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Statistical Inference for the Mean Outcome
Under a Possibly Non-Unique Optimal
Treatment Strategy

Alexander R. Luedtke and Mark J. van der Laan

Abstract

We consider challenges that arise in the estimation of the value of an optimal
individualized treatment strategy defined as the treatment rule that maximizes the
population mean outcome, where the candidate treatment rules are restricted to de-
pend on baseline covariates. We prove a necessary and sufficient condition for the
pathwise differentiability of the optimal value, a key condition needed to develop
a regular asymptotically linear (RAL) estimator of this parameter. The stated con-
dition is slightly more general than the previous condition implied in the literature.
We then describe an approach to obtain root-n rate confidence intervals for the op-
timal value even when the parameter is not pathwise differentiable. In particular,
we develop an estimator that, when properly standardized, converges to a normal
limiting distribution. We provide conditions under which our estimator is RAL
and asymptotically efficient when the mean outcome is pathwise differentiable.
We outline an extension of our approach to a multiple time point problem in the
appendix. All of our results are supported by simulations.



1 Introduction

There has been much recent work in estimating optimal dynamic treatment regimes (DTRs) from
a random sample. A DTR is an individualized treatment strategy in which treatment decisions
for a patient can be based on their measured covariates. Such treatment strategies are commonly
used in practice and thus it is natural to want to learn about the best such strategy. The value
of a DTR is defined as the population counterfactual mean outcome if the DTR is implemented
in the population. The optimal DTR is the DTR which has the maximal value. The value at the
optimal DTR is known as the optimal value. In a single time point setting, the optimal DTR can be
defined as the sign of the “blip function”, defined as the additive effect of a blip in treatment on a
counterfactual outcome, conditional on baseline covariates (Robins, 2004). For a general overview
of recent work on optimal DTRs, see Chakraborty and Moodie (2013).

Suppose one wishes to know the impact of implementing an optimal DTR in the population, i.e.
one wishes to know the optimal value. Inference for the optimal value has been shown to be
difficult at exceptional laws, i.e. probability distributions where there exists a strata of the baseline
covariates which occurs with positive probability for which treatment is neither beneficial nor
harmful (Robins, 2004; Robins and Rotnitzky, 2014). Zhang et al. (2012a) considered inference
for the optimal value in restricted classes in which the DTRs are indexed by a finite-dimensional
parameter. At non-exceptional laws, they outlined an argument showing that the standard error of
their estimator minus the truth, multiplied by root-n, is equal to the standard error of the estimator
which estimates the value of the known optimal DTR.

Researchers are now focusing on applying machine learning algorithms to estimate the optimal
rules from large classes which cannot be described by a finite dimensional parameter (see, e.g.,
Zhang et al., 2012b; Zhao et al., 2012; Luedtke and van der Laan, 2014). van der Laan and Luedtke
(2014b) and van der Laan and Luedtke (2014a) developed inference for the optimal value when
the DTR belongs to an unrestricted class. van der Laan and Luedtke (2014a) provide a proof that
the efficient influence curve for the parameter which treats the optimal rule as known is equal to
the efficient influence curve of the optimal value at non-exceptional laws. One of the contributions
of this paper is to present a slightly more precise statement of the condition for the pathwise
differentiability of the mean outcome under the optimal rule. We will show that this condition is
necessary and sufficient.

Restricting inference to non-exceptional laws can be limiting given that there is often no treatment
effect for people in some strata of baseline covariates. Chakraborty et al. (2014) propose using
the m-out-of-n bootstrap to obtain inference for the value of an estimated DTR. They work with
an inverse probability weighted (IPW) estimator, which yields valid inference when the treatment
mechanism is known or is estimated according to a correctly specified parametric model. They
also discuss an extension to an augmented inverse probability weighted (AIPW) estimator. The
m-out-of-n bootstrap draws samples of size m patients from the data set of size n. In non-regular
problems, this method yields valid inference if m,n — oo and m = o(n). This approach allows
one to obtain confidence intervals for the value of an estimated regime which shrink at a slower than
root-n rate, namely a root-m rate. In addition to yielding wide confidence intervals, this approach
has the drawback of requiring a choice of the important tuning parameter m for each sample size.
The choice of m balances a trade-off between coverage and efficiency. Chakraborty et al. propose
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using a double bootstrap to select this tuning parameter.

Goldberg et al. (2014) instead consider the truncating the value function so that only individuals
with a clinically meaningful treatment effect contribute to the value, and then proceed with inference
for the truncated value function at the optimal DTR. For a fixed truncation level, these authors note
that the estimated truncated optimal value minus the true truncated optimal value, multiplied by
root-n, converges to a normal limiting distribution. Laber et al. (2014b) propose instead replacing
the indicator in the value function with differentiable function. They conjecture about situations in
which this estimator minus the truth, multiplied by root-n, has a reasonable limit distribution.

In this work, we develop root-n rate inference for the optimal value under reasonable conditions.
Our approach avoids any sort of truncation, and does not require that the estimate of the optimal
rule converge to a fixed quantity as the sample size grows. We are able to show that our estimator
minus the truth, properly standardized, converges to a standard normal limiting distribution. This
allows for the straightforward construction of asymptotically valid confidence intervals for the
optimal value. Neither the estimator nor the inference relies on a complicated tuning parameter.

We give conditions under which our estimator is asymptotically efficient among all regular and
asymptotically linear (RAL) estimators when the optimal value parameter is pathwise differentiable.
The conditions for asymptotic efficiency are very similar to those presented in van der Laan and
Luedtke (2014b), but do not require that one knows that the optimal value parameter is pathwise
differentiable from the outset. The procedure is computationally efficient and its implementation
only requires a minor modification to a typical one-step estimator.

Organization of article

Section 2 formulates the statistical problem of interest. Section 3 gives necessary and sufficient
conditions for the pathwise differentiability of the optimal value. Section 4 outlines the challenge
of obtaining inference at exceptional laws and gives a thought experiment that motivates our
procedure for estimating the optimal value. Section 5 presents an estimator for the optimal value.
This estimator represents a slight modification to a recently presented online one-step estimator for
pathwise differentiable parameters. Section 6 discusses computationally efficient implementations
of our proposed procedure. Section 7 discusses each condition of the key result presented in Section
5. Section 8 describes our simulations. Section 9 gives our simulation results. Section 10 closes
with a summary and some directions for future work.

All proofs can be found in Appendix A. We outline an extension of our proposed procedure to the
multiple time point setting in Appendix B.

2 Problem formulation

Let O = (W,A)Y) ~ By € M, where M is a nonparametric model. Let V' denote the range
of W. For P € M, define the treatment mechanism g(P)(A|W) £ Prp(A|W). We will refer to
g(Py) as go and refer to g(P) as g when this will not cause confusion. For a function f, we will
use Ep[f(0)] to denote [ f(0o)dP(o0). We will also use Ey[f(O)] to denote Ep,[f(O)] and Pry to
denote the probability of an event under Py. Let ¥ : M — R be defined by ¥(P) £ EpEp|Y|A =
d(P)(W),W] and d(P) = argmax,EpEp(Y|A = d(W), W) be an optimal treatment rule under
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P. We will resolve the ambiguity in the definition of d when the argmax is not unique later in this
section. Throughout we assume that Pro(0 < go(1|WW) < 1) so that W(F,) is well-defined. Under
causal assumptions, V(P) is equal to the counterfactual mean outcome if, possibly contrary to
fact, the rule d( P) were implemented in the population. We can also identify d(P) with a causally
optimal rule under those same assumptions. We refer the reader to van der Laan and Luedtke
(2014b) for a more precise formulation of such a treatment strategy. As the focus of this work is
statistical, all of the results will hold when estimating the statistical parameter V(F,) whether or
not the causal assumptions needed for identifiability hold. Define

Q(fj)(fh w) = EplylA, W]

Qu(P)Y(W) = Q(P)(L, W) — Q(P)(0,W).

We will refer to Qy(P) the blip function for the distribution P. We will denote to the above
quantities applied to 4 as (Jo and (0o, respectively. We will often omit the reliance on P altogether
when there is only one distribution P under consideration: ()(A, W) and Q,(W). We also define
U, (P) = EpQ(d(P)(W), W). Consider the efficient influence curve of ¥, at P:

_ I(A=dW))

D(d, P)(0) = W(Y — QA W) + Q(A(W), W) — Wy(P).

Let B(P) £ {w : Qy(w) = 0}. We will refer to B(P,) as By. An exceptional law is defined as a
distribution P for which Prp(W € B(P)) > 0 (Robins, 2004). We note that the ambiguity in the
definition of d(P) occurs precisely on the set B(P). In particular, d(P) must almost surely agree
with some rule in the class

{w > I(Qy(w) > 0)I(w & B(P)) + b(w)I(w € B(P)) : b}, (1)

where b : W — {0,1} is some arbitrary (measurable) function. Consider now the following
uniquely defined optimal rule:

d"(P)(W) £ 1(Qs(W) > 0).

We will let dj = d*(F). We have ¥ (P) = U4 (p)(P), but now d*(P) is uniquely defined for all
W. More generally, d*(P) represents a uniquely defined optimal rule. Other formulations of the
optimal rule can be obtained by changing the behavior of the rule 5B;. Our goal is to construct root-
n rate confidence intervals for () that maintain nominal coverage, even at exceptional laws. At
non-exceptional laws we would like these confidence intervals to belong to and be asymptotically
efficient among the class of regular asymptotially linear (RAL) estimators.

3 Necessary and sufficient conditions for pathwise differentiability of ¥

The pathwise derivative of ¥ at P is defined as £ W(P,) . along paths {P, : ¢ € R} C M that
go through Fy at e = 0, 1.e. Py = F, (Bickel et al., 1993). In particular, these paths are given
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dQw,e = (1 + eSw(W))dQwp,
where Ey[Sw (V)] = 0 and sup |Sw(w)| < oo;

de’e(Y‘A, W) = (1 + €Sy<Y|A7 W))dejo(Y|A7 W),
where Ey[Sy|A, W] = 0and sup |Sy(y|a, w)| < co. ()

w7a?y

Above Qo and Q)y, are respectively the marginal distribution of W and the conditional distribution
of Y given A, W under Py. The parameter ¥ is not sensitive to fluctuations of go(a|w) = Pry(a|w),
and thus we do not need to fluctuate this portion of the likelihood.

In van der Laan and Luedtke (2014a), we showed that W is pathwise differentiable at F, with
canonical gradient D(dj, P,) if P, is a non-exceptional law, i.e. Pro(W & By) = 1. Exceptional
laws were shown to present problems for estimation of optimal rules indexed by a finite dimensional
parameter in Robins (2004), and it was observed in Robins and Rotnitzky (2014) that these laws
can also cause problems for unrestricted optimal rules. Here we show that mean outcome under
the optimal rule is pathwise differentiable under a slightly more general condition than requiring a
non-exceptional law, namely that

Pr, (W ¢ By or maxai(a, V) = 0) —1, 3)

where oo(a,w) £ \/Varg,(Y]A = a, W = w). The upcoming theorem also gives the converse
result, i.e. the mean outcome under the optimal rule is not pathwise differentiable if the above
condition does not hold.

Theorem 1. Assume Pro(0 < go(1|W) < 1) = 1, and Pro(|Y| < M) = 1 for some M < oo. The
parameter V() is pathwise differentiable if and only if (3). If V is pathwise differentiable at P,
then U has canonical gradient D(d}, Py) at F.

In the proof of the theorem we construct fluctuations Sy and Sy such that

Tine \IJ(PG) — \II(PO) # lim \IJ(PE) — \I/<PO)

€10 € €l0 €

“)

when (3) does not hold. It then follows that W(F,) is not pathwise differentiable. The left- and
right-hand sides above are referred to as one-sided directional derivatives in Hirano and Porter
(2012).

We note that this condition for the mean outcome differs slightly from that implied for unrestricted
rules in Robins and Rotnitzky (2014) in that we still have pathwise differentiability when the Q¢
is zero in some strata but the conditional variance of the outcome given covariates and treatment
is also zero in all of those strata. This makes sense, given that in this case the blip function could
be estimated perfectly in those strata in any finite sample with treated and untreated individuals
observed in that strata. Though we do not expect this difference to matter for most data generating
distributions encountered in practice, there are cases where it may be relevant. For example, if no
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one in a certain strata is susceptible to a disease regardless of treatment status, and researchers are
unaware of this a priori so that simply excluding those strata from the target population is not an
option, then the conditional variance in this strata is zero even though the effect of treatment in this
strata is also zero.

In general, however, we expect that the mean outcome under the optimal rule will not be pathwise
differentiable under exceptional laws encountered in practice. For this reason, we often refer to
“exceptional laws” rather than “laws which do not satisfy (3)” in this work. We do this because the
term “exceptional law” is well-established in the literature, and also because we believe that there
is likely little distinction between “exceptional law” and “laws which do not satisfy (3)” for many
problems of interest.

We remind the reader that an estimator @ is asymptotically linear for a parameter mapping ¢ at F,
with influence curve ICy if

. 1 —
Pn) = B(Po) = > TCo(O) +on,(n”*7%),
i=1

where Ey[/Cy(O)] = 0.

For the definitions of regularity and local unbiasedness we let P, be as in (2), with g, also fluctuated.
That is, we let dP. = dQy. X g. X dQw,, where g (A|W) = (1 + Sa(A|W))go(A|W) with
Eo[SA(A|W)|W] = 0 and sup, , |Sa(alw)| < co. The estimator d of B(P,) is called regular if
the asymptotic distribution of \/n(®(P,) — ®(F,)) is not sensitive to small fluctuations in the data
generating distribution F. That is, the limiting distribution of /n(®(P, —1,/m) — ®(Pz1/ym))
does not depend on Sy, S4, or Sy, where P, ., s is the empirical distribution Oy, ..., O, drawn
independently and identically distributed (i.i.d.) from P._,, 5. The estimator d is called locally
unbiased if the limiting distribution of \/ﬁ@)(PM:l svn) — ®(P—1/ym)) has mean zero for all

fluctuations Sy, S4, and Sy, and is called asymptotically unbiased (at F) if the bias of (iD(Pn) for
the parameter ®(F) is op, (n~/?) at Py.

We note that the non-regularity of a statistical inference problem does not typically imply the
nonexistence of asymptotically unbiased estimators (see Example 4 of Liu and Brown, 1993 and
the discussion thereof in Chen, 2004 ), but rather the nonexistence of locally asymptotically unbiased
estimators (Hirano and Porter, 2012). It is thus not surprising that we are able to find an estimator
U that is asymptotically unbiased at a fixed (possibly exceptional) law under mild assumptions.
Hirano and Porter also show that there does not exist a regular estimator of the optimal value at
any law for which the optimal value is not pathwise differentiable. That is, no regular estimators
of W(F,) exist at laws which satisfy the conditions of Theorem 1 but do not satisfy (3). It follows
that one must accept the nonregularity of their estimator when the data is generated according
to such laws. Note that this does not rule out the development of locally consistent confidence
bounds similar to those presented in Laber and Murphy (2011) and Laber et al. (2014a), though
such approaches can be conservative when the estimation problem is nonregular.

In this work we present an estimator W for which I',,\/n(¥(P,) — ¥(P,)) converges in distribution
to a standard normal distribution for a random standardization term I',, under reasonable conditions.
Our estimator does not require any complicated tuning parameters, and thus allows one to easily

5
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develop root-n rate confidence intervals for the optimal value. We show that our estimator is RAL
and efficient at laws which satisfy (3) under conditions.

4 Inference at exceptional laws

4.1 The challenge

Before presenting our estimator, we discuss the challenge of estimating the optimal value at exceptional
laws. Suppose d,, is an estimate of d? and W, (P,) is an estimate of W(Pp) relying on the full data
set. In van der Laan and Luedtke (2014b) we presented a targeted minimum loss-based estimator
(TMLE) U, (P,) which satisfies

\ifdn(Pn) — U (Ry) = (P, — Ry)D(d,, P}) + \‘I’dn(Po) _ ‘I’(Po)j Yop, <n—1/2)7

—~
op, (n~1/2) if optimal rule estimated well

where we use the notation Pf = Ep[f(O)] for any distribution P and the second op,(n~/?) term
is a remainder from a first-order expansion of W. The term ¥, (Fy) — ¥(FP,) relies on the optimal
rule being estimated well in terms of value and will often prove to be a reasonable condition, even
at exceptional laws (see Theorem 7 in Section 7.5). Here P is an estimate of the components of
P, needed to estimate D(d,,, Fy). To show asymptotic linearity, one might try to replace D(d,,, P;)
with a term that does not rely on the sample:

(N 7

(Py — Po)D(dy, PY) = (P — Py)D(d3, Py) + (P — Po)(D(dw, P) — D(d3, Py),

empirical process

If D(d,, P?) belongs to a Donsker class and converges to D(d}, Py) in L*(P,), then the empirical
process term is op, (n~'/2) and /n(¥ 4, (P,)—¥(F,)) converges in distribution to a normal random
variable with mean zero and variance Varp, (D(dj, Fy)) (van der Vaart and Wellner, 1996). Note
that D(d,, P}) being consistent for D(dj, Py) will rely on d,, being consistent for the fixed d;;
in L?(P,) in most cases, which we emphasize is not in general implied by ¥, (Py) — V(F) =
op,(n"'/?). Zhang et al. (2012a) make this assumption in the regularity conditions in their Web
Appendix A when they consider an analogous empirical process term in deriving the standard
error of an estimate of the value function at an optimal rule in a parametric working model. More
specifically, Zhang et al. assume a non-exceptional law and consistent estimation of a fixed optimal
rule. van der Laan and Luedtke (2014b) also make such an assumption. If F; is not an exceptional
law, then we likely do not expect d,, to be consistent for any fixed function. Rather, we expect
d,, to fluctuate randomly on the set By, even as the sample size grows to infinity. In this case the
empirical process term considered above is not expected to behave as op, (n~'/?).

Accepting that our estimates of the optimal rule may not stabilize as sample size grows, we
consider an estimation strategy that allows d,, to remain random even as n — co.

4.2 A thought experiment

First we give an erroneous estimation strategy which contains the main idea of the approach but is
not correct in its current form. A modification is given in the next section. For simplicity, we will

6
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assume that one knows v,, = Varp,(D(d,, Py)) given an estimate d,, and, for simplicity, that v,, is
almost surely bounded away from zero. Under reasonable conditions,

02 (W, (P) = W(R)) = (P = Py 2D (dy, 1) + 0, (n12)

The empirical process on the right is difficult to handle because d,, and v,, are random quantities
that likely will not stabilize to a fixed limit at exceptional laws.

As a thought experiment, suppose that we could treat {v,, Y ’D(d,, P*) : n} as a deterministic
sequence, where this sequence does not necessarily stabilize as sample size grows. In this case the
Lindeberg-Feller central limit theorem (CLT) for triangular arrays (see, e.g., Athreya and Labhiri,
2006) would allow us to show that the leading term on the right-hand side converges to a standard
normal random variable. This result relies on inverse weighting by /v, so the variance of the terms
in the sequence stabilizes to one as sample size gets large.

Of course we cannot treat these random quantities as deterministic. In the next section we will use
the general trick of inverse weighting by the standard deviation of the terms over which we are
taking an empirical mean, but we will account for the dependence of the estimated rule d,, on the
data by inducing a martingale structure that allows us to treat a sequence of estimates of the optimal
rule as known (conditional on the past). This will allow us to apply a martingale CLT for triangular
arrays to obtain a limiting distribution for a standardized sequence involving our estimator.

S Estimation of and inference for the optimal value

In this section we present a modified one-step estimator U of the optimal value. This estimator
relies on estimates of the treatment mechanism gy, the strata-specific outcome @, and the optimal
rule dj;. We first present our estimator, and then present an asymptotically valid two-sided confidence
interval for the optimal value under conditions. Next we give conditions under which our estimator
is RAL and efficient, and finally we present a (potentially conservative) asymptotically valid one-
sided confidence interval which lower bounds the mean outcome under the unknown optimal
treatment rule. The one-sided confidence interval uses the same lower bound from the two-sided
confidence interval, but does not require a condition about the rate at which the value of the optimal
rule converges to the optimal value, or even that the value of the estimated rule is consistent for the
optimal value.

The estimators in this section can be extended to a martingale-based TMLE for ¥ (F,). Because
the primary purpose of this paper is to deal with inference at exceptional laws, we will only present
an online one-step estimator and leave the presentation of such a TMLE to future work.

5.1 Estimator of the optimal value

Define
» 1(a = d(w))
g(alw)

Let {/,,} be some sequence of nonnegative integers representing the smallest sample on which the
optimal rule is learned. While /,, does constitute a tuning parameter, we show in our simulation that

D(d, Q, 9)(0) (Y = Q(a,w)) + Q(d(w), w).

7
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our procedure is not overly sensitive to the choice of ¢,,. For each j = 1,...,n, let P, ; represent
the empirical distribution of the observations (Oy, Os, ..., O;). Let g,, j, Qy..;» and d,, ; respectively
represent estimates of the gg, Qo, and d;; based on (some subset of) the observations (Oy, ..., O;-1).
We subscript each of these estimates by both n and j because the subsets on which these estimates
are obtained may depend on sample size. We give an example of a situaton where this would be
desirable in Section 6.1.

Define
5§,n,j = Varp, (D(dn,j7 Qn,j7 gn,j)(O)) Or, ..., Oj—l) :

Let G, ; represent an estimate of 53,71,3' based on (some subset of) the observations (O, ..., O;_1).
Note that we omit the dependence of 7, ; and o, ; on d, ;, @) ;, and g, ; in the notation. Our
results apply to any sequence of estimates 672%]- which satisfies conditions C1) through C5), which
are stated later in this section. Also define

F”én_lg Z 67;}'

"=, +1
Our estimate U(P,) of ¥(P,) is given by
- 41 - D ity 41 7,03 Dn4(0;)
U(p,) 2T, G, Dnj(0;) = = 2———, (5)
n—tn j—eznﬂ ! D jmtut1 O

where D, ; 2 D(d,;, Qnj,gn;)- We note that the T';' standardization is used to account for
the term-wise inverse weighting so that W(P,) estimates U (P,) = Eo[D(d%, Qo, go)]. The above
looks a lot like a standard AIPW estimator, but with d;; estimated on chunks of data increasing
in size and with each term in the sum given a convex weight proportional to an estimate of the
conditional variance of that term. Our estimator constitutes a minor modification of the online one-
step estimator presented in van der Laan and Lendle (2014). In particular, each term in the sum is
inverse weighted by an estimate of the standard deviation of [DW. For ease of reference we will
refer to the estimator above as an online one-step estimator of ¥ (7).

5.2 Two-sided confidence interval for the optimal value

Define the remainder terms

R 2 1 Z 6;,1-E0 {(1 . gO(dn,j(W>|W) ) (Qn,j(dn,j(W)aw) _ Qo(dn,j(W)>W))

n—4Ly et i (dnj (W) W)
A 1 - \den,j (PO) = \II(PO)
j=tn+1 i

The upcoming theorem relies on the following assumptions:

Cl) n — ¢, diverges to infinity as n diverges to infinity.
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C2) Lindeberg-like condition: for all € > 0,

- 2 ~
<_0>> I(M g) 011-.,0; 4| = on, (1)
" =l +1 " "

C3) — z D i ~2. - — 1 in probability.

g,

C4) Ry, = Op, (n’1/2).
C5) Ran = op,(n~Y2).

The assumptions are discussed in Section 7. We note that all of our results also hold with R;,, and
Ry, behaving as op, (1/4/n — {,,), though we do not expect this observation to be of use in practice
as we recommend choosing /,, so that n — ¢, increases at the same rate as n.

Theorem 2. Under Conditions C1) through C5), we have that

T,\/n ( P0)> ~ N(0,1),

where we use “~+" to denote convergence in distribution as the sample size converges to infinity.
It follows that an asymptotically valid 1 — « confidence interval for V(Fy) is given by
-1

vn—10,’

where z1_, > denotes the 1 — « /2 quantile of a standard normal random variable.

\TJ(P”) + Zlfa/g

We have shown that, under very general conditions, the above confidence interval yields an asymptotically
valid 1 — o confidence interval for W(Fy). We refer the reader to Section 7 for a detailed discussion

of the conditions of the theorem. We note that our estimator is asymptotically unbiased, i.e. has

bias of the order op,(n~/?), provided that I',, = Op,(1) and n — ¢,, grows at the same rate as

n.

5.3 Conditions for asymptotic efficiency

We will now show that, if /) is a non-exceptional law and d,, ; has a fixed optimal rule limit dy,
then we will show that our online estimator is RAL for W(F,). The upcoming corollary makes use
of the following consistency conditions for some fixed rule d, which falls in the class of optimal
rules given in (1):

n

e > B[l (W)~ do(W))*| 01, O1] = 0m (1) ©)

n _1 / Ly [(@Tm(do(W)? W) — QO(dO(W)v W)>2 g Ojfl] = op,(1) )
=, +1

e 3 B [(ns o (W)IW) — go( o)W 01,05 1] =0m (1), ®)
" =l +1
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It also makes use of the following conditions, which are, respectively, slightly stronger than Conditions
C1) and C3):

C1’) 4, = o(n).

n
j:gn +1

?2" ‘J — 1‘ — 0 in probability.

Corollary 3. Suppose that Conditions C1’°), C2), C3’), C4), and C5) hold. Also suppose that
Pro(0 < go(1|W) < 1—6) = 1 for some 6 > 0, the estimates g,, ; are bounded below by some 6 >
0 with probability 1, Y is bounded, the estimates Q,, ; are uniformly bounded, (,, = o(n), and that,
for some fixed optimal rule dy, (6), (7), and (8) hold. Finally, assume that Varpo([?(do, Qo, 90)) >
0 and that, for some 6o > 0, we have that

Pry (mfa >(50) =1,
7n

where the infimum is over natural number pairs (j,n) for which (,, < j < n. Then we have that

It — Varp,(D(dy, Qo, go)) in probability as n — oc. )
Additionally,
. l &
W(Py) = U(Ry) =~ > D(do, Py) + on,(1/V/n). (10)
i=1

That is, U(P,) is asymptotically linear with influence curve D(dy, Fy). Under the conditions of this
corollary, it follows that Py satisfies (3) if and only if V(P,) is RAL and asymptotically efficient
among all such RAL estimators.

We note that (9) combined with C1°) implies that the confidence interval given in Theorem 2
asymptotically has the same width (up to an op,(n~'/?) term) as the confidence interval which
treats (10) and D(dy, I) as known and establishes a typical Wald-type confidence interval about
U(P,).

The empirical averages over j in (6), (7), and (8) can easily be dealt with using Lemma 5, presented
in Section 7.3. Essentially we have required that d,, ;, Qn j»and g, ; are consistent for dy, Qo, and
go as n and j get large, where d is some fixed optimal rule. One would expect such a fixed limiting
rule dj to exist at a non-exceptional law for which the optimal rule is (almost surely) unique. If
go is known then we do not need that (),, ; is consistent for @y to get asymptotic linearity, but
rather that ), ; converges to some possibly misspecified fixed limit Q). The proof of such a result
is analogous to the proof of (10) in the above corollary so is omitted.

5.4 Lower bound for the optimal value

It would likely be useful to have a conservative lower bound on the optimal value in practice. If
policymakers were to implement an optimal individualized treatment rule whenever the overall
benefit is greater than some fixed threshold, i.e. U(F,) > v for some fixed v, then a one-sided
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confidence interval for W(F,) would help facilitate the decision to implement an individualized
treatment strategy in the population.

The upcoming theorem shows that the lower bound from the 1 — 2« confidence interval yields
a (potentially conservative) asymptotic 1 — a confidence interval for the optimal value. If dj is
estimated well in the sense of Condition C5), then the asymptotic coverage is exactly 1 — a.
Define
. r-!
LB,(a) £ U(P,) — z1_q—F—2—,
n—4,

where z;_,, denotes the 1 —« quantile of a standard normal random variable. We have the following
theorem.

Theorem 4. Under Conditions C1) through C4), we have that

lim inf Pro (V(FPy) > LB,(a)) > 1 — a.

n—oo

If Condition C5) also holds, then

lim Pry (V(Fy) > LB,(a)) =1—a.

n—oo

The above condition should not be surprising, as we base our confidence interval for ¥(F;) on a
weighted combination of estimates of Wy, (/) for j < n. Because Wy, (F) > Vg, (Fp) for all
such 7, we would expect that the lower bound of the 1 — « confidence interval given in the previous
section provides a valid 1 — a//2 one-sided confidence interval for ¥ (7). Indeed this is precisely
what we see in the proof of the above theorem.

6 Computationally efficient estimation schemes

Computing \i/(Pn) may initially seem computationally demanding. In this section we discuss two
estimation schemes for which estimating ‘iJ(Pn) which yield computationally simple routines. The
first option is a straightforward implementation strategy, while the second is a more sophisticated
implementation which allows our proposed estimator to scale to large data sets.

6.1 Computing the nuisance functions on large chunks of the data

One can compute the estimates of Q, go, and d, far fewer than n — /,, times. For each j, the
estimates Qn,j, Gn.j> and d,, ; may rely on any subset of the observations Oy, ..., O;_;. Thus one
can compute these estimators on S increasing subsets of the data, where the first subset consists
of observations Oy, ..., Oy, and each of the S — 1 remaining samples adds a 1/S proportion of
the remaining n — /¢,, observations. Note that this scheme makes use of the fact that, for fixed 7,
the nuisance function estimates, indexed by n and j, e.g. d, ;, may rely on different subsets of
observations Oy, ..., O, for different sample sizes n.

We note that for ¢,, =~ n/2 and S = 1, our estimator corresponds to a simple sample split estimator

which splits the data in half, learns the rule on the first half, and estimates the expected mean
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outcome and a confidence interval for this value on the second half of the sample. The only minor
twist is that our estimator estimates the standard error of the estimator on the first rather than the
second half of the data set. For large samples, ¢,, ~ n/2 makes such an estimator have confidence
intervals with width approximately /2 times wider than those which use ¢, = o(n). Thus in
practice we recommend choosing ¢,, = o(n), or even bounding ¢,, so that lim sup,, ¢,, < co.

6.2 Online learning of the optimal value

As previously discussed, the estimator ¥ was inspired by online estimators which can operate on
large data sets that will not fit into memory. These estimators use online prediction and regression
algorithms which update the intial fit based on previously observed estimates using new observations
which were just read into memory. Online estimators of pathwise differentiable parameters were
introduced in van der Laan and Lendle (2014). Such estimation procedures often require estimates
of nuisance functions, which can be obtained using modern online regression and classification
approaches (see, e.g., Zhang, 2004; Langford et al., 2009; Luts et al., 2014). Our estimator constitutes
a slight modification of the one-step online estimator presented in van der Laan and Lendle (2014),
and thus all discussion of computational efficiency given in that paper also applies to our case.

For our estimator, one could use online estimators of (), go, and d, and then update these estimators
as the index j in the sum in (5) increases. Calculating the standard error estimate 7,, ; will typically
require access to an increasing subset of the past observations, i.e. as sample size grows one may
need to hold a growing number of observations in memory to estimate oy ,, ;. If one uses a sample
standard deviation to estimate 0y, ; based on subset of observations Oy, ..., O;_;, the results we
present in Section 7.3 will indicate that one really only needs that the number of points on which
00,n,; 18 estimated grows with j rather than at the same rate as j. This suggest that, if computation
time or system memory is a concern for calculating &, ;, then one could calculate 7, ; based on
some o(j) subset of observations Oy, ..., 0,_;. For example, one could use the sample standard
deviation of f)n,j calculated on observations Oy, ..., Oy, where £(j) £ j — 1if j is less than 500,

and t(j) £ 500 + | /7 — 500] otherwise.

We leave deeper consideration of the online estimation of the nuisance functions Qo, go, and d to
future work.

7 Discussion of the conditions of Theorem 2

For ease of notation we will assume that, for all j > /,,, we do not modify our nuisance function
estimates based on the first j — 1 data points as the sample size grows. That is, for all sample sizes
m,n and all j < min{m,n}, d,; = dmnj, Qn; = Qmj> Gnj = Gmj> and &, ; = G, ;. One can
easily extend all of the discussion in this section to a more general case where, e.g., d,, ; # d,, ;
for n # m. This may be useful if the optimal rule is estimated in chunks of increasing size as was
discussed in Section 6.1. To make these object’s lack of dependence on n clear, in this section we
will denote d,, j, Qn.js Gnj» Tnj» and o, as d;, Qj, g, 7; and &g ;. This will also help make it
clear when op, notation refers to behavior as j, rather than n, goes to infinity.
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For our discussion we assume there exists a (possibly unknown) d; > 0 such that

Pro ( inf 63, > 8 | =1 11
To (jlilén 0o, =~ 0) ) (1)
where the probability statement is over the i.i.d. draws Oy, O,, ... . The above condition is not

necessary, but will make our discussion of the conditions more straightforward. Such a d, may be
known if Y is binary and Q(a,w) € (7,1 — ) for all « and w and a known v > 0 . There is not
in general any need to actually know this bound.

7.1 Discussion of Condition C1)

We cannot apply the martingale CLT in the proof of Theorem 2 if n — ¢,, does not grow with
sample size. Essentially this condition requires that a non-negligible proportion of the data is used
to actually estimate the mean outcome under the optimal rule. In practice one would likely like that
n — ¢, grows at the same rate as n grows, which holds if e.g. /,, = pn for some fixed proportion p
of the data. This will allow our confidence intervals to shrink at a root-n rate. One might even make
sure that £,, = o(n) so that % converges to 1 as sample size grows. In this case we can show
that our estimator is asymptotically linear and efficient at non-exceptional laws under conditions,
as we did in Corollary 3.

7.2 Discussion of Condition C2)

This is a standard condition that yields a martingale CLT for triangular arrays (Gaenssler et al.,
1978). The condition ensures that the variables which are being averaged have sufficiently thin
tails. While it is worth stating the condition in general, it is easy to verify that the condition is
implied by the following three more straightforward conditions:

e (11) holds.
e Y is a bounded random variable.
e There exists some d > 0 such that Pry(d < g;(1|W) < 1 —6) = 1 with probability 1 for all
7]
7.3 Discussion of Condition C3)

This is a rather weak condition given that oy ; still treats d; as random. Thus this condition does
not require that d; stabilizes as j gets large. Suppose that

55— 05 = op,(1) (12)

By (11) and the continuous mapping theorem, it follows that
~2
On
24 1 =op(1). (13)

g;

The following general lemma will be useful in establishing Conditions C3), C4), and C5).
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Lemma 5. Suppose that R; is some sequence of (finite) real-valued random variables such that
Rj = op,(j77) for some B € [0,1), where we assume that each R; is measurable with respect to
the sigma-algebra generated by (O, ..., O;). Then,

1 n

_ — -8

- E R; = op,(n™").
J=1

Applying the above lemma with 5 = 0 to (13) shows that Condition C3) holds provided that (11)
and (12) hold. We will use the above lemma with 5 = 1/2 for when discussing Conditions C4)
and C5).

It remains to show that we can construct a sequence of estimators such that (12) holds. Suppose
we estimate 3 ; with

; 2
i 1 _ 1 =
i =1

where {,} is a sequence that may rely on j and each D,,; = D; for all n > j. We use d; to ensure
that 5]72 is well-defined (and finite) for all j. If a lower bound ¢, on 6(2]’ j is known then one can take
d; = dp for all j. Otherwise one can let {J;} be some sequence such that J; | 0 as j — oo.

Note that 6]2 is an empirical process because it involves sums over observations Oy, ..., O;_;, and

functions Dj which were estimated on those same observations. The following theorem gives
sufficient conditions for (12), and thus Condition C3), to hold.

Theorem 6. Suppose (11) holds and that {D(d, Q,9) :d,Q, g} is a Py Glivenko-Cantelli (GC)

class with an integrable envelope function, where d, Q, and g are allowed to vary over the range of
the estimators of dg, Qo, and go. Let 57 be defined as in (14). Then we have that % — 55 ; = op,(1).
It follows that (13) and Condition C3) are satisfied.

We thus only make the very mild assumption that our estimators of djj, Qo, and go belong to GC
classes. Note that this assumption is much milder than the typical Donsker condition needed when
attempting to establish the asymptotic normality of a (non-online) one-step estimator. An easy
sufficient condition for a class to have a finite envelope function is if it is uniformly bounded,
which occurs if the conditions discussed in Section 7.2 hold.

7.4 Discussion of Condition C4)

This condition is a weighted version of the typical double robust remainder appearing in the
analysis of the AIPW estimator. Suppose that

A (7 A ' = op _1/2 ‘
gj<dj<w>|w>>(Qf(dﬂ<W>’W> Qold;(W), W) | = on (G717, (15)

If go is known (as in an RCT without missingness) and one takes each g; = go then the above
ceases to be a condition as the left-hand side is always zero. We note that the only condition on
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Q; appears in Condition C4), so that if R;,, = 0 as in an RCT without missingness then we do
not require that (); stabilizes as j grows. A typical AIPW estimator require the estimate of @ to
stabilize as sample size grows to get valid inference, but here we have avoided this condition in the
case where ¢, is known by using the martingale structure and inverse weighting by the standard
error of each term in the definition of ¥(P,).

More generally, Lemma 5 shows that Condition C4) holds if (13) and (15) hold and Pry(0 <
g;(1|W) < 1) = 1 with probability 1 for all j. One can apply the Cauchy-Schwarz inequality and
take the maximum over treatment assignments to see that (15) holds if

max ; (a — agola ).(a — Onla - — op (7712
{gj(awv) lg;(@lW) = go(alW)lly 5, [|Qs(a, W) = Qola, W), p, - 0,1} S (i),

If g, is not known, the above shows that then (15) holds if g, and ), are estimated well.

7.5 Discussion of Condition C5)

This condition requires that we can estimate d;; well as sample size gets large. We now give a
theorem which will help us to establish Condition C5) under reasonable conditions. The theorem
assumes the following margin assumption for some o > 0:

Pro(0 < |[Quo(W)| < 1) St V>0, (16)

where “<” denotes less than or equal to up to a nonnegative constant. This assumption is a direct
restatement of Assumption (MA) from Audibert and Tsybakov (2007) and was considered earlier
in Tsybakov (2004). Note that this theorem is similar in spirit to Lemma 1 in van der Laan and
Luedtke (2014b), but relies on weaker, and we believe more interpretable, assumptions.

Theorem 7. Suppose (16) holds for some « > (0 and that we have an estimate Qb of Quo based
on a sample of size n. If Han — Qb,o”2 = op,(1), then

Wy, (Po) — Vs (Po)| < Han _ Qb’()”;(;:a)/(zm) ’

where d,, is the function w v+ I(Qy,,(w) > 0). IfHQb,n — Qb70||oo P = op,(1), then

W4, (Po) = W4 ()| < [|@bn = Quoll o, Pro (0 < QuoW) < [[ @ = Bl )

S Qo — Quo| 5

00,Py *

The first part of the above proof is essentially a restatement of Lemma 5.2 in Audibert and Tsybakov
(2007). Figure 1 shows various densities which satisfy (16) at different values of «, and also the
slowest rate of convergence for the blip function estimates for which Theorem 7 implies Condition
C5). As is evident in the figure, & > 1 implies that p,o(t) — 0 as ¢ — 0. Given that we are
interested in laws where Pro(Qpo(W) = 0) > 0, it is unclear how likely we are to have that
a > 1 when W contains only continuous covariates. One might, however, believe that the density
is bounded near zero so that (16) is satisfied at o = 1.
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a=2
Needed L rate: op,(n
Needed L” rate: op,(n

a=1
Needed L? rate: op,(n /%)

Needed L” rate: op,(n"/)

-1/3
—1/6))

Density of [Qp o(W)|

a=05
Needed L rate: op,(n
Needed L” rate: op,(n

—5/12)
—1/3)

Magnitude of Blip Function, |Qp,o(W)|

Figure 1: Examples of three densities of |Q,0(W )| whose corresponding cumulative distribution functions
satisfy (16). If the rate of convergence of Q,,, — Q0 to zero in L*(Py) or L>°(Py) attains the rates indicated
above indicated above, then condition C5) will be satisfied for the plug-in optimal rule estimate considered
in Theorem 7.

We note that if ||Qb7n — pr
rate for Uy, (Py) — Wa:(Py) when there is a margin around zero, i.e. Pro(0 < |Quo(W)| <) =0
for some ¢ > 0. In fact, we have that ¥y, (Fy) — W4 (F) = 0 with probability approaching 1 in
this case. A margin will exist for discrete W, and the NPMLE of (), o will converge in supremum
norm. If W is high dimensional then the NPMLE will often not be well-defined for reasonable
sample sizes due to the curse of dimensionality and will still not yield a well-behaved estimator
when well-defined. In such cases we might hope that smoothing techniques will give an estimate
that converges in supremum norm.

} = op,(1) then the above theorem indicates an arbitrarily fast
00,Po 0

Theorem 7 thus shows that Wy, (Py) — Vs (Fo) = op,( GY2)if Gy, is estimated well in the sense
of (13) and the distribution of |, ()| and our estimates of (), satisfy reasonable conditions.
In this case an application of Lemma 5 shows that Condition C5) is satisfied.

We note that one does not have to use a plug-in estimator for the blip function to estimate the
mean outcome under the optimal rule. One could also use one of the weighted classification
approaches, sometimes known as outcome weighted learning (OWL), receintly discussed in the
literature to estimate the optimal rule (Qian and Murphy, 2011; Zhao et al., 2012; Zhang et al.,
2012b; Rubin and van der Laan, 2012). In some cases we expect these approaches to give better
estimates of the optimal rule than methods which estimate the conditional outcomes, so using
them may make Condition C5) more plausible. In Luedtke and van der Laan (2014) we describe an
ensemble learner that can combine estimators from both the Q-learning and weighted classification
frameworks.
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Simulation (n,?,)
DE (1000, 100), (4000, 100)
C-NE, C-E, TTP-E | (250, 25), (1000, 25), (4000, 100)

Table 1: Primary combinations of sample size (n) and initial chunk size (¢,,) considered in each simulation.
Different choices of ¢,, were considered for C-NE and C-E to explore the sensitivity of the estimator to the
choice of /,,.

8 Simulation methods

We ran four simulations. Simulation D-E is a point treatment case, where the treatment may rely
on a single categorical covariate /. Simulations C-NE and C-E are two different point treatment
simulations where the treatment may rely on a single continuous covariate V. Simulation C-NE
uses a non-exceptional law, while simulation C-E uses an exceptional law. Simulation TTP-E gives
simulation results for a modification of the two time point treatment simulation presented in van der
Laan and Luedtke (2014b), where the data generating distribution has been modified so that the
second time point treatment has no effect on the outcome. This simulation uses the extension to
multiple time point treatments given in Appendix B.

Each simulation setting was run over 2000 Monte Carlo draws to evaluate the performance of
our new martingale-based method and a classical (and for exceptional laws incorrect) one-step
estimator with Wald-type confidence intervals. Table 1 shows the combinations of sample size (n)
and initial chunk size (¢,,) considered for each estimator. All simulations were run in R (R Core
Team, 2014).

8.1 Simulation D-E: discrete W/
Data

This simulation uses a discrete baseline covariate W with four levels, a dichotomous treatment A,
and a binary outcome Y. The data is generated by drawing 1.i.d. samples as follows:
W ~ Uniform{0, 1, 2, 3}
A|W ~ Binomial (0.5 4+ 0.1W/)
Y|A, W ~ Binomial (0.4 +0.2/(A=1,W =0)).

The above is an exceptional law because Qy,o(w) = 0 for w # 0. The optimal value is 0.45.
Estimation methods

For each j = /,, + 1, ..., n, we used the nonparametric maximum likelihood estimator (NPMLE)
generated by the first j — 1 samples to estimate F, and the corresponding plug-in estimators to
estimate all of the needed features of the likelihood, including the optimal rule. We used the sample
standard deviation of [)m(Ol), 8 Dm-(Oj,l) to estimate 0.
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8.2 Simulations C-NE and C-E: continuous univariate W/
Data

This simulation uses a single continuous baseline covariate 11 and dichotomous treatment A which
are sampled as follows:

W ~ Uniform(—1,1)
A|W ~ Binomial(0.5 + 0.1W/)

We consider two distributions for the binary outcome Y. The first distribution (C-NE) is a non-
exceptional law with Y|A, W ~ Binomial(Q{°(A, W)), where

. [FWeEwWR oWk A= Tand W20
W(AW) =15 = QWP+ W2 =Wt 5, ifA=Tland W <0
0 if A=0.

The optimal value of approximately 0.388 was estimated using 10® Monte Carlo draws. The second
distribution (C-E) is an exceptional law with Y|4, W ~ Binomial(Q¢(A, W)), where for W =
W + 5/6 we define

W+ W?2—IW+ L, ifA=1landW < —1/2
QAW)— =2 W34+ W2-1w+ 2L ifA=1land W >1/3

0, otherwise.

The above distribution is an exceptional law because Q5(1,w) — Q5(0,w) = 0 whenever w €
[—%, %] . The optimal value of approximately 0.308 was estimated using 10 Monte Carlo draws.
Estimation methods

To show the flexibility of our estimation procedure with respect to estimators of the optimal rule,
we estimated the blip functions using a Nadaraya-Watson estimator, where we behave as though
go is unknown when computing the kernel estimate. For the next simulation setting we use the
ensemble learner from Luedtke and van der Laan (2014) that we suggest using in practice. Here
we estimated

& i %K (M) 3wl — a) K ()

YiaK () YL (- a)K (v5)

where K'(u) = 3(1 — u?)I(Ju| < 1) is the Epanechnikov kernel and h is the bandwidth. For a

Qpn(w)

1
candidate blip function estimate (), define the loss

20 — 1
go(alw)

Loy @)0) 2 (|20 = Qoo ) + GofLw) - o0, )] - @(w))z |

To save computation time we behave as though @, and g, are known when using the above loss.
We selected the bandwidth H,, using 10-fold cross-validation with the above loss function to select
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from the candidates h = (0.01,0.02,...,0.20). We also behave as though Qo and gy are known
when estimating each [?m-, so that the function f?m- only depends on Oy, ...,0;_; through the
estimate of the optimal rule. This is mostly for convenience, as it saves on computation time and
our estimate of the optimal rule dj; will still not stabilize, i.e. our optimal value estimators will still
encounter the irregularity at exceptional laws. Note that gy is known in an RCT, and subtracting
and adding Q) in the definition of the loss function will only serve to stabilize the variance of our
cross-validated risk estimate. In practice one could substitute an estimate of )y and expect similar
results. We update our estimate d,, ; and oy 5, ; using the method discussed in Section 6.1, where
we let S = %

To explore the sensitivity to the choice of ¢, we also considered (n,/,) pairs (1000, 100) and
(4000, 400), where these pairs are only considered where explicitly noted. To explore the sensitivity
of our estimators according to permutations in the indices of our data set, we ran our estimator
twice on each Monte Carlo draw, with the indices of the observations permuted so that the online
estimator sees the data in a different order.

8.3 Simulation TTP-E: two time point simulation

The data generating distribution used in this section was described in Section 8.1.2 of van der Laan
and Luedtke (2014b), though here we modify the distribution slightly so that the second time point
treatment has no effect on the outcome.

Data

The data is generated as follows:

L1(0), Lo(0) S Uni f(—1,1)
A(0)|L(0) ~ Bern(1/2)
Uy, Us| A(0), L(0) % Unif(~1,1)
Ly (1)|A(0), L(0), Uy, Uy ~ U1(1 25A(0) + 0.25)
Lo(1)| A(0), L(0), Ly(1), Uy, Uy ~ Up(1.25A(0) 4 0.25)
A(1)]A(0), L(1) ~ Bern(1/2)
Y|A(1), L(1) ~ Bern (0.4 + 0.0345A4(0) b(L(0))),

where b (L(0)) £ —0.8 — 3 (sgn(L1(0)) + L1(0)) — Ly(0)2. The treatment decision at time point
0 may rely on L(0), and the treatment at time point 1 may rely on L(0), A(0), and L(1).

Estimation methods

As in the previous simulation, we assume that the treatment mechanism is known and supply
the online estimator with correct estimates of the conditional mean outcome so that D,, ; is random
only through the estimate of dj; (see Appendix B for a definition of Dn,j in the two time point case).
Given a training sample Oy, ..., O;, our estimator of d; corresponds to using the full candidate
library of weighted classification and blip-function based estimators listed in Table 2 of Luedtke
and van der Laan (2014), with the weighted log loss function used to determine the convex combination
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Figure 2: Coverage of 95% two-sided and one-sided (lower) confidence intervals. The online one-step
estimator achieves (close to) nominal coverage for all of the two-sided confidence intervals, and attains better
than nominal coverage for the one-sided confidence interval. The classical (non-online) one-step estimator
only achieves near-nominal coverage for C-NE. Error bars indicate 95% confidence intervals to account for
uncertainty from the finite number of Monte Carlo draws.

of candidates. As for C-E and C-NE, we update our estimate d,, ; and &y, ; using the method
discussed in Section 6.1 with .S = %
9 Simulation results

Figure 2 shows the coverage attained by the online and classical (non-online) one-step estimates of
the optimal value. Note that the two-sided confidence intervals resulting from the online estimator
(nearly) attains nominal coverage for all simulations considered. This is in contrast to the non-
online estimator, which only (nearly) attains nominal coverage for the non-exceptional law in C-
NE. The one-sided confidence intervals from the online one-step estimator attain proper coverage
for all simulation settings, in agreement with Theorem 4. The one-sided confidence intervals
from the non-online one-step estimates do not (nearly) achieve nominal coverage in any of the
simulations considered. This occurs because the rule is estimated on the same observations on
which the optimal value is estimated, and thus we expect that we need a very large sample size for
the positive bias of the non-online one-step to become small. In van der Laan and Luedtke (2014b)
we dealt with this finite sample positive bias at non-exceptional laws by proposing a cross-validated
TMLE for the optimal value.

Figure 3 displays the squared bias and mean confidence interval length across the 2000 Monte
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Figure 3: Squared bias and 95% two-sided confidence interval lengths for the online and classical (non-
online) one-step estimators, where the mean is taken across 2000 Monte-Carlo draws. The online estimator
has lower squared bias than the non-online estimator, while its mean confidence interval length is only
slightly longer than those of the non-online estimator on average. Error bars indicate 95% confidence
intervals to account for uncertainty from the finite number of Monte Carlo draws.

Carlo draws. The online estimator consistently has lower squared bias across all of our simulations.
We also note that the online estimator was negatively biased in all of our simulations, whereas
the non-online estimator was positively biased in all of our simulations. This is not surprising:
Theorem 4 already implies that the online estimator will in general be negatively biased in finite
samples, whereas the non-online estimator will in general be positively biased because d,, is chosen
to (approximately) maximize the estimate of the value function.

Next we consider the sensitivity of our estimates to the initial ordering of the data set. Given that
our data is i.i.d., we would hope that our estimator is not overly sensitive to the order of the data.
Nonetheless, the online estimator we have proposed necessarily relies on an ordering of the data.
In particular, data points with lower indices receive more more weight than those with higher
indices. Figure 4 demonstrates how the optimal value estimates vary for C-E when the estimator is
computed on two permutations of the same data set. We see that our point estimates are somewhat
sensitive to the ordering of the data, but that this sensitivity decreases as sample size grows. We
computed two-sided confidence intervals based on the two permuted data sets. We found that
either both confidence intervals covered or neither confidence interval covered the true optimal
value in 93.7%, 93.8%, and 93.1% of the Monte Carlo draws at sample sizes 250, 1000, and 4000,
respectively. We performed the same analysis for the C-NE distribution and found similar results.
For C-NE either both confidence intervals covered or neither confidence interval covered the true
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Figure 4: Comparison of optimal value estimates given two different permutations of a data set generated
according to C-E, which results in two different estimates of the optimal value. The horizontal axis shows the
average of the optimal value estimates across the two permutations, and the vertical axis shows the absolute
difference between these two optimal value estimates. Squares represent number of observations (across
2000 Monte Carlo draws) which have a given average-absolute difference combination. The difference
between these two estimates decreases as sample size grows.

optimal value in 90.6%, 93.0%, and 94.7% of the Monte Carlo draws at sample sizes 250, 1000,
and 4000, respectively.

Different choices of ¢,, did not greatly affect the coverage in C-E and C-NE. Increasing ¢,, for
C-E decreased the coverage by less than 1% for sample sizes 1000 and 4000. Increasing ¢,, for
C-NE increased the coverage by less than 1% for sample sizes 1000 and 4000. Mean confidence
interval length increased predictably based on the increased value of v/n — ¢,,: for n = 1000,
increasing /,, from 25 to 100 increased the confidence interval length by a multiplicative factor

1000—25
of /1500706

length by a multiplicative factor of approximately 1.04 for n = 4000.

~ 1.04. Similarly, increasing ¢,, from 100 to 400 increased the confidence interval

10 Discussion and future work

We have accomplished two primary tasks in this work. The first was to establish conditions under
which we would expect that regular root-n rate inference is possible for the mean outcome under
the optimal rule. In particular, we completely characterize the pathwise differentiability of the
parameter giving the mean outcome under a single time point optimal rule. This characterization
on the whole agrees with that implied in Robins and Rotnitzky (2014), but differs in a minor fringe
case where the conditional variance of the outcome given covariates and treatment is zero. This
fringe case may be relevant if everyone in a strata of baseline covariates is immune to a disease
(regardless of treatment status) but are still included in the study because experts are unaware of
this immunity a priori. In general, however, the two characterizations agree.

The remainder of our work shows that one can obtain an asymptotically unbiased estimate of and a
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confidence interval for the optimal value under conditions. This estimator uses a slight modification
of the online one-step estimator presented in van der Laan and Lendle (2014). The main condition
for the validity of our confidence interval is that the value of one’s estimate of the optimal rule
converges to the optimal value at a faster than root-n rate, which we show is often a reasonable
assumption by referencing the classification literature. The lower bound in our confidence interval
is valid even if this condition does not hold. We also showed that one would expect our estimator
to be RAL provided that the underlying distribution is a non-exceptional law. Our estimator will
be asymptotically efficient among all RAL estimators of the optimal value. Further, the variance
estimate used in our online two-sided confidence interval consistently estimates the variance of the
influence curve.

We confirmed the validity of our approach using simulations. Our two-sided confidence intervals
attained near-nominal coverage for all simulation settings considered, while our lower confidence
intervals attained better than nominal coverage (were conservative) for all simulation settings
considered. Our confidence intervals were of a comparable length to those attained by the non-
online one-step estimator. The non-online one-step estimator only attained near-nominal coverage
for the simulation which used a non-exceptional data generating distribution, as would be predicted
by theory.

Our approach is designed to scale well to data sets which are too large to read into memory. We
briefly outlined how one would implement our estimator using online regression and classification
for the nuisance functions so that the data can be seen in chunks rather than all at once. We leave
further consideration of the computational efficiency of our estimator to future work.

There is still work to be done in estimating confidence intervals for the optimal rule. While we have
shown that the lower bound from our confidence interval maintains nominal coverage under very
mild conditions, the upper bound requires the stronger condition that the optimal rule is estimated
at a faster than root-n rate. We observed in our simulations that the non-online estimate of the
optimal value had positive bias for all settings. Indeed this is to be expected if the optimal rule
is chosen to maximize the estimated optimal value. This positive bias can easily be explained
analytically under very mild assumptions. It may be worth replacing the upper bound U B,, in our
confidence interval by something like max{U B,,, 1, (d,)}, where v,(d,,) is a non-online one-
step estimate or TMLE of the optimal value. One might expect that the upper bound 1, (d,)
will dominate the maximum precisely when the optimal rule is estimated poorly. We leave these
considerations to future work.

Finally, we note that our estimation strategy is not limited to unrestricted classes of optimal
rules. One could replace our unrestricted class with, e.g., a parametric working model for the blip
function and still expect the same general results. This is due to the fact that the pathwise derivative
of the function PP — Ep, [Yd( p)], which treats the F, in the expectation subscript as known, will
typically be zero when d(P) is an optimal rule in some class and does not fall on the boundary of
that class (with respect to some metric). Such a result does not rely on d(P) being a unique optimal
rule. When the pathwise derivative of P — Ep, [Yy(p)] is zero, one can often prove something like
Theorem 7, which shows that the value of the estimated rule converges to the optimal value at a
faster than root-n rate under conditions.

Here we considered the problem of developing a confidence interval for the value of an unknown
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optimal DTR. We note that this is complementary to the problem of getting confidence bounds on
(the parameters of) the blip functions. As we have shown here, confidence intervals for the optimal
value can be developed without directly developing confidence bounds on the blip functions. If
one uses a parametric working model for the blip functions, then they could use our proposed
approach to estimate the optimal value and obtain confidence bounds on the blip functions using
other methods previously proposed in the literature. In a larger (possibly nonparametric) model,
estimating confidence bounds on the blip functions becomes a difficult problem, while analyzing
our proposed optimal value estimate provides an interpretable and statistically valid approach to
gauging the effect of implementing the optimal individualized treatment regime in the population.
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Appendix
A Proofs

A.1 Proofs of results from Section 3

Proof of Theorem 1. Let d'(P) represent the function w +— I(Qy(P)(w) > 0). For any P, let
U(P) £ EpEp[Y|A = d(P)(W), W]. Note that

U(P) — Ep[Yy] = Ep [d"(P)(W)Qu(P)(W)] = Ep [d'(P)(W)Qu(P)(W)] ,

where we used the fact that d*(P)(w) = d'(P)(w) on the set where Qy(P)(w) # 0. Let the
fluctuation submodel {P. : €} through Py be as defined in Section 3 of the main text, where we
note that Fy = F._,. Telescoping shows that, for fixed e,

U(P.) — W(Py) =Ep, [(1(Qbe > 0) — I(Quo > 0)) Q]
+ Wy (P) — Wy (P). (A.1)
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Itis well known that U4(P) £ EpEp[Y|A = d(W), W] is pathwise differentiable for fixed d. Thus
dividing the second line above by € and taking the limit as ¢ — 0 yields the pathwise derivative
that treats the rule dj, as known. For a given Sy, the fluctuated (), o at w € W is given by

Qv (w) = /y (dQy(ylA=1,W =w) —dQy.(y|A =0, = w))
== Qb,()(’w) + € (E() [YSy<Y|1, W)|A = 1, W = ’LU] — EO [YSy(Y|0, W)|A = 0, W = w])
2 Qyo(w) + eh(w), (A2)

where we note that sup,, |h(w)| < co because Y and Sy are uniformly bounded.

Pathwise differentiable if (3).7 B
Suppose (3). Let By = {w : Qpo(w) = 0} and By = {w : Qpo(w) = 0, max, op(a,w) = 0}.
Noting that B, C By shows

Ep, [(I(Qpe > 0) — I(Qb0 > 0)) Q] = /W . (I(Qpe > 0) — I(Quo > 0)) Qb dQwe
_'_/ <I<Qb,e > O) - I(Qb,O > O)) Qb,edQW,e
B\ B2
+/B (I(Qb,e > O) - ](Qb,() > 0)) Qb,edQVV,5~ (AS)

Because Q¢ # 0 on W\ By, the first term above is o(|¢|) by a slight generalization of Lemma 2

in van der Laan and Luedtke (2014a) to finite measures (since Pro(VV\ B2) may be less than 1). The
second term is zero because Pro(B;\Bs) = 0by (3). Let f(a,w) £ Ey [Y Sy (Y[1,W)|A =1, W = w].
For the third term, note that, for (a,w) € {0,1} x B,

/B (I(Qb,e >0) — I(Qb,o > 0)) Qb7edQWe
= [ (1@ > 0= 1@ > 0) (F(10) = £0.0)) dQu

Note that f(a,w) = Covp,(Y, Sy (Y|A, W)|A = a,W = w) for a = 0, 1 because E[Sy|A, W] =
0, and thus f(a,w) = 0 for (a,w) € {0,1} x By since Y has conditional variance 0 given A = a
and W = w. This shows that the third term in (A.3) is exactly zero. Hence,

lim 2 Ep, [(1(Qs > 0) — Qoo > 0)) Q] = 0.

e—0 €

Thus W has canonical gradient D(d;, P,), i.e. the same canonical gradient as the parameter Wy
Recall that

I(A=dW))

DU PO == caw)

(Y = Q(A,W)) + Q(d(W), W) — Ty(P).

If (3), then either i) Y = Q(A,W) or ii) dj = dj with P, probability 1. Thus D(df, Fy) =
D(dy, Py) almost surely if (3) holds. It follows that W has canonical gradient D(djj, P,).
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Not pathwise differentiable if not (3).
We wish to construct a submodel so that (4) holds. Let Sy (w) = 0 for all w. Without loss of
generality, suppose that
Py (Quo(W) =0,00(1,W) > 0) > 0. (A4)
Let
A Pl"o(Y S Qo(l, W)|A = 1, W = w)
" Pro(Y > Qo(LW)[A= LW =w)’
where we let R(w) = oo when Pro(Y > Qo(1, W)|A = 1,W = w) = 0. Define Sy as follows:

R(w)

min{1, R(w)}, ifa =1andy > Qu(1,w)
Sy (yla,w) =< —min{1,1/R(w)}, ifa=1andy < Qo(1,w)
0, if a = 0.

Above we let min{1, 1/R(WW)} = 0 when R(W) = oo and min{1,1/R(W)} = 1 when R(W) =
0. Note that sup,, , , [Sy (y|a, w)| < 1 and E[Sy|A = a,W = w] = 0 for all a,w. We define B,
and B_ as follows:

B, £ By N {w : h(w) > 0}
B_ 2 Byn{w : h(w) < 0},

where h is defined in (A.2). By (A.4), Pro(Qpo(W) = 0,0 < R(W) < oo) > 0, and hence
Pro(B;) > 0 and Pro(B-) > 0. Let

m(w) = (1(Qpe(w) > 0) = I(Quo(w) > 0))Q,e(w).

The first term in (A.1) yields the following limit from above:

lim1 m(w)dQw,o(w)

ime |
~tim + 5 m(w)dQua(w) +lim ¢ [ m(w)dQuea(w) +lmy < oo Q)
=tig [ 1) > 0)h()Quow) + g | Hentw) > 0)hw)iQuo(w

g [ mw)Qua(w)
~ [ hw)dQua(w
>0, ’ (A.5)

where the integral over B_ is equal to zero because the indicator in m is 0 for all ¢ > 0 and the
integral over W\ (B, U B_) is o(|e|) because

il
lim— m(w)dQw,o(w)
el0 € W\(B4UB_)
1 1
= lim — m(w)dQwo(w) + lim — m(w)dQw,(w) = 0,
l0 € Jw\B, l0 € J{wih(w)=0}nBy
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where we used that the first term is 0 by a slight generalization of Lemma 2 in van der Laan and
Luedtke (2014a) to finite measures and the second term is 0 because () = 0 on {w : h(w) =
0} N By. The inequality in (A.5) is strict because Pro(B,) > 0 and h > 0 on B,. Similarly,

im = [ m(w)dQuo(w) = / h(w)dQuo(w) < 0.

et0 €

Contrasting the above with (A.5) shows that there exists a path about /4, which results in a fluctuation
h for which the limit of the first term in (A.1) divided by e does not exist as ¢ — (. But then ¥
cannot be pathwise differentiable: one of the limits in the sum on the right-hand side of (A.1) exists,
so the limit on the left-hand side cannot exist. Specifically, suppose ¢, has a limit as n — co and
a, = b, + c,. If b, does not have a limit, then a,, does not have a limit, since a,, having a limit
implies that b, = a,, — ¢,, has a limit, contradiction. O

A.2 Proofs of results from Section 5

Proof of Theorem 2. We have that

1 L ~
== 2 T <Dn7j(0j) - ‘If(Po)> (A.6)
n j=ln+1
1 " /=
- > &) ([Dns05) = Wa ,(Ro)] + [Wa, (o) = w(R)]) (A7)
" j=n+1
1 & -
= > 5 (Dusl0)) — W (B)) + om, (07 (AS)
" j=lnt1
1 ~ (7 ;- —1/2
- — 5t (Dng(05) = Bo [ Dnj(0,)101,., 051 | ) + Rin + 0n,(07%)  (A9)
"=, +1
1 = O ~ —-1/2
- Gl (Dn,j(oj) _ B, [Dn,j(ojnol, OHD +op (n712). (A.10)
" j=tn+1

Above (A.6) is a result of moving the W(F) into the summation in the defintion of T',,, (A.7) adds
zero to the line above, (A.8) follows by C5), (A.9) is a consequence of the fact that V,(Fy) =
PyD(Q, g,d) — Fo[(1 — LEG50) (Q(d(W), W) — Qo(d(W), W))] for any fixed Q, g, and d, and
(A.10) follows by C4).

Forj=1,...n—/,,let

1 (Dns42)(Os50,) = Bo [ Dldns46,)(Os50,)101, -, O340, )

n—20, On,j+itn

Note that, for each n, {M,; : 7 = 1,....,n — {,} is a discrete-time martingale with respect
to the filtration F;, where each F; is the sigma-field generated by Oy, ..., O;,. In particular,
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we have that, for all j > 1, Ey[M,, ;|F;—1] = 0. We also have that Z”_Z" Eo[M? | Fj-i] =

— e Z fn ;2“ J+n 1 by C3). Because the conditional Lindeberg condition in C2) holds, the
+

martingale CLijor triangular arrays (see, e.g., Theorem 2 in Gaenssler et al., 1978) shows that

n—~—n
> M, ~ N(0,1). (A.11)

Jj=1

Plugging this into (A.10) gives that

To/n ( P0)> —~ N(0,1).
The asymptotically valid 1 — « confidence interval is now constructed in the usual way. [

Proof of Corollary 3. In this proof we use “<” to denote less than or equal to up to a positive
multiplicative constant. Let F; represent the sigma-field generated by Oy, ..., O;. Let Dy 2 ﬁ(do, Qo, 90)
and s2 = Varp,(D (do, Qo, go)( ))- The proof can be broken into four parts, which show that: (1)

D,.; approximates Dy in mean-square; (2) T';' — s in probability; (3) T ( (P,) — V(R))
behaves like an empirical mean of the normalized efficient influence curve; (4) ‘Il( ) is RAL and
efficient.

Part 1: D,, ; approximates Dj. Note that

n_lg Zn: Ey i(DW_DoY

:

" i=lp+1
1 & ~ 2
Sn—é Z EO l( ( nJaanagnJ) (d0>Qn7j>gn,j>) ‘51}
n j,eﬁ_l
~ _ 2
‘i‘n Z |: D dOanmgn]) <d07Qn7j7go)> ‘/—-:7—1:|
- - _ 2
+ p— { D (do, Qn.j, 90) — D(dO,Q0,90)> ‘7:31]

, Z B [y OF) — do( )| ]

J=fn+1
0 Eo[(gns(@W)IW) = go(d(W) )] Fy]
" =t +1
ar n _1 gn Z EO [(Qn,](dO(W), W) — Q0<d0<W), W))2 .Fj,l:|
n T Bi : (A.12)

where the constant in the second inequality relies on the bounds on Y, Qm 9o, and gy, ;.
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Part 2: ', — s, in probability. We have that

2 2
(Fn—Sal)Q < ! Xn: 5’71»861‘5% '—80| < ! n ’(}n '—80‘
- n_gn " 7 ~ ’I"L—fn 7

J=tn+1 j=tn+1

1 "L
<= 7 Z (Gnj — 50)°, (A.13)
]:Zn"l‘l

where the second inequality on the first line holds by the assumed bounds on &,, ; and the final
inequality holds by Cauchy-Schwarz. Note that, for any positive real numbers x4, 22,

(11 — x9)? < 2|27 — 23] (A.14)
By the above and Condition C3’) , we have that

R 1 ¢ R
n—1¢ Z (5'71,]' _60,n7j)2 5 n—7/ Z |5-'r21,j ~3n] S n_gn Z

" j=tn+1 " =l +1 J=tn+1

5~ 1‘ = op,(1).
‘We also have that

TL—E ZUOnJ Sn—é Z|O-0nj 38|
9 n
n—4{ Z

2

- ~ ~ ~ 2
Ey [Di,j - D§|7j—1} + Eo [Dn,j\fa’—l] — Ep [DO\J:j—l]

1 n . 5 1 n i .,
5 iy Z Ey HDn,j - DO‘ |‘/_-:j—1] 5 .y Ey (ij _ D0> |~7:j—1 :

where: the first inequality holds by (A.14); the equality holds by the definition of conditional
variance; the second inequality holds by twice using that 22 — 22 = (z; + ) (z; — 73), the strong
positivity assumption, and the bounds on Y and @),, ;; and the final inequality holds by the Cauchy-
Schwarz inequality applied to the expectations and the concavity of z — /x. By (A.12), the upper
bound above is op,(1). By the triangle inequality and the previous two indented equations,

1 S 1 ~ N 5

_— > (Gng—50)° < . S [Guy — F0mg)* + (o — 50)°] = 0r,(1). (A.15)
" j=tnt1 " =t t1

Plugging this into (A.13) shows that I', = s;' + op,(1). By the continuous mapping theorem,

F;l = 59 + Opo(l).

Part 3: T,,(U(P,)—¥(P,)) behaves like an empirical mean. Foreachn > 1and j = (,+1,...,n
define

b

sl Dnj(0;) = Bo | Duj(O)|Fj-1| - Do(0;) = Eo | Do(O) | Fis

" On,j 50
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We first show that M, ; — 0 in probability. Note that

\/72‘7 =ln+1

~ ~ 2
, , D, i(0.) DolO;
Vo EVarp, (M, ;| Fj-1) = Ey ( ij( ) _ Dol J)> Fi1

On,j S0

5, (DnLj(Oj)_D()(OJ)) ool 4B (Do(Oj)_Do(Oj)> Fia

On,j On,j On.j S0

SEo - (Dw‘(Oj) - Do(Oj)>2

~7‘—j—1} + Ey [(5n,j — 80)2| th—l}

where the constants in the second inequality rely on the bounds on g, ;, go, Qn] Y, 60, and sq.
By (A.12) and (A.15),

= op,(1 (A.16)
" j=tn+1
Fixe,0 > 0 and let v 5 = @. We will show that there exists some N such that
Pry ( Z = e) < ¢ foralln > N. (A.17)
" j=ln+1

Note that

P < Z ZG) :PI'()( Z TL]— n]§U€6>
=041 " i=l,+1 ] =ln+1
+PI"0( Z MTIL nJ>U€5>.
" =+l " j=tn+1

We will bound the terms on the right separately. By our bounding assumptions, there exists some
m* € (0,00) such that Pro(sup,,, |[M, ;| < m*) = 1. By Bernstein’s inequality for martingale
difference sequences with bounded increments (see, e.g, Steiger, 1969; Theorem 1.6 of Freedman,
1975), we have that

n] == ’I’L] —=
( j=ln+1 " =t +1
1 n
< Pry <—_g Z ]\/[T’w > Z ; < ves for some 1 € {{,, + 1, ,n})

ft pogild Jn—7. . V. _
< Pry (Z n,j > evn fn’ Z (ﬂ;,j < UE,(S(TL* 2€n) for some 7, € {€n+1,,n}>
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It follows that there exists some /N; such that the upper bound above is less then or equal to §/2
for all n > N;. We also have that

(e 5 S eme (e $ )
J=tn+1 J =ln+1 ] =ln+1

By (A.16), there exists some Ny so that the upper bound above is no greater than ¢/4 for all
n > N,. Combining the previous two sets of inequalities shows that (A.17) is satisfied for N =
max{ N7, No}. Thus ﬁ > i1 M, ; = op,(Vn — [y,). Because £, = o(n), ﬁ Do My =
op,(n~/2). Combining this with (A.10) shows that

r, (¥(P,) - ‘I’(Po)>

O-n 7j

+ op, (77,71/2)

j=n+1

= 5= 3" (Dol0)) = By [Do(0)] ) + 0m, (n172)

j=1
where the final equality uses that ¢, = o(n) and that D, is bounded.

Part 4: U(P,) is RAL and efficient. Combining Parts 2 and 3 shows that
B(P,) = W(Ry) = T,'T (W(P) = W(R)) = (50 + 0p, ()T (#(P,) — W(R))

= L (0(0,) ~ Eo[Dof)]) + o).

Thus W(P,) is an asymptotically linear estimator of W(Py) with influence curve D(dy, Py) =
DO(Oj) — Ey [DO(O)] If P, satisfies (3) so that D(dy, Py) = D(dj, Py) almost surely, then

Theorem 1 shows that D(d, Fy) is the efficient influence curve of W. By Proposition 1 of Section
3.3 in Bickel et al. (1993), it follows that (3) holds if and only if W(P,) is a RAL estimator and is
asymptotically efficient among all RAL estimators. 0

Proof of Theorem 4. The below is an abbreviated version of (A.6) through (A.10) and (A.11), with

33

Hosted by The Berkeley Electronic Press



an added inequality which holds because Ry, < 0:

V=G0, (U(P) = U(R)

= ﬁj%lén} <[Dn7]~(O]) — Wy, (P0>] + [V, , (Po) — ‘I’(PO)D
= \/%énjzeiﬂ 5;; (D”’j(0]> B \Pd’“(PO))

= nl— = J_ZLH&;’}- (Dn,j(Og) — Ey [D i(0)|0n; ..., 05— 1D +opy (1)
~ N(0,1)

Thus,

lim inf Pry <\/7F ( \II(P0)> < Zl—cx) >1—a.

n—oo
The first result follows by rearranging terms in the probability statement. The second result is an
immediate corollary of Theorem 2. 0

A.3 Proofs of results from Section 7

Proof of Lemma 5. By the almost sure representation theorem (see, e.g., Theorem 1.10.3 in Billingsley,
1999), there exists a probability space (£2', 7, P') and a sequence of random variables R!, : )’ —

R such that n® R, £ PR, and n” R/, (w') % 0 forall w’ € Q. Fix € > 0 and o’ € (). There exists
some N that, for all n > N, n| R/ (/)| < ¢ ) . Also note that

) & 1
nlﬁzﬂﬂﬁ = /(J—1> Bdﬂ_j‘

Hence, foralln > N,

n N-1
1 / n| _ 1 / B/
1-B Z|Rj(w)| 1B« |5 nl 3 Z ,BJ |Rj(w
0=l 7j=1
N—-1 n
1 ro (1 — 5)6 1
< nl-p [R5 ()] + onl—p Z j_ﬁ
j=1 j=N
=, /
< IR+ 5
j=1

It follows that — > iy [Rj(w')| < e forall n large enough, and thus that lim,, ., 3 > Bi(W) =
0. Noting that —5 =" | R; L 5 21 Rj(w') for all n, we have that . >~ | R; = op,(n™").
0
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Proof of Theorem 6. Let Dy £ {D(d,Q,g) : d.Q,g}. D2 £ {D*(d,Q,g) : d.Q, g}, and j* £
min{j : ; < do}. The class D; is ) Glivenko-Cantelli (GC) by assumption, and D, is GC by
Theorem 2 of van der Vaart and Wellner (2000). For all ; > 5*, we have that

1 . i
A N 201) ~ By | DX(0)| 01, 0;4]
=1
1 ’ i )
+ (ﬁ Dz’<0k>> - E [DJ(O)‘Ola--wOjfl] . (A.18)
k=1

The first term on the right converges to 0 in probability because D, is GC. For the second term, the
mean value theorem shows that

( 112115]@)2&)[ b,(0)| 0.0,

_gmj< LS~ p 00— By [ D (o)]ol,...,ojl})

J/

-~

2P,

where m; is an intermediate value between the two squared values on the first line. Using that D, is
a GC class, we have that m; converges to Eo[D;(0)|Oy, ..., O;_1] in probability and || P; — Fol|5 =
op,(1). Thus the above is op,(1), and pluggmg this into (A 18) shows that |67 — &7 ;| = 0p0(1)

The continuous mapping theorem shows that (13) is also satisfied. Combining this with Lemma 5
with # = 0 shows that Condition C3) is satisfied. [

Proof of Theorem 7. In this proof we will omit the dependence of d3, d,,, Qp0, and Qy,,, on W in
the notation. Suppose that ||Qb n— Qo H2 P = 0Py (1). This part of the proof mimics the proof of
Lemma 5.2 in Audibert and Tsybakov (2007) For any ¢ > 0,

=Eo[| Qb0 (Qvo # Qb))
=Eo[|QuolI1(Qpo # Qun)I(0 < |Quo| < t)]
+ Eo| Q0|1 (Qu0 # Qun) I(|Qu0| > t)]
<Ey[|Qbn — QuolI(0 < |Qpo| < t)]
+ Eo[|Qbn — QuolI(|Qbn — Quol > )]

|Wq, (Po) — Was (Fo)

”an Qbo“z Po
t

< Han Qbo”zp Pro(0 < |Qpol < )'/2 +

HQb,n - Qb,oHQ’PO
t )

< || @ — QbOHQP 1/2ta/2

where the first inequality holds because Q¢ # Qy,,, implies that |Qy,, — Qp.0| > |Qs.0|, the second
inequality holds by the Cauchy-Schwarz and Markov inequalities, and the third inequality holds
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by (16). The first result follows by optimizing over ¢ to find that the upper bound is minimized
whent = C' Han — pr”z(;ja)/(ﬂa) for a constant C' which depends on Cj and .

Now suppose that ||an — vaOHOO,PO = op,(1). Note that
|Wa, (Po) — Was (Po)| = Eo |1(dn # di) Qo
< Ey [1(0 < |Qbol < Qb — Qbol)|Qb0l]
< Ey [I (0 < |Quol < [|Qpn — Qb,OHOO,PO) |Qb,0|}

< | @un = Qoo ll ey Po (0 < 1Qs0] < |Qun = Qsoll ey ) -

Uy, (Po) — Wy (P)| S ||Qb,n - QbyoHHa -

00,Pp”

By (16),

B Multiple time point case

For simplicity we will consider a two time point treatment with baseline covariates L(0), a treatment
A(0), intermediate covariate L(1), a treatment A(1), and an outcome Y which comes after all
treatments and covariates. The extension to the more general multiple time point case follows the
same general arguments. We use the notation A(1) = (A(0), A(1)) and L(1) = (L(0), L(1)).
The presentation in this section parallels that given in van der Laan and Luedtke (2014b), and we
refer to the reader to that work for a more detailed description of the two time point problem. For
the sake of simplicity we do not consider censoring, though censoring can easily be incorporated
using the techniques in the referenced paper. The notation is similar in spirit to that of the rest of
the paper, though there is some notational overload (e.g. d now used to represent a two time point
rule, ¥(F,) now the mean outcome under a two time point treatment).

A dynamic rule d = (da(), da(1)) consists of two rules, one for each time point. The first time
point rule d4 () may be a function of L(0), while the second time point rule d4(;) may rely on
L(0), A(0), and L(1). Notationally, we use d(O) to mean (d(0)(L(0)), da1)(A(0), L(1))). For a
rule d, define

EoYa 2 EyEo| B [YIA(L) = d(0), L(1)] |A(0) = da(L(0)). L(0)]-

A (possibly non-unique) optimal rule is given by dj; = arg max, EoYy:. Our parameter of interest is
U(Py) £ EyYy;. Foradistribution P, define the treatment mechanisms g.4(0)(O) = Prp(A(0)|L(0))
and ga1)(0) = Prp(A(1)|A(0), L(1)). Also define
D(d, P)(0) £D5(d, P)(0) + Di(d, P)(O)
+ B, [Eo [Y]A(1) = d(0), L(1)] ‘A(O) = dao)(L(0)), L(0) ],
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where

I(A(0) = daqy(L(0)))

Di(d,P) ==——_—5 (Er [Y | A1) = d(0), L(1)]
= By |[Bo [YIA(1) = d(0), L(1)] |A(0) = dao)(L(0)), L(0)] )
Di(d, P) _1(AQ) = d(0)) (Y — Ep [V | A(1) = d(0), L(1)])..

Hllg:() gA(k)(O)

We can now generalize the confidence interval presented in Section 5 to the two time point case.
Let {/,,} be some sequence of natural numbers. For each j > /,,, let IADW- represent some estimate of
Py and d,, ; some estimate of d;;, each based only on the observations Oy, ..., O;_;. We really only
need estimates of Prp(A(0)|L(0)), Prp(A(1)]A(0), L(1)), and the two conditional regressions in
the definition of Dj(d, P). Define

5’2 é VGTPO (D(dn,j7 pn,j)

07n’j

O, ...,OH) .

Let 620- represent an estimate of 63% ; based on (some subset of) the observations (Oy, ..., O;_1).
Also define

F”én_lg Z &;;'

™ i=lp+1
Define our estimate U (P,) of U(P,) as
n n ~_—1 7~
R 1 - e 0, Dy i(O;
U(p) T 7D (0)) = et DO
e gn J=tn+1 Zj:€"+1 Jn’j

where D,, ;(0) 2 D(d,, P,.;)(0). The following 1—« confidence interval for ¥( P,) is asymptotically
valid under conditions similar to C1) through C5) presented in the main text:

. -t
V(P,) £ 21 q/p——-.
(Fr) 1a/2 n—4£,

For an idea of how the conditions change for the two time point case when a non-online estimator
is used, see Corollary 2 in van der Laan and Luedtke (2014b). In short, we will see that: conditions
like C1) and C2) are still needed to apply the martingale CLT; a condition like C3) is still required
to assume that the variance of the terms in the martingale sum stabilizes as sample size grows; a
condition like C4) is still needed to ensure that the treatment mechanism and/or conditional mean
outcome is estimated well enough to allow the use of the D estimating equation to estimate ¥ (F);
and a condition like C5) is still needed to ensure that the optimal rule is estimated at a fast enough
rate.

The generalization to the general multiple time point problem follows along the same lines as the
generalizaion to the two time point problem.
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