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Online Targeted Learning

Mark J. van der Laan and Samuel D. Lendle

Abstract

We consider the case that the data comes in sequentially and can be viewed as
sample of independent and identically distributed observations from a fixed data
generating distribution. The goal is to estimate a particular path wise target pa-
rameter of this data generating distribution that is known to be an element of a
particular semi-parametric statistical model. We want our estimator to be asymp-
totically efficient, but we also want that our estimator can be calculated by updat-
ing the current estimator based on the new block of data without having to revisit
the past data, so that it is computationally much faster to compute than recomput-
ing a fixed estimator each time new data comes in. We refer to such an estimator
as an online estimator. These online estimators can also be applied on a large fixed
data base by dividing the data set in many subsets and enforcing an ordering of
these subsets. The current literature provides such online estimators for paramet-
ric models, where the online estimators are based on variations of the stochastic
gradient descent algorithm.

For that purpose we propose a new online one-step estimator, which is proven
to be asymptotically efficient under regularity conditions. This estimator takes
as input online estimators of the relevant part of the data generating distribution
and the nuisance parameter that are required for efficient estimation of the target
parameter. These estimators could be an online stochastic gradient descent es-
timator based on large parametric models as developed in the current literature,
but we also propose other online data adaptive estimators that do not rely on the
specification of a particular parametric model.

We also present a targeted version of this online one-step estimator that presum-
ably minimizes the one-step correction and thereby might be more robust in finite
samples. These online one-step estimators are not a substitution estimator and
might therefore be unstable for finite samples if the target parameter is borderline



identifiable.

Therefore we also develop an online targeted minimum loss-based estimator, which
updates the initial estimator of the relevant part of the data generating distribution
by updating the current initial estimator with the new block of data, and estimates
the target parameter with the corresponding plug-in estimator. The online sub-
stitution estimator is also proven to be asymptotically efficient under the same
regularity conditions required for asymptotic normality of the online one-step es-
timator.

The online one-step estimator, targeted online one-step estimator, and online TMLE
is demonstrated for estimation of a causal effect of a binary treatment on an out-
come based on a dynamic data base that gets regularly updated, a common sce-
nario for the analysis of electronic medical record data bases.

Finally, we extend these online estimators to a group sequential adaptive design
in which certain components of the data generating experiment are continuously
fine-tuned based on past data, and the new data generating distribution is then used
to generate the next block of data.



1 Introduction

This paper concerns online semi-parametric efficient estimation of a target pa-
rameter based on an online data base that is regularly updated with additional
data for a new sub-sample of units. The proposed procedure needs to be able
to provide the most up to date estimator based on all currently available data
continuously in time, and thus not be significantly slowed down by the com-
putational or memory burden, but we want to achieve this without giving up
on statistical performance as measured by asymptotic efficiency, coverage of
confidence intervals, and good finite sample behavior.

Semiparametric efficient estimators of a pathwise differentiable target pa-
rameter have been developed in the literature, using general approaches such
as one-step estimation (Bickel et al. (1997)), estimating equation methodology
(Robins and Rotnitzky (1992); van der Laan and Robins (2003)), and targeted
minimum loss-based plug-in estimation (van der Laan and Rubin, 2006; Rose
and van der Laan, 2011). However, these estimators were not restricted to
be fast enough to be applied to a dynamic data base continuously in time.
In addition, nowadays, data bases can be truly massive, possibly containing
around 109 units, so that even the single application of a complex asymptoti-
cally efficient estimator can be computationally intractable.

In the machine learning literature, large scale online estimation problems
are sometimes addressed with stochastic gradient descent (SGD) algorithms
that approximate the computation of a minimum of an empirical risk over a
finite dimensional parameter space. These optimization routines operate on a
single observation or relatively small “mini-batches” of observations at a time.
For example, SGD in classification or prediction problems aim to minimize
some (possibly regularized) empirical risk as in logistic regression or a support
vector machine (Bottou, 2010) over a finite dimensional parameter (possibly
very high dimensional). Though a stochastic gradient descent algorithm takes
far more steps to converge than other optimization routines which operate on
the full data set at each step, statistically, SGD and some variants can perform
well with only a single pass through a data set(Murata, 1998; Xu, 2011). Thus,
SGD type methods can be useful as online estimators for finite dimensional
parameters that can be expressed as an optimum of an empirical risk. In this
manuscript we aim to develop online semiparametric efficient estimators for
any pathwise differentiable target parameter in general semiparametric models
which are thereby also an estimator for massive data sets by applying them to
an ordered partitioning of the data set.

Firstly, we will propose a general template for online one-step estimation
and online targeted minimum loss-based estimation that satisfies these strin-
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gent computational constraints while it is still asymptotically efficient and ex-
pected to be highly competitive with an unconstrained (intractable) one-step
estimator or TMLE based on finite samples. Subsequently, we aim to extend
this framework to handle an online data base in which certain components of
the data generating distribution are changed over time.

1.1 Organization of article

The organization of this article is as follows. In the next subsection we provide
some review of relevant literature on stochastic gradient descent algorithms for
parametric working models. In Section 2 we define the general online estima-
tion problem addressed in this article in terms of a (general) statistical model
and target parameter, a formal definition of an online estimator, the efficient
influence curve and asymptotic efficiency of an estimator. In Section 3 we
define the online one-step estimator and establish its asymptotic consistency,
normality, and efficiency, under regularity conditions, where we rely on a mar-
tingale central limit theorem for discrete martingales. In Section 4 we present
targeted online one-step estimators that are asymptotically equivalent with
the average across all the batches of the most up to date (at that batch) sub-
stitution estimator under a condition that the targeting succeeds in making
the online empirical mean of the efficient influence curve asymptotically neg-
ligible. We propose an algorithm that aims to succeed in the latter, but no
formal proof is provided.

In Section 5 we define an online targeted minimum loss-based estimator
and establish its asymptotic normality and efficiency under the same regularity
conditions as needed for the one-step estimator. In Section 6 we define online
data adaptive initial estimators (including, online super-learner) that can be
inputted in our online one-step and online TMLE of the target parameter. In
Section 7 we show a particular application of our online one-step estimator
to estimate the finite dimensional parameter of a working parametric model,
thereby showing it provides an asymptotically equivalent (and efficient) alter-
native to the second order online SGD algorithms in the current literature. In
Section 8 we work out our online one-step estimator to estimate the additive
causal effect of a binary treatment on an outcome of interest, controlling for
a set of baseline confounders. In Section 9 we do the same for the online
TMLE and online targeted one-step estimator. In Section 10 we define the
more general group sequential data adaptive design setting for this general
online estimation problem, where the controlled censoring or treatment com-
ponent of the data generating distribution can be fine tuned based on past
data, and thus change over time. In Section 10, we also generalize the online
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one-step estimator and its theory to the adaptive group sequential design set-
ting, and clarify that the same generalization applies to the other proposed
online estimators. We conclude with a discussion in Section 11. Some proofs
are presented in the Appendix.

1.2 Some review of literature on stochastic gradient de-
scent optimization for parametric working models

Here we describe the stochastic gradient descent optimizer and review some
results from the literature. Suppose one observes n independent and identically
distributed O1, . . . , On with common probability distribution P0, and define
the parameter of interest as

θ0 = argmin
θ

P0L(θ)

for θ ∈ Rd, where O → L(θ)(O) is a loss function of O ∼ P0, and we used the
notation P0f =

∫
f(o)dP0(o) for the expectation operator. For example, if

L(θ)(O) =
1

2
(Y − θ′X)2,

where O = (X, Y ), X ∈ Rd, and Y ∈ R, this is the ordinary least squares
regression problem. One can also include a regularization term in the loss
function, and other examples include generalized linear models, and support
vector machines.

For a data set with empirical distribution Pn, call the true optimum of the
empirical mean of the loss function, also known as the empirical risk, θ̂n. That
is,

θ̂n = argmin
θ

PnL(θ) = arg min
θ

1

n

n∑
i=1

L(θ)(Oi).

When L(θ) = − log pθ for some parametric model {pθ : θ ∈ Θ}, θ̂n is the
maximum likelihood estimator. Let Vθ = P0

d2

dθ2
L(θ). Under mild regular-

ity conditions (see e.g., (van der Vaart, 1998)), we have θ̂n is asymptotically
normally distributed with asymptotic variance

V −1
θ0
P0

[
d

dθ0

L(θ0)>
d

dθ0

L(θ0)

]
V −1
θ0
.

Stochastic gradient descent is an iterative optimization routine which takes
a small step in the direction of a single randomly selected observation from
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the data set. In practice, the data set is usually shuffled or assumed to be in
random order and processed sequentially. Let

θt+1 = θt + γtΓt
d

dθt
L(θt)(Ot) (1)

where γt is a scalar step size or learning rate, Γt is a d×d matrix, and Ot is the
observation used at the t-th step (Bottou, 2010). After some number of steps,
we hope that θt is sufficiently close to the true optimum θ̂n of the empirical
risk. In particular, we hope that n steps is enough so that the SGD estimate
θn after a single pass through the data set is a reasonable estimate of θ0.

In the simplest version of SGD Γt is some constant times the identity
matrix. Other variants replace Γt with an appropriate diagonal matrix (e.g.,
diagonal elements of V −1

θt
) as in Adagrad (Duchi et al., 2011) and Adadelta

(Zeiler, 2012), which are methods that tend to work well in practice. Murata
(1998) shows that the mean and variance of θt depend on the learning rate
γt and the eigenvalues of the matrix ΓtVθ̂n . Second order SGD takes the
curvature of the loss function into account, using some Γt that approximates
V −1

θ̂n
. Murata (1998) shows that when Γt = V −1

θ̂n
and γt is asymptotically 1/t,

θn, the second order SGD estimate after a single pass through the data set,
is asymptotically equivalent with the true empirical optimum θ̂n. That is,
asymptotically, the variance of second order SGD divided by the variance of
θ̂n converges to 1 as n → ∞. Murata (1998) shows that, if Γt is constant
and some weak conditions hold, then θn has bias of O(1/nλd), where λd is the
smallest eigenvalue of ΓnVθ̂n , and the variance is O(1/n) if λd > 1/2.

Though optimal, due to the high dimension of d, second order SGD is
rarely used in practice because it is often to expensive to compute and store
(an estimate of) V −1

θn
. Averaged stochastic gradient descent (ASGD) is another

different but related method to SGD which is very simple to implement. The
ASGD estimate at step t is simply

θ̄t =
1

t

t∑
i=1

θi

where θi is the SGD estimate at step i as in (1), Γt is the identity matrix
times a constant, and γt now goes to 0 slower than 1/t. (Polyak and Juditsky,
1992; Xu, 2011) show that in a single pass through the data set, θ̄n is also
asymptotically optimal and thus equivalent with θ̂n. Xu (2011) note that
ASGD is not frequently used in practice possibly due to required tuning and
the possibly huge number of observations required to reach the asymptotic
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performance, but it is shown in simulations that with some careful tuning,
ASGD can perform very well.

There are many other variants to stochastic gradient descent type opti-
mization routines. For more information and some insightful notes on imple-
mentation details, see (Bottou, 2012) and references therein.

2 Formulation of the online estimation prob-

lem

Let O1, . . . , On be a set of n i.i.d. observations with probability distribution
P0 ∈M whereM denotes the statistical model (i.e., a collection of probability
distribution that is known to contain the true one). Let 0 = n0 < n1 < n2 <
. . . < nK = n, and we refer to this number of batches K also as K(n).
Let m be an upper bound for the sample size nj − nj−1 of the j-th batch
so that maxj=1,...,K nj − nj−1 ≤ m. For sake of presentation and notational
convenience, we will actually assume nj − nj−1 = m is constant in j so that
n = Km, but all estimators have straightforward extensions to the case that
mj = nj − nj−1 can vary over j and is bounded from above by some m.

Here n = nK represents the current sample size, while nj represents the
sample size reached at the j–th stage, where each stage j adds a next group of
nj−nj−1 observations Oi with i = nj−1 + 1, . . . , nj. We are not assuming that
the new incoming samples have a sample size m = nj+1 − nj that converges
to infinity, but instead, we assume that K converges to infinity, while m =
nj − nj−1 is constant. This represents a realistic situation in which finite
chunks of data regularly come in resulting in eventual large sample sizes nj for
j large. Asymptotics for an estimator can be characterized by K →∞, which
is equivalent with n = nK = Km converging to infinity.

In the context of the Big Data era n might be of the order 109 making
it computationally intractable to recompute a fixed estimator based on each
updated sample with sample size nj as j increases from 1 to K = 109/m, even
when utilizing super-computers. Instead, optimally speaking from a compu-
tational point of view, we want an estimator in which one updates a current
estimator based on new computations that are bounded by (e.g.) O(mp)-
calculations, for some fixed p. As a consequence, such a procedure for obtain-
ing a sequence of K estimators only involves KO(mp) number of calculations
and such a procedure will be able to update the estimators as fast as data
comes in so that the user will always have available the most up to date esti-
mator. On the other hand, a procedure that recalculates the estimator for each
updated sample will take roughly KO(np) number of calculations, making it
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completely intractable for such large sample sizes. As we will see, bounding
the new computations by O(mp) for some fixed p is possible but might come
at a cost of how data adaptive the estimator can be and might thus hurt fun-
damental statistical properties such as consistency and asymptotic normality.
Therefore, we will provide a flexible enough framework so that these choices
can be made based on a user supplied trade-off, but either way, the result-
ing online estimators will be computationally superior relative to a non online
estimator.

Let Ψ : M → IRd be a Euclidean target parameter mapping of inter-
est so that Ψ(P0) denotes the desired estimand we want to learn from the
data. Suppose that Ψ(P ) = Ψ1(Q(P )) for some parameter mapping Ψ1 and
parameter P → Q(P ) on M, so that Ψ(P ) only depends on P through a
smaller part Q(P ) of the data generating distribution P , which we often
refer to as the relevant part of the data generating distribution. For no-
tational convenience, recognizing the abuse of notation, we will denote Ψ1

with Ψ as well. Let (Q,O) → L(Q)(O) be a loss-function for Q0 so that
Q0 = arg minQ∈QM P0L(Q), where we use the notation Pf ≡

∫
f(o)dP (o),

and Q(M) ≡ {Q(P ) : P ∈M} for the parameter space of Q.
Assume that Ψ is pathwise differentiable at P for each P ∈ M and let

O → D∗(P )(O) be the efficient influence curve of Ψ : M → IRd at P ∈ M,
which is defined as the canonical gradient of the pathwise derivative along
parametric paths through P : for any one dimensional path {P (ε) : ε} ⊂ M
through P with score S = d

dε
logP (ε)

∣∣
ε=0

at ε = 0 we have

d

dε
Ψ(P (ε))

∣∣∣∣
ε=0

= PD∗(P )S.

This canonical gradient is uniquely defined as the only gradient D(P ) (i.e, each
component is an element of L2

0(P ) and PD∗(P )S = PD(P )S for all scores S)
whose components are also an element of the so called tangent space T (P )
defined as the closure of the linear span of all the scores generated by the class
of parametric paths.

Suppose that the canonical gradient D∗(P ) only depends on P through
Q(P ) and a nuisance parameter G(P ) defined as functions of P on the model
M: to emphasize this we will use the notation D∗(P ) = D∗(Q(P ), G(P )) for
some (Q,G) → D∗(Q,G). We remind the reader that the efficient influence
curve is a crucial mathematical element one calculates from the modelM and
the definition of target parameter mapping Ψ :M→ IRd that defines efficiency
of an estimator of ψ0: an estimator ψn is an asymptotically efficient estimator
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of ψ0 if and only if

ψn − ψ0 = (Pn − P0)D∗(P0) + oP (1/
√
n) =

1

n

n∑
i=1

D∗(P0)(Oi) + oP (1/
√
n).

In words, this states that an estimator is efficient at P0 ∈ M if and only
if the estimator is asymptotically linear at P0 with influence curve equal to
the efficient influence curve D∗(P0). By the convolution theorem, an efficient
estimator is the asymptotically best estimator among the class of all regular
estimators (and is itself a regular estimator).

Let R(P, P0) be defined by

P0D
∗(P ) = Ψ(P0)−Ψ(P ) +R(P, P0),

where, by the fact that D∗(P ) is the canonical gradient of the pathwise deriva-
tive so that (P0 − P )D∗(P ) can be interpreted as a first order expansion of
Ψ(P0) − Ψ(P ), R(P, P0) is a second order remainder that can be explicitly
determined given Ψ and D∗. Equivalently, in terms of D∗(P ) = D∗(Q,G) and
Ψ(P ) = Ψ(Q), we have

P0D
∗(Q,G) = Ψ(Q0)−Ψ(Q) +R(Q,G,Q0, G0) (2)

for a specified second order term R().
Let Ok = (Onk−1+1, . . . , Onk

) represent the m = nk − nk−1 observations
making up batch k, k = 1, 2, . . . , K, where n0 = 0. For notational convenience,
we define

D∗k(P )(Ok) ≡
1

m

nk∑
i=nk−1+1

D∗(P )(Oi).

Before we proceed with presenting our proposed online estimators of ψ0

in the next sections, let’s first formally define what we mean with an online
estimator.

Definition 1 An online estimator of a parameter ψ0 = Ψ(P0) based on a
sequence of batches O1,O2, . . . is a sequence of estimators (ψk : k = 1, . . .) with
ψk being an estimator based on O1, . . . ,Ok satisfying the following property:
there exist certain functions f1 and f2, and a sequence of estimators (ηk : k =
1, . . .) with ηk = f2(Ok, ηk−1), so that

ψk = f1(Ok, ηk−1), k = 1, . . ..

7
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This definition can be applied to our target parameter ψ0, but also to define an
online estimator of (Q0, G0). Different online estimators can differ drastically
in their required memory storage and computational speed by using an online
estimator ηk that grows in dimension with k versus an ηk that has a fixed
dimension in k.

Let ((Qk, Gk) : k = 1, . . . , ) be an online estimator of (Q0, G0). For
example, this might be estimators using a stochastic gradient descent algo-
rithm based on a very high dimensional parametric model, but more flexible
online estimators are presented in Section 6. In the next sections we will
propose a variety of online estimators of ψ0 that map this online estimator
((Qk, Gk) : k = 1, . . .) into an online estimator ψk of ψ0, so that ψk is only a
function of (Qk−1, Gk−1, ψk−1), and possibly a few more online low-dimensional
statistics, and the new batch Ok.

A crucial ingredient in the analysis of our proposed online estimators is the
following identity that is an immediate consequence of (9):

P0,kD
∗
k(Qk−1, Gk−1) = Ψ(Q0)−Ψ(Qk−1)+R(Qk−1, Gk−1, Q0, G0), k = 1, . . . , K,

(3)
where we used the notation P0,kf(Ok) =

∫
f(Ok)dP0,k(Ok) and dP0,k(Ok) =∏nk

i=nk−1+1 dP0(Oi) is the probability distribution of Ok implied by the common
probability distribution P0 and the fact that all Oi are independent. Note
that we also have P0,kD

∗
k(Qk−1, Gk−1) = E0(D∗k(Qk−1, Gk−1)(Ok) | Fk−1) is

the conditional expectation of the random variable D∗k(Qk−1, Gk−1)(Ok) (a
function of O1, . . . ,Ok), given F(k − 1) ≡ (O1, . . . ,Ok−1).

We will assume that an initial estimator Qk=0, Gk=0 is given, so that the
online procedure can be initiated with this choice. In practice this might be
an estimator based on an initial batch that is further ignored in our definition
on the online estimator. However, one could also simply define (Qk=0, Gk=0) =
(Q1, G1), i.e., as the online estimator based on the first batch, since this choice
does not affect the asymptotics (i.e., it only affects the impact of the first
n1 = m observations in the online estimator which is asymptotically negligible
as K →∞).

3 Online one-step estimator

Define the following online one-step estimator of ψ0:

ψK =
1

K

K∑
k=1

{Ψ(Qk−1) +D∗k(Qk−1, Gk−1)(Ok)} . (4)
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Equivalently, this can be calculated in an online manner as follows:

ψK =
K − 1

K
ψK−1 +

1

K
{Ψ(QK−1) +D∗K(QK−1, GK−1)(OK)}.

We have the following theorem.

Theorem 1
Definitions: Let M̄(K) =

∑K
k=1Mk, where Mk = D∗k(Qk−1, Gk−1)(Ok) −

P0,kD
∗
k(Qk−1, Gk−1). We have that (M̄(k) : k = 1, . . .) is a discrete martingale

w.r.t. Fk = (O1, . . . ,Ok): that is, E0(M̄(K) | F(k)) = M̄(k) for k ≤ K. Let

Σ2
k ≡ E0M

2
k ≡ E0MkM

>
k ,

and

Σ2(K) ≡ 1

K

K∑
k=1

Σ2
k.

Define also

W 2(K) =
1

K

K∑
k=1

E0(M2
k | Fk−1) =

1

K

K∑
k=1

P0,kM
2
k .

Define

R̄(K) ≡ 1

K

K∑
k=1

R0(Qk−1, Gk−1, Q0, G0).

We have the following expansion for the online one-step estimator:

ψK − ψ0 =
M̄(K)

K
+ R̄(K).

Assumptions: We make the following assumptions

• For some M < ∞ maxk | D∗k(Qk−1, Gk−1)(Ok) |< M < ∞ with proba-
bility 1;

• R̄(K) = oP (1/
√
K);

• lim infK→∞ λΣ2(K)λ > 0 for all λ, or that

Σ2 = lim
k→∞

Σ(k)2 exists and is a positive definite covariance matrix;

9
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• W 2(K)− Σ2(K)→K→∞ 0 in probability, or, equivalently

1

K

K∑
k=1

P0,kD
∗
k(Qk−1, Gk−1)− E0

1

K

K∑
k=1

P0,kD
∗
k(Qk−1, Gk−1)→ 0 (5)

in probability as K →∞.

Conclusion: Then,

Σ(K)−1M̄(K)√
K
⇒D N(0, I), as K →∞,

and, if Σ2(K)→ Σ2, as K →∞, for some positive definite covariance matrix
Σ2, then

M̄(K)√
K
⇒D N(0,Σ2), as K →∞.

This implies:
√
Km(ψK − ψ0)⇒D N(0,Σ2/m) as K →∞.

We have that Σ2/m = P0D
∗(Q0, G0)2 is the efficiency bound, which proves

that ψK is an asymptotically efficient estimator of ψ0.
Consistent estimation of asymptotic variance: Finally, consider the fol-
lowing estimator of Σ2(K):

Σ̂2(K) =
1

K

K∑
k=1

{D∗k(Qk−1, Gk−1(Ok)− D̄K}2,

where D̄K = 1
K

∑K
k=1 D

∗
k(Qk−1, Gk−1)(Ok). We have Σ̂2(K) − Σ2(K) → 0 in

probability as K → ∞, and if Σ2 exists, then we also have Σ̂2(K) → Σ2 in
probability as K →∞.

We note that this theorem proves that the online one-step estimator is asymp-
totically efficient without any restriction on how data adaptive Qk, Gk can be.
We only need that these estimators are consistent in a weak sense (for the
purpose of the martingale weak convergence), and they need to converge at a
good enough rate so that R̄(K) = oP (1/

√
K). That is, contrary to the analysis

of a regular one-step estimator or TMLE that rely on D∗k(Qk, Gk) to fall in a
Donsker class with probability tending to one, this theorem does not require
any Donsker class conditions. This is due to the fact that M̄(K) is a martin-
gale process, which relies on the fact that we estimate the unknown (Q0, G0) in
D∗k(Q0, G0)(Ok) with estimators that are based on the past O1, . . . ,Ok−1. In
that sense, this online TMLE achieves the same as the cross-validated TMLE
that uses internal sample splitting to remove the Donsker class condition.
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3.1 Central limit theorem for discrete martingales

Our theorem relies on establishing weak convergence of the process (M̄(K)/
√
K :

K) as K →∞. For that purpose we apply a central limit theorem for discrete
martingales. An example of such a theorem is given in Sen and Singer (1993),
resulting in Theorem 17 in van der Laan (2008). In our context this Theorem
17 translates into the following one.

Theorem 2 Let M̄(K) =
∑K

k=1 Mk, Mk = (Mk1, . . . ,Mkd), E0(Mk | Fk−1) =
0, where Fk = (O1, . . . ,Ok). In our case, Mk = D∗k(Qk−1, Gk−1)(Ok) −
P0,kD

∗
k(Qk−1, Gk−1).

Definitions: Let
Σ2
k ≡ E0M

2
k ≡ E0MkM

>
k ,

and
V 2
k ≡ E0

(
M2

k | Fk−1

)
= P0,kM

2
k .

Let

Σ2(K) ≡ 1

K

K∑
k=1

Σ2
k = E0

1

K

K∑
k=1

P0,kM
2
k

and

W 2(K) ≡ 1

K

K∑
k=1

V 2
k =

1

K

K∑
k=1

P0,kM
2
k .

Assumptions: Assume that for some M < ∞ maxk | D∗k(Qk−1, Gk−1)(Ok) |
M < ∞ with probability 1; lim inf λΣ(k)2λ > 0 for all λ (or that Σ2 =
limk→∞Σ(k)2 exists and is a positive definite covariance matrix); and that
component wise

1

K

K∑
k=1

P0,kD
∗
k(Qk−1, Gk−1)− E0

1

K

K∑
k=1

P0,kD
∗
k(Qk−1, Gk−1)→ 0 (6)

in probability as K →∞.
Conclusion: Then,

Σ(K)−1M̄(K)√
K
⇒D N(0, I), as K →∞,

and, if Σ2(K)→ Σ2, as K →∞, for some positive definite covariance matrix
Σ2, then

M̄(K)√
K
⇒D N(0,Σ2), as K →∞.

11
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3.2 Proof of Theorem 1:

We have

ψK =
1

K

K∑
k=1

{Ψ(Qk−1) +D∗k(Qk−1, Gk−1)(Ok)− P0,kD
∗
k(Qk−1, Gk−1))}

+
1

K

K∑
k=1

P0,kD
∗
k(Qk−1, Gk−1).

By identity (10), we have

1

K

K∑
k=1

P0,kD
∗
k(Qk−1, Gk−1) = ψ0−

1

K

K∑
k=1

Ψ(Qk−1)+
1

K

K∑
k=1

R0(Qk−1, Gk−1, Q0, G0).

Substitution of this in the last expression yields now

ψK − ψ0 =
M̄(K)

K
+ R̄(K),

where

M̄(K) =
K∑
k=1

{D∗k(Qk−1, Gk−1)(Ok)− P0,kD
∗
k(Qk−1, Gk−1))}

R̄(K) =
1

K

K∑
k=1

R0(Qk−1, Gk−1, Q0, G0).

We assumed that R̄(K) = oP (1/
√
K) (or equivalently, R̄(K) = oP (1/

√
n).

We now note that M̄(K) =
∑K

k=1Mk, where E0(Mk | O1, . . . ,Ok−1) = 0.
Thus, E0(M̄(K) | O1, . . . ,Ok) = M̄(k), which proves that (M̄(k) : k) is a
discrete martingale process. Application of Theorem 2 to M̄(K) establishes

the conclusions of Theorem 1, and, in particular, M̄(K)√
K

converges to N(0,Σ2).

Finally, the fact that Σ2/m = P0D
∗(Q0, G0)2 is easily verified. The consistency

of the estimator of Σ2(K) is a consequence of Sen and Singer (1993), formally
presented by Theorem 3 below. This completes the proof. 2

3.3 Estimation of limit covariance matrix of multivari-
ate martingale sum.

Note that the natural estimator of Σ2(K) = E0
1
K

∑K
k=1 P0,k{D∗k(Q0, G0) −

P0,kD
∗
k(Q0, G0)}2 is given by

Σ̂2(K) =
1

K

K∑
k=1

{D∗k(Qk−1, Gk−1(Ok)− D̄K}2,

12
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where D̄K = 1
K

∑K
k=1D

∗
k(Qk−1, Gk−1)(Ok). The following results proves that

this estimator of the covariance matrix of the multivariate margingale 1/
√
K
∑K

k=1Mk

is indeed asymptotically consistent, under the same conditions we needed for
establishing its weak convergence. The following theorem is taken from Sen
and Singer (1993) and corresponds with Theorem 18 in van der Laan (2008).

Theorem 3 Under the conditions stated in Theorem 2, we have that

Σ̂2(K)− Σ(K)2 → 0 in probability, as K →∞,

and, if Σ2(K) → Σ2, as K → ∞, for a positive definite matrix Σ2, then this
also implies Σ̂2(K)→ Σ in probability, as K →∞.

4 Online targeted one-step estimator

Consider a least favorable submodel {Q(ε | G) : ε} of {Q(P ) : P ∈ M}
so that the linear span of d

dε
L(Q(ε | G))(O)

∣∣
ε=0

contains the linear span of
the components of D∗(Q,G)(O). Suppose now that, given the initial online
estimator (Qk, Gk : k = 1, . . .), we construct an online estimator (εk : k) so
that

1

K

K∑
k=1

D∗k(Q
∗
k−1, Gk−1)(Ok) = oP (1/

√
K), (7)

where
Q∗k = Qk(εk | Gk).

We refer to (7) as the online-efficient influence curve estimation equation,
in order to contrast it with the efficient influence curve estimating equation
1/K

∑K
k=1D

∗
k(Q

∗
K , GK)(Ok) = 0 solved by the regular TMLE.

To be general, let ((Q∗k, Gk) : k) be any online estimator of (Q0, G0) satis-
fying (7). In this case, our one-step estimator (4) reduces to

Ψk =
1

K

K∑
k=1

Ψ(Q∗k−1) +
1

K

K∑
k=1

D∗k(Q
∗
k−1, Gk−1)(Ok).

Since the last term is now oP (1/
√
K), this estimator is asymptotically equiv-

alent with

Ψ∗k ≡
1

K

K∑
k=1

Ψ(Q∗k−1).

13
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The latter type estimators we will refer to as an online TMLE. Such an es-
timator is attractive by being an average of substitution estimators, which
naturally respect the global constraints of the model M and target parame-
ter. The same theorem 1 applies to such an estimator.

4.1 A particular online TMLE if batch size converges
to infinity at appropriate rate

The challenge is now how to construct such an online targeted estimator
((Q∗k, Gk) : k) that solves the martingale efficient estimating equation (7)
up till an oP (1/

√
K)-term. One possible approach is to define, for each k,

Q∗k as the TMLE based on initial estimator (Qk, Gk), least favorable submodel
{Qk(ε | Gk) : ε} only using the k-th batch Ok = (Oi : i = (k−1)m+1, . . . , km).
That is, we define

εk = arg min
ε
Pk,mL(Qk(ε | Gk)) = arg min

ε

1

m

nk∑
i=nk−1+1

L(Qk(ε | Gk))(Oi),

and define the update Q1
k = Qk(εk | Gk), where Pk,m is the empirical distri-

bution of the k-th batch Ok. This updating process is iterated till conver-
gence and the final update is denoted with Q∗k. Such an online TMLE solves
D∗k(Q

∗
k−1, Gk−1)(Ok) = 0, for all k, so that, certainly, (7) is solved exactly

(i.e. oP (1/
√
K) replaced by 0). Unfortunately, we now run into the issue that

this εk will have bias O(1/m) (like any parametric MLE), and that will not
converge to zero as k → ∞, so that Q∗K will not be a consistent estimator
of Q0, even when QK is consistent. This online TMLE can be shown to be
asymptotically efficient if one is willing to let m = m(n) to converge to infinity
at a not too slow rate, and it appears to be a good and practically interesting
estimator in finite samples for relatively small batch sizes m, based on our
simulation studies.

In the next subsections we present an online ε0k, analogue to a second order
stochastic gradient descent algorithm, that could be used to target the online
one step estimator (i.e., set εk = ε0k above). It remains to be seen if this
online estimator does the job (7), which we plan to address in future research.
Instead of diving into the analysis of this targeted one-step estimator, we will
propose an alternative online TMLE in the next section which will be formally
analyzed.
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4.2 Stochastic gradient descent (SGD) algorithm for a
parametric model

Below we present an algorithm that defines an initial estimator ε0k of ε0k which
happens to be an analogue of the stochastic gradient descent algorithm for
approximating the MLE for a parametric model. In this subsection we review
this quickly, before presenting this initial online estimator ε0k.

Let θ0 = arg maxθ P0 log pθ for a parametric model {pθ : θ} of densities.
Let S(θ)(O) = d

dθ
log pθ(O) and let S∗(θ)(O) = −{P0

d
dθ
S(θ)}−1S(θ)(O) be

the efficient score. Under weak regularity conditions, we have that P0S(θ0) =
P0S

∗(θ0) = 0. Finally, let S∗k(θ)(Ok) = 1
m

∑nk

i=nk−1+1 S
∗(θ)(Oi). We now define

the following analogue of our online one-step estimator with the twist that the
initial external online estimator is replaced by θk itself:

θK =
1

K

K∑
k=1

θk−1 +
1

K

K∑
k=1

S∗k(θk−1)(Ok).

This iterative algorithm for evaluating θK needs to be initiated with an initial
θk=0.

By using the above expression for θK and θK−1 and taking the difference,
it follows that this algorithm can actually be written as:

θK = θK−1 +
1

K
S∗K(θK−1)(OK).

This is exactly the second order stochastic gradient descent algorithm, stan-
dardizing the gradient by minus the inverse of its derivative, as in the Newton-
Raphson algorithm, which is a particular class of stochastic gradient descent
algorithms in the literature. As discussed in Section 1, results in the literature
show that this algorithm has good convergence properties (although straight-
forward modifications might be employed to guarantee convergence), and that
it approximates the MLE θmK = arg maxθ PnK

log pθ up till an asymptotically
negligible oP (1/

√
nK).

4.3 Using second order SGD to construct initial online
estimator of ε0k.

We consider the following algorithm for constructing an initial online estimator
ε0K , which is the recursive analogue of our online one-step estimator in which
the initial online estimator is replaced by its previous realizations, just as we
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did in the previous subsection. Start with an ε0k=0 such as one that minimizes
ε→ D∗1(Qk=0(ε | Gk=0), Gk=0)(O1), and iteratively compute ε01, . . . , as follows:

ε0K =
1

K

K∑
k=1

ε0k−1 +
1

K

K∑
k=1

c−1
k−1D

∗
k(Qk−1(ε0k−1 | Gk−1), Gk−1)(Ok),

where ck−1 ≡ d
dε0k−1

Ψ(Qk−1(ε0k−1 | Gk−1)).

Subtracting the right-hand sides for these two equations for ε0K and ε0K−1

shows that this algorithm can also be formulated as:

ε0K = ε0K−1 +
1

K
c−1
K−1D

∗
K(QK−1(ε0K−1 | GK−1), GK−1)(OK).

It remains to be formally established if this online estimator ε0k will indeed
satisfy (7).

5 Online TMLE

In this section we will define an online estimator ε∗k, which takes as input the on-
line estimators Qk, Gk and an initial ε0k, which yields an asymptotically efficient
substitution estimator Ψ(QK(ε∗K | GK)) of ψ0, which we call an online TMLE,
where, as with the regular TMLE, {Qk(ε | Gk) : ε} is the least favorable sub-
model through Qk at ε = 0 so that the linear span of d

dε
L(Qk(ε | Gk))(O)

∣∣
ε=0

contains D∗(Qk, Gk)(O).
Let ε0k be an initial estimator of ε0k, where ε0k is defined as the solution of

fk(ε) ≡ Ψ(Qk(ε | Gk)) = ψ0.

If Qk is a consistent estimator of Q0, a requirement for our efficiency theorem
above for the one-step estimator, and below for the online TMLE, then we
could set ε0k = 0.

Even though our theorems present conditions for asymptotic efficiency that
rely on consistency of Qk, in the case that R0(Q,G,Q0, G0) satisfies a so called
double robustness structure (i.e. R0(Q,G,Q0, G0) = 0 if either Q = Q0 or
G = G0), the online one-step estimator can remain asymptotically linear if
either Qk or Gk is consistent, but not necessarily both, and in such a case
ε0k will generally not converge to zero. Such a more general theorem for the
one-step estimator would be a completely analogue to these types of theorems
presented for the regular TMLE, and will not be repeated here.

Therefore, we also want to discuss initial estimators ε0k that are not relying
on consistency of Qk. For example, if ψ1

k is our online-one step estimator, then
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we could set ε0k equal to the solution of fk(ε) = ψ1
k, but this would rely on ψ1

k

to be an element of the parameter space of ψ0. If ψ1
k is not an element of the

parameter space one could replace it by its projection ψ̃1
k on the parameter

space and select ε0k as an approximate solution of fk(ε) = ψ̃1
k + oP (1/

√
k)

(no need to exactly solve it). Most importantly, in the last subsection of the
previous section we provide a stochastic gradient descent algorithm generating
a sequence of ε0k to target the online one-step estimator and one could select
this one as the initial estimator of ε0k.

We use this initial estimator ε0k of ε0k to construct a linear approximation
of fk(ε) in a neighborhood of ε0k:

f̃k(ε) = fk(ε
0
k) +

d

dε0k
fk(ε

0
k)(ε− ε0k).

We will use the short-hand notation ck ≡ d
dε0k
fk(ε

0
k). Under weak regularity

conditions, we have

fk(ε) = f̃k(ε) + oP (‖ ε− ε0k ‖),

where the remainder is a second order term. We approximate the inverse of
the non-linear function fk on a neighborhood of ε0k with the inverse of the
linear approximation f̃k of fk, and the latter inverse is given by:

f̃−1
k (ψ) = ε0k + c−1

k (ψ − fk(ε0k)).

Under weak regularity conditions, we will also have that

R0(ε0k, ε0k) ≡ f̃−1
k (ψ0)− f−1

k (ψ0) = o(‖ ε0k − ε0k ‖), (8)

which is the crucial result our proposed algorithm for ε∗K below relies upon. In
other words, the inverse of our linear approximation approximates the inverse
of fk at ψ0 up till a second order term.

We now define the following online estimator ε∗K of ε0K :

ε∗K =
1

K

K∑
k=1

c−1
K Ψ(Qk−1) +

1

K

K∑
k=1

f̃−1
K D∗k(Qk−1, Gk−1)(Ok).

This defines our online TMLE Ψ(QK(ε∗K | GK)) of ψ0. We have the following
theorem for this online estimator ε∗K :

Theorem 4 Consider the definitions M̄(K) and R̄(K) in Theorem 1. Recall
the above definitions of fk, f̃k, cK, R0(ε0k, ε0k) ≡ f̃−1

k (ψ0) − f−1
k (ψ0) and ε0k

defined by Ψ(Qk(ε | Gk)) = ψ0. Let c0K ≡ d
dε0K

Ψ(QK(ε0K | GK)).
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We have the following expansion:

ε∗K − ε0K = c−1
K

M̄(K)

K
+ c−1

K R̄(K) +R0(ε0K , ε0K).

Assumptions: Assume the same conditions as in Theorem 1: i.e., R̄(K) =
oP (1/

√
K), and the martingale consistency conditions on (Qk, Gk) so that

M̄(K)/
√
K converges to optimal multivariate normal mean zero distributed

Z ∼ N(0,Σ2) as specified in Theorem 1. In addition, assume R0(ε0K , ε0K) =
oP (1/

√
K), d

dε
Ψ(QK(ε)) is continuous at ε = ε0K, the inverse c−1

0K of this
derivative at ε0K has a bounded norm uniformly in K, so that, in particu-
lar,

c0Kc
−1
K → 1 in probabilty as K →∞.

Conclusion: Then,

ε∗K − ε0K = c−1
0K

M̄(K)

K
+ oP (1/

√
K),

and
√
K(ε∗K − ε0K)− c−1

0KZ → 0 in probability.

An immediate corollary of Theorem 4 is the following Theorem providing
asymptotic efficiency of the online TMLE of ψ0 (a consequence of the delta-
method).

Theorem 5 Under the same conditions as in Theorem 4, we have

Ψ(QK(ε∗K | GK))−Ψ(Q0) =
M̄(K)

K
+ oP (1/

√
K),

and thereby
√
K(Ψ(QK(ε∗K | GK)) − Ψ(Q0)) ⇒d Z, where Z ∼ N(0,Σ2)

is the optimal normal mean zero distribution defined in Theorem 1. Thus
Ψ(QK(ε∗K | GK)) is an asymptotically efficient estimator of ψ0.

The proofs of the two theorems above are presented in the Appendix.

6 Online super learning.

Our efficient online estimators of the target parameter ψ0 rely on initial online
estimators of nuisance parameters (Q0, G0). We could use the online SGD
algorithms for parametric models, where one could decide to use a very high
dimensional parametric model in order to make it flexible enough to provide a
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good approximation of the true (Q0, G0). The choice of parametric model will
still be a delicate issue and might have a significant effect on the final estimator.
In particular, by selecting the dimension of the parametric model a priori, one
might be forced to select the dimension much too large for the first part of the
data, and eventually the model might simply not be adaptive enough. There-
fore, it would be helpful to allow for a more data adaptive approach for online
estimation. For that purpose we propose the following general template for
construction of an online data adaptive estimator of (Q0, G0). For the sake of
explanation, we can focus on Q0, since Q0 and G0 are estimated separately. Re-
call that (O,Q)→ L(Q)(O) is a loss function so that Q0 = arg minQ P0L(Q),
where we minimize over the parameter space Q(M) ≡ {Q(P ) : P ∈ M} for
Q0.

For a given Q0 ∈ Q(M) and a measure of its precision n0, let Q̂j(· |
Q0, n0) : MNP → Q(M), j = 1, . . . , J , be candidate estimators of Q0 that
can be applied to any empirical distribution (i.e., member of the nonparametric
model MNP ) of a given data set, such as the empirical distribution Pk,m of
the m observations in Ok at the k-th stage. It is assumed that these candidate
estimators take as input, beyond the next batch of data, an off-set Q0 and a
measure of its precision (i.e., the sample size it was based upon), which will
play the role of the current value Qk−1 of the estimator right before the k-th
batch of data. For example,

Q̂j(Pm | Q0, n0) =
n0Q0 +mQ̂j1(Pm | Q0)

n0 +m
,

or

Q̂j(Pm | Q0, n0) =
1

1 + exp
(
−{n0logitQ0 +mlogitQ̂j1(Pm | Q0)}/(n0 +m)

) .
Here Q̂j(Pm | Q0, n0) is some function of Q0, n0 and an estimator Q̂j1(Pm | Q0)
that aims to learn a deviation from the offset Q0 based on Pm. For example,
Q̂j1(Pm | Q0) might be a fit Qβm(Q0) of a parametric model {Qβ(Q0) : β}
through Q0 at β = 0, where βm = arg minβ PmL(Qβ(Q0)).

Given a parametric function fα indexed by a finite dimensional parameter
α, let Q̂α(Pm | Q0, n0) = fα((Q̂j(Pm | Q0, n0) : j = 1, . . . , J)) be a new

estimator that combines the candidate estimators (Q̂j(Pm | Q0, n0) : j =

1, . . . , J) into a new estimator Q̂α(Pm | Q0, n0). For example, we might have
that Q̂α(Pm | Q0, n0) =

∑J
j=1 αjQ̂j(Pm | Q0, n0) is a weighted average of the

candidate estimators. For a given cross-validation scheme Bm ∈ {0, 1}m and
empirical distribution Pm of m observations, let P 0

m,Bm
, P 1

m,Bm
be the empirical
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distributions of the training sample {Oi : Bm(i) = 0} and validation sample
{Oi : Bm(i) = 1}, respectively, which partition the sample of m observations.
We select α with the cross-validation selector:

α(Pm | Q0, n0) ≡ arg min
α
EBmP

1
m,Bm

L(Q̂α(P 0
m,Bm

| Q0, n0)).

We can now define our offset-specific super-learner estimator based on Pm:

Q̂(Pm | Q0, n0) = Q̂α(Pm|Q0,n0)(Pm | Q0, n0).

This off-set specific super-learner defines now the following online super-learner
of Q0. Let Pk,m be the empirical distribution of the k-th batch Ok = {Oi : i =

nk−1 + 1, . . . , nk}, where nk+1 − nk = m. Define Qk=0 = 0. Let Q1 = Q̂(P1,m |
Qk=0, 0), and, iterate this sequential updating process with Qk+1 = Q̂(Pk+1,m |
Qk, k), k = 2, . . . , K − 1.

Note that (Qk : k = 1, 2, . . .) is indeed an online estimator since at stage
k, the computation of Qk is only based on the new batch of data Ok, and the
current value Qk−1. The heuristic of the online estimator is as follows. We
use a super-learner supported by the theoretical properties of cross-validation
for each batch Ok (van der Laan and Dudoit, 2003; van der Vaart et al., 2006;
van der Laan et al., 2006, 2007; Polley et al., 2012), but we only use this new
batch of data to learn the update relative to the current estimate Qk−1. If
m is reasonably large, then this allows one to use a flexible approach to learn
this update and the cross-validation controls the overfitting on the k-th batch.
The theoretical properties of the cross-validation selector at each stage follows
from the application of the oracle inequality for the cross-validation selector,
applied conditional on the independent past data (O1, . . . ,Ok−1) (or more
succinctly, one only conditions on Qk−1). However, the online estimator will
still respect the fact that Qk−1 was based on (k − 1)m observations while the
new batch only consists of m observations: each of the candidate estimators
in the super-learner weights the offset Qk−1 with k − 1 and the update based
on Ok with 1. Clearly, the variance of QK corresponds with the variance of K
independent estimators and will thus behave well. The main concern should
therefore be the bias of the online estimator. However, by only using the new
m observations to fit a residual of the type Q0 − Qk−1, conditional on Qk−1,
one would expect that there will be bias reduction at each step. For example,
if Q0 = E0(Y | X), then this is comparable with using a super-learner to fit
the regression of Y (Qk−1) = Y − Qk−1 on X: so one uses the new batch Ok

to fit

E0(Y −Qk−1(X) | X) = E0(Y | X)−Qk−1(X) = Q0(X)−Qk−1(X).
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Such type of updating algorithms have been proven to be successful in bias
reduction as well: e.g. SGD for fitting a parametric model has been shown
to have bias O(1/n), just like the MLE, and the iterative TMLE-algorithm
iteratively removes bias by iteratively using maximum likelihood estimation
along a parametric submodel through the current estimator, and has been
shown to result in semi parametric efficient estimators.

We can apply the same online super-learner approach to obtain an online
estimator (Gk : k = 1, . . .) for G0.

7 Example: Online efficient one-step estima-

tor for a parametric model.

Let {pθ : θ} be a parametric working model of densities indexed by finite
dimensional parameter θ. The target parameter mapping is Ψ : M → IRd

defined by Ψ(P ) = arg maxθ P log pθ and the model M is the nonparametric
model. For this target parameter and model, the efficient influence curve at
P is given by D∗(P )(O) = −cψ(P )−1S(ψ)(O), where S(ψ) = d

dψ
log pψ is the

score at ψ, and cψ(P ) = d
dψ
PS(ψ), where ψ = Ψ(P ). For convenience, we

use the notation c0 = cψ0(P0) for the true normalizing matrix. We note that
D∗(P ) only depends on P through Ψ(P ) and cΨ(P )(P ), so that we can also
represent D∗(P ) as D∗(Ψ, cΨ), and D∗(P0) = D∗(ψ0, c0).

Let D∗k(ψ, c) = 1
m

∑nk

i=nk−1+1D
∗(ψ, c)(Oi) be efficient score for the k-th

batch Ok. Consider the following online estimator ψ∗k for estimation of ψ0 =
arg maxθ P0 log pθ, or equivalently under weak regularity conditions, the solu-
tion of P0S(θ) = P0D

∗(θ, cθ) = 0.

• Let ψ0
k be an initial online estimator that converges to ψ0 at a rate faster

than n−1/4 (e.g., the standard stochastic gradient descent algorithm con-
verges at rate 1/

√
n).

• Let c0
k = cψ0

k,k
be an online estimator of cψ0

k
(P0).

• Define

ψ∗K =
1

K

K∑
k=1

ψ0
k−1 +

1

K

K∑
k=1

D∗k(ψ
0
k−1, c

0
k−1)(Ok).

In the next theorem we use the notation P0D
2 = P0DD

> for a vector value
function O → D(O).
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Theorem 6
Definitions: Let R0(ψ, c, ψ0, c0) be defined by P0D

∗(ψ, cψ) = ψ0−ψ+R0(ψ, cψ, ψ0, c0)
(note R0(ψ, cψ, ψ0, c0) is a second order term). Let ψ0

k, c0
k be online estimators

of ψ0, c0, respectively, and define

ψ∗K =
1

K

K∑
k=1

ψ0
k−1 +

1

K

K∑
k=1

D∗k(ψ
0
k−1, c

0
k−1)(Ok).

Assumptions: Assume that

R̄(K) ≡ 1

K

K∑
k=1

R0(ψ0
k, c

0
k, ψ0, c0) = oP (1/

√
K),

and assume that ψ0
K is consistent for ψ0 so that the martingale

M̄(K)/
√
K ≡ 1√

K

K∑
k=1

{D∗k(ψ0
k−1, c

0
k−1)(Ok)− P0,kD

∗
k(ψ

0
k−1, c

0
k−1)}

converges weakly to a random variable Z with normal distribution, as K →∞,
equal to the normal limit distribution of

1√
K

K∑
k=1

D∗k(ψ0, c0)(Ok).

Conclusion: We have (ψ∗K − ψ0) = M̄(K)/K + R̄(K), and thus
√
K(ψ∗K −

ψ0)⇒d Z as well, as K →∞, or equivalently,
√
n(ψ∗K(n) − ψ0)⇒d N(0,Σ0 =

P0D
∗(ψ0, c0)2). In particular, Ψ∗K(n) is an asymptotically efficient estimator of

ψ0.

This is an immediate corollary of Theorem 1.

8 Example: Online one-step efficient estima-

tion of the counterfactual mean.

Let O = (W,A, Y ) ∼ P0, and M is the nonparametric model. The target
parameter Ψ : M → IR is defined as Ψ(P ) = EPEP (Y | A = 1,W ). Un-
der a causal model (Neyman, 1990; Rubin, 1974, 2006; Holland, 1986; Robins,
1987a,b; Pearl, 2009)), this parameter equals the counterfactual mean under
treatment. Note that Ψ(P ) only depends on P throughQ(P ) = (QW (P ), Q̄(P )),

22

http://biostats.bepress.com/ucbbiostat/paper330



where QW (w) = P (W ≤ w), Q̄(A,W ) = EP (Y | A,W ). Therefore, we will
also denote the target parameter with Ψ(Q). An online estimator of QW,0 is
easy to construct by just augmenting the current sample with the new batch
and mapping the current empirical distribution into the empirical distribution
of the complete sample. However, such an online estimator requires a memory
that grows linearly with sample size nK . Therefore, we first recognize that
Ψ(Q) only depends on QW through QW Q̄ =

∫
Q̄(1,W )dQW (W ): i..e., we only

need to know the mean of Q̄. We will denote this parameter with Q̄W = QW Q̄,
so that we will redefine Q = (Q̄, Q̄W ), and Ψ(Q) = Ψ(Q̄, Q̄W ) = Q̄W .

The efficient influence curve is given by (see, e.g., van der Laan and Robins
(2003); Rose and van der Laan (2011))

D∗(Q,G)(O) =
A

G(1 | W )
(Y − Q̄(1,W )) + Q̄(1,W )−Ψ(Q),

where G(1 | W ) = P (A = 1 | W ). Note that D∗(Q,G) = D∗(Q̄, Q̄W , G).
We have

P0D
∗(Q,G) = Ψ(Q0)−Ψ(Q) +R0(Q̄, G, Q̄0, G0),

where

R0(Q̄, G, Q̄0, G0) = EP0(Q̄− Q̄0)(1,W )
G−G0

G
(1 | W ).

This also defines the efficient influence curve D∗k(Q,G)(Ok) for the k-th
batch Ok, and the corresponding identity

P0,kD
∗
k(Q,G) = Ψ(Q0)−Ψ(Q) +R0(Q̄, G, Q̄0, G0).

8.1 Online one-step estimator

Online estimator of Q0 = (Q̄0, Q̄W0) and G0: We assume that the online
estimator (Q̄k : k = 0, . . . , K) and (Gk : k = 0, . . . , K) is given, being one of
the methods we discussed.

We now present a corresponding online estimator (Q̄W,k : k = 0, . . . , K).
Given an online estimator (Q̄k : k = 0, . . . , K), Q̄W,k=0 = 0, we define for
k = 1, . . . , K

Q̄W,k =
k − 1

k
Q̄W,k−1 +

1

k

1

m

nk∑
i=nk−1+1

Q̄k−1(1,Wi),
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which defines the online estimator (Q̄W,k : k = 0, . . . , K). Note that

Q̄W,K =
1

K

K∑
k=1

1

m

nk∑
i=nk−1+1

Q̄k−1(1,Wi).

This defines now an online estimator (Qk = (Q̄k, Q̄W,k) : k = 0, . . . , K) of
Q0 = (Q̄0, Q̄W0).
Online one-step estimator of ψ0: Note that Ψ(Qk−1) = Q̄W,k−1. The online
one-step estimator of ψ0 is defined as:

ψK =
1

K

K∑
k=1

Ψ(Qk−1) +
1

K

K∑
k=1

D∗k(Qk−1, Gk−1)(Ok).

Of course, this can be calculated in an online manner, since

ψK =
K − 1

K
ψK−1 +

1

K
{Ψ(QK−1) +D∗K(QK−1, GK−1)(OK)}.

Asymptotics: By Theorem 1 we have that, if R̄(K) = 1
K

∑K
k=1R0(Qk−1, Gk−1, Q0, G0) =

oP (1/
√
K), and QK , GK are consistent estimators of Q0, G0 in the variance

norm sense as defined by the martingale conditions in Theorem 1, then
√
Km(ψK−

ψ0) →d N(0, P0D
∗(Q0, G0)2) as K → ∞, and thus that ψK is asymptotically

efficient.
Due to the double robustness structure of R0(), if QK converges to a pos-

sibly misspecified Q, but GK is consistent, under additional conditions, by ap-
proximating R̄K in first order with a martingale process 1/K

∑K
k=1D1k(Qk−1, Gk−1)(Ok)

plus a oP (1/
√
K)-term, ψK remains asymptotically normal with asymptotic

variance P0{(D∗k +D1k)(Q,G0)}2.

9 Example: Online TMLE of counterfactual

mean

Recall our general definition of the online TMLE, since we will follow here the
same template for defining this online TMLE and, in particular, ε∗k.

The online TMLE is defined in terms of a least favorable model used to
update an initial online estimator. Given the initial online estimator (Gk, Q̄k :
k), we select the following least favorable submodel through the initial online
estimator Q̄k

LogitQ̄k(ε | Gk) = LogitQ̄k + εH(Gk),
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where H(Gk)(A,W ) = A
Gk(A|W )

. In this section the online estimator of Q̄W,0 =

QW,0Q̄0 is given by Q̄W,k = 1
mk

∑km
i=1 Q̄k(1,Wi), i.e., it is simply the empirical

mean of all elements (Q̄k(1,Wi) : i = 1, . . . ,mk). Equivalently, one could
define Qk = (QW,k, Q̄k), where QW,k is the empirical distribution of (Wi : i =
1, . . . ,mk).

Below, we will construct an online estimator (ε∗k : k = 0, . . . , K). This
now defines the online estimators (Q̄∗k = Q̄k(ε

∗
k | Gk) : k = 0, . . . , K) and

corresponding

Ψ(Q∗k) = Ψ(QW,k, Q̄k(ε
∗
k)) =

1

mk

mk∑
i=1

Q̄k(ε
∗
k)(1,Wi).

In the next subsection we define the online estimator ε∗k.

9.1 Online estimator ε∗k.

For now, let an initial online estimator (ε0k : k = 0, . . . , K) be given (e.g., if
Qk is consistent, then we can select ε0k = 0), but below we will show how to
obtain this with the second order SGD algorithm. As above, this defines an
online estimator Q0

k = (Q̄k(ε
0
k), Q̄

0
W,k), where

Q̄0
W,k =

1

mk

mk∑
i=1

Q̄k(ε
0
k)(1,Wi).

Let ε0 represent the limit of ε0k as k → ∞, defined by Ψ(Q(ε | G)) =
ψ0 where (Q,G) represent the limit of (Qk, Gk). Note that ε0 = 0 if Qk is
consistent for Q0.

Online estimator of standardizing constant: We also need an online
estimator of c0 ≡ d

dε0
Ψ(QW,0, Q̄(ε0 | G)). We have Ψ(QW,0, Q̄(ε0 | G)) =

E0,W Q̄(ε0)(1,W ). Thus, d
dε0
E0,W Q̄(ε0)(1,W ) = E0,W

d
dε0
Q̄(ε0)(1,W ). We have

d

dε0
Q̄(ε0)(1,W ) = −Q̄(ε0)(1− Q̄(ε0))(1,W )

G(1 | W )
.

Thus, we have

c0 = −E0,W
Q̄(ε0)(1− Q̄(ε0))(1,W )

G(1 | W )
.
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Given the online estimators Qk, Gk, ε
k
0, the online estimator of c0 is naturally

defined as follows:

cK ≡ −
1

K

K∑
k=1

1

m

nk∑
i=nk−1

Q̄k−1(ε0k−1)(1− Q̄k−1(ε0k−1))

Gk−1

(1,Wi).

As shown above, this can be iteratively computed showing it is indeed an
online estimator:

ck =
k − 1

k
ck−1 +

1

k

1

m

nk∑
i=nk−1+1

Q̄k−1(ε0k−1)(1− Q̄k−1(ε0k−1))

Gk−1

(1,Wi).

Combining with online estimator ε0k: We now show that we can also use
the SGD to obtain the online estimator ε0k. Let Q̄k−1, Q̄W,k−1, Gk−1, ε

0
k−1, ck−1

be given. We can now immediately compute ck as a function of (ck−1, Q̄k−1(ε0k−1), Gk−1)
and Ok. We can also immediately compute (Q̄k, Gk) and thereby the empirical
average Q̄W,k of Q̄k. The next ε0k is defined by the SGD:

ε0k = ε0k−1 +
1

k
c−1
k−1D

∗
k(Qk−1(ε0k−1 | Gk−1), Gk−1)(Ok).

This shows that we have mapped (Q̄k−1, Q̄W,k−1, Gk−1, ε
0
k−1, ck−1) and Ok into

(Q̄k, Q̄W,k, Gk, ε
0
k, ck). This shows that we have defined an online estimator

(Q̄k, Q̄W,k, Gk, ε
0
k, ck : k = 0, . . . , K).

The inverse of f̃k is given by:

f̃−1
k (ψ) = ε0k + c−1

k (ψ −Ψ(Q0
k)).

This demonstrates that we have an online estimator (Q̄k, Q̄W,k, Gk, ε
0
k, ck, f̃

−1
k :

k = 0, . . . , K).
We now define the following online estimator ε∗K of εK0:

ε∗K =
1

K

K∑
k=1

c−1
K Ψ(Qk−1) +

1

K

K∑
k=1

f̃−1
K D∗k(Qk−1, Gk−1)(Ok).

We note that

ε∗K − ε∗K−1 =
(K − 1)c−1

K −Kc
−1
K−1

K(K − 1)

K−1∑
k=1

Ψ(Qk−1) +
c−1
K

K
Ψ(QK−1)

+
(K − 1)f̃−1

K −Kf̃
−1
K−1

K(K − 1)

K−1∑
k=1

D∗k(Qk−1, Gk−1)(Ok) +
f̃−1
K

K
D∗K(QK−1, GK−1)(OK).
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This shows that for an explicitly defined function f , we have

ε∗K = f(K, ε∗K−1, cK , cK−1, Ψ̄(K−1),Ψ(QK−1), f̃K , f̃K−1, D̄(K−1), QK−1, GK−1,OK),

where Ψ̄(K−1) =
∑K−1

k=1 Ψ(Qk−1) and D̄(K−1) =
∑K−1

k=1 D
∗
k(Qk−1, Gk−1)(Ok).

This proves that ε∗K is indeed also an online estimator.

9.2 Asymptotics of online TMLE

We can apply Theorem 5 to establish asymptotic efficiency of this online
TMLE ψ∗K = Ψ(QK(ε∗K)) of ψ0 under appropriate conditions. Specifically, if
R̄(K) = 1

K

∑K
k=1 R0(Qk−1, Gk−1, Q0, G0) = oP (1/

√
K), and QK , GK are con-

sistent estimators of Q0, G0 in the variance norm sense as defined by the mar-
tingale conditions in Theorem 1, then

√
Km(ψ∗K−ψ0)→d N(0, P0D

∗(Q0, G0)2)
as K →∞, and thus that ψ∗K is asymptotically efficient.

Due to the double robustness structure of R0(), if Q∗K converges to a pos-
sibly misspecified Q, but GK is consistent, under additional conditions, by ap-
proximating R̄K in first order with a martingale process 1/K

∑K
k=1D1k(Q

∗
k−1, Gk−1)(Ok),

ψ∗K remains asymptotically normal with asymptotic variance P0{(D∗k+D1k)(Q,G0)}2.

Remark Suppose that Q̄k is defined by a finite dimensional vector of param-
eters. In that case, the computational burden of computing the update Q̄k(ε

∗
k)

is controlled by the fixed dimension. However, computing Q̄k(ε
∗
k) at each of

the mk observations will require mk evaluations which thus increases linearly
in k. However, one might only carry out the evaluation of the empirical mean
of Q̄k(ε

∗
k) at special occasions, while also running the online-one step estima-

tor of ψ0. In that case, the computational burden of the online TMLE is still
controlled. On the other hand, in order to be nonparametrically consistent
we should let the dimension of Q̄k grow with sample size. There are probably
sensible strategies to make the dimension of Q̄k grow with sample size at a
much slower rate than mk so that the computational burden is reasonably
controlled. Either way, this online TMLE (ψ∗k : k = 1, . . . , K) is still much
faster than recomputing once a TMLE at the last stage K, and that does not
even take into account that one might really need to have an estimator at each
stage k = 1, . . . , K.

9.3 Targeted online one-step estimator of counterfac-
tual mean

We now construct a targeted version of the online one-step estimator that
might be asymptotically equivalent with 1

K

∑K
k=1 Ψ(Qk−1(ε0k)), although that
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would rely on (7) to hold, which has not been formally established. This
targeted one-step estimator is as fast to compute as the online one-step es-
timator, and has therefore computational advantages relative to the online
TMLE above that is slowed down by the evaluation of Ψ() at an Q∗k, while it
might still be a substitution estimator.
Online estimator of Q0 = (Q̄0, Q̄W0) and G0: We assume that the online
estimator (Q̄k : k = 0, . . . , K) and (Gk : k = 0, . . . , K) is given, being one of
the methods we discussed.
Online estimator Q∗k, Gk: Let Q̄k−1, Q̄W,k−1, Gk−1, ε

0
k−1, ck−1 be given. This

defines Q̄∗k−1 = Q̄k−1(ε0k−1) and the corresponding

Q̄∗W,k−1 =
k − 1

k
Q̄∗W,k−2 +

1

k

1

m

nk∑
i=nk−1+1

Q̄∗k−1(1,Wi),

which defines Q∗k−1 = (Q̄∗k−1, Q̄
∗
W,k−1). Note that for any K:

Q̄∗W,K =
1

K

K∑
k=1

1

m

nk∑
i=nk−1+1

Q̄∗k−1(1,Wi).

Given the online estimator ck above, it follows that we can now immediately
computer ck as a function of (ck−1, Q̄k−1(ε0k−1), Gk−1) and Ok:

ck =
k − 1

k
ck−1 +

1

k

1

m

nk∑
i=nk−1+1

Q̄k−1(ε0k−1)(1− Q̄k−1(ε0k−1))

Gk−1

(1,Wi).

The next ε0k is now defined by the SGD:

ε0k = ε0k−1 +
1

k
c−1
k−1D

∗
k(Q

∗
k−1, Gk−1)(Ok).

We can also compute the updates (Q̄k, Gk) in an online manner. This shows
that we have mapped (Q̄k−1, Q̄W,k−1, Gk−1, ε

0
k−1, ck−1, Q̄

∗
k−1, Q̄

∗
W,k−1) and Ok

into (Q̄k, Q̄W,k, Gk, ε
0
k, ck, Q̄

∗
k, Q̄

∗
W,k). This shows that we have defined an online

estimator (Q̄k, Q̄W,k, Gk, ε
0
k, ck, Q̄

∗
k, Q̄

∗
W,k : k = 0, . . . , K), and thus in particular

an online estimator (Q∗k, Gk).

Targeted online one-step estimator of ψ0: Note that Ψ(Q∗k−1) = Q̄∗W,k−1.
The online one-step estimator of ψ0 is defined as:

ψ∗K =
1

K

K∑
k=1

Ψ(Q∗k−1) +
1

K

K∑
k=1

D∗k(Q
∗
k−1, Gk−1)(Ok).
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Of course, this can be calculated in an online manner, since

ψ∗K =
K − 1

K
ψ∗K−1 +

1

K

{
Ψ(Q∗K−1) +D∗K(Q∗K−1, GK−1)(OK)

}
.

Due to using a targeted estimatorQ∗k, we wonder if 1
K

∑K
k=1 D

∗
k(Q

∗
k−1, Gk−1)(Ok) =

oP (1/
√
K), in which case this targeted online one-step estimator is asymptoti-

cally equivalent with the substitution estimator 1
K

∑K
k=1 Ψ(Q∗k−1). Either way,

we expect that the empirical average correction will be relatively small so that
the targeting will still have robustified the online one step estimator.

The asymptotic efficiency of this online one step estimator is established
by Theorem 1 again.

10 Generalization to online learning based on

an adaptive group sequential design

In this section we generalize our formulation and online estimators to group
sequential adaptive designs, thereby allowing that the data generating distri-
bution changes over time and is possibly data adaptively adjusted in response
to the observed past (van der Laan, 2008; Chambaz and van der Laan, 2011a,b;
Chambaz et al., 2014).

10.1 Formulation of the online estimation problem for
a group sequential adaptive design

LetO1, . . . , On be such thatOi, givenO1, . . . , Oi−1, has probability distribution
Pθ0,g0,i , i = 1, . . . , n, where g0,i is a known function of Ō(i − 1), and θ0 ∈ Θ
for some parameter space Θ. Let Mi = {Pθ,g0,i : θ ∈ Θ} be the model for
Pθ0,g0,i , i = 1, . . . , n. Suppose that our target quantity of interest is ΨF (θ0) for
some ΨF : Θ→ IR, and that it is identifiable through a pathwise differentiable
parameter Ψi :Mi → IR in the sense that Ψi(Pθ,g0,i) = ΨF (θ) for each θ ∈ Θ.
Let Oi → D∗(θ, g0,i)(Oi) be the efficient influence curve of Ψi : Mi → IR at
Pθ,g0,i .

Suppose that Ψi(Pθ,g0,i) only depends on θ through a parameter Q(θ) of
θ, and assume that D∗(θ, g0,i)(Oi) only depends on θ through (Q(θ), G(θ)) for
some nuisance parameter G(θ) of θ, so that we can also denote the target
parameter and efficient influence curve with Ψi(Q) and D∗(Q,G, g0,i), respec-
tively. Let (Q,O)→ L(Q, g0,i)(O) be a loss-function for Q0 = Q(θ0) based on
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sampling from Pθ0,g0,i in the sense that

Q0 = arg min
Q
Pθ0,g0,iL(Q, g0,i) = arg min

Q

∫
L(Q, g0,i)(o)dPθ0,g0,i(o),

where we minimize over the parameter space {Q(θ) : θ ∈ Θ} of Q0.
Our goal is to construct online estimator ψF0 so that

ψn − ψF0 =
1

n

n∑
i=1

D∗(Q0, G0, g0,i)(Oi) + oP (1/
√
n),

so that the martingale CLT establishes weak convergence of
√
n(ψn − ψ0)

to N(0, σ2), under appropriate conditions. In particular, if g0,i converges to
a fixed parameter g0 as i → ∞, then σ2 = Pθ0,g0D

∗(Q0, G0, g0)2. That is,
the estimator ψn achieves the same asymptotic performance as an efficient
estimator based on i.i.d. sampling from Pθ0,g0 . In our work referenced above
on targeted adaptive designs, we have referred to g0,i as the targeted adaptive
design targeting the (possibly) optimal g0.

Let R0(θ, θ0, g0,i) be defined by

Pθ0,g0,iD
∗(θ, g0,i) = ΨF (θ0)−ΨF (θ) +R0(θ, θ0, g0,i),

where R0(θ, θ0, g0,i) is a second order remainder that can be explicitly deter-
mined given Ψi and D∗(θ, g0,i). Equivalently, in terms of D∗(Q,G, g0,i) and
Ψi(Q), we have

Pθ0,g0,iD
∗(Q,G, g0,i) = ΨF (Q0)−ΨF (Q) +R0(Q,G,Q0, G0, g0,i). (9)

Let Ok = (Onk−1+1, . . . , Onk
) represent the m = nk − nk−1 observations

making up batch k, k = 1, 2, . . . , K, where n0 = 0, and assume g0,i = g0,k is
constant across i in the k-th batch. For notational convenience, we define

D∗k(Q,G,g0,k)(Ok) ≡
1

m

nk∑
i=nk−1+1

D∗(Q,G, g0,i)(Oi),

where we could also replace g0,i by g0,k in the last expression.
Let ((Qk, Gk) : k = 1, . . . , ) be an online estimator of (Q0, G0). A crucial

ingredient in the analysis of our proposed online estimators is the following
identity that is an immediate consequence of (9):

P0,kD
∗
k(Qk−1, Gk−1,g0,k) = ΨF (Q0)−ΨF (Qk−1)+R0(Qk−1, Gk−1, Q0, G0,g0,k),

(10)
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for k = 1, . . . , K. Here we used the notation P0,kf(Ok) =
∫
f(Ok)dP0,k(Ok)

and dP0,k(Ok) =
∏nk

i=nk−1+1 dPθ0,g0,iOi) is the probability density of Ok, condi-

tional on Ō(nk−1). Note that we also have

P0,kD
∗
k(Qk−1, Gk−1,g0,k) = E0(D∗k(Qk−1, Gk−1,g0,k)(Ok) | Fk−1)

is the conditional expectation of the random variable D∗k(Qk−1, Gk−1,g0,k)(Ok)
(a function of O1, . . . ,Ok), given F(k − 1) ≡ (O1, . . . ,Ok−1).

We will assume that an initial estimator (Qk=0, Gk=0) is given, so that the
online procedure can be initiated with this choice. In practice this might be
an estimator based on an initial batch that is further ignored in our definition
on the online estimator. However, one could also simply define (Qk=0, Gk=0) =
(Q1, G1), since this choice does not affect the asymptotics.

10.2 A few examples of data adaptive designs.

Let’s consider two concrete examples that demonstrate this type of setting.
Firstly, consider the case that Xi = (Wi, Y1,i, Y0,i) ∼iid PX,0 consists of base-
line covariates Wi, and two treatment specific counterfactual outcomes Y1,i, Y0,i

and let Oi = (Wi, Ai, Yi ≡ YAi,i) be the missing data structure with censor-
ing indicator equal to the binary treatment Ai. One could imagine a group
sequential randomized trial in which we keep recruiting subjects over time by
sampling them from a particular fixed population, but that the randomization
probabilities for Ai change over time in response to past data Ō(i− 1): given
Ō(i− 1), P (Ai = 1 | Wi) = Πi,0(1 | Wi) is known (Bai et al. (2002); Andersen
et al. (1994); Flournoy and Rosenberger (1995); Hu and Rosenberger (2000);
Rosenberger (1996); Rosenberger et al. (1997); Rosenberger and Grill (1997);
Rosenberger and Shiram (1997); Tamura et al. (1994); Wei (1979); Wei and
Durham (1978); Wei et al. (1990); Zelen (1969); Cheng and Shen (2005)). .
In this case, the conditional probability distribution of Oi, given Ō(i − 1),
PPX,0,Πi,0

is indexed by the unknown common distribution PX,0 and the known
treatment assignment mechanism Π0,i. The full-data target parameter might
be defined as ΨF : MF → IR with ΨF (PX,0) = EPX,0

(Y1 − Y0), where MF is
the nonparametric model for PX,0. This full-data target parameter

ψF0 = ΨF (PX,0) = Ψ(P0,i) ≡ EP0,i
{EP0,i

(Yi | Ai = 1,Wi)−EP0,i
(Yi | Ai = 0,Wi)}

is identifiable from P0,i = PPX,0,Πi
for each i if 0 < Πi,0(1 | Wi) < 1.

As a second example, suppose now that Xi = (Wi, Ai, Yi) corresponds with
an observation in an observational study so that we cannot view the conditional
distribution of Ai, given (Wi, Y1,i, Y0,i), as known, but we still assume that Xi
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are independent and follow a common distribution PX,0. Assume that we ob-
serve on the i-th unit Oi = (Wi, Ai,∆i,∆iYi), a missing data structure on Xi

with missing indicator ∆i indicating if the outcome is observed. Assume that,
conditional on Ō(i−1), the missingness mechanism Πi,0(∆i | Xi) is known. For
example, given Ō(i− 1), one uses case-control sampling so that Πi,0(∆i | Xi)
only depends on Xi through Yi,Wi according to a known probability distribu-
tion, learned from past data. As a consequence, the conditional distribution of
Oi, given Ō(i− 1), PPX,0,Πi,0

is now again indexed by the common distribution
PX,0 of Xi and this known missingness mechanism Πi,0. The target quantity
is defined as ΨF (PX,0) = EPX,0

{EPX,0
(Y | A = 1,W ) − EPX,0

(Y | A = 0,W )}
and we would pose a certain model MF for the probability distribution of
(W,A, Y ) such as the nonparametric model if nothing is known about the con-
ditional distribution of A, given W . So in this example we have that Xi does
include censoring/treatment variables that are not within the control of the
experimenter.

10.3 Online one-step estimator

Define the following one-step estimator of ψF0 :

ψFK =
1

K

K∑
k=1

{
ΨF (Qk−1) +D∗k(Qk−1, Gk−1,g0,k)(Ok)

}
. (11)

We have the following theorem.

Theorem 7
Definitions: Let M̄(K) =

∑K
k=1Mk, where Mk = D∗k(Qk−1, Gk−1,g0,k)(Ok)−

P0,kD
∗
k(Qk−1, Gk−1,g0,k). We have that (M̄(k) : k = 1, . . .) is a discrete mar-

tingale w.r.t. Fk = (O1, . . . ,Ok): E0(M̄(K) | F(k)) = M̄(k) for k ≤ K.
Let

Σ2
k ≡ E0M

2
k ≡ E0MkM

>
k ,

and

Σ2(K) ≡ 1

K

K∑
k=1

Σ2
k.

Define also

W 2(K) =
1

K

K∑
k=1

E0(M2
k | Fk−1) =

1

K

K∑
k=1

P0,kM
2
k .
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Define

R̄(K) ≡ 1

K

K∑
k=1

R(Qk−1, Gk−1, Q0, G0,g0,k).

We have the following expansion for the online one-step estimator:

ψK − ψ0 =
M̄(K)

K
+ R̄(K).

Assumptions: We make the following assumptions

• For some M < ∞ maxk | D∗k(Qk−1, Gk−1,g0,k)(Ok) |< M < ∞ with
probability 1;

• R̄(K) = oP (1/
√
K);

• lim infK→∞ λΣ2(K)λ > 0 for all λ, or that

Σ2 = lim
k→∞

Σ(k)2 exists and is a positive definite covariance matrix;

• W 2(K)− Σ2(K)→K→∞ 0 in probability, or, equivalently

1

K

K∑
k=1

P0,kD
∗
k(Qk−1, Gk−1,g0,k)− E0

1

K

K∑
k=1

P0,kD
∗
k(Qk−1, Gk−1,g0,k)→ 0

(12)
in probability as K →∞.

Conclusion: Then,

Σ(K)−1M̄(K)√
K
⇒D N(0, I), as K →∞,

and, if Σ2(K)→ Σ2, as K →∞, for some positive definite covariance matrix
Σ2, then

M̄(K)√
K
⇒D N(0,Σ2), as K →∞.

This implies:

√
Km(ψK − ψ0)⇒D N(0,Σ2/m) as K →∞.

If P0,k{D∗k(Qk−1, Gk−1,g0,k)−D∗(Q0, G0, g0)}2 → 0 in probability, as k →∞,
then Σ2/m = P0D

∗(Q0, G0, g0)2 is the efficiency bound for i.i.d. sampling from
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Pθ0,g0, which proves that ψK is asymptotically equivalent with an asymptotically
efficient estimator under i.i.d. sampling from Pθ0,g0.
Consistent estimation of asymptotic variance: Finally, consider the fol-
lowing estimator of Σ2(K):

Σ̂2(K) =
1

K

K∑
k=1

{D∗k(Qk−1, Gk−1(Ok)− D̄K}2,

where D̄K = 1
K

∑K
k=1 D

∗
k(Qk−1, Gk−1)(Ok). We have Σ̂2(K) − Σ2(K) → 0 in

probability as K → ∞, and if Σ2 exists, then we also have Σ̂2(K) → Σ2 in
probability as K →∞.

The proof of Theorem 7 is completely identical to the proof of Theorem 1.

10.4 Online TMLE

As is clear from the previous section, our online TMLE can also be straightfor-
wardly generalized to group sequential adaptive designs and the same theorems
apply to this more general setting. So we can conclude that since our results in
the previous sections only relied on a martingale structure of the estimators,
group sequential adaptive designs are naturally captured by our set up and
theorems without any extra work.

11 Discussion

This article concerned the generalization of targeted learning for i.i.d. data,
modeled by large semi parametric models, to online targeted learning in order
to scale up these methods to handle massive amount of possibly streaming
data. Specifically, we proposed methods for online super-learning, online one-
step and online targeted minimum loss-based estimation. In addition, we also
generalized our online semi-parametric efficient estimators to group sequential
data adaptive designs, as studied with regular TMLE in van der Laan (2008);
Chambaz and van der Laan (2011a,b). This article provides a solid basis for
developing online estimators for specific estimation problems, as demonstrated
in our treatment specific mean example. The framework appears to be general
enough to incorporate new and innovative ideas of how to construct online
estimators that are maximally computationally friendly without giving up on
the fundamental statistical properties such as asymptotic linearity, efficiency,
and global finite sample robustness. Due to the martingale structure of our
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online estimators, their asymptotic does not rely on the usual Donsker class
condition, allowing them to be asymptotically linear and efficient under weaker
conditions than typical estimators.

In the future, the theoretical properties of our online super-learning ap-
proach will need to be established. Our online TMLE relies on evaluation of
Ψ(Qk(ε

∗
k)) at each step k and if Qk has a dimension growing with sample size,

then this estimator is more computer intensive than our online one-step esti-
mator utilizing an online evaluation ψk of Ψ() (thereby never evaluating the Ψ
of the current estimator, but just updating the previous ψk−1). That is, it ap-
pears that insisting on an estimator to be a substitution estimator Ψ(Q∗k) one
naturally slows down its computation due to having to evaluate Ψ() at each
step, and the number of calculations needed to evaluate Ψ(Q∗k) will depend
on the dimension of Q∗k. On the other hand, if the dimension of the initial
online estimator Qk grows with sample size nk, then this extra computation
required to evaluate Ψ(Q∗k) is of the same order as computing the initial online
Qk, so that the computational gain of the online one step estimator is not that
meaningful.

We have suggested that the online targeted one-step estimator relying on
targeted initial estimators Qk(ε

0
k) for a well constructed online second order

SGD estimator ε0k, combined with an online evaluation ψ0
k−1 of Ψ() might

be asymptotically equivalent with 1/K
∑K

k=1 ψ
0
k−1, so that the latter can be

used instead, inheriting the robustness properties of a substitution estimator.
Clearly, more theoretical work remains to be done to confirm this conjecture
and to establish if our current proposed online targeted one step estimators
do the job. In that manner, one essentially still obtains robust substitution
estimators that are as fast to compute as the online one-step estimator.

An interesting future challenge will be the construction of an online es-
timator of a dynamic treatment specific mean EYd for a dynamic treatment
multiple time point intervention d based on a general longitudinal data struc-
ture, relying on the sequential regression representation, thereby creating an
online efficient estimators analogue to the TMLE in (Gruber and van der Laan,
2012; Petersen et al., 2013), where the latter TMLEs are inspired by impor-
tant double robust estimators established in earlier work of Bang and Robins
(2005). Finally, we will need to implement corresponding online R packages
analogue to the super-learner package and the longitudinal TMLE package
(superlearner(), ltmle()).
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Appendix

Proof of Theorem 5.

Consider the online TMLE ψ∗K = Ψ(QK(ε∗K)) as estimator of ψ0, and the
conclusion of Theorem 4 regarding ε∗K − ε0K . We have for an ε̃0K between ε∗K
and ε0K

Ψ(QK(ε∗K))−Ψ(Q0) = Ψ(QK(ε∗K))−Ψ(QK(ε0K))

=
d

dε̃0K
Ψ(QK(ε̃0K))(ε∗K − ε0K))

=
d

dε̃0K
Ψ(QK(ε0K))c−1

0K

M̄(K)

K
+ oP (1/

√
K)

=
M̄(K)

K
+ oP (1/

√
K),

where we use that ε̃0K− ε0K converges to zero as K →∞, so that, by assump-
tion

d

dε̃0K
Ψ(QK(ε̃0K))c−1

0K → 1 in probabilty as K →∞.

Proof of Theorem 4.

Let’s now analyze this estimator of ε0K . We have

ε∗K = 1
K

∑K
k=1 c

−1
K Ψ(Qk−1)

+ 1
K

∑K
k=1

{
f̃−1
K D∗k(Qk−1, Gk−1)(Ok)− f̃−1

K P0kD
∗
k(Qk−1, Gk−1)

}
+ 1
K

∑K
k=1 f̃

−1
K P0kD

∗
k(Qk−1, Gk−1)

= 1
K

∑K
k=1 c

−1
K Ψ(Qk−1) + c−1

K
M(K)
K

+ 1
K

∑K
k=1 f̃

−1
K {Ψ(Q0)−Ψ(Qk−1) +R0k(Qk−1, Gk−1, Q0, G0)},

where

M̄(K) =
K∑
k=1

{D∗k(Qk−1, Gk−1)(Ok)− P0kD
∗
k(Qk−1, Gk−1)} ,
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and we used f̃−1
K a − f̃−1

K b = c−1
K (a − b) for any two numbers a, b. Let’s now

focus on the last term, which equals

1
K

∑K
k=1

{
ε0K − c−1

K fK(ε0K) + c−1
K ψ0 − c−1

K Ψ(Qk−1) + c−1
K R0k

}
= {ε0K − c−1

K fK(ε0K) + c−1
K (ψ0)} − 1

K

∑K
k=1 c

−1
K (Ψ(Qk−1) + c−1

K
1
K

∑K
k=1R0k

= f̃−1
K (ψ0)− 1

K

∑K
k=1 c

−1
K Ψ(Qk−1) + c−1

K R̄(K),

where R̄(K) ≡ 1
K

∑K
k=1R0k(Qk−1, Gk−1, Q0, G0). Plug this expression back

into our expression above for ε∗K to obtain:

ε∗K − f̃−1
K (ψ0) = c−1

K

M̄(K)

K
+ c−1

K R̄(K).

Finally, we use that f̃−1
K (ψ0) = f−1

K (ψ0) + R0(ε0K , ε0K) and f−1
K (ψ0) = ε0K to

obtain:

ε∗K − ε0K = c−1
K

M̄(K)

k
+ c−1

K R̄(K) +R0(ε0K , ε0K).

We assumed that R̄(K) = oP (1/
√
K) and R0(ε0K , ε0K) = oP (1/

√
K). Under

these assumptions, we have

ε∗K − ε0K = c−1
K

M̄(K)

K
+ oP (1/

√
K).

This completes the proof of Theorem 4.
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