
University of California, Berkeley
U.C. Berkeley Division of Biostatistics Working Paper Series

Year  Paper 

Adaptive Pre-specification in Randomized
Trials With and Without Pair-Matching

Laura B. Balzer∗ Mark J. van der Laan†

Maya L. Petersen‡

∗Division of Biostatistics, University of California, Berkeley - the SEARCH Consortium, lb-
balzer@hsph.harvard.edu
†Division of Biostatistics, University of California, Berkeley - the SEARCH Consortium,

laan@berkeley.edu
‡Division of Biostatistics, University of California, Berkeley - the SEARCH Consortium, may-

aliv@berkeley.edu
This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-
cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/ucbbiostat/paper336

Copyright c©2015 by the authors.



Adaptive Pre-specification in Randomized
Trials With and Without Pair-Matching

Laura B. Balzer, Mark J. van der Laan, and Maya L. Petersen

Abstract

In randomized trials, adjustment for measured covariates during the analysis can
reduce variance and increase power. To avoid misleading inference, the analysis
plan must be pre-specified. However, it is unclear a priori which baseline co-
variates (if any) should be included in the analysis. Consider, for example, the
Sustainable East Africa Research in Community Health (SEARCH) trial for HIV
prevention and treatment. There are 16 matched pairs of communities and many
potential adjustment variables, including region, HIV prevalence, male circum-
cision coverage and measures of community-level viral load. In this paper, we
propose a rigorous procedure to data-adaptively select the adjustment set which
maximizes the efficiency of the analysis. Specifically, we use cross-validation
to select from a pre-specified library the candidate targeted maximum likelihood
estimator (TMLE) that minimizes the estimated variance. For further gains in
precision, we also propose a collaborative procedure for estimating the known ex-
posure mechanism. Our small sample simulations demonstrate the promise of the
methodology to maximize study power, while maintaining nominal confidence
interval coverage. Our procedure is tailored to the scientific question (sample vs.
population treatment effect) and study design (pair-matched or not) and alleviates
many of the common concerns.



1 Introduction

The objective of a randomized trial is to evaluate the effect of an intervention on the outcome
of interest. In this setting, the difference in the average outcomes among the treated units and
the average outcomes among the control units provides a simple and unbiased estimate of the
intervention effect. Adjusting for measured covariates during the analysis can substantially reduce
the estimator’s variance and thereby increase study power (e.g. Fisher (1932); Cochran (1957); Cox
and McCullagh (1982); Tsiatis et al. (2008); Moore and van der Laan (2009)). Nonetheless, the
recommendations on adjustment in randomized trials have been conflicting (Pocock et al., 2002;
Hayes and Moulton, 2009; Austin et al., 2010; Kahn et al., 2014; Campbell, 2014). The advice
seems to depend on the study design, the unit of randomization, the application, and the sample
size. As a result, many researchers are left wondering how to adjust for baseline covariates, if at
all.

Consider a trial, where the treatment is randomly allocated to n/2 units and the remaining
units are assigned to the control. There is a rich literature on locally efficient estimation in this
setting (e.g. Tsiatis et al. (2008); Zhang et al. (2008); Rubin and van der Laan (2008); Moore
and van der Laan (2009); Shen et al. (2014).) For example, parametric regression can be used to
obtain an unbiased and more precise estimate of the intervention effect. Briefly, the outcome is
regressed on the exposure and covariates according to a working model. Following Rosenblum and
van der Laan (2010), we use “working” to emphasize that the regression function need not be and
often is not correctly specified. This working model can include interaction terms and can be linear
or non-linear. The estimated coefficients are then used to obtain the predicted outcomes for all
units under the treatment and the control. The difference or ratio in the average of the predicted
outcomes provides an estimate of the intervention effect.

For continuous outcomes and linear working models without interaction terms, this procedure
is known as analysis of covariance (ANCOVA), and the coefficient for the exposure is equal to the
estimate of the intervention effect. For binary outcomes, Moore and van der Laan (2009) detailed
the potential gains in precision from adjustment via logistic regression for estimating the treatment
effect on the absolute or relative scale (i.e. risk difference, risk ratio or odds ratio). Furthermore, the
authors showed that parametric maximum likelihood estimation (MLE) was equivalent to targeted
maximum likelihood estimation (TMLE) in this setting (van der Laan and Rubin, 2006; van der
Laan and Rose, 2011). As a result, the asymptotic properties of the TMLE, including double
robustness and asymptotic linearity, hold even if the working model for outcome regression is
misspecified. Furthermore, this approach is locally efficient in that the TMLE will achieve the
lowest possible variance among a large class of estimators if the working model is correctly specified.
Rosenblum and van der Laan (2010) expanded these results for a large class of general linear models.
Indeed, the parametric MLE and TMLE can be considered special cases of the double robust
estimators of Scharfstein et al. (1999) and semiparametric approaches of Tsiatis et al. (2008);
Zhang et al. (2008). For a recent and detailed review of these estimation approaches, we refer the
reader to Colantuoni and Rosenblum (2015).

Now consider a pair-matched trial, where the intervention is randomly allocated within the
n/2 matched pairs. The proposed estimation strategies have been more limited in this setting.
Indeed, the perceived “analytical limitations” of pair-matched trials have led some researchers to
shy away from this design (Klar and Donner, 1997; Imbens, 2011; Campbell, 2014). As with a
completely randomized trial, the unadjusted difference in treatment-specific means provides an
unbiased but inefficient estimate of the intervention effect. To include covariates in the analysis
and to potentially increase power, Hayes and Moulton (2009) suggested regressing the outcome
on the covariates (but not on the exposure) and then contrasting the observed versus predicted
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outcomes within matched pairs. Alternatively, TMLE can provide an unbiased and locally efficient
approach in pair-matched trials (van der Laan et al., 2012; Balzer et al., 2015b). Specifically, the
algorithm can be implemented as if the trial were completely randomized: (1) fit a working model
for the mean outcome, given the exposure and covariates, (2) obtain predicted outcomes for all
units under the treatment and control, and (3) contrast the average of the predicted outcomes on
the relevant scale. Inference, however, must respect the pair-matching scheme (van der Laan et al.,
2012; Balzer et al., 2015b).

A common challenge to the both designs is the selection of the covariates for inclusion in the
analysis. Many variables are measured prior to implementation of the intervention, and it is difficult
to a priori specify an appropriate working model. For a completely randomized trial, covariate
adjustment will lead to gains in precision if (i) the covariates are predictive of the outcome and
(ii) the covariates are imbalanced between treatment groups (e.g. Moore et al. (2011)). Balance
is guaranteed as sample size goes to infinity, but rarely seen in practice. Analogously, in a pair-
matched trial, covariate adjustment will improve precision if there is an imbalance on predictive
covariates after matching.

Limited sample sizes pose an additional challenge to covariate selection. A recent review of ran-
domized clinical trials reported that the median number of participants was 58 with an interquartile
range of 27-161 (Califf et al., 2012). Likewise, a recent review of cluster randomized trials reported
that the median number of units was 31 with an interquartile range of 13-60 (Selvaraj and Prasad,
2013). In small trials, adjusting for too many covariates can lead to overfitting and inflated Type
I error rates (e.g. Moore et al. (2011); Shen et al. (2014); Balzer et al. (2015b)). Finally, ad hoc
selection of the adjustment set leads to concerns that researchers will go on a “fishing expedition”
to find the covariates resulting in most power and again risking inflation of the Type I error rate
(e.g. Pocock et al. (2002); Tsiatis et al. (2008); Olken (2015)).

In sum, covariate adjustment in randomized trials can provide meaningful improvements in
precision and thereby statistical power. To preserve inference, the working model, including the
adjustment variables, must be specified a priori. In practice, sample size often limits the size of the
adjustment set, and best set is unclear before the trial’s conclusion. This results in an important
challenge: the need to learn from the data to realize precision gains, but doing so in pre-specified
and rigorous way to maintain valid statistical inference.

In this paper, we apply the principle of empirical efficiency maximization to data-adaptively
select from a pre-specified library the candidate TMLE, which minimizes variance and thereby
maximizes the precision of the analysis (Rubin and van der Laan, 2008; van der Laan, 2011). We
contribute to the existing methodology by modifying this strategy for pair-matched trials. To
our knowledge, such a data-adaptive procedure has not been proposed or implemented for this
study design. We further contribute to the literature by collaboratively estimating the exposure
mechanism for additional gains in precision (van der Laan and Gruber, 2010; Gruber and van der
Laan, 2011). We also generalize the results for estimation and inference of both the population and
sample average treatment effects (Balzer et al., 2015a). Our finite sample simulations demonstrate
the practical performance with limited numbers of independent units, as is common in early phase
clinical trials and in cluster randomized trials. As a motivating example, we discuss the Sustainable
East Africa Research in Community Health (SEARCH) study, an ongoing cluster randomized trial
for HIV prevention and treatment (NCT01864603) (University of California, San Francisco, 2013).
Full R code is provided in the Appendix (R Core Team, 2014).
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2 Motivating Example and Causal Parameters

SEARCH is a community randomized trial to estimate the effect of immediate and streamlined
antiretroviral therapy (ART) on HIV incidence as well as other health, economic and educational
outcomes. The trial is being conducted in 32 rural communities in Uganda and Kenya. Exten-
sive baseline characteristics were collected through ethnographic mapping and community-wide
censuses. Examples include region, occupational mix, measures of mobility, HIV prevalence and
community-level HIV RNA viral load. A subset of these characteristics was used to create the 16
best matched pairs of communities (Balzer et al., 2015b). The intervention was randomized within
matched pairs. In treatment communities, HIV testing is expanded, and all individuals testing
HIV+ are immediately eligible for ART with enhanced services for initiation, linkage and retention
in care. In control communities, all individuals testing HIV+ are eligible for ART, according to
in-country guidelines. The primary outcome is the five-year cumulative incidence of HIV and will
be measured through longitudinal follow-up. The observed data for a given SEARCH community
can be denoted

O = (W,A, Y )

where W represents the vector of baseline covariates, A represents the intervention assignment, and
Y denotes the outcome. Specifically, A is a binary indicator, equalling one if the community was
randomized to the treatment and zero if the community was randomized to the control.

In this paper, we consider estimation and inference for the population average treatment effect
(PATE) and the sample average treatment effect (SATE). Let Y (a) denote the outcome if possi-
bly contrary-to-fact the unit were assigned intervention-level A = a. The causal parameters are a
function of the distribution PX of the full data, comprised of the baseline covariates and the coun-
terfactual outcomes of interest: X = (W,Y (1), Y (0)) (Neyman, 1923; Rubin, 1974). Specifically,
the PATE is the expected difference in the counterfactual outcomes if all members of the population
were assigned the intervention and if all members of that population were assigned the control:

ΨP(PX) = EX
[
Y (1)− Y (0)

]
(1)

where the expectation is over the full data distribution PX . There is one true value of ΨP(PX)
for the target population. For the SEARCH trial, the PATE is the expected difference in the
counterfactual cumulative incidence of HIV if all communities in the hypothetical target population
implemented the test-and-treat strategy and the counterfactual cumulative incidence of HIV if all
communities in that target population maintained the standard of care.

The sample parameter is the average difference in the counterfactual outcomes for the study
units (Neyman, 1923):

ΨS(PX) =
1

n

n∑
i=1

[
Yi(1)− Yi(0)

]
(2)

were Yi(a) denotes the outcome if possibly contrary-to-fact unit i were assigned intervention-level
A = a. The SATE is data-adaptive; its true value depends on the n units in the sample. The SATE
is easily interpretable, responsive to heterogeneity in the intervention effect, and arguably the most
relevant when the study units are not representative of a greater population. For the SEARCH
trial, the SATE is the average difference in the counterfactual cumulative incidence of HIV under
the test-and-treat strategy and under the standard of care for the 32 study communities.
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3 Targeted Estimation in a Randomized Trial Without Matching

In this section, we ignore the pair-matching scheme in the SEARCH trial and assume the observed
data consist of n independent, identically distribution (i.i.d.) copies of O = (W,A, Y ) with some
true, but unknown distribution P0, which factorizes as

P0(O) = P0(W )P0(A|W )P0(Y |A,W ).

We do not make any assumptions about the common covariate distribution P0(W ) or about the
common conditional distribution of the outcome, given the intervention and covariates P0(Y |A,W ).
By design, the intervention A is randomized with probability 0.5. Therefore, the exposure mech-
anism is known: P0(A = 1|W ) = g0(1|W ) = 0.5. The statistical model M, describing the set of
possible observed data distributions, is semiparametric.

Since the intervention is randomized, we can easily identify the population effect ΨP(PX) (Eq. 1)
from the observed data distribution. Our statistical estimand is the difference in the expected
outcome, given the treatment and covariates, and the expected outcome, given the control and
covariates, averaged (standardized) with respect to the covariate distribution in the population
(Robins, 1986):

Ψ(P0) = E0

[
E0(Y |A = 1,W )− E0(Y |A = 0,W )

]
= E0

[
Q̄0(1,W )− Q̄0(0,W )

]
where Q̄0(A,W ) = E0(Y |A,W ) denotes the conditional mean outcome, given the exposure and
covariates. As discussed in the introduction, there are many algorithms available for unbiased and
locally efficient estimation of this statistical parameter in a randomized trial (e.g. Tsiatis et al.
(2008); Zhang et al. (2008); Rubin and van der Laan (2008); Moore and van der Laan (2009); Shen
et al. (2014)). Throughout, our focus is on TMLE, a general methodology for the construction
of double robust, semiparametric efficient substitution estimators (van der Laan and Rubin, 2006;
van der Laan and Rose, 2011).

A TMLE for population effect ΨP(PX) (Eq. 1) also serves as a consistent and asymptotically
linear estimator of the sample effect ΨS(PX) (Eq. 2) (Balzer et al., 2015a). The estimator can be
implemented in three steps.

Step 1. Initial estimation: Estimate the expected outcome, given the exposure and covariates
Q̄0(A,W ) = E0(Y |A,W ). We could rely on a pre-specified parametric working model (as
discussed above) or implement a more data-adaptive approach (as discussed below).

Step 2. Targeting: Update the initial estimator Q̄n(A,W ).

i. Calculate the “clever” covariate based on the known or estimated exposure mechanism
gn(A|W ) = Pn(A|W ):

Hn(A,W ) =

(
I(A = 1)

gn(1|W )
− I(A = 0)

gn(0|W )

)
ii. If the outcome is continuous and unbounded, run linear regression of the outcome Y

on the covariate Hn(A,W ) with the initial estimator as offset. Plug in the estimated
coefficient εn to yield the targeted update: Q̄∗n(A,W ) = Q̄n(A,W ) + εnHn(A,W ).
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iii. If the outcome is binary or bounded in [0, 1]∗, run logistic regression of the outcome Y
on the covariate Hn(A,W ) with the logit(x) = log{x/(1 − x)} of the initial estimator
Q̄n(A,W ) as offset. Plug in the estimated coefficient εn to yield the targeted update:
Q̄∗n(A,W ) = expit

{
logit[Q̄n(A,W )] + εnHn(A,W )

}
, where expit is the inverse-logit.

Step 3. Parameter estimation: Obtain the predicted outcomes for all observations under the
treatment Q̄∗n(1,W ) and control Q̄∗n(0,W ). Average the difference in predicted outcomes:

Ψn(Q̄∗n) =
1

n

n∑
i=1

[
Q̄∗n(1,Wi)− Q̄∗n(0,Wi)

]
If the initial estimator for Q̄0(A,W ) is based on a working regression model with an intercept

and a main term for the exposure and if the exposure mechanism is treated as known (i.e. not
estimated), then the updating step can be skipped (Rosenblum and van der Laan, 2010). Further
precision, however, can be attained by using a data-adaptive algorithm for initial estimation of
Q̄0(A,W ) and by estimating the exposure mechanism g0(A|W ) (van der Laan and Robins, 2003).

Under regularity conditions, the standardized estimator converges to a normal distribution with
mean 0 and variance given by the variance of its influence curve, divided by sample size n. The
influence curve for the TMLE of the population parameter (PATE) can be estimated from the
observed data distribution by

DPn (gn, Q̄
∗
n)(O) =

(
I(A = 1)

gn(1|W )
− I(A = 0)

gn(0|W )

)(
Y − Q̄∗n(A,W )

)
+ Q̄∗n(1,W )− Q̄∗n(0,W )−Ψn(Q̄∗n)

(3)

(van der Laan and Rose, 2011). The influence curve for the TMLE of the sample parameter (SATE)
can be conservatively estimated from the observed data distribution by

DSn (gn, Q̄
∗
n)(O) =

(
I(A = 1)

gn(1|W )
− I(A = 0)

gn(0|W )

)(
Y − Q̄∗n(A,W )

)
(4)

(Balzer et al., 2015a). For the SATE, there is no variance contribution from the covariate dis-
tribution, which is considered fixed. Asymptotically, the SATE will often be estimated with more
precision than the PATE (Neyman, 1923; Imbens, 2004). However, as shown by Balzer et al. (2015a)
and in the simulations that follow, the gains in precision from specifying the SATE as the target of
inference can be attenuated in small trials, because this influence curve-based variance estimator is
conservative.

3.1 Adaptive Pre-specified Approach for Step 1. Initial Estimation

Consider again the SEARCH trial for HIV prevention and treatment. Recall that the outcome
Y is the five-year cumulative incidence of HIV and bounded between 0 and 1. Suppose that we
want to use logistic regression for initial estimation of the expected outcome, given the exposure
and measured covariates Q̄0(A,W ). It is unclear a priori which covariates should be included in
the working model and in what form. For example, baseline HIV prevalence is a known predictor
of the outcome and may be imbalanced between the treatment and control groups. Likewise,

∗In greater generality, the logistic fluctuation can also be used for a continuous outcome that is bounded in [a, b]
by first applying the following transformation to the outcome: Y ∗ = (Y − a)/(b− a). For further details, see Gruber
and van der Laan (2010).
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there might be substantial heterogeneity in the treatment effect by region and allowing for an
interaction between region and the intervention may reduce the variance of the TMLE. Including
all the covariates and the relevant interactions in the working model is likely to result in overfitting
and misleading inference. To facilitate selection between candidate initial estimators and thereby
candidate TMLEs, we propose the following cross-validation selector.

First, we propose a library of candidate working models for initial estimation of the conditional
mean outcome Q̄0(A,W ). This library should be pre-specified in the protocol or the analysis plan.
A possible library could consist of the following logistic regression working models:

logit[Q̄(a)(A,W, β)] = β0 + β1A

logit[Q̄(b)(A,W, β)] = β0 + β1A+ β2W1

logit[Q̄(c)(A,W, β)] = β0 + β1A+ β2W2 + β3A×W2

where, for example, W1 denotes baseline prevalence and W2 denotes region. Of course, there are
many more candidate algorithms, and we are considering this simple set for pedagogic purposes.
We also note that the first working model corresponds to the unadjusted estimator.

Second, we need to pre-specify a loss function to measure the performance of candidate estima-
tors. Following the principle of empirical efficiency maximization (van der Laan, 2011), we propose
using the variance of the estimated influence curve of the TMLE for the parameter of interest.
Specifically, if the target of inference is the population effect, our loss function is

LP(Q̄) = V ar
[
DPn (g0, Q̄)

]
,

and if the target of inference is the sample effect, our loss function is

LS(Q̄) = V ar
[
DSn (g0, Q̄)

]
.

For SATE, this corresponds to the L2 squared error loss function LS(Q̄) =
(
Y − Q̄(A,W )

)2
.

Next, we need to pre-specify our cross-validation scheme, used to generate an estimate of the
expected loss (i.e. the “risk”) for each of the candidate estimators. For generality, we present
V -fold cross-validation, where the data are randomly split into V partitions, called “folds”, of size
≈ n/V . To respect the limited sample sizes common in early phase clinical trials and in cluster ran-
domized trials, leave-one-out cross-validation may be appropriate. Leave-one-out cross-validation
corresponds with V = n-fold cross-validation, where each fold corresponds to one observation. The
cross-validation procedure for initial estimation of the conditional mean Q̄0(A,W ) can be imple-
mented as follows.

i. For each fold v = {1, . . . , V } in turn,

a. Set the observation(s) in fold v to be the validation set and the remaining observations to
be the training set.

b. Fit each algorithm for estimating Q̄0(A,W ) using only data in the training set. For
the above library, we would run logistic regression of the outcome Y on the exposure A
and covariates W , according to the working model. Denote the initial regression fits as

Q̄
(a)
n (A,W ), Q̄

(b)
n (A,W ) and Q̄

(c)
n (A,W ), respectively.

c. For each algorithm, use the estimated fit to predict the outcome(s) for the observation(s)
in the validation set under the treatment and the control. For the first algorithm, for

example, we would have Q̄
(a)
n (1,Wk) and Q̄

(a)
n (0,Wk) for observation Ok in the validation

set.
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ii. For each algorithm, estimate the risk with the sample variance of the cross-validated estimate
of the influence curve. If the target of inference is the PATE, our risk estimates would be

CV-riskP,(a) = V arn
[
DPn
(
g0, Q̄

(a)
n

)]
CV-riskP,(b) = V arn

[
DPn
(
g0, Q̄

(b)
n

)]
CV-riskP,(c) = V arn

[
DPn
(
g0, Q̄

(c)
n

)]
where V arn denotes the sample variance and we are treating the exposure mechanism as known:
g0(A|W ) = 0.5. If instead the target of inference is SATE, our risk estimates would be

CV-riskS,(a) = V arn
[
DSn (g0, Q̄

(a)
n

)]
CV-riskS,(b) = V arn

[
DSn
(
g0, Q̄

(b)
n

)]
CV-riskS,(c) = V arn

[
DSn
(
g0, Q̄

(c)
n

)]
iii. Select the algorithm with the smallest cross-validated risk.

The selected working model is then used for initial estimation of Q̄0(A,W ) in Step 1 of the
TMLE algorithm. Specifically, we would re-fit the selected algorithm Q̄n(A,W ) using all the data.
Since our library was limited to parametric working models and the exposure mechanism was
treated as known, the updating step (Step 2) can be skipped. In other words, the chosen estimator
is already targeted Q̄n(A,W ) = Q̄∗n(A,W ) and can be used for Step 3 parameter estimation.

4 Targeted Estimation in a Randomized Trial With Matching

Recall the pair-matching scheme briefly described in Section 2 for the SEARCH trial. First, the
potential study units were selected. Then baseline covariates, such as region, occupational mix and
measures of migration, were collected. A matching algorithm was applied to the baseline covariates
of candidate units to create the best 16 matched pairs. The intervention was randomized within the
resulting pairs, and the outcome will be measured with longitudinal follow-up. This pair-matching
scheme is considered to be adaptive, because the resulting matched pairs are a function of the
baseline covariates of all the candidate units (van der Laan et al., 2012; Balzer et al., 2015b). This
design has also been called “nonbipartite matching” and “optimal multivariate matching” (Greevy
et al., 2004; Zhang and Small, 2009; Lu et al., 2011).

The adaptive design creates a dependence in the data. Since the construction of the matched
pairs is a function of the baseline covariates of all n study units, the observed data do not consist
of n/2 i.i.d. paired observations, as current practice sometimes assumes (e.g. Klar and Donner
(1997); Freedman et al. (1997); Campbell et al. (2007); Hayes and Moulton (2009)). Instead, we
have n dependent copies of O = (W,A, Y ). Nonetheless, there is a lot of conditional independence
in the data. Mainly, once we consider the baseline covariates of the study units as fixed, we recover
n/2 conditionally independent units:

Ōj =
(
Oj1, Oj2

)
=
(
(Wj1, Aj1, Yj1), (Wj2, Aj2, Yj2)

)
where the index j = 1, . . . , n/2 denotes the partitioning of the candidate units {1, . . . n} into
matched pairs according to similarity in their baseline covariates (W1, . . . ,Wn). Throughout sub-
scripts j1 and j2 index the observations within matched pair j. The conditional distribution of the

7
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observed data, given the baseline covariates of the study units, factorizes as

P0(O1, . . . , On
∣∣W1, . . .Wn) =

n/2∏
j=1

P0(Aj1, Aj2|W1, . . . ,Wn)P0(Yj1|Aj1,Wj1)P0(Yj2|Aj2,Wj2)

= 0.5

n/2∏
j=1

P0(Yj1|Aj1,Wj1)P0(Yj2|Aj2,Wj2)

where the second line follows from randomization of the intervention within matched pairs. For
estimation and inference of the PATE, we need to assume that each community’s baseline covariates
Wi are independently drawn from some common distribution P0(W ). For estimation and inference
of the SATE, this assumption on the covariate distribution can be weakened. (See the Appendix
A for further details.)

Despite the dependence in the data, a TMLE for the population effect (PATE) can be imple-
mented as if the sample were n i.i.d. units (van der Laan et al., 2012). In Step 1, we obtain an
initial estimator of Q̄0(A,W ) with an a priori-specified parametric working model or with a more
data-adaptive method. In Step 2, we target the initial estimator Q̄n(A,W ) by using information in
the known or estimated exposure mechanism. Finally in Step 3, we obtain the predicted outcomes
for all observations under the treatment Q̄∗n(1,W ) and the control Q̄∗n(0,W ), and then take the
sample average of the difference in these predicted outcomes. Furthermore, the variance of the
TMLE can be estimated by treating the sample as n i.i.d. units. In other words, inference can be
based on the sample variance of the estimated influence curve in the non-matched trial DPn (Eq. 3),
divided by n (van der Laan et al., 2012). This variance estimator ignores any gains in precision
from pair-matching and will be conservative under reasonable assumptions. A less conservative
variance estimator can be obtained by accounting for the potential correlations of the residuals
within matched pairs:

ρn(Q̄∗n)(Ōj) =
1

n/2

n/2∑
j=1

(
Yj1 − Q̄∗n(Aj1,Wj1)

)(
Yj2 − Q̄∗n(Aj2,Wj2)

)
(5)

(van der Laan et al., 2012). An estimate of the asymptotic variance of the TMLE is then given by
the sample variance of DPn minus 2ρn, all divided by n.

In a pair-matched trial, a TMLE for the population effect is also a consistent and asymptotically
linear estimator of the sample effect. The proof is given in Appendix A. Furthermore, the influence
curve for the TMLE of the SATE can be conservatively estimated by

D̄Sn (gn, Q̄
∗
n)(Ōj) =

1

2

[
DSn (gn, Q̄

∗
n)(Oj1) +DSn (gn, Q̄

∗
n)(Oj2)

]
(6)

where DSn (gn, Q̄
∗
n)(O) is the estimated influence curve for observation O in the non-matched trial

(Eq. 4). The proof is given in Appendix B. Inference can be based on the sample variance of the
estimated (paired) influence curve D̄Sn , divided by n/2. If we order observations within matched
pairs such that first corresponds to the intervention (Aj1 = 1) and the second to the control
(Aj2 = 0) and treat the exposure mechanism as known g0(A|W ) = 0.5, we have

D̄Sn (g0, Q̄
∗
n)(Ōj) =

(
Yj1 − Q̄∗n(1,Wj1)

)
−
(
Yj2 − Q̄∗n(0,Wj2)

)
In this setting, the sample variance of the pairwise differences in residuals, divided by n/2, provides
a conservative variance estimator.
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4.1 Adaptive Pre-specified Approach for Step 1. Initial Estimation

By balancing intervention groups with respect to baseline determinants of the outcome, pair-
matching increases the efficiency of the study (e.g. Imai et al. (2009); van der Laan et al. (2012);
Balzer et al. (2015b)). Nonetheless, residual imbalance on the baseline predictors often remains, and
adjusting for these covariates during the analysis can further increase efficiency. In the SEARCH
trial, for example, the matched pairs were created before baseline HIV prevalence was measured.
As a result, there is likely to be variation across pairs in baseline prevalence, which is a known
driver of HIV incidence. Adjusting for baseline prevalence during the analysis is likely to reduce
the variance of the TMLE and result in a less conservative variance estimator. Unfortunately, it
is unclear a priori whether adjusting for prevalence will yield more power than than adjusting for
other baseline covariates, such as male circumcision coverage or measures of community-level HIV
RNA viral load. With only 16 (conditionally) independent units, we are limited as to the size of the
adjustment set. Adjusting for too many covariates can result in over-fitting. As before, we want to
data-adaptively select the candidate TMLE (i.e. working regression model), which maximizes the
empirical efficiency.

The data-adaptive procedure for Step 1 initial estimation of conditional mean outcome Q̄0(A,W ),
outlined in Sec. 3.1 for a non-matched trial, can be modified for a pair-matched trial. As before, we
need to pre-specify our library of candidate estimators, our measure of performance and the cross-
validation scheme. We can use the same library of candidate working models for initial estimation
of the conditional mean outcome Q̄0(A,W ). For the loss function, however, we want to use the
estimated variance of the TMLE under pair-matching. To elaborate, consider the loss function for
the SATE in a non-matched trial. Minimizing the sum of squared residuals (i.e. minimizing the
variance of DSn (Eq. 4)) targets the conditional mean outcome Q̄0(A,W ). As a result, the algorithm
could select a working model adjusting for a covariate that is highly predictive of the outcome but
on which we matched perfectly. In the SEARCH trial, for example, communities were paired within
region, because HIV incidence is expected to be highly heterogeneous across regions. Therefore,
minimizing the empirical variance of DSn might lead to the selection of the candidate TMLE with
main terms for the intervention and region. This selection would not improve the precision of
the analysis over the unadjusted algorithm. Instead, we want to select the TMLE minimizing the
conservative estimator of the variance in the pair-matched design. Thereby, our loss functions for
the PATE and SATE are

LP(Q̄) = V ar
[
DPn (g0, Q̄)− 2ρn(Q̄)

]
LS(Q̄) = V ar

[
D̄Sn (g0, Q̄)

]
respectively. Finally, the pair should be treated as the unit of (conditional) independence in the
cross-validation scheme. In other words, when the data are split into V -folds, the pairing should
be preserved. In small trials, leave-one-pair-out cross-validation may be appropriate. With these
modifications, we can implement the cross-validation scheme, outlined in Sec. 3.1, to data-adaptively
select the candidate working model, which minimizes the estimated variance of the TMLE in a pair-
matched trial.

5 Collaborative Estimation of the Exposure Mechanism

Even though the intervention A is randomized with balanced allocation, estimating the known
exposure mechanism g0(A|W ) can increase the precision of the analysis (van der Laan and Robins,
2003). As before, we want to respect the study design (i.e. pair-matched or not) as well as adjust
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for a covariate only if its inclusion improves the empirical efficiency. For example, we may not want
to include a covariate that is imbalanced between the intervention groups (i.e. predictive of A) but
not predictive of the outcome. Likewise, if a given covariate (e.g. W1) was included in the working
model for Q̄0(A,W ), further adjusting for this covariate when estimating the exposure mechanism
may not increase precision. To this end, we propose to incorporate the Collaborative TMLE (C-
TMLE) approach into our algorithm (van der Laan and Gruber, 2010; Gruber and van der Laan,
2011).

5.1 Adaptive Pre-specified Approach for Step 2. Targeting

First, we propose a library of candidate estimators of the exposure mechanism g0(A|W ). As before,
this library should be pre-specified in the protocol or analysis plan. A possible library could consist
of the following logistic regression working models:

logit[g(a)(W,β)] = β0

logit[g(b)(W,β)] = β0 + β1W1

logit[g(c)(W,β)] = β0 + β1W2

where, for example, W1 is baseline prevalence and W2 is region. Each algorithm would yield a
different update to a given initial estimator of the conditional mean outcome Q̄n(A,W ), selected by
the data-adaptive procedure for Step 1 (Sec. 3.1 and 4.1). In other words, each candidate estimator
of g0(A|W ) results in a different targeted estimator Q̄∗n(A,W ). We also note that the first working
model corresponds to the unadjusted estimator.

To choose between candidate algorithms, we need to pre-specify a loss function. As before,
we propose using the estimated variance of the TMLE, appropriate for the scientific question (i.e.
population or sample effect) and study design (i.e. pair-matched or not). Finally, we need to
pre-specify our cross-validation scheme, used to obtain an honest measure of risk and to reduce
the potential for over-fitting. As before, we present V -fold cross-validation, where the data are
partitioned into V folds of size ≈ n/V . If matching was used, the partitioning should preserve the
pairs. The cross-validation selector for collaborative estimation of the exposure mechanism can be
implemented as follows.

i. For each fold v = {1, . . . , V } in turn,

a. Set the observation(s) in fold v to be the validation set and the remaining observations to
be the training set.

b. Using only data in the training set, fit each algorithm for estimating the exposure mechanism.
For the above library, we would run logistic regression of the exposure A on the covariates W ,

according to the working model. Denote the estimated exposure mechanisms as g
(a)
n (A|W ),

g
(b)
n (A|W ) and g

(c)
n (A|W ), respectively.

c. For each algorithm, use the estimated fit of the exposure mechanism to target the initial
estimator Q̄n(A,W ), also fit with the training set.

d. For each algorithm, obtain targeted predictions of the outcome(s) for the observation(s) in
the validation set under the treatment and the control. For the first algorithm, for example,

we would have Q̄
(a),∗
n (1,Wk) and Q̄

(a),∗
n (0,Wk) for observation Ok in the validation set.

ii. For each algorithm, estimate the risk with the cross-validated variance estimator, appropriate
for the target parameter and study design.

10

http://biostats.bepress.com/ucbbiostat/paper336



iii. Select the algorithm with the smallest cross-validated risk.

The chosen estimator is then used for targeting in Step 2 of the TMLE algorithm.

6 Obtaining Inference

In summary, we have proposed the following data-adaptive TMLE to maximize the precision and
power of a randomized trial.

Step 1. Initial estimation of the conditional mean outcome with the working model Q̄n(A,W ),
which was data-adaptively selected to maximize the empirical efficiency of the analysis (Sec. 3.1
for a non-matched trial and Sec. 4.1 for a matched trial).

Step 2. Targeting the initial estimator using the estimated exposure mechanism gn(A|W ),
which was data-adaptively selected to further maximize the empirical efficiency of the analysis
(Sec. 5.1).

Step 3. Obtaining a point estimate by averaging the difference in the targeted predicted
outcomes:

Ψn(Q̄∗n) =
1

n

n∑
i=1

[
Q̄∗n(1,Wi)− Q̄∗n(0,Wi)

]
We now need a variance estimator that accounts for the selection process. For this, we propose
using a cross-validated variance estimator. As before, the data are split into validation and training
sets, respecting the unit of (conditional) independence. The selected TMLE is fit using the data in
the training set and used to estimate the influence curve† for the observation(s) in the validation
set. The step-by-step instructions are given in the Appendix C. The sample variance of the cross-
validated estimate of the influence curve can then be used for hypothesis testing and the construction
of Wald-type confidence intervals. For trials with a limited number of independent units, the
Student’s t-distribution is an appropriate alternative to the standard normal distribution.

7 Small Sample Simulations

We present the following simulation studies to demonstrate (1) implementation of the proposed
methodology, (2) the potential gains in precision and power from data-adaptive estimation of the
conditional mean outcome, (3) the additional gains in precision and power from collaborative esti-
mation of the exposure mechanism, and (4) maintenance of nominal confidence interval coverage.
All simulations were conducted in R v3.1.2 (R Core Team, 2014).

7.1 Study 1

For each unit i = {1, . . . , n}, we generated the nine baseline covariates by drawing from a mul-
tivariate normal with mean 0 and variance 1. The correlation between the first three covariates
{W1,W2,W3} and between the second three covariates {W4,W5,W6} was 0.5, while the corre-
lation between the remaining covariates {W7,W8,W9} was 0. The exposure A was randomized
such that the treatment allocation was balanced overall. For the non-matched trial, we randomly

†For the TMLE of the population effect in a pair-matched trial, we also need a cross-validated estimate of the
correction term ρn (Eq. 5.) This term is a function of the residuals, which can be estimated for each pair in the
validation set based on targeted estimator Q̄∗n(A,W ), fit with the training set.
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assigned the intervention to n/2 units and the control to the remaining n/2 units. For the pair-
matched trial, we used the non-bipartite matching algorithm nbpMatch to pair units on covariates
{W1, . . . ,W6} (Lu et al., 2012). The exposure A was randomized within the resulting matched
pairs. Recall A is a binary indicator, equalling 1 if the unit was assigned the treatment and 0 if the
unit was assigned the control. For each unit, the outcome Y was then generated as

Y = 0.4A+ 0.25(W1 +W2 +W4 +W5 + UY ) + 0.25A(W1 + UY )

where UY was drawn from a standard normal. We also generated the counterfactual outcomes Y (1)
and Y (0) by intervening to set A = a. To reflect the limited sample sizes common in early phase
clinical trials and in cluster randomized trials, we selected a sample size of n = 40. This resulted
in n/2 = 20 conditionally independent units in the pair-matched trial.

For each study design (non-matched or matched), this data generating process was repeated
2,500 times. Recall that the sample effect ΨS(PX) (Eq. 2) is data-adaptive parameter; its value
changes with each new selection of units. Thereby, for each repetition, the SATE was calculated as
the sample average of the difference in the counterfactual outcomes. The SATE ranged from 0.23
to 0.60 with a mean of 0.40. In contrast, the population effect ΨP(PX) (Eq. 1) is constant and was
calculated by averaging the difference in the counterfactual outcomes over a population of 900,000
units. The true value of the PATE was 0.40.

We compared the performance of the unadjusted estimator to TMLE with various approaches
to covariate adjustment. Specifically, we implemented the TMLE algorithm, where the initial
estimation of the conditional mean outcome Q̄0(A,W ) was based on a linear working model with
main terms for the intervention A and irrelevant covariate W9 and where the exposure mechanism
was treated as known: g0(A|W ) = 0.5. This approach was equivalent to standard maximum
likelihood estimation (MLE) and represented the unfortunate scenario where the researcher pre-
specified adjustment for a covariate that was not predictive of the outcome.

We also implemented a TMLE with the data-adaptive approach for Step 1 initial estimation
of the conditional mean outcome (Sec. 3.1 and 4.1). Our library consisted of 10 working linear
regression models, each with an intercept, a main term for the exposure A and a main term for
one baseline covariate: {∅,W1, . . . ,W9}, where ∅ corresponds to the unadjusted estimator. Our
loss function was the estimated variance of the TMLE, appropriate for the target parameter and
study design. We chose the candidate working model with the lowest estimated risk, based on
leave-one-out cross-validation for the non-matched trial and leave-one-pair-out cross-validation for
the matched trial. We also implemented Collaborative-TMLE (C-TMLE), which couples the data-
adaptive approach for Step 1 initial estimation of the conditional mean outcome (Sec. 3.1 and 4.1)
with the data-adaptive approach for Step 2 targeting (Sec. 5.1). For the latter, our library of
candidates to estimate the exposure mechanism consisted of 10 working logistic regression models,
each with an intercept and a main term for one baseline covariate: {∅,W1, . . . ,W9}. The same
loss function and cross-validation scheme were used for C-TMLE.

For the unadjusted estimator and the MLE, inference was based on the estimated influence
curve. For the data-adaptive TMLEs, inference was based on the cross-validated estimate of the in-
fluence curve (Sec. 6). We assumed the standardized estimator followed the Student’s t-distribution
with n − 2 = 38 degrees of freedom for the non-matched trial and with n/2 − 1 = 19 degrees of
freedom for the matched trial.

7.1.1 Results

Table 1 illustrates the performance of the estimators over the 2,500 simulated data sets. Specifically,
we show the mean squared error (MSE), the relative MSE (rMSE), the average standard error
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estimate σ̂, the attained power and the 95% confidence interval coverage. As expected, matching
improved efficiency. The MSE of the unadjusted estimator, for example, was approximately 2 times
larger in the non-matched trial than in the pair-matched trial. Furthermore, for the pair-matched
trial, targeting the sample effect, as opposed to the population effect, resulted in substantial gains in
attained power: 38% with the unadjusted estimator for the PATE and 53% with the same estimator
for the SATE. For the non-matched trial, targeting the sample parameter increased efficiency, but
did not directly translate into increased power due to the conservative variance estimator for the
SATE.

PATE SATE
MSEa rMSEb σ̂c Powd Cove MSEa rMSEb σ̂c Powd Cove

Non-Matched
Unadj. 6.3E-2 1.00 0.25 0.36 0.95 6.0E-2 1.05 0.25 0.36 0.95
MLE 6.6E-2 0.96 0.25 0.37 0.94 6.3E-2 1.00 0.25 0.37 0.95
TMLE 4.4E-2 1.44 0.20 0.51 0.94 4.2E-2 1.52 0.20 0.49 0.95
C-TMLE 4.2E-2 1.51 0.20 0.52 0.95 3.9E-2 1.63 0.20 0.50 0.96
Matched
Unadj. 3.3E-2 1.93 0.22 0.38 0.99 3.0E-2 2.11 0.18 0.53 0.97
MLE 3.4E-2 1.84 0.22 0.38 0.98 3.2E-2 1.99 0.18 0.54 0.96
TMLE 2.5E-2 2.53 0.18 0.56 0.98 2.4E-2 2.63 0.16 0.68 0.95
C-TMLE 2.4E-2 2.66 0.18 0.58 0.98 2.3E-2 2.78 0.15 0.70 0.95
aMean squared error: the bias (average deviation between the point estimate and sample-specific
true value) - squared plus the variance
bRelative MSE: the MSE of the unadjusted estimator for the PATE in a non-matched trial relative
to (divided by) the MSE of another estimator

cAverage standard error estimate, based on the estimated influence curve
dAttained power: proportion of times the false null hypothesis was rejected
eConfidence interval (CI) coverage: proportion of times the true value was contained in the 95% CI

Table 1: Summary of estimator performance for Simulation 1. The rows denote the study design
and the estimator: unadjusted, MLE adjusting for W9, TMLE with data-adaptive selection of the
initial estimator, and Collaborative-TMLE (C-TMLE) with data-adaptive selection of the initial
estimator paired with data-adaptive estimation of the exposure mechanism.

In all scenarios, the TMLE with data-adaptive selection of the initial estimator of Q̄0(A,W )
improved precision over the unadjusted estimator and the MLE. Collaborative estimation of the
exposure mechanism g0(A|W ) led to further gains in precision. Consider, for example, estimation
of the PATE in a trial without matching. The MSE of the unadjusted estimator was 1.44 times
larger than the TMLE and 1.51 times larger than the C-TMLE. The attained power was 36%, 51%
and 52%, respectively. Furthermore, the precision of the MLE, adjusting for the irrelevant covariate
W9, was worse than the other estimators in all scenarios. This demonstrates the potential peril of
relying on one pre-specified adjustment variable. As a second example, consider the attained power
to detect that the SATE was different from zero in the pair-matched trial. We would have 53% power
with the unadjusted estimator and 54% power with the MLE, adjusting for the irrelevant covariate
W9. By incorporating the cross-validation selector for initial estimation of Q̄0(A,W ), the TMLE
achieved 68% power. By further incorporating collaborative estimation of the exposure mechanism
g0(A|W ), the C-TMLE achieved 70% power. Overall, the greatest efficiency was achieved with
C-TMLE for the SATE in the pair-matched trial. Indeed, the MSE of the unadjusted estimator for
the population parameter in the trial without matching was nearly 3 times larger than the MSE of
the C-TMLE for the sample effect in the pair-matched trial. Throughout the confidence interval
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Working model for initial estimation of Q̄0(A,W )
Adjustment variable ∅ W1 W2 W3 W4 W5 W6 W7 W8 W9

PATE non-matched 0 57 19 1 11 11 1 0 0 0
matched 0 54 20 1 12 12 1 0 0 0

SATE non-matched 0 57 19 1 11 11 1 0 0 0
matched 0 38 21 5 15 15 3 0 1 1

Working model for estimation of g0(A|W )
Adjustment variable ∅ W1 W2 W3 W4 W5 W6 W7 W8 W9

PATE non-matched 79 2 3 2 3 3 2 2 2 2
matched 29 9 10 9 9 9 8 5 6 6

SATE non-matched 77 2 3 2 3 4 2 2 3 2
matched 16 10 11 10 11 10 10 7 7 7

Table 2: For Simulation 1, the proportion of times a covariate was selected in the working linear
regression model for initial estimation of Q̄0(A,W ) and in the working logistic regression model for
collaborative estimation of the exposure mechanism g0(A|W ).

coverage was maintained near or above the nominal rate of 95%.
Further insight into the efficiency gains with the proposed TMLE and C-TMLE is provided by

Table 2, which shows the proportion of times a working model was selected for initial estimation
of the conditional mean outcome and for collaborative estimation of the exposure mechanism.
When targeting the PATE, the selection for Q̄0(A,W ) was similar with and without pair-matching.
This was not surprising, because our measure of performance (i.e. the loss function) was the
estimated variance of the TMLE, and the variance estimator in a pair-matched trial is given by the
estimated variance in the non-matched trial minus a correction term ρn, which was close to 0. When
targeting the SATE, however, the selection procedure was more optimized to the study design. For
example, the working model with main terms for the intervention and W1 was selected in 57%
of the studies without matching and in only 38% of the studies with matching. Instead, working
models adjusting for other predictive covariates were selected more frequently. Furthermore, the
collaborative procedure for estimation of the exposure mechanism was able to identify settings
where the no adjustment would yield the greatest gains in efficiency. Specifically, the unadjusted
estimator gn(A|W ) = 0.5 was selected in nearly 80% of the studies without matching and in less
than 30% of the studies with matching.

7.2 Study 2

For the second simulation study, we increased the complexity of the data-generating process and
reduced the sample size to n = 30. As before, we generated nine baseline covariates from a
multivariate normal with mean 0, variance 1 and the same correlation structure. We also generated
a binary variable R, equalling 1 with probability 0.5 and equalling -1 with probability 0.5. The
final covariate Z was generated as a function of these baseline covariates and random noise UZ :

Z = R× expit(W1 +W4 +W7 + 0.5UZ)

where the expit is the inverse of the logit function and UZ was drawn independently from a standard
normal. As before, the intervention A was randomized with balanced allocation. For a non-matched
trial, the treatment was randomly assigned to n/2 units and the control to the remaining n/2 units.
For the pair-matched trial, we used the non-bipartite matching algorithm nbpMatch to explore two
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correlation 0.5 correlation 0.5 correlation 0︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
R W1 W2 W3 W4 W5 W6 W7 W8 W9 Z

Parents of covariate Z X X X X
Parents of the outcome Y X X X X X
Matching set 1 X
Matching set 2 X X X X

Table 3: For Simulation 2, the relationships between baseline covariates and the outcome as well as
the adaptive pair-matching schemes.

matching sets (Lu et al., 2012). In the first, units were matched on R, a baseline covariate strongly
impacting Z. In the second, units were matched on {R,W2,W5,W8}. The intervention A was
randomized within the matched pairs. For each unit, the outcome Y was then generated as

Y = expit[0.75A+ 0.5(W2 +W5 +W8) + 1.5Z + 0.25UY + 0.75A(W2−W5) + 0.5AZ]/7.5

where UY was drawn from a standard normal. Thereby, the outcome was a continuous variable
bounded in [0, 1] (e.g. a proportion). We also generated the counterfactual outcomes Y (1) and
Y (0) by intervening to set A = a. For each study design, this data generating process was repeated
2,500 times. The SATE and PATE were calculated as before. The SATE ranged from 0.25% to
3.1% with a mean of 1.6%. The true value of the PATE was 1.6%. Table 3 depicts the relationship
between the baseline covariates and the outcome as well as the adaptive pair-matching schemes.

We compared the same algorithms: the unadjusted estimator, the MLE adjusting for the ir-
relevant covariate W9, the TMLE with data-adaptive initial estimation of the conditional mean
outcome, and the C-TMLE pairing data-adaptive initial estimation of the conditional mean outcome
with data-adaptive targeting. Our library for initial estimation of the conditional mean outcome
Q̄0(A,W ) consisted of 12 working logistic regression models, each with an intercept and a main term
for the exposure A and a main term for one candidate adjustment variable {∅, R,W1, . . . ,W9, Z}.
Our library for collaborative estimation of the exposure mechanism g0(A|W ) included 12 working
logistic regression models, each with an intercept and a main term for one candidate adjustment
variable: {∅, R,W1, . . . ,W9, Z}. We used the same measure of performance and cross-validation
scheme. As before, inference was based on the estimated influence curve for the unadjusted estima-
tor and the MLE and on the cross-validated estimate of the influence curve for the data-adaptive
TMLEs (Sec. 6). We assumed the standardized estimator followed the Student’s t-distribution with
n− 2 = 28 degrees of freedom for the non-matched trial and with n/2− 1 = 14 degrees of freedom
for the matched trial.

7.2.1 Results

The results for the second simulation study are given in Table 4 and largely echoed the above
findings. Pair-matching, even on a single covariate (i.e. matching set 1), improved the precision of
the analysis. Targeting the sample effect instead of the population effect further improved efficiency.
Allowing for data-adaptive selection of the working model for initial estimation of Q̄0(A,W ) yielded
even greater precision, and the most efficient analysis was with C-TMLE. Indeed, the MSE of the
unadjusted estimator for the PATE in the non-matched trial was nearly 5 times higher than the
MSE of the C-TMLE when matching on predictive covariates (i.e. matching set 2). This resulted
in over 30% more power to detect the intervention effect.
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PATE SATE
MSEa rMSEb σ̂c Powd Cove MSEa rMSEb σ̂c Powd Cove

Non-matched
Unadj. 1.7E-4 1.00 0.013 0.21 0.94 1.5E-4 1.16 0.013 0.21 0.96
MLE 1.8E-4 0.97 0.013 0.23 0.94 1.5E-4 1.12 0.013 0.23 0.95
TMLE 1.1E-4 1.54 0.010 0.33 0.93 9.0E-5 1.92 0.010 0.31 0.96
C-TMLE 1.1E-4 1.57 0.010 0.34 0.93 8.6E-5 1.99 0.010 0.32 0.97
Match Set 1
Unadj. 1.2E-4 1.43 0.012 0.21 0.96 9.9E-5 1.74 0.011 0.28 0.97
MLE 1.3E-4 1.34 0.011 0.23 0.96 1.1E-4 1.63 0.011 0.29 0.96
TMLE 9.9E-5 1.74 0.009 0.33 0.95 7.5E-5 2.30 0.009 0.38 0.96
C-TMLE 9.6E-5 1.79 0.009 0.36 0.94 7.5E-5 2.31 0.008 0.43 0.95
Match Set 2
Unadj. 6.4E-5 2.70 0.011 0.18 0.99 4.5E-5 3.85 0.009 0.36 0.99
MLE 7.1E-5 2.43 0.011 0.21 0.99 5.2E-5 3.28 0.009 0.37 0.99
TMLE 5.1E-5 3.39 0.009 0.31 0.99 3.5E-5 4.86 0.008 0.46 0.98
C-TMLE 5.1E-5 3.35 0.009 0.35 0.98 3.6E-5 4.78 0.007 0.52 0.98
aMean squared error: the bias (average deviation between the point estimate and sample-specific
true value) - squared plus the variance
bRelative MSE: the MSE of the unadjusted estimator for the PATE in a non-matched trial relative
to (divided by) the MSE of another estimator

cAverage standard error estimate, based on the estimated influence curve
dAttained power: proportion of times the false null hypothesis was rejected
eConfidence interval (CI) coverage: proportion of times the true value was contained in the 95% CI

Table 4: Summary of estimator performance for Simulation 2. The rows denote the study design
and the estimator: unadjusted, MLE adjusting for W9, TMLE with data-adaptive selection of the
initial estimator, and Collaborative-TMLE (C-TMLE) with data-adaptive selection of the initial
estimator paired with data-adaptive estimation of the exposure mechanism.

For these simulations, there was a notable impact of parameter specification on estimator per-
formance. We first focus on the estimation of the PATE and then on estimation of the SATE. When
the population effect was the target of inference, the gains in attained power from pair-matching
were attenuated despite the gains in MSE. This was likely due to the slight underestimation of the
standard error in the non-matched trial and overestimation in the pair-matched trial. Indeed, the
confidence interval coverage in the non-matched trial was less than nominal (93-94%), while the
coverage when matching well (i.e. set 2) approached 100%. For this set of simulations, the correc-
tion factor ρn (Eq. 5) used in variance estimation for the pair-matched design was approximately
0. As a result, the variance estimator in the pair-matched trial was quite conservative, and the
cross-validation selection scheme was more optimized for the non-matched trial. The latter point is
evidenced by Table 5, which shows the proportion of times a candidate working model was selected.
The logistic regression model adjusting for R was selected for initial estimation of Q̄0(A,W ) in 10%
of the studies without matching and in 8% of the studies when matching well on R (i.e. set 1).
Furthermore, when matching on several covariates (i.e. set 2), the selection of working models for
Q̄0(A,W ) was very similar to the selection in the non-matched trial.

In contrast, when estimating the SATE, smaller MSE translated to greater attained power, while
maintaining nominal, if not conservative, confidence interval coverage. For example, the attained
power of the TMLE was 31% in the non-matched trial, 38% when matching on a single covariate
and 46% when matching on several covariates. Likewise, the attained power of the C-TMLE was
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Selected in the working model for initial estimation of Q̄0(A,W )
Adjustment variable ∅ R W1 W2 W3 W4 W5 W6 W7 W8 W9 Z

PATE non-matched 0 10 0 16 1 0 0 0 0 3 0 70
matched set1 0 8 1 30 1 0 0 0 0 4 0 56
matched set2 0 8 0 16 1 0 0 0 0 2 0 72

SATE non-matched 0 11 1 18 1 0 0 0 0 3 0 67
matched set1 0 2 3 55 3 1 1 1 1 11 1 21
matched set2 0 6 2 30 3 2 1 2 1 7 2 44

Selected in the working model for estimation of g0(A|W )
Adjustment variable ∅ R W1 W2 W3 W4 W5 W6 W7 W8 W9 Z

PATE non-matched 79 2 2 2 2 1 1 1 2 3 2 2
matched set1 37 9 5 6 5 4 3 3 5 5 5 13
matched set2 25 10 4 9 6 5 9 5 4 8 4 11

SATE non-matched 78 2 2 3 2 1 1 1 2 3 2 2
matched set1 25 9 5 7 6 6 5 5 6 7 6 11
matched set2 13 10 6 12 6 5 9 6 6 10 5 11

Table 5: For Simulation 2, the proportion of times a covariate was selected in the working logistic
regression model for initial estimation of Q̄0(A,W ) and in the working logistic regression model for
collaborative estimation of the exposure mechanism g0(A|W ).

32% in the non-matched trial, 43% in the trial pair-matching on a single covariate and 52% in trial
matching on several covariates. From Table 5, we see that the working model adjusting for R was
selected for initial estimation of Q̄0(A,W ) in 11% of the studies without matching and only in 2%
of the studies when matching well on R (i.e. set 1). In the latter, more weight was given to other
predictive baseline covariates, such as W2 and W8.

8 Discussion

This paper builds on the rich history of covariate adjustment in randomized trials (e.g. Fisher
(1932); Cochran (1957); Cox and McCullagh (1982); Tsiatis et al. (2008); Zhang et al. (2008);
Moore et al. (2011); Yuan et al. (2012); Shen et al. (2014); Colantuoni and Rosenblum (2015)). In
particular, Rubin and van der Laan (2008) proposed the principle of empirical efficiency maximiza-
tion as a strategy to select the estimator of Q̄0(A,W ) that minimized the empirical variance of the
estimated efficient influence curve. Their procedure, however, relied on solving a weighted nonlinear
least squares problem. Our approach only requires researchers to take the sample variance of the
estimated influence curve. More recently, van der Laan and Gruber (2010) proposed collaborative
estimation of the exposure mechanism to achieve the greatest bias reduction in the targeting step of
TMLE in a observational study. In randomized trials, there is no risk of bias from regression model
misspecification (e.g. Rosenblum and van der Laan (2010)). Thereby, the collaborative approach,
implemented here, serves only to increase precision by estimating the known exposure mechanism.
To our knowledge, this is the first research into C-TMLE in a randomized trial setting. Most re-
cently, van der Laan (2011) suggested selection of the candidate (C-)TMLE based on minimizing
the estimated variance of its influence curve. Our paper generalizes this scheme for estimation and
inference of both the population and sample average treatment effects in randomized trials with
and without pair-matching.

Our simulations illustrate the performance of the proposed procedure in realistically-sized (i.e.
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small) trials. In particular, with only 15 (conditionally) independent units, our procedure was able
to identify the optimal working model for initial estimation of Q̄0(A,W ) from a library of 12 can-
didates as well as for collaborative estimation of g0(A|W ) from a library of 12 candidates, while
maintaining close to nominal confidence interval coverage. The simulations also indicated the most
efficient approach was estimating the sample effect with C-TMLE in pair-matched trial. Indeed,
this approach was nearly 5 more efficient than targeting the population effect with the unadjusted
estimator in the non-matched trial. Thereby, our procedure dispels the common concerns of “ana-
lytical limitations” to pair-matched trials (e.g. Klar and Donner (1997); Imbens (2011); Campbell
(2014)).

There are several areas of future work. First, our library of candidate estimators was limited
to simple parametric working models. This choice was made for pedagogic purpose and to avoid
over-fitting in small trials. In larger trials, we can expand the library to include working models
with multiple adjustment variables and interactions as well as selection procedures (e.g. stepwise
regression) and semiparametric algorithms. Future work will involve simulations to evaluate the
methodology in larger trials. The application to matched triplets, as opposed to matched pairs,
should be straightforward. However, the impact of adaptive stratification on estimation and infer-
ence merits additional consideration. Finally, we focused on two causal parameters: the population
and sample average treatment effects. TMLE is a general methodology for the construction of
double robust, semiparametric, efficient substitution estimators for a wide range of parameters.
Our proposed strategy for covariate selection should extend to other causal parameters, such as
the conditional average treatment effect, the average treatment effect among the treated, and the
natural direct effect.

Overall, we proposed a general strategy to increase power in randomized trials. Specifically, we
used cross-validation to select the candidate TMLE that optimized the efficiency of the analysis.
Since the step-by-step algorithm (including the library definition) was pre-specified, there was no
risk of bias or misleading inference from ad hoc analytic decisions. In other words, we have proposed
a black box procedure to data-adaptively select the most powerful analysis. Furthermore, including
the unadjusted estimator as a candidate obviates the need for guidelines on whether or not to
adjust (e.g. Moore et al. (2011); Colantuoni and Rosenblum (2015)). Finally, our procedure is
tailored to the scientific question (population vs. sample effect) and study design (with or without
pair-matching). Decisions about whether to adjust and how to adjust are made with a rigorous
and principled approach, removing some of the “human art” from statistics.
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Appendix A: The TMLE is an asymptotically linear estimator of
the SATE in an Adaptive Pair-Matched Trial

In this Appendix we first review the asymptotic linearity results of Balzer et al. (2015b) for es-
timation and inference of the the statistical parameter corresponding to the conditional average
treatment effect (CATE) (Abadie and Imbens, 2002):

ΨC0(P0) =
1

n

n∑
i=1

[
Q̄0(1,Wi)− Q̄0(0,Wi)

]
.

We then provide a theorem showing that the TMLE for the SATE is asymptotically normal
in a trial with adaptive pair-matching, which results in n/2 conditionally independent copies of
Ōj =

(
Oj1, Oj2

)
=
(
(Wj1, Aj1, Yj1), (Wj2, Aj2, Yj2)

)
.

As discussed in Balzer et al. (2015b), the TMLE for conditional estimand ΨC0(P0) is defined by
the following substitution estimator:

Ψn(Pn) =
1

n

n∑
i=1

[
Q̄∗n(1,Wi)− Q̄∗n(0,Wi)

]
where Q̄∗n(A,W ) denotes the targeted estimator. Under the following assumptions, the TMLE for
ΨC0(P0) is asymptotically linear:

Ψn(Pn)−ΨC0(P0) =
1

n/2

n/2∑
j=1

D̄C(Q̄, Q̄0, g0)(Ōj) + oP (
√
n/2)

with influence curve

D̄C(Q̄, Q̄0, g0)(Ōj) =
1

2

[
DC(Q̄, Q̄0, g0)(Oj1) +DC(Q̄, Q̄0, g0)(Oj2)

]
DC(Q̄, Q̄0, g0)(Oi) =

(
I(Ai = 1)

g0(Ai)
− I(Ai = 0)

g0(Ai)

)(
Yi − Q̄(Ai,Wi)

)
−
[(
Q̄0(1,Wi)− Q̄(1,Wi)

)
−
(
Q̄0(0,Wi)− Q̄(0,Wi)

)]
where Q̄(A,W ) denotes the limit of the targeted estimator of the conditional mean function
Q̄0(A,W ) and where the marginal probability of being assigned the treatment or the control is
known: g0(A) = P0(A) = 0.5 (Balzer et al., 2015b). Specifically, we assume

• Uniform bound: Assume supQ̄∈F supO |
(
I(Ai=1)
g0(Ai)

− I(Ai=0)
g0(Ai)

) (
Yi−Q̄(Ai,Wi) |< M <∞ where

F is the set of multivariate real valued functions so that Q̄∗n is an element of F with probability
1 and where the second supremum is over a set that contains the support of each Oi.

• Convergence of variances: Assume that for a specified {σ2,C(Q̄) : Q̄ ∈ F}, for any Q̄ ∈ F ,
1
n/2

∑n/2
j=1 P

n
0 D̄
C(Q̄, Q̄0, g0)2 → σ2,C(Q̄) a.s (i.e., for almost every (Wn, n ≥ 1)). Throughout

Pn0 f = E0[f |Wn] denotes the conditional expectation of a function f of On = (O1, . . . , On),
given the vector of baseline covariates Wn = (W1, . . . ,Wn). We will relax this assumption
below.
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• Convergence of Q̄∗n to some limit: For any Q̄1, Q̄2 ∈ F , we define

σ2
n(Q̄1−Q̄2) = 1

n/2

∑n/2
j=1 P

n
0 {D̄C(Q̄1, Q̄0, g0)−D̄C(Q̄2, Q̄0, g0)}2. Assume that for a particular

Q̄ ∈ F , σ2
n(Q̄∗n − Q̄)→ 0 in probability as n→∞.

• Entropy condition: Let Fd = {f1− f2 : f1, f2 ∈ F}. Let N(ε, σn,Fd) be the covering number
of the class Fd w.r.t norm/dissimilarity ‖ f ‖= σn(f). Assume that the class F satisfies

limδn→0

∫ δn
0

√
logN(ε, σn,Fd)dε = 0.

Theorem 1. Let W denote the measured baseline covariates, A the intervention assignment and
Y the outcome. A randomized trial with adaptive pair-matching results in n/2 conditionally inde-
pendent copies of paired random variable

Ōj =
(
Oj1, Oj2

)
=
(
(Wj1, Aj1, Yj1), (Wj2, Aj2, Yj2)

)
where index j = {1, . . . , n/2} denotes the partitioning of the study units {1, . . . n} into matched pairs
according to similarity on their baseline covariates Wn = (W1, . . . ,Wn). Our target of inference is
the sample average treatment effect (SATE) (Neyman, 1923):

ΨS(PX) =
1

n

n∑
i=1

Yi(1)− Yi(0)

where PX denotes the distribution of the full data X =
(
W,Y (1), Y (0)

)
. Under the above conditions,

the TMLE Ψn(Pn) = 1
n

∑n
i=1 Q̄

∗
n(1,Wi) − Q̄∗n(0,Wi) is an asymptotically linear estimator of the

SATE:

Ψn(Pn)−ΨS(PX) =
1

n/2

n/2∑
j=1

D̄S(Q̄, Q̄0, g0)(X̄j , Ōj) + oP (
√
n/2)

with influence curve

D̄S(Q̄, Q̄0, g0)(X̄j , Ōj) = D̄C(Q̄, Q̄0, g0)(Ōj)− D̄F (Q̄0)(X̄j , Ōj)

where Q̄(A,W ) denotes the limit of the targeted estimator of the conditional mean function Q̄0(A,W )
and where the marginal probability of being assigned the treatment or the control is known g0(A) =
P0(A).

The first component D̄C(Ōj) is the influence curve for the TMLE targeting the conditional
estimand ΨC0(P0) = 1

n

∑n
i=1

[
Q̄0(1,Wi)− Q̄0(0,Wi)

]
in a trial with adaptive pair-matching:

D̄C(Q̄, Q̄0, g0)(Ōj) =
1

2

[
DC(Q̄, Q̄0, g0)(Oj1) +DC(Q̄, Q̄0, g0)(Oj2)

]
with DC(Q̄, Q̄0, g0)(Oi) =

(
I(Ai = 1)

g0(Ai)
− I(Ai = 0)

g0(Ai)

)(
Yi − Q̄(Ai,Wi)

)
−
[(
Q̄0(1,Wi)− Q̄(1,Wi)

)
−
(
Q̄0(0,Wi)− Q̄(0,Wi)

)]
The second component D̄F (X̄j , Ōj) is the following function of the paired full data X̄j =

(
Xj1, Xj2

)
:

D̄F (Q̄0)(X̄j , Ōj) =
1

2

[
DF (Q̄0)(Xj1, Oj1) +DF (Q̄0)(Xj2, Oj2)

]
with DF (Q̄0)(Xi, Oi) = Yi(1)− Yi(0)−

[
Q̄0(1,Wi)− Q̄0(0,Wi)

]
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The standardized TMLE for the SATE is asymptotically normal with mean 0 and variance σ2,S

given by the limit of

σ2,S
n =

1

n/2

n/2∑
j=1

Pn0

{
D̄S(Q̄, Q̄0, g0)(X̄j , Ōj)

}2

where Pn0 f = E0[f |Wn] denotes the conditional expectation of a function f of On = (O1, . . . , On),
given the vector of baseline covariates Wn = (W1, . . . ,Wn).

Proof. Let Q̄0(W ) = Q̄0(1,W )− Q̄0(0,W ) denote the true difference in treatment-specific means.
We can write the deviation between the TMLE Ψn(Pn) for the conditional estimand ΨC0(P0) and
the SATE as

Ψn(Pn)−ΨS(PX)

= Ψn(Pn)−ΨC0(P0)−
[
ΨS(PX)−ΨC0(P0)

]
=

1

n/2

n/2∑
j=1

D̄C(Ōj)−
[
ΨS(PX)−ΨC0(P0)

]
+ oP (

√
n/2)

=
1

n/2

n/2∑
j=1

D̄C(Ōj)−
[

1

n

n∑
i=1

Yi(1)− Yi(0)− Q̄0(Wi)

]
+ oP (

√
n/2)

=
1

n/2

n/2∑
j=1

[
D̄C(Ōj)−

1

2

(
Yj1(1)− Yj1(0)− Q̄0(Wj1) + Yj2(1)− Yj2(0)− Q̄0(Wj2)

)]
+ oP (

√
n/2)

=
1

n/2

n/2∑
j=1

[
D̄C(Ōj)− D̄F (X̄j , Ōj)

]
+ oP (

√
n/2)

where D̄C(Ōj) is the influence curve of the TMLE for the conditional estimand ΨC0(P0) under
adaptive pair-matching and where D̄F (X̄j , Ōj) is the following function of the paired full data
X̄j =

(
Xj1, Xj2):

D̄F (X̄j , Ōj) =
1

2

[
DF (Xj1, Oj1) +DF (Xj2, Oj2)

]
with DF (Xi, Oi) = Yi(1)− Yi(0)−

[
Q̄0(1,Wi)− Q̄0(0,Wi)

]
Thus, we have shown the TMLE is an asymptotically linear estimator of the SATE in a trial with
adaptive pair-matching:

Ψn(Pn)−ΨS(PX) =
1

n/2

n/2∑
j=1

D̄S(X̄j , Ōj) + oP (
√
n/2)

with influence curve
D̄S(X̄j , Ōj) = D̄C(Ōj)− D̄F (X̄j , Ōj).

Strictly speaking, the influence curve must only be a function of the observed data. Nonetheless,
the theorem is sufficient to prove asymptotic normality and consistency of the TMLE.
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Appendix B: Variance and variance estimation for the TMLE of
the SATE in an Adaptive Pair-Matched Trial

Theorem 2. The asymptotic variance of the standardized estimator is given by the limit of

σ2,S
n =

1

n/2

n/2∑
j=1

Pn0

{
D̄S(Q̄, Q̄0, g0)(X̄j , Ōj)

}2

=
1

n/2

n/2∑
j=1

[
Pn0

{
D̄C(Q̄, Q̄0, g0)(Ōj)

}2

− 1

4
Pn0

{
DF (Q̄0)(Xj1, Oj1)

}2

− 1

4
Pn0

{
DF (Q̄0)(Xj2, Oj2)

}2]

Proof. The conditional variance can be expressed as

σ2,S
n =

1

n/2

n/2∑
j=1

Pn0

{
D̄S(X̄j , Ōj)

}2

=
1

n/2

n/2∑
j=1

Pn0

{
D̄C(Ōj)− D̄FX̄j , Ōj)

}2

=
1

n/2

n/2∑
j=1

[
Pn0

{
D̄C(Ōj)

}2

+ Pn0

{
D̄F (X̄j , Ōj)

}2

− 2Pn0

{
D̄C(Ōj)× D̄F (X̄j , Ōj)

}]
The conditional variance of the D̄F (X̄j , Ōj) component is

Pn0

{
D̄F (X̄j , Ōj)

}2

= Pn0

{
1

2

(
DF (Xj1, Oj1) +DF (Xj2, Oj2)

)}2

=
1

4
Pn0

{
DF (Xj1, Oj1)

}2

+
1

4
Pn0

{
DF (Xj2, Oj2)

}2

+
1

2
Pn0

{
DF (Xj1, Oj1)×DF (Xj2, Oj2)

}
Under the randomization assumption, each DF (Xi, Oi) component has conditional mean zero, given
its baseline covariates Wi:

E[DF (Xi, Oi)
∣∣Wi] = E

[
Yi(1)− Yi(0)− Q̄0(Wi)|Wi

]
= E[Yi(1)|Wi]− E[Yi(0)|Wi]−

[
Q̄0(1,Wi)− Q̄0(0,Wi)

]
= E0(Yi|Ai = 1,Wi)− E0(Yi|Ai = 0,Wi)−

[
Q̄0(1,Wi)− Q̄0(0,Wi)

]
= 0

Therefore, the conditional covariance of the DF components within a matched pair is zero:

Pn0

{
DF (Xj1, Oj1)×DF (Xj2, Oj2)

}
= E

[
DF (Xj1, Oj1)×DF (Xj2, Oj2)

∣∣Wn
]

= E[E
[
Yj1(1)− Yj1(0)− Q̄0(Wj1)|Wj1

]
×DF (Xj2, Oj2)] = 0

The conditional variance of the D̄F (X̄j , Ōj) component simplifies to

Pn0

{
D̄F (X̄j , Ōj)

}2

=
1

4
Pn0

{
DF (Xj1, Oj1)

}2

+
1

4
Pn0

{
DF (Xj2, Oj2)

}2
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The conditional covariance of the D̄C(Ōj) and D̄F (X̄j , Ōj) components is

Pn0

{
D̄C(Ōj)× D̄F (X̄j , Ōj)

}
=

1

4
Pn0

{[
DC(Oj1) +DC(Oj2)

]
×
[
DF (Xj1, Oj1) +DF (Xj2, Oj2)

]}
=

1

4

[
Pn0
{
DC(Oj1)×DF (Xj1, Oj1)

}
+ Pn0

{
DC(Oj1)×DF (Xj2, Oj2)

}
+ Pn0

{
DC(Oj2)×DF (Xj1, Oj1)

}
+ Pn0

{
DC(Oj2)×DF (Xj2, Oj2)

}]
As shown in Appendix of Balzer et al. (2015a), the covariance of the DC(Oi) and DF (Oi) compo-
nents is equal to the variance of DF (Oi). Therefore, we have

Pn0

{
DC(Oj1)×DF (Xj1, Oj1)

}
= Pn0

{
DF (Xj1, Oj2)

}2

Pn0

{
DC(Oj2)×DF (Xj2, Oj2)

}
= Pn0

{
DF (Xj2, Oj2)

}2

Under the randomization assumption, the other terms are zero:

Pn0

{
DC(Oj1)×DF (Xj2, Oj2)

}
= E

[
DC(Oj1)× E

[
DF (Xj2, Oj2)

∣∣Wj2

]]
= 0

Pn0

{
DC(Oj2)×DF (Xj1, Oj1)

}
= E

[
DC(Oj2)× E

[
DF (Xj1, Oj1)

∣∣Wj1

]]
= 0

We have that the conditional covariance of the D̄C(Ōj) and D̄F (X̄j , Ōj) components equals

Pn0

{
D̄C(Ōj)× D̄F (X̄j , Ōj)

}
=

1

4
Pn0

{
DF (Xj1, Oj2)

}2

+
1

4
Pn0

{
DF (Xj2, Oj2)

}2

Combining the terms, we have

σ2,S
n =

1

n/2

n/2∑
j=1

[
Pn0

{
D̄C(Ōj)

}2

− 1

4
Pn0

{
DF (Xj1, Oj1)

}2

− 1

4
Pn0

{
DF (Xj2, Oj2)

}2]

The asymptotic variance of the TMLE for the SATE σ2,S is always less than or equal to σ2,C ,
which is the asymptotic variance of the TMLE for the conditional parameter. As shown in Balzer
et al. (2015b), we can estimate the upper bound as

σ̂2,S = σ̂2,C =
1

n/2

n/2∑
j=1

{
ˆ̄DC(Q̄∗n, g0)(Ōj)

}2

ˆ̄DC(Q̄∗n, g0)(Ōj) =
1

2

[
D̂C(Q̄∗n, g0)(Oj1) + D̂C(Q̄∗n, g0)(Oj2)

]
D̂C(Q̄∗n, g0)(Oi) =

(
I(Ai = 1)

g0(Ai)
− I(Ai = 0)

g0(Ai)

)(
Yi − Q̄∗n(Ai,Wi)

)
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Ordering the observations within matched pairs, such that the first corresponds to the unit ran-
domized to the intervention (Aj1 = 1) and the second to the control (Aj2 = 0), it follows that

ˆ̄DC(Q̄∗n, g0)(Ōj) = ˆ̄DC(Q̄∗n, g0)(Ōj) =
(
Yj1 − Q̄∗n(1,Wj1)

)
−
(
Yj2 − Q̄∗n(0,Wj2)

)
allowing us to represent the variance estimator as the sample variance of the difference in residuals
within matched pairs:

σ̂2,S = σ̂2,C =
1

n/2

n/2∑
j=1

{(
Yj1 − Q̄∗n(1,Wj1)

)
−
(
Yj2 − Q̄∗n(0,Wj2)

)}2

This variance estimator will be consistent if there is no heterogeneity in the treatment effect within
strata of covariates (i.e. if the variance of the DF component is zero) and if the conditional mean
function Q̄0(A,W ) is consistently estimated. Otherwise, the variance estimator will be conservative.

We can relax the assumption that the conditional variance converges to some limit. Specifically,
we have that the standardized and scaled estimator converges to a normal distribution with mean
0 and variance given by the ratio of the true conditional variance σ2,S

n divided by our conservative
estimator σ̂2,S :

Ψ(Pn)−ΨS(PX)

σ̂2,S/
√
n/2

→ N

(
0,
σ2,S
n

σ̂2,S

)
Since the ratio of variances is always ≤ 1. The standard normal distribution N(0, 1) provides a
conservative approximation to the asymptotic distribution.

Appendix C: Step-by-step instructions to obtain a cross-validated
variance estimator

Let Q̄n(A,W ) denote the initial estimator for conditional mean outcome, which was selected
through the data-adaptive procedure (Sec. 3.1 for a non-matched trial and Sec. 4.1 for a pair-
matched trial). Let gn(A|W ) denote the estimator of the exposure mechanism, which was collabo-
ratively selected through the data-adaptive procedure (Sec. 5.1). A cross-validated estimate of the
variance of the data-adaptive TMLE can be implemented as follows. As before, we present V -fold
cross-validation, where the data are partitioned into V folds of size ≈ n/V . If matching was used,
the partitioning should preserve the pairs.

i. For each fold v = {1, . . . , V } in turn,

a. Set the observation(s) in fold v to be the validation set and the remaining observations to
be the training set.

b. Using observations in the training set, fit the selected TMLE.

- Fit the selected working model for the conditional mean outcome Q̄n(A,W ).
- Fit the selected working model for the exposure mechanism gn(A|W ).
- Target the initial estimator. Denote the estimated fluctuation coefficient εn.

c. For each observation Ok in the validation set, estimate the influence curve (and correction
factor ρn if relevant).

- Use the initial fit Q̄n(A,W ), based on the training data, to obtain initial predictions of
the outcome under the treatment Q̄n(1,Wk) and under the control Q̄n(0,Wk).
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- Use the the fit of the exposure mechanism gn(A,W ), based on the training set, to
calculate the clever covariate Hn(Ak,Wk).

- Update the initial estimates with the estimated fluctuation parameter εn. Denote the
targeted predictions of the outcome under the treatment Q̄∗n(1,Wk) and the control
Q̄∗n(0,Wk).

- Plug-in the relevant components to estimate influence curve, appropriate for the target
parameter and study design.

ii. Estimate the variance of the data-adaptive TMLE with the sample variance of the estimated
influence curve, normalized by the appropriate sample size.

Appendix D: Sample R Code

> #####################################

> # Simulations to illustrate estimation and inference for the PATE

> # and SATE with the unadjusted estimator, the MLE with a priori specified

> # adjustment set (W.9), TMLE with adaptive pre-specification for initial

> # estimation of Qbar(A,W) and C-TMLE including collaborative estimation of g(A|W)

> #

> # Programmer: Laura Balzer (lbbalzer@berkeley.edu)

> #

> # Last update: 05.13.15

> ######################################

>

>

> #------------------------------------

> # simulate.Data.and.Run: function to generate the simulated data

> # and run the estimators

> #

> # input:

> # output: true values of PATE and SATE, point estimates and inference from the 4

> # estimators, results from CV-selection

> #------------------------------------

>

> simulate.Data.and.Run<- function(){

+

+ X<- get.Data(n)

+

+ # PATE is the average difference in counterfactuals over the population

+ PATE<<- get.PATE()

+

+ # SATE is the average of the difference in counterfactuals for the sample

+ SATE<- mean(X$Y1- X$Y0)

+

+ # True value of the target parameter depending on the scientific question

+ truth<- ifelse(POP.EFFECT, PATE, SATE)

+

+ # If Matching, use the nbpMatching package function to create pairs

28

http://biostats.bepress.com/ucbbiostat/paper336



+ if(MATCHING){

+

+ # see nbpMatching package for further details

+ dist<- distancematrix(gendistance(data.frame(X[, matchOn])))

+ matches<- nonbimatch(dist)

+ # matches contains ids for the pair match as well as the distance measure

+ grpA<- as.numeric(matches$halves[,'Group1.Row'])
+ grpB<- as.numeric(matches$halves[,'Group2.Row'])
+

+ # The paired data structure is organized such that the first observation in

+ #pair j is on row j, while the second obs. in pair j is on row (j+n.pairs)

+

+ X.all<- rbind( X[grpA, ], X[grpB, ] )

+ # first obs in the matched pair us on rows 1:n.pairs

+ # second obs in the matched pair is on rows (n.pairs: n)

+

+ } else{ # no matching

+ X.all<- X

+ }

+

+

+ #---------------------

+ # Assign intervention and observed data

+ #---------------------

+

+ # randomly assign treatment so that it's balanced overall

+ A<- rbinom(n.pairs, 1, 0.5)

+ A.2<- ifelse(A==1, 0, 1)

+ A <- c(A,A.2)

+

+ # we observe the counterfactual outcome corresponding to

+ # the observed exposure

+ Y<- ifelse(A, X.all$Y1, X.all$Y0)

+

+ # observed data are (W, A, Y)

+ data<- data.frame(X.all[,1:12], A, Y)

+

+ #--------------------------

+ # ESTIMATION AND INFERENCE

+ #--------------------------

+

+ # unadjusted estimator

+ unadj<- do.Estimation(Do.CV.Inference=F, truth=truth, data=data, QAdj='U',
+ family=FAMILY)

+

+ # a priori spec. working model for Qbar(A,W), adjusting for W9

+ mle.W9<- do.Estimation(Do.CV.Inference=F, truth=truth, data=data, QAdj='W.9',
+ family=FAMILY)
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+

+ # Adaptive Pre-Specified Approach for Step 1. Initial Estimation

+ select.Q<- suppressWarnings( CV.selector(data, family=FAMILY, forQ=T,

+ gAdj=NULL))

+

+ # TMLE based on this selection (need to do CV-inference)

+ tmle<- do.Estimation(Do.CV.Inference=T, truth=truth, data=data, QAdj=select.Q,

+ family=FAMILY)

+

+ # Adaptive Pre-Specified Approach for Step 2. Targeting

+ select.G<- CV.selector(data, family=FAMILY, forQ=F, QAdj=select.Q)

+

+ # C-TMLE using the adaptive selection for Step1 and Step2

+ ctmle<- do.Estimation(Do.CV.Inference=T, truth=truth, data=data,

+ QAdj=select.Q, family=FAMILY, gAdj=select.G)

+

+ CV.select<- data.frame(select.Q, select.G)

+

+ RETURN<- list(PATE=PATE, SATE=SATE, unadj=unadj, mle.W9=mle.W9, tmle=tmle,

+ ctmle=ctmle, CV.select=CV.select)

+

+ RETURN

+ }

> #------------------

> # do.Estimation: function to do TMLE + get inference

> #

> # input: Do.CV.Inference (get cross-validated estimate of IC),

> # truth (true value of the target parameter), obs. data,

> # QAdj (adjustment variable for Qbar(A,W)), family for Qbar(A,W),

> # gAdj (adjustment variable for g(A|W)), significance level (alpha)

> #

> # output: point estimate, inference, CV-inference (if appropriate)

> #-----------------

>

> do.Estimation<- function(Do.CV.Inference=F, truth, data, QAdj, family,

+ gAdj=NULL, alpha=0.05){

+

+ # get a point estimate with TMLE based on the full data (i.e. without CV)

+ est<- suppressWarnings(do.TMLE.with.CV(Do.CV=F, train=data, QAdj=QAdj,

+ family=family, gAdj=gAdj))

+

+ # estimate the influence curve (and residuals)

+ resid<- (data$Y - est$QbarAW)

+ DY<- est$H.AW*(data$Y - est$QbarAW)

+ DW<- est$Qbar1W - est$Qbar0W - est$psi.hat

+

+ # get the variance of the influence curve (appropriate for the study design)

+ var.IC<- get.Variance.IC(resid=resid, DY=DY, DW=DW)
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+

+ # degrees of freedom for t-distribution

+ df<- ifelse(PAIRED, (n.pairs-1), (n-2) )

+

+ # get confidence interval coverage and rejection

+ if(POP.EFFECT){

+ inference<-get.Inference.tdist(truth=truth, psi.hat=est$psi.hat, alpha=alpha,

+ df=df, var= var.IC$var.PATE)

+ } else{

+ inference<-get.Inference.tdist(truth=truth, psi.hat=est$psi.hat, alpha=alpha,

+ df=df, var= var.IC$var.SATE)

+ }

+

+ #------------------------------------

+ # IF GETTING A CROSS-VALIDATED ESTIMATE OF THE INFLUENCE CURVE

+ # (Section 6 of manuscript)

+ #-------------------------------------

+ if(Do.CV.Inference){

+

+ IC.CV<- get.CV.inference(data=data, QAdj=QAdj, family=family, gAdj=gAdj)

+ var.IC.CV<- get.Variance.IC(resid=IC.CV$resid, DY=IC.CV$DY, DW=IC.CV$DW)

+

+ if(POP.EFFECT){

+ inference.CV<- get.Inference.tdist(truth=truth, psi.hat=est$psi.hat,

+ alpha=alpha, df=df, var= var.IC.CV$var.PATE)

+ }else{

+ inference.CV<- get.Inference.tdist(truth=truth, psi.hat=est$psi.hat,

+ alpha=alpha, df=df, var= var.IC.CV$var.SATE)

+ }

+

+ } else{ # otherwise, fill in the CV-inference with NA

+ inference.CV<- data.frame(var=NA, tstat=NA, cover=NA, reject=NA)

+ }

+ #------------------------------------

+

+ RETURN<- data.frame(est$psi.hat, inference, inference.CV)

+

+ colnames(RETURN)<- c('psi.hat','var','tstat','cover','reject', 'var.cv',
+ 'tstat.cv', 'cover.cv', 'reject.cv')
+ RETURN

+ }

> #---------------------------

> # do.TMLE.with.CV: runs the standard TMLE algorithm (i.e. training set= data);

> # will also fit the TMLE algorithm for Qbar*(A,W) on training set

> # and get estimates for validation set.

> #

> # input: Do.CV (whether not doing cross-validation), train (training set),

> # valid (validation set), Qadj (adjustment variable for Qbar(A,W)),
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> # family for fitting Qbar(A,W)), gAdj (adjustment variable for g(A|W))

> #

> # output: estimates of the propensity score (exposure mechanism),

> # clever covariate (H.AW), targeted predictions on obs exposure, txt & control,

> # and point estimate (if not doing cross-validation)

> #----------------------

>

> do.TMLE.with.CV<- function(Do.CV=F, train, valid, QAdj, family, gAdj=NULL){

+

+ # do entire TMLE algorithm on the training set

+ train.temp<- train[, c(QAdj, 'A', 'Y')]
+

+ # STEP 1: INITIAL ESTIMATION

+ # fit the working model for Qbar(A,W) on the training set

+ glm.out<- glm( Y~., family=family, data=train.temp )

+

+ # get the predicted outcomes under obs exp, txt and control

+ X1<- X0<- train

+ X1$A<-1; X0$A<- 0

+

+ QbarAW.train <- predict(glm.out, newdata=train, type='response')
+ Qbar1W.train<- predict(glm.out, newdata=X1, type='response')
+ Qbar0W.train<- predict(glm.out, newdata=X0, type='response')
+

+ #-------------------

+ # STEP 2: TARGETING

+ # estimate the propensity score (i.e. the exposure mechanism)

+

+ if( is.null(gAdj) ){

+ # if adj var for g(A|W) is null, then g(A|W)=0.5

+ pscore.train <- rep(0.5, nrow(train) )

+ } else if (gAdj=='U'){
+ # if adj var for g(A|W) is 'U' (unadj), then g(A|W)=0.5

+ pscore.train <- rep(0.5, nrow(train) )

+ } else{

+ # otherwise fit the working model for the pscore on training set

+ train.temp<- train[, c(gAdj, 'A')]
+ p.out<- glm( A~., family='binomial', data=train.temp)

+ pscore.train <- predict(p.out, newdata=train, type="response")

+ }

+

+ # calculate the clever covariate

+ H.AW.train<- train$A/pscore.train - (1-train$A)/(1-pscore.train)

+

+ # update the initial estimator of the outcome regression

+

+ if(family!='binomial'){
+ # if cont. and unbounded outcome, linear update
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+ linUpdate<- glm(train$Y ~ -1 +offset( QbarAW.train) + H.AW.train,

+ family="gaussian")

+ eps<-linUpdate$coef

+

+ # updated QbarAW estimates for training set.

+ QbarAW.train<- QbarAW.train + eps*H.AW.train

+ Qbar1W.train<- Qbar1W.train + eps/pscore.train

+ Qbar0W.train<- Qbar0W.train - eps/(1-pscore.train)

+

+ }else { # if binary or bounded outcome in [0,1], logistic update

+

+ logitUpdate<- suppressWarnings( glm(train$Y ~ -1 +offset(qlogis(QbarAW.train))

+ + H.AW.train, family="binomial"))

+ eps<-logitUpdate$coef

+

+ # updated QbarAW estimates for training set.

+ QbarAW.train<- plogis( qlogis(QbarAW.train) + eps*H.AW.train)

+ Qbar1W.train<- plogis( qlogis(Qbar1W.train) + eps/pscore.train)

+ Qbar0W.train<- plogis( qlogis(Qbar0W.train) - eps/(1-pscore.train))

+ }

+

+ #-----------------------

+ # if not doing cross-validation (i.e. if running the std TMLE algorithm)

+ if(!Do.CV){

+

+ # STEP 3: PARAMETER ESTIMATION

+ psi.hat<- mean(Qbar1W.train- Qbar0W.train)

+

+ RETURN<- list(pscore=pscore.train, H.AW=H.AW.train, QbarAW=QbarAW.train,

+ Qbar1W=Qbar1W.train, Qbar0W=Qbar0W.train, psi.hat=psi.hat)

+

+ } else{

+ # If the goal is to obtain a Cross-validated variance estimator, get the

+ # initial estimates and updates for the validation set

+

+ # get initial estimates based on the fit of Qbar(A,W) from the training set

+ V1<- V0<- valid

+ V1$A= 1; V0$A=0

+

+ QbarAW.valid<- predict(glm.out, newdata=valid, type='response')
+ Qbar1W.valid<- predict(glm.out, newdata=V1, type='response')
+ Qbar0W.valid<- predict(glm.out, newdata=V0, type='response')
+

+ # get estimates of the propensity score based on the fit of g(A|W)

+ # from the training set

+ if( is.null(gAdj)){

+ pscore.valid<- rep(0.5, nrow(valid))

+ } else if (gAdj=='U'){
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+ pscore.valid<- rep(0.5, nrow(valid))

+ } else{

+ pscore.valid<- predict(p.out, newdata=valid, type='response')
+ }

+

+ # calculate the clever covariate

+ H.AW.valid<- valid$A/pscore.valid - (1-valid$A)/(1-pscore.valid)

+

+ # update

+ if(family!='binomial'){
+ QbarAW.valid<- QbarAW.valid + eps*H.AW.valid

+ Qbar1W.valid<- Qbar1W.valid + eps/pscore.valid

+ Qbar0W.valid<- Qbar0W.valid - eps/(1-pscore.valid)

+ } else {

+ QbarAW.valid<- plogis( qlogis(QbarAW.valid) + eps*H.AW.valid)

+ Qbar1W.valid<- plogis( qlogis(Qbar1W.valid) + eps/pscore.valid)

+ Qbar0W.valid<- plogis( qlogis(Qbar0W.valid) - eps/(1-pscore.valid))

+ }

+

+ RETURN<- list(pscore=pscore.valid, H.AW=H.AW.valid, QbarAW=QbarAW.valid,

+ Qbar1W=Qbar1W.valid, Qbar0W=Qbar0W.valid)

+ }

+ RETURN

+ }

> #------------

> # get.Variance.IC: function to get the variance based on the estimated influence

> # curve (IC)

> # input: residuals + estimates of the DY and DW components of the IC

> # output: variance for PATE or SATE depending on the study design

> #-------------

>

> get.Variance.IC<- function(resid, DY, DW){

+

+ # without pair-matching

+ if(!PAIRED){

+ var.PATE<- (var(DY + DW) )/n # (Eq. 3)

+ var.SATE<- var(DY)/n # (Eq. 4)

+

+ } else { # if pair-matched trial

+

+ # note data are organized such that first units in matched-pairs are

+ # (1:n.pairs) and second units are (n.pairs+1 to n)

+

+ # var for the PATE approx with 1/n x (sample var if non-paired IC - 2

+ # covariance of the residuals) (section 4)

+ rho <- cov(resid[1:n.pairs], resid[(n.pairs+1):n]) #(eq. 5)

+ var.PATE<- (var(DY + DW) - 2*rho)/n

+
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+ # DbarY= 1/2 sum_{i in pairs} HAW_i*(Y_i -Qbar_i)

+ # Serves as the upper bound on the IC for SATE

+ DY.paired <- .5*(DY[1:n.pairs] + DY[(n.pairs+1):n]) #(eq. 6)

+ var.SATE<- var(DY.paired)/n.pairs

+ }

+

+ data.frame(var.PATE, var.SATE)

+ }

> #---------------------

> # get.CV.inference: function to get an CV-estimate of the IC

> # also used by the CV-selector to choose the candidate with the smallest CV-risk

> # (i.e. smallest estimated variance based on CV-estimate of the IC)

> #

> # input: data, QAdj (adjustment variable for Qbar(A,W) ), family for Qbar(A,W),

> # gAdj (adjustment variable for g(A|W) )

> #

> # output: cross-validated estimates of the clever covariate H.AW,

> # the residuals (Y-Qbar*(A,W)), DY component of the IC and

> # DW component of the IC

> #--------------

>

> get.CV.inference<- function(data, QAdj, family, gAdj){

+

+ H.AW<- QbarAW <- Qbar1W <- Qbar0W<- rep(NA,n)

+

+ # run the TMLE algorithm using data in the training set

+ # and obtain estimates of the clever covariate H.AW and targeted predictions

+ # for observations Qbar*(A,W), Qbar*(1,W), Qbar*(0,W) in the validation set.

+ for(i in 1: nFolds) {

+

+ valid <- data[fold==i, ]

+ train <- data[fold!=i,]

+

+ temp<- do.TMLE.with.CV(Do.CV=T, train=train, valid=valid, QAdj=QAdj,

+ family=family, gAdj=gAdj)

+

+ H.AW[fold==i]<- temp$H.AW

+ QbarAW[fold==i]<- temp$QbarAW

+ Qbar1W[fold==i]<- temp$Qbar1W

+ Qbar0W[fold==i]<- temp$Qbar0W

+ }

+

+ # calculate the relevant components of the influence curve (and the residuals)

+ psi.hat<- mean(Qbar1W - Qbar0W)

+

+ resid <- data$Y - QbarAW

+ DY <- H.AW*(data$Y - QbarAW)

+ DW <- Qbar1W - Qbar0W- psi.hat
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+

+ data.frame(H.AW, resid, DY, DW)

+ }

> #----------------------------

> # get.Inference.tdist: get inference assuming a Student's t-distribution

> #

> # input: truth (true value of psi), psi.hat (point estimate), alpha

> # (signifance level), df (degrees of freedom) var (variance estimate)

> #

> # output: variance, tstat, coverage, reject null.

> #--------

>

> get.Inference.tdist<- function(truth, psi.hat, alpha, df, var){

+

+ # cutoff based on t-dist for testing and CI

+ cutoff <- qt(alpha/2, df=df, lower.tail=F)

+

+ # standard error (square root of the variance)

+ se<- sqrt(var)

+

+ # confidence interval coverage

+ cover<- ( (psi.hat - cutoff*se) <= truth & truth <= (psi.hat + cutoff*se) )

+

+ # test statistic and pvalue

+ tstat <- psi.hat/se

+ reject<- 2*pt(abs(tstat), df=df, lower.tail=F) < alpha

+

+ data.frame(var, tstat, cover, reject)

+ }

> #--------------------------------------------

> # CV.selector: function to select the candidate working model (TMLE)

> # that minimizes the estimated variance for Step 1 Initial estimation

> # and in Step 2 Targeting.

> #

> # input: data, family for Qbar(A,W), forQ (CV selection for Qbar(A,W) or g(A|W))

> # QAdj (a priori spec adj variable for Qbar(A,W)),

> # gAdj (a priori spec adj variable for g(A|W))

> #

> # output: candidate adjustment variable with smallest CV-risk

> #-------------------------------------------

>

> CV.selector<- function(data, family, forQ, QAdj, gAdj){

+

+ # number of potential TMLEs correspond to num of possible adj variables

+ num.tmles <- length(ADJ.SET)

+ CV.risk <- rep(NA, num.tmles)

+

+ # since the folds are initialized before running any algorithms,
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+ # we are going to loop through the candidate estimators

+ for(k in 1:num.tmles){

+

+ if(forQ){

+ # adaptive pre-specified approach for Step 1: Initial Estimation

+ # (Sec. 3.1 for non-matched trial and Sec. 4.1 for matched trial)

+ IC.temp<- get.CV.inference(data=data, QAdj=ADJ.SET[k], family=family,

+ gAdj=NULL)

+

+ } else{

+ # adaptive pre-specified approach for Step 2: Targeting (based on selected

+ # adjustment variable for Qbar(A,W)). (Sec 5.1)

+ IC.temp<- get.CV.inference(data=data, QAdj=QAdj, family=family,

+ gAdj=ADJ.SET[k])

+

+ }

+

+ # CALCULATE THE CV-RISK AS THE CV-VARIANCE ESTIMATE

+ # APPR. FOR STUDY DESIGN + TARGET PARAMETER

+

+ if(!PAIRED){

+ if(POP.EFFECT){

+ CV.risk[k]<- var(IC.temp$DY +IC.temp$DW)

+ }else{

+ CV.risk[k]<- var(IC.temp$DY)

+ }

+

+ }else{

+ if(POP.EFFECT){

+ rho.temp<- 2*cov(IC.temp$resid[1:n.pairs], IC.temp$resid[(n.pairs+1):n])

+ CV.risk[k]<- var(IC.temp$DY +IC.temp$DW) - rho.temp

+ } else{

+ CV.risk[k]<- var(.5*(IC.temp$DY[1:n.pairs] + IC.temp$DY[(n.pairs+1):n]))

+ }

+ }

+ }

+

+ # SELECT THE ADJUSTMENT VARIABLE RESULTING IN THE SMALLEST

+ # CV-RISK ESTIMATE

+ ADJ.SET[ which.min(CV.risk)]

+ }

> ######################################

> # functions to generate the simulated data (Simulation Study 1)

> # and calculate the true value of the Population Average Treatment Effect (PATE)

> #####################################

>

> get.Data<- function(n){

+
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+ # 9 baseline covariates with specified correlation structure

+ s<- 1

+ Sigma<- matrix(0.5*s*s, nrow=3, ncol=3)

+ diag(Sigma)<- s^2

+

+ W1<- mvrnorm(n, rep(0,3), Sigma)

+ W2<- mvrnorm(n, rep(0,3), Sigma)

+ W3<- cbind(rnorm(n,0,s), rnorm(n,0,s), rnorm(n,0,s))

+

+ # unmeasured factor impacting the outcome

+ UY<- rnorm(n,0,1)

+

+ # calculate the counterfactuals

+ Y0<- get.Y(W1=W1, W2=W2, W3=W3, UY=UY, A=0)

+ Y1<- get.Y(W1=W1, W2=W2, W3=W3, UY=UY, A=1)

+

+ # add-on a dummy variable and return

+ data.frame(U=rep(1,n), W=cbind(W1,W2,W3), Y1=Y1, Y0=Y0)

+ }

> get.Y<- function(W1, W2, W3, UY, A){

+ 0.4*A+.25*W1[,1]+.25*W1[,2]+.25*W2[,1]+.25*W2[,2]+.25*UY+.25*A*W1[,1]+.25*A*UY

+ }

> # calculate the population average treatment effect

> # as average diff in counterfactuals over a pop of 900,000

> get.PATE<- function(N=900000){

+

+ X<- get.Data(n=N)

+ mean(X$Y1 - X$Y0)

+ }

> #########################

> #-------------------------------------

> #########################

>

> library('nbpMatching')
> library('MASS')
> set.seed(1)

> # Specify sample size

> n<<- 40

> n.pairs<<- n/2

> # Specify the target of inference as Population ATE or Sample ATE

> POP.EFFECT<<- F

> # Specify the study design

> MATCHING <<- T

> # Specify the potential adjustment set (i.e. the library)

> ADJ.SET<<- c('U',paste('W', 1:9, sep='.'))
> FAMILY<<- 'gaussian' # for the conditional mean outcome Qbar(A,W)

> # Our library for initial estimation of Qbar(A,W) consists of linear working

> # regression models with a main term for the exposure and one candidate
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> # adjustment variable: e.g. Qbar(A,W) = beta0 + beta1*A + beta2*W.1

>

> # Our library for collaborative estimation of g(A|W) consists of logistic working

> # regression models with a main term for one candidate adjustment variable

> # e.g. logit[g(A|W)]= beta0 + beta1*W.1

>

>

> #---------------------------------

> # Set up the folds for the cross-validation scheme

> if(!MATCHING){ # if it's a non-matched trial

+

+ PAIRED<<- F

+ # do leave-one-out cross-validation

+ fold<- 1:n

+ nFolds<<- n

+

+ } else{

+ PAIRED<<- T

+

+ # The paired data structure is organized such that the first observation in

+ # pair j is on row j, while the second obs. in pair j is on row (j+n.pairs)

+ fold<<- c( 1:n.pairs, 1:n.pairs)

+ nFolds<<- n.pairs

+

+ # also specify the matching set (covariates W1...W6)

+ matchOn<<- c('W.1', 'W.2', 'W.3', 'W.4', 'W.5', 'W.6')
+ }

> #---------------------------------

>

>

> simulate.Data.and.Run()

[1] "Note: Distances scaled by 0.01 to ensure all data can be handled"

$PATE

[1] 0.3996057

$SATE

[1] 0.3894403

$unadj

psi.hat var tstat cover reject var.cv tstat.cv cover.cv reject.cv

1 0.3767031 0.03244586 2.091315 TRUE FALSE NA NA NA NA

$mle.W9

psi.hat var tstat cover reject var.cv tstat.cv cover.cv reject.cv

1 0.3716297 0.03309701 2.042754 TRUE FALSE NA NA NA NA

$tmle
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psi.hat var tstat cover reject var.cv tstat.cv cover.cv

1 0.4149864 0.02295106 2.739255 TRUE TRUE 0.02628416 2.559686 TRUE

reject.cv

1 TRUE

$ctmle

psi.hat var tstat cover reject var.cv tstat.cv cover.cv

1 0.3696772 0.02240197 2.469901 TRUE TRUE 0.02621188 2.283356 TRUE

reject.cv

1 TRUE

$CV.select

select.Q select.G

1 W.5 W.1

>

>
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