for uncertainty from the finite number of Monte
Carlo draws in our simulation. (a) V (1) = W3, (b) V (1) = W1, ...,W4.
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Figure 3: Mean performance of the estimated rule when EP0 [Y |Ā(1), L̄(1)] and
EP0 [Yd|A(0), L(0)] are specified correctly and incorrectly. Error bars indicate 95%
confidence intervals to account for uncertainty from the finite number of Monte
Carlo draws in our simulation.

the candidate library.
All generalized linear model (GLM) methods performed poorly for all set-

tings. For example, when a stepwise regression which includes interaction was
used to estimate the blip function and EP0 [Y |Ā(1),W ] was correctly specified,
the mean performance was respectively 0.465 and 0.483 when V = W3 and
V = W1, ...,W4. Thus here we see a setting where using data adaptive meth-
ods is important for good estimation of the optimal rule. Though we only show
the generalized additive model in Figure 2, the super-learners outperformed
all methods under consideration.

7.2 Two time points

Figure 3 shows that the the performance of several estimation methods in
the two time point case. It appears that the optimal rule for our simulation
can be well described by a generalized linear model. In particular, we see a
stepwise regression with only main terms outperform all other methods under
consideration, including our super-learners. Though the weighted classification
based stepwise regression was not included in our model, we ran this algorithm
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alone to compare to the blip function based stepwise regression. The results
were similar, with mean performance of approximately 0.470 for both settings
considered.

Although the stepwise regression algorithm performed better for the given
data generating distribution at this sample size, the super-learners which aim
to maximize an estimate of the mean performance perform well overall. Note
that some of the data adaptive methods, such as blip function based neu-
ral networks and classification based recursive partitioning perform poorly
compared to the other methods. On average across the thousand runs, the
super-learner which seeks to maximize the CV-TMLE of the mean outcome
and has the conditional mean correctly specified gave the most weight at the
first time point to the following algorithms: blip stepwise regression, 0.206;
blip stepwise regression with interactions, 0.108; blip forward stepwise regres-
sion, 0.101; blip GLM, 0.080; and blip generalized additive model, 0.073. Thus
our super-learner has naturally learned to select a linear as opposed to a more
data adaptive estimator for the latent function.

The mean outcome based super-learners slightly outperformed the weighted
log based super-learners in terms of mean performance for both settings.

8 Discussion

This article investigated nonparametric estimation of a V -optimal dynamic
treatment. We proposed sequential loss-based super-learning with novel choices
of loss functions to construct such a nonparametric estimator of the V -optimal
rule. When applied in sequentially randomized controlled trials, this method
is guaranteed to asymptotically outperform any competitor (with respect to
loss-based dissimilarity) at each stage by simply including it in the library of
candidate estimators. Some of the proposed sequential super-learners aim to
minimize risks associated with learning some latent function which gives the
optimal rule. One of these super-learners aims to optimize the performance of
the fitted rule itself by maximizing the mean outcome. This seems to be more
targeted towards our goal, but our theoretical claim suggests that stronger
conditions are needed for the oracle inequality for this selector to hold.

Our simulation results support our theoretical findings. The super-learners
always performed comparably to the best candidate in the library, and our the-
oretical results suggest that increasing sample size will improve their relative
performance further. Further simulations are needed to fully understand the
relationship between the weighted classification and blip function methods,
and whether or not there are situations in which one will always perform bet-
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ter than the other. We demonstrated a misspecified linear classifier for which
using the mean outcome criterion outperforms a misspecified linear blip func-
tion estimator in our simulation. We expect that such a situation can also
occur with data adaptive methods, especially when none of the algorithms are
correctly specified.

It would be interesting to compare the performance of our proposed super-
learners against the fits of experts in the field who use a single fitting algorithm
but perform variable selection and modify the tuning parameters based on the
data. Such a (wo)man versus machine challenge can be done in practice with
real or simulated data by proposing a fit on a training set and evaluating per-
formance on a validation set. We expect that the human will tend to over-
or underfit the data, while our proposed cross-validation method will select
an appropriate level of smoothing. One might argue that the super-learner,
which encourages using a large library of candidate estimators, requires an
excessive amount of computing time. If runtime is a concern, one could use
super-learners that use a rich class of parametric regression models with many
variables (basis functions) as a candidate library. These algorithms can be
optimized using stochastic gradient descent, so yield a computationally effi-
cient super-learner algorithm. We leave it to the individual to decide how to
best learn a dynamic treatment rule, but emphasize that theory, simulations,
and the documented performance of super-learner algorithms in other contexts
(see Introduction) suggest that our proposed method should perform well in
almost any reasonably sized (not trivially small) sample.

In the current article we defined the treatment as binary at each time
point. Consider now a treatment that has k possible values. We can then
define a vector of binary indicators, ordered in a user-supplied manner, that
identify the treatment. We can now apply the results for the multiple time-
point treatment case in the appendix of our earlier technical report, since this
represents a special case in which at some time-point there are no intermediate
covariates between binary treatments (van der Laan, 2013). As a consequence,
our results also apply to this case. Because the rate of convergence at each
time point is upper bounded by the convergence rates at previously fitted
time points, there may be better approaches when log2 k � 1. We leave such
approaches to future work.

The sophistication of estimation and inference strategies for optimal treat-
ment regimes has progressed dramatically in recent years thanks to the inno-
vative work of many researchers. We look forward to continued statistical and
computational advancements in this field, and to the eventual implementation
of these treatment strategies on a large scale.
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Appendix

A Double robust loss functions

Below Q represents a parameter value, where the parameter maps from a
distribution P to a collection of conditional distributions. Alternatively, we
can set these estimates equal to 0 for IPCW-like risk estimates. We use Q0 to
denote the parameter mapping applied to P0, i.e. the collection of conditional
distributions under the observed data distribution P0. All of the mappings used
in this section only require expectations under the conditional distributions in
Q. Thus in practice standard regression algorithms can be used to estimate
the needed portions of Q0. When we write conditional expectations under Q as
EQ, it will always be clear from context what parameter mapping (conditional
distribution) of P0 the appropriate part of Q is supposed to estimate.

Estimates for the optimal rule can be obtained using any regression or
classification software, including data adaptive techniques. Because products
of differences of Q and Q0 and g and g0 will serve as remainder terms for
the final risk estimates, it is important to consistently estimate as many of
these quantities of interest as possible, ideally at a reasonable rate. Note that
the desire for consistent estimates of Q0 likely precludes the use of parametric
regressions for fitting Q, though parametric regressions can be taken as can-
didates in a cross-validation based algorithm such as SuperLearner. If known,
any knowledge of Q0 or g0 may be incorporated into the estimates.

Throughout this section we introduce double robust versions of functions
defined in the main text. Rather than introduce new notation to account for
this, we simply add a Q next to the g in the notation, e.g. D2(g) becomes
D2(Q, g) and L2,g becomes L2,Q,g.
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A.1 Blip functions

Define

D2(Q, g)(O) = A2(1)
2A1(1)− 1

g0,A(1)(O)
(Y − EQ[Y | L̄(1), Ā(1))]

+ EQ[Y | L̄(1), A(0), A(1) = (1, 1)]− EQ[Y | L̄(1), A(0), A(1) = (0, 1)],

Let LF2,D2(g)(Q̄2)(O) denote a valid loss function for estimating EP0,a(0)
[D2(Q, g) |

Va(0)(1) = va(0)(1))], in the sense that

(a(0), v(1)) 7→ EP0,a(0)
[D2(Q, g)(Oa(0)) | Va(0)(1) = v(1)]

minimizes ∑
ã(0)∈{0,1}×{1}

EP0,ã(0)

[
LF2,D2(Q,g)(Q̄2)(Oã(0))

]
over all measurable functions Q̄2 of a(0) and v(1). Applying the DR-IPCW
mapping (van der Laan and Dudoit, 2003) gives:

L2,Q,g(Q̄2)(O)

=
A2(0)

gA(0)(O)

(
LF2,D2(Q,g)(Q̄2)− EQ

[
LF2,D2(Q,g)(Q̄2) | A(0), L(0)

])
+

1∑
a1(0)=0

EQ
[
LF2,D2(Q,g)(Q̄2) | A(0) = (a1(0), 1), L(0)

]
, (15)

We will use the sign of the Q̄2 which minimizes L2,Q,g to estimate d0,A(1). For
a given dA(1), define

D1(dA(1), Q, g)(O) = A2(0)
2A1(0)− 1

gA(0)(O)

(
Y − EQ

[
YdA(1)

| L(0), A(0)
])

+EQ

[
YdA(1)

| L(0), A(0) = (1, 1)
]
− EQ

[
YdA(1)

| L(0), A(0) = (0, 1)
]
.

Let LF1,D1(dA(1),Q,g)
be some loss that satisfies:

EP0,dA(1)

[
D1(dA(1), Q, g) | V (0) = ·

]
= arg min

Q̄1

P0,dA(1)
LF1,D1(dA(1),Q,g)

(Q̄1),
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Our proposed loss function is obtained by applying the DR-IPCW mapping
to the above loss function:

L1,dA(1),Q,g(Q̄1)(O) =
I(A(1) = dA(1)(A(0), V (1)))

gA(1)(O)
LF1,D1(dA(1),Q,g)

(Q̄1)

−
I(A(1) = dA(1)(A(0), V (1))

gA(1)(O)
EQ

(
LF1,D1(dA(1),Q,g)

(Q̄1) | Ā(1), L̄(1)
)

+ EQ

(
LF1,D1(dA(1),Q,g)

(Q̄1) | A(0), A(1) = dA(1)(A(0), V (1)), L̄(1)
)
, (16)

We now state a theorem that gives conditions under which the above loss
functions allow us to learn the optimal rule d0.

Theorem 2 (DR Version). Suppose the positivity assumption holds at g and
g0 and either Q = Q0 or g = g0. Then:

P0{L2,Q,g(Q̄2)− L2,Q,g(Q̄20)}

=
∑
a(0)

P0,a(0)

(
LF2,D2(Q,g)(Q̄2)− LF2,D2(Q,g)(Q̄20)

)
P0{L1,d0,A(1),Q,g(Q̄1)− L1,d0,A(1),Q,g(Q̄10)}

= P0,d0,A(0)

(
LF1,D1(d0,A(1),Q,g)

(Q̄1)− LF1,D1(d0,A(1),Q,g)
(Q̄10)

)
,

where a(0) ∈ {0, 1} × {1}. As a consequence:

Q̄20 = arg min
Q̄2

P0L2,Q,g(Q̄2)

Q̄10 = arg min
Q̄1

P0L1,d0,A(1),Q,g(Q̄1)

The condition that Q = Q0 can be weakened so that only the needed
conditional expectations Q are equal to the analogous expectations under Q0.
We state a slightly stronger form of double robustness than stated in the above
theorem in Section 9.1 of the earlier technical report (van der Laan, 2013). The
stronger form shows that we have double robustness separately at each time
point, so we need only have the portion of g0 or that of Q0 corresponding to
each time point correctly specified. For example, we may have the intervention
mechanism correctly specified at the first but not the second time point, but
L2,Q,g is still a valid loss as long as the portion of Q corresponding to the
second time point is correctly specified (even if Q is misspecified at the first
time point!).
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Proof of Theorem 2 (DR Version). Suppose Q = Q0 or g = g0. By the
double robustness of DR-IPCW mapping:

EP0L2,Q,g(Q̄2)(O) =
∑
a(0)

EP0,a(0)
LF2,D2(Q,g)(Q̄2)

EP0L1,d0,A(1),Q,g

(
Q̄1

)
= EP0,d0,A(1)

[
LF1,D1(d0,A(1),Q,g)

(Q̄1)
]
.

All claims again follow immediately by the choice of LF2,D2(Q,g) and LF1,D1(d0,A(1),Q,g)
.

Optimizing the double robust blip loss functions is not straightforward
because of the final two terms in expressions in (15) and (16). Taking these
terms to be 0, which is equivalent to misspecifying these needed conditional
expectations under Q0, allows for the use of weighted regression methods. We
show in Section A.3 that optimizing the weighted classification losses does not
encounter this difficulty.

A.2 Performance of rule

Define:

−L̃F2,Q,g(dA(1))(O) =
I(A(1) = dA(1)(a(0), V (1)))

gA(1)(O)
(Y − EQ[Y | L̄(1), Ā(1)])

+ EQ[Y | L̄(1), A(0), A(1) = dA(1)(a(0), V (1))].

Applying the DR-IPCW mapping (van der Laan and Dudoit, 2003) gives:

L̃2,Q,g(dA(1))(O) =
A2(0)

gA(0)(O)

(
L̃F2,Q,g(dA(1))(O)− EQ

[
L̃F2,Q,g(dA(1)) | A(0), L(0)

])
+

1∑
a1(0)=0

EQ

[
L̃F2,Q,g(dA(1)) | A(0) = (a1(0), 1), L(0)

]
.

Let dA(1) be a treatment rule for the second time point. Define:

−L̃F1,dA(1),Q,g
(dA(0))(O) =

I(A(0) = dA(0)(V (0)))

gA(0)(O)
(Y − EQ[YdA(1)

| L(0), A(0)])

+ EQ[YdA(1)
| L(0), A(0) = dA(0)(V (0))].
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Applying the DR-IPCW mapping gives:

L̃1,dA(1),Q,g(dA(0))(O) =
I(A(1) = dA(1)(A(0), V (1)))

gA(1)(O)
L̃F1,dA(1),Q,g

(dA(0))

−
I(A(1) = dA(1)(A(0), V (1))

gA(1)(O)
EQ

(
L̃F1,dA(1),Q,g

(dA(0)) | Ā(1), L̄(1)
)

+ EQ

(
L̃F1,dA(1),Q,g

(dA(0)) | A(0), A(1) = dA(1)(A(0), V (1)), L̄(1)
)

Theorem 3 (DR Version). Suppose the positivity assumption holds at g and
g0 and either Q = Q0 or g = g0. Then:

P0

{
L̃2,Q,g(dA(1))− L̃2,Q,g(d0,A(1))

}
=
∑
a(0)

P0I
(
dA(1) 6= d0,A(1)

) ∣∣Q̄20

∣∣ (a(0), Va(0)(1))

P0

{
L̃1,d0,A(1),Q,g(dA(0))− L̃1,d0,A(1),Q,g(d0,A(0))

}
= P0I

(
dA(0) 6= d0,A(0)

) ∣∣Q̄10

∣∣ (V (0))

where the sum is over a(0) ∈ {0, 1} × {1}. It follows that:

d0,A(1) = arg min
dA(1)

P0L̃2,Q,g(dA(1))

d0,A(0) = arg min
dA(0)

P0L̃1,d0,A(1),Q,g(dA(0))

Proof of Theorem 3 (DR Version). For all dA(1):

P0

(
L̃2,Q,g(dA(1))− L̃2,Q,g(d0,A(1))

)
=
∑
a(0)

P0,a(0)

(
L̃F2,Q,g(dA(1))− L̃F2,Q,g(d0,A(1))

)
=
∑
a(0)

P0,a(0)

(
EP0,a(0)

[
L̃F2,Q,g(dA(1))− L̃F2,Q,g(d0,A(1)) | Va(0)

])
=
∑
a(0)

P0,a(0)I
(
dA(1) 6= d0,A(1)

)
(a(0), Va(0))

∣∣Q̄20(a(0), Va(0))
∣∣ ,

where the sums are over a(0) ∈ {0, 1} × {1}. Because |Q̄20| ≥ 0, the above is
minimized at dA(1) = d0,A(1). For any first time point treatment rule dA(0):

P0

{
L̃1,d0,A(1),Q,g(dA(0))− L̃1,d0,A(1),Q,g(d0,A(0))

}
= P0,d0,A(1)

{
L̃F1,d0,A(1),Q,g

(dA(0))− L̃F1,d0,A(1),Q,g
(d0,A(0))

}
= P0

{
EP0,d0,A(1)

[
L̃F1,d0,A(1),Q,g

(dA(0))− L̃F1,d0,A(1),Q,g
(d0,A(0)) | V (0)

]}
= P0I

(
dA(0) 6= d0,A(0)

)
(V (0))

∣∣Q̄10(V (0))
∣∣ .
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The above expression is minimized at dA(0) = d0,A(0).

A.3 Weighted classification

We will use the definitions of Q, D1, and D2 from the Section A.1.
Define:

K2,Q,g(O) =
A2(0)

gA(0)(O)
(D2(Q, g)− EQ [D2(Q, g) | A(0), L(0)])

+
1∑

a1(0)=0

EQ [D2(Q, g) | A(0) = (a1(0), 1), L(0)] .

Also define:

L̂2,Q,g(dA(1))(O) = |K2,Q,g(O)|I(dA(1)(A(0), V (0)) 6= (Z ◦K2,Q,g(O), 1)).

Similarly, let:

K1,dA(1),Q,g(O) =
I(A(1) = dA(1)(A(0), V (1)))

gA(1)(O)
D1(dA(1), Q, g))

−
I(A(1) = dA(1)(A(0), V (1))

gA(1)(O)
EQ
(
D1(dA(1), Q, g) | Ā(1), L̄(1)

)
+ EQ

(
D1(dA(1), Q, g) | A(0), A(1) = dA(1)(A(0), V (1)), L̄(1)

)
,

and:

L̂1,dA(1),Q,g(dA(0))(O) = |K1,dA(1),Q,g(O)|I(dA(0)(V (0)) 6= (Z ◦K1,dA(1),Q,g(O), 1)).

We have the following theorem:

Theorem 4 (DR Version). Suppose the positivity assumption holds at g and
g0. Then for any (dA(0), dA(1)) ∈ D:

L̂2,Q,g(dA(1)) = L̃2,Q,g(dA(1)) + C2,Q,g

L̂1,dA(1),Q,g(dA(0)) = L̃1,dA(1),Q,g(dA(0)) + C1,dA(1),Q,g

where C2,Q,g(O) and C1,dA(1),Q,g(O) do not rely on dA(1) or dA(0), respectively.

It follows that L̂2,Q,g and L̂1,dA(1),Q,g are valid loss functions for sequentially
estimating d0,A(1) and d0,A(0) if either either Q = Q0 or g = g0.
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Proof of Theorem 4 (DR Version). For all realizations o ∈ O, define:

C2,Q,g(o) = −L̃2,Q,g((Z ◦K2,Q,g(o), 1))(o),

where L̃2,Q,g((Z◦K2,Q,g(o), 1)) represents L̃2,Q,g evaluated at the static decision
rule where everyone is given the treatment Z ◦ K2,Q,g(o) ∈ {0, 1} without
censoring.

Checking all values of dA(1) ∈ {0, 1}× {1}, Z ◦K2,Q,g ∈ {0, 1}, a(0), a(1) ∈
{0, 1}2 shows that:

|K2,Q,g|I(dA(1) 6= (Z ◦K2,Q,g, 1))− L̃2,Q,g(dA(1)) = C2,Q,g.

For the first time point, we define:

C1,dA(1),Q,g(o) = −L̃F1,dA(1),Q,g

(
(Z ◦K1,dA(1),Q,g(o), 1)

)
(o).

Checking all values of dA(0) ∈ {0, 1} × {1}, Z ◦ K1,dA(1),Q,g ∈ {0, 1}, and

a(0), a(1) ∈ {0, 1}2 shows that:

|K1,dA(1),Q,g|I
(
dA(0) 6= (Z ◦K1,dA(1),Q,g, 1)

)
− L̃1,dA(1),Q,g(dA(0)) = C1,dA(1),Q,g.

The claim that L̂2,Q,g and L̂1,d0,A(1),Q,g are valid loss functions for the sequential
estimation of d0 follows by the double robust version of Theorem 3.

We close this section with a proof of Theorem 5 from the main text. A
double robust extension of this result is straightforward.

Proof of Theorem 5. By the law of total expectation, for all dA(1) that set
observations to uncensored:

EP0L̂2,g(dA(1))

= EP0

[
EP0 [|K2,g| | A(0), V (1), Z ◦K2,g(O)] I

(
dA(1),1(A(0), V (1)) 6= Z ◦K2,g

)]
,

where dA(1),1 is the treatment index of the optimal rule. Let P̃0 be the proba-
bility measure with:

PrP̃0
((A(0), V (1), Z ◦K2,g) ∈ B)

=
1

EP0|K2,g|

∫
B

EP0 [|K2,g| | A(0), V (1), Z ◦K2,g(O)] dP0
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for all measurable sets B. Note that P̃0 is a probability distribution over values
of A(0), V (1), Z ◦K2,g and that P̃0 is absolutely continuous with respect to P0.
Also note that

EP0L̂2,g(dA(1)) = EP̃0
I
(
dA(1),1(A(0), V (1)) 6= Z ◦K2,g

)
,

so we can now consider a simple 0− 1 loss under the distribution P̃0.
By Theorem 4 in Bartlett et al., φ is classification-calibrated according to

the definition in the paper. By part (c) of Theorem 3 in the same paper, it
follows that:

lim
i→∞

P̃0φ
(
fi(A(0), V (1))(2Z ◦K1,dA(1),g − 1)

)
= inf

f̃
P̃0φ

(
f̃(A(0), V (1))(2Z ◦K1,dA(1),g − 1)

)
=⇒

lim
i→∞

P̃0I (I (fi(A(0), V (1)) > 0) 6= Z ◦K2,g) = inf
f̃
P̃0I

(
I
(
f̃(A(0), V (1)) > 0

)
6= Z ◦K2,g

)
,

Writing the above expectations under P̃0 as expectations under P0 weighted
by dP̃0/dP0 and multiplying by the constant EP0|K2,g| gives the desired result.

Examining the above proof shows that the conditions on φ can be weakened
to the condition that φ is classification-calibrated according to the definition
in Bartlett et al. (2006).

B Example 5 proof

Proof that (13) holds in Example 5. Note that:

V arP0 (Lg0(f)− Lg0(f20))

≤ EP0 (Lg0(f)− Lg0(f20))2

= EP0

[
I (I(f ≥ 0) 6= I(f20 ≥ 0)) (A(0), V (1))

A2(0)

gA(0)(O)2

A2(1)

gA(1)(O)2
Y 2

]
≤ δ−2

∑
a(0)

∑
a(1)

EP0

[
I (I(f ≥ 0) 6= I(f20 ≥ 0)) (a(0), Va(0)(1))Y 2

a(0),a(1)

]
,

where the sums are over {0, 1} × {1}. For all kδ > 0, Theorem 3 shows that:

kδV arP0 (Lg0(f)− Lg0(f20))− EP0 [Lg0(f)− Lg0(f20)]

≤ max
a(1)

∑
a(0)

EP0

[
I (I(f ≥ 0) 6= I(f20 ≥ 0))

(
2kδY

2
a(0),a(1) − |Q̄20|

)
(a(0), Va(0))

]
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where the maximum is over a(1) ∈ {0, 1}× {1}. By A4, we can choose kδ > 0
small enough so that 2kδEP0 [Y

2
a(0),a(1)|Va(0)] − |Q̄20(a(0), Va(0)(1))| ≤ 0 almost

surely for all a(0), a(1) ∈ {0, 1}×{1}. The law of total expectation applied to
the above then shows that, for kδ > 0 sufficiently small:

kδV arP0 (Lg0(f)− Lg0(f20))− EP0 [Lg0(f)− Lg0(f20)] ≤ 0.

Condition (13) follows immediately, thus completing the proof.
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