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Drawing Valid Targeted Inference When
Covariate-adjusted Response-adaptive RCT
Meets Data-adaptive Loss-based Estimation,

With An Application To The LASSO

Wenjing Zheng, Antoine Chambaz, and Mark J. van der Laan

Abstract

Adaptive clinical trial design methods have garnered growing attention in the re-
cent years, in large part due to their greater flexibility over their traditional coun-
terparts. One such design is the so-called covariate-adjusted, response-adaptive
(CARA) randomized controlled trial (RCT). In a CARA RCT, the treatment ran-
domization schemes are allowed to depend on the patient’s pre-treatment covari-
ates, and the investigators have the opportunity to adjust these schemes during the
course of the trial based on accruing information (including previous responses),
in order to meet a pre-specified optimality criterion, while preserving the validity
of the trial in learning its primary study parameter.

In this article, we propose a new group-sequential CARA RCT design and cor-
responding analytical procedure that admits the use of flexible data-adaptive tech-
niques. The proposed design framework can target general adaption optimality
criteria that may not have a closed-form solution, thanks to a loss- based approach
in defining and estimating the unknown optimal randomization scheme. Both
in predicting the conditional response and in constructing the treatment random-
ization schemes, this framework uses loss-based data-adaptive estimation over
general classes of functions (which may change with sample size). Since the ran-
domization adaptation is response-adaptive, this innovative flexibility potentially
translates into more effective adaptation towards the optimality criterion. To tar-
get the primary study parameter, the proposed analytical method provides robust
inference of the parameter, despite arbitrarily mis-specified response models, un-
der the most general settings.



Specifically, we establish that, under appropriate entropy conditions on the classes
of functions, the resulting sequence of randomization schemes converges to a fixed
scheme, and the proposed treatment effect estimator is consistent (even under a
mis-specified response model), asymptotically Gaussian, and gives rise to valid
confidence intervals of given asymptotic levels. Moreover, the limiting random-
ization scheme coincides with the unknown optimal randomization scheme when,
simultaneously, the response model is correctly specified and the optimal scheme
belongs to the limit of the user-supplied classes of randomization schemes. We il-
lustrate the applicability of these general theoretical results with a LASSO- based
CARA RCT. In this example, both the response model and the optimal treatment
randomization are estimated using a sequence of LASSO logistic models that may
increase with sample size. It follows immediately from our general theorems that
this LASSO-based CARA RCT converges to a fixed design and yields consistent
and asymptotically Gaussian effect estimates, under minimal conditions on the
smoothness of the basis functions in the LASSO logistic models. We exemplify
the proposed methods with a simulation study.



1 Introduction

1.1 Covariate-adjusted, response-adaptive randomized clinical trials

Adaptive clinical trial design methods have garnered growing attention in recent years. In a fixed trial design,
all key aspects of the trials are set before the start of the data collection, usually based on assumptions that
are yet unsure at the design stage. By contrast, an adaptive trial design allows pre-specified modifications
of the ongoing trial based on accruing data, while preserving the validity and integrity of the trial. This
flexibility potentially translates into more tailored studies. The study could be more efficient, e.g., have
shorter duration, or involve fewer subjects. The study could have greater chance to answer the clinical
questions of interest, e.g., detect a treatment effect if one exists, or gather broader dose-response information.

Once they have defined the primary study objective of the trial (e.g., testing the effect of a treatment), the
investigators may wish to accommodate additional design objectives (e.g., minimizing sample size or exposure
of patients to inferior treatment) without compromising the trial. To do this, they may use an adaptive
randomization trial design. We focus here on the study of the so-called covariate-adjusted response-adaptive
(CARA) randomized controlled trials (RCTs). In a CARA RCT, the randomization schemes are allowed
to depend on the patient’s pre-treatment covariates, and the investigators can adjust the randomization
schemes during the course of the trial based on accruing information, including previous responses, in order
to meet the pre-specified design objectives. Such adjustments take place at interim time points given by
sequential inclusion of blocks of c patients, where c ≥ 1 is a pre-specified integer. We consider the case of
c = 1 for simplicity of exposition, though the discussions generalize to any c > 1.

The trial protocol pre-specifies the observed data structure, scientific parameters of interest (the primary
study objective), analysis methods, and a criterion characterizing an optimal randomization scheme (the
design objective). Here, baseline covariates and a primary response of interest are measured on each patient.
The primary study objective is the marginal treatment effect. The design objective is captured by an
optimality criterion that is a function of the unknown conditional response.

Contrary to a fixed design RCT, a CARA RCT produces non-independent and non-identically distributed
observations, therein lie the subtleties in its theoretical study. Traditionally, covariate-adjusted analysis of a
fixed design RCT is carried out using a parametric model for the conditional response (or distribution) given
treatment and covariates. Under correct specification, the maximum likelihood estimator for this model is
consistent and asymptotically Gaussian. The extension of this non-robust inference to CARA RCTs has
been established and discussed in (Zhang, Hu, Cheung, and Chan, 2007) and (Hu and Rosenberger, 2006). A
recent development in the analysis of fixed design RCTs is the use of doubly robust methods like the targeted
minimum loss estimation (TMLE, van der Laan and Rubin 2006) to obtain consistent, asymptotically
Gaussian estimators under arbitrarily mis-specified models (Moore and van der Laan, 2009, Rosenblum,
2011). A first extension of this robust inference to CARA RCTs has been proposed by Chambaz and van der
Laan (2013). They showed that, when the treatment assignment is conditioned only on a discrete summary
measure of the covariates, it is possible to derive a consistent and asymptotically Gaussian estimator of the
study parameter which is robust to mis-specification of an arbitrary parametric response model.

Despite the above developments, several gaps remain to be addressed to fully realize the promise of
CARA RCTs. We focus on two of them. Firstly, because the robust inference provided by Chambaz and
van der Laan (2013) relies on assigning treatment based on discrete covariate summaries, its application is
perhaps limited in real-life RCTs where response to treatment may be correlated with a large number of a
patient’s baseline characteristics, some of which being continuous. Secondly, even though under robust in-
ference, the choice of the response model does not compromise consistent estimation of the study parameter,
it may still affect the estimation of the optimal randomization scheme. Specifically, since the randomization
scheme is response-adaptive, a more data-adaptive estimator of the conditional response model can more
effectively steer the randomization schemes towards the unknown optimal randomization scheme. Moreover,
since a patient’s primary response is often correlated with many individual characteristics, greater latitude
in adjusting for these baseline covariates, in both treatment assignment and conditional response estima-
tion, allows the investigators to better account for heterogeneity in the patients population. Traditional
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parametric regression techniques are often too restrictive in such a high-dimensional scenario. While the use
of data-adaptive techniques is very common in the independent and identically distributed (i.i.d.) context,
its applicability in an adaptive RCT remains rather uncharted.

In this article, we aim to bridge the two aforementioned gaps in the study of CARA RCTs. Firstly,
we achieve robust inference of the study parameter without restrictions on the covariate measures used
in the treatment randomization. Secondly, we adopt the use of loss-based data-adaptive estimation over
general classes of functions (which may change with sample size) in constructing the treatment randomization
schemes and in predicting the unknown conditional response. This allows one to target general randomization
optimality criteria that may not have a closed form solution, and it may potentially improve the estimation
of the unknown optimal randomization schemes. We establish that, under appropriate entropy conditions on
the classes of functions, the resulting sequence of randomization schemes converges to a fixed randomization
scheme, and the proposed estimator is consistent (even under a mis-specified response model), asymptotically
Gaussian, and gives rise to valid confidence intervals of given asymptotic levels. Moreover, the limiting
randomization scheme coincides with the unknown optimal randomization scheme when, simultaneously,
the response model is correctly specified and the optimal randomization scheme belongs to the limit of
the user-supplied classes of randomization schemes. Our theoretical results benefit from recent advances in
maximal inequalities for martingales by van Handel (2011).

For concreteness, our parameter of interest here is the marginal risk difference, ψ0, and our design
objective is to maximize the efficiency of the study (i.e., to reach a valid result using as few blocks of patients
as possible). As we shall see, the optimal randomization scheme is, in this case, the so-called covariate-
adjusted Neyman design, which minimizes the Cramér-Rao lower bound on the asymptotic variances of a
large class of estimators of ψ0. We emphasize that the results presented here are not limited to the marginal
risk difference or the Neyman design, and can be easily modified to other study objectives/effect measures
and other design objectives/optimality criteria.

To illustrate the proposed framework, we consider the LASSO to estimate the conditional response given
treatment and baseline covariates and to target the unknown optimal randomization scheme. This example
essentially encompasses the parametric approach in (Chambaz and van der Laan, 2013) as a special case.
The asymptotic results ensue under minimal conditions on the smoothness of the LASSO basis functions.
The performance of the procedure is evaluated in a simulation study.

In the next section, we give a bird’s eye view of the literature on CARA RCTs and put our contribution
in context.

1.2 Literature review

Adaptive randomization has a long history that can be traced back to the 1930s. We refer to (Rosenberger,
1996, Rosenberger, Sverdlov, and Hu, 2012), (Hu and Rosenberger, 2006, Section 1.2) and (Jennison and
Turnbull, 2000, Section 17.4) for a comprehensive historical perspective. Many articles are devoted to the
study of response-adaptive randomizations, which select current treatment probabilities based on responses
of previous patients (but not on the covariates of the current patients). We summarize some representative
works below, but refer to (Hu and Rosenberger, 2006, Chambaz and van der Laan, 2011b, Zhang and
Rosenberger, 2012, Rosenberger et al., 2012) for a bibliography on that topic. The first methods are based
on urn-models (e.g. Wei and Durham (1978), Ivanova (2003)). There, treatment allocation is represented
by drawing balls of different colors from an urn, and the urn composition is updated based on accruing
responses, with the ethical goal of assigning most patients to the superior treatment arm. Since there is
no formal criterion governing how skewed the treatment allocation should be, significant loss of power can
arise when the effect size between treatment arms is large (Rosenberger and Hu, 2004). A formal “optimal
allocation approach” was proposed by Hu and Rosenberger (2003). There, an optimal allocation is defined
as a solution to a possibly constrained optimization problem, such as minimizing sample size (yielding the
so-called Neyman allocation), or minimizing failure while preserving power. This optimal allocation is a
function of unknown parameters of the conditional response, which are estimated using a parametric model
based on available responses. Consistency and asymptotic normality of the maximum likelihood estimator
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for this model were established in Hu and Rosenberger (2006).

In a heterogeneous population where response is often correlated with the patient’s individual character-
istics, it is sensible to take into account covariates in treatment assignment. CARA randomization extends
response-adaptive randomization to tackle heterogeneity by dynamically calculating the allocation probabil-
ities based on previous responses and current and past values of certain covariates. Compared to the broader
literature on response-adaptive randomization, the advances in CARA randomization are relatively recent,
but growing steadily. Among the first approaches, (Rosenberger, Vidyashankar, and Agarwal, 2001, Bandy-
opadhyay and Biswas, 2001) considered allocations that are proportional to the covariate-adjusted treatment
difference, which is estimated using generalized linear models for the conditional response. Though these
procedures are not defined based on formal optimality criteria, their general goal is to allocate more patients
to their corresponding superior treatment arm. Atkinson and Biswas (2005) presented a biased-coin design
with skewed allocation, which is determined by sequentially maximizing a function that combines the vari-
ance of the parameter estimator, based on a Gaussian linear model for the conditional response, and the
conditional treatment effect given covariates. Up till here, very little work had been devoted to asymptotic
properties of CARA designs. Subsequently, Zhang et al. (2007) established the asymptotic theory for CARA
designs converging to a given target covariate-adjusted allocation function when the conditional responses
follow a parametric model. Zhang and Hu (2009) proposed a covariate-adjusted doubly-adaptive biased coin
design whose asymptotic variance achieves the efficiency bound. In these optimal allocation approaches, the
challenge remains that the explicit form of the target covariate-adjusted allocation function is not known.
To overcome this, it has often been derived as a covariate-adjusted version of the optimal allocation from
a framework with no covariates (Rosenberger et al., 2012). Chang and Park (2013) proposed a sequential
estimation of CARA designs under generalized linear models for the conditional response. This procedure
allocates treatment based on the patients’ baseline covariates, accruing information and sequential estimates
of the treatment effect. It uses a stopping rule that depends on the observed Fisher information. With re-
gard to hypotheses testing, Shao, Yu, and Zhong (2010), Shao and Yu (2013) provided asymptotic results for
valid tests under generalized linear models for the conditional responses in the context of covariate-adaptive
randomization. Most recently, progress has also been made in CARA designs in the longitudinal settings,
see for example (Biswas, Bhattacharya, and Park, 2014, Huang, Liu, and Hu, 2013, Sverdlov, Rosenberger,
and Ryeznik, 2013).

The above contributions have established the validity of statistical inference for CARA RCTs under a
correctly specified model, thus extending many of the classical non-robust inference methods from the fixed
design setting into the CARA setting. Doubly robust approaches like TMLE allow to go beyond correctly
specified models by leveraging the known treatment randomization to provide the necessary bias reduction
over the mis-specified response model. Moore and van der Laan (2009), Rosenblum (2011) address the fixed
design setting and Chambaz and van der Laan (2013) provide the first extension to the adaptive design
setting.

Finiteness conditions were at the core of (Zhang et al., 2007) (correctly specified parametric response
model) and (Chambaz and van der Laan, 2013) (arbitrary parametric response model and treatment as-
signment based on discrete covariates). They were instrumental in the asymptotic study based on Taylor
approximations. Recent advances by van Handel (2011) on maximal deviation bounds for martingales allow
us to apply more general empirical processes techniques, thus opening the door for the use of data-adaptive
estimators to target the optimal randomization scheme while preserving valid inference. More specifically,
we extend the robust inference framework of Chambaz and van der Laan (2013) to allow for the use of gen-
eral classes of conditional response estimators and randomization schemes. Moreover, we adopt a loss-based
approach to defining and targeting the optimal randomization scheme, thereby also extending applicability
of CARA RCT to optimal randomization criteria that may not have a closed form solution.

1.3 Organization of the article

The remainder of this article is organized as follows. Section 2 presents the statistical challenges, and
describes the proposed targeted, adaptive sampling scheme and inference method to address them. The
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section also states our main assumptions and principal result. Section 3 provides contextual comments for
content of Section 2. Section 4 presents the building blocks of the main result, therefore shedding light on
the inner mechanism of the procedure. Section 5 illustrates the procedure using the LASSO methodology
both to target the optimal randomization scheme and to estimate the conditional response given baseline
covariates and treatment. The performance of the LASSO-based CARA RCT is assessed in a simulation
study in Section 6. The article closes on a discussion in Section 7. All proofs and some useful, technical
results are gathered in the appendix.

2 Targeted inference based on data adaptively drawn from a CARA
RCT using loss-based estimation

At sample size n, we will have observed the ordered vector On ≡ (O1, . . . , On), with convention O0 ≡ ∅. For
every 1 ≤ i ≤ n, the data structure Oi writes as Oi ≡ (Wi, Ai, Yi). Here, Wi ∈ W consists of the baseline
covariates (some of which may be continuous) of the ith patient, Ai ∈ A ≡ {0, 1} is the binary treatment of
interest assigned to her, and Yi ∈ Y is her primary response of interest. We assume that the outcome space
O ≡ W ×A×Y is bounded. Without loss of generality, we may then assume that Y ≡ (0, 1), i.e., that the
responses are between and bounded away from 0 and 1.

Section 2.1 presents the target statistical parameter and optimal randomization scheme. It also lays out
the foundations to describe the proposed CARA RCT. The description is completed in Sections 2.3 and 2.4,
where we present our adaptive sampling scheme and targeted minimum loss estimator. Section 2.6 states
our main assumptions and result.

2.1 Likelihood, model, statistical parameter, optimal randomization scheme

Let µW be a measure on W equipped with a σ-field, µA = Dirac(0) + Dirac(1) be a measure on A equipped
with its σ-field, and µY be the Lebesgue measure on Y equipped with the Borel σ-field. Define µ ≡
µW ⊗µA⊗µY , a measure on O equipped with the product of the above σ-fields. In an RCT, the unknown,
true likelihood of On with respect to (wrt) µ⊗n is given by the following factorization of the density of On

wrt µ⊗n:

Lf0,gn(On) ≡
n∏
i=1

fW,0(Wi)× (Aigi(1|Wi) + (1−Ai)gi(0|Wi))× fY,0(Yi|Ai,Wi)

=
n∏
i=1

fW,0(Wi)× gi(Ai|Wi)× fY,0(Yi|Ai,Wi), (1)

where (i) w 7→ fW,0(w) is the density wrt µW of a true, unknown law QW,0 on W (that we assume being
dominated by µW ), (ii) {y 7→ fY,0(y|a,w) : (a,w) ∈ A × W} is the collection of the conditional densities
y 7→ fY,0(y|a,w) wrt µY of true, unknown laws on Y indexed by (a,w) (that we assume being all dominated
by µY ), (iii) gi(1|Wi) is the known (given by user) conditional probability that Ai = 1 given Wi, and
(iv) gn ≡ (g1, . . . , gn), the ordered vector of the n first randomization schemes. One reads in (1) (i)
that W1, . . . ,Wn are independently sampled from QW,0, (ii) that Y1, . . . , Yn are conditionally sampled from
fY,0(·|A1,W1)µY , . . . , fY,0(·|An,Wn)µY , respectively, and (iii) that each Ai is drawn conditionally on Wi from
the Bernoulli distribution with known parameter gi(1|Wi).

Let F be the semiparametric collection of all elements of the form f = (fW , fY (·|a,w), (a,w) ∈ A ×W)
where fW is a density wrt µW and each fY (·|a,w) is a density wrt µY . In particular, we define f0 ≡
(fW,0, fY,0(·|a,w), (a,w) ∈ A ×W) ∈ F. In light of (1) define, for every f ∈ F, Lf ,gn(On) ≡

∏n
i=1 fW (Wi)×

gi(Ai|Wi) × fY (Yi|Ai,Wi). The set {Lf ,gn : f ∈ F} is a semiparametric model for the likelihood of On. It
contains the true, unknown likelihood Lf0,gn .
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For the sake of illustration, we choose the marginal treatment effect on an additive scale as our parameter
of interest. Thus, let Υ : F → [−1, 1] be the mapping such that, for every f = (fW , fY (·|a,w), (a,w) ∈ A×W),

Υ(f) =

∫
(QY,f (1, w)−QY,f (0, w))fW (w)dµW , (2)

where QY,f (a,w) =
∫
yfY (y|a,w)dµY is the mean of fY (·|a,w)µY . The true marginal treatment effect on an

additive scale is ψ0 ≡ Υ(f0). Of particular interest in medical, epidemiological and social sciences research,
it can be interpreted causally under assumptions on the data-generating process (Pearl, 2000).

We have not specified yet what is precisely the sequence of randomization schemes gn ≡ (g1, . . . , gn). Our
CARA sampling scheme “targets” a randomization scheme g0 which minimizes a user-supplied optimality
criterion. By targeting g0 we mean estimating g0 based on past observations, and relying on the resulting
estimator to collect the next block of data, as seen in (1). For the sake of illustration, we consider the case
that g0 is the following minimizer

g0 ≡ arg min
g

EPQ0,g

(
(Y −QY,f0(A,W ))2

g2(A|W )

)
(3)

across all randomization schemes g. We emphasize that the above definition of g0 involves the unknown f0,
so it is unknown too. We will comment on (3) and motivate our interest in g0 in Section 3. As we shall
see, g0 minimizes a generalized Cramér-Rao lower bound for ψ0. Known in the literature as the Neyman
design (Hu and Rosenberger, 2006), g0 actually has a closed-form expression as a function of f0. We do not
use this closed-form expression in order to illustrate the generality of our framework which allows to target
any randomization scheme defined as a minimizer of an optimality criterion.

2.2 Notation

Let O ≡ (W,A, Y ) be a generic data-structure. Every distribution of O consists of two components: on
the one hand, the marginal distribution of W and the conditional distribution of Y given (A,W ), which
correspond to a f ∈ F; on the other hand, the conditional distribution of A given W , or randomization
scheme. To reflect this dichotomy, we denote the distribution of O as PQ,g, where Q equals the couple
formed by the marginal distribution of W and the conditional distribution of Y given (A,W ), and g equals
the randomization scheme. We denote Q0 the true couple Q in our population of interest, which corresponds
to f0 and is unknown to us. For a given Q, we denote QW the related marginal distribution of W and QY
the related conditional expectation of Y given (A,W ). If Q = Q0, then QW and QY are denoted QW,0 and
QY,0, respectively.

We denote G and QY the set of all randomization schemes and the set of all conditional expectations of
Y given (A,W ), respectively. Thus, for any Q and g, PQ0,g is the true, partially unknown distribution of O
when one relies on g, and EPQ,g(Y |A,W ) = QY (A,W ), PQ,g(A = 1|W ) = g(1|W ) = 1−g(0|W ) PQ,g-almost
surely.

With this notation, ψ0 can be rewritten

ψ0 =

∫
(QY,0(1, w)−QY,0(0, w))dQW,0(w)

and satisfies ψ0 = EPQ0,g
(QY,0(1,W )−QY,0(0,W )) whatever is g ∈ G.

2.3 Loss functions and working models

Let gb ∈ G be the balanced randomization scheme wherein each arm is assigned with probability 1/2
regardless of baseline covariates. Let gr ∈ G be a randomization scheme, bounded away from 0 and 1 by
choice, that serves as a reference. In addition, let L be a loss function for QY,0 and Q1,n be a working model
for the conditional response

Q1,n ≡ {QY,β : β ∈ Bn} ⊂ QY .
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One choice of L is the quasi negative-log-likelihood loss function Lkl. For any QY ∈ QY bounded away from
0 and 1, Lkl(QY ) satisfies

− Lkl(QY )(O) ≡ Y log(QY (A,W )) + (1− Y ) log (1−QY (A,W )) . (4)

Another interesting loss function L for QY,0 is the least-square loss function Lls, given by

Lls(QY )(O) ≡ (Y −QY (A,W ))2. (5)

Likewise, let LQY be a loss function for g0, which may depend on QY ∈ QY , and let G1,n ⊂ G be a
working model for the optimal randomization scheme. In this context, a loss function for g0 may be given,
for any QY ∈ QY , by

LQY (g)(O) ≡ (Y −QY (A,W ))2

g(A|W )
. (6)

We explain the motivation and justification for this loss function in section 3.3.

As suggested by the notation, the sets Q1,n and G1,n may depend on n. In that case, the two sequences
of sets must be non-decreasing. Moreover, the specifications must guarantee that the elements of Q1 ≡
∪n≥1Q1,n and those of G1 ≡ ∪n≥1G1,n be uniformly bounded away from 0 and 1.

2.4 Targeted adaptive sampling and inference

The estimation of g0 involves the estimation of QY,0. At each step, the current estimators of QY,0 and g0

are also used to craft a targeted estimator of ψ0.

We initialize the sampling scheme by setting g1 ≡ gb. Consider 1 < i < n. Since

g0 = arg min
g∈G

EPQ0,g

(
LQY,0(g)(O)

g(A|W )

)
and QY,0 = arg min

QY ∈Q
EPQ0,g

(L(QY )(O)),

we define

gi ∈ arg min
g∈G1,i

1

i− 1

i−1∑
j=1

LQY,βi (g)(Oj)

gj(Aj |Wj)
, (7)

where

βi ∈ arg min
β∈Bi

1

i− 1

i−1∑
j=1

L(QY,β)(Oj)
gr(Aj |Wj)

gj(Aj |Wj)
. (8)

By specifying the sequence of randomization schemes, this completes the definition of the likelihood function,
hence the characterization of our sampling scheme.

To estimate ψ0 based on On, we introduce the following one-dimensional parametric model for QY,0:

{QY,βn(ε) ≡ expit (logit(QY,βn) + εH(gn)) : ε ∈ E} , (9)

where E ⊂ R is a closed, bounded interval containing 0 in its interior and H(g)(O) ≡ (2A − 1)/g(A|W ).
The optimal fluctuation parameter is

εn ∈ arg min
ε∈E

1

n

n∑
i=1

Lkl(QY,βn(ε))(Oi)
gn(Ai|Wi)

gi(Ai|Wi)
. (10)

We set Q∗Y,βn ≡ QY,βn(εn) and define

ψ∗n ≡
1

n

n∑
i=1

Q∗Y,βn(1,Wi)−Q∗Y,βn(0,Wi). (11)
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We show in Section 4 that ψ∗n consistently estimates ψ0. We also show that
√
n/Σn(ψ∗n−ψ0) is approxi-

mately standard normally distributed, where Σn is an explicit estimator (20). This enables the construction
of confidence intervals of desired asymptotic level. As for the optimal randomization scheme g0, we show that
it is targeted indeed, in the sense that gn converges to the projection of g0 onto ∪n≥1G1,n. The assumptions
under which our results hold are typical of loss-based inference. They essentially concern the existence and
convergence of projections, as well as the complexity of our working models, expressed in terms of bracketing
numbers and integrals. In Section 5, we develop and study a specific example based on the LASSO.

2.5 Further notation

Consider a class F of real-valued functions and φ : R→ R. If φ ◦ f is well-defined for each f ∈ F , then we
note φ(F) ≡ {φ◦f : f ∈ F}. Set a semi-norm ‖ ·‖ on F and δ > 0. We denote N(δ,F , ‖ ·‖) the δ-bracketing

number of F wrt ‖ · ‖ and J(δ,F , ‖ · ‖) ≡
∫ δ

0

√
logN(ε,F , ‖ · ‖)dε the corresponding bracketing integral at

δ.

In general, given a known g ∈ G and an observation O drawn from PQ0,g, Z ≡ g(A|W ) is a deterministic
function of g and O. Note that Z should be interpreted as a weight associated with O and will be used as
such. Therefore, we can augment O with Z, i.e., substitute (O,Z) for O, while still denoting (O,Z) ∼ PQ0,g.
In particular, during the course of our trial, conditionally on Oi−1, the randomization scheme gi is known
and we can substitute (Oi, Zi) = (Oi, gi(Ai|Wi)) ∼ PQ0,gi for Oi drawn from PQ0,gi . The inverse weights
1/gi(Ai|Wi) are bounded because G1 is uniformly bounded away from 0 and 1.

The empirical distribution of On is denoted Pn. For a function f : O × [0, 1]→ Rd, we use the notation
Pnf ≡ n−1

∑n
i=1 f(Oi, Zi). Likewise, for any fixed PQ,g ∈ M, PQ,gf ≡ EPQ,g(f(O,Z)) and, for each

i = 1, . . . , n, PQ0,gif ≡ EPQ0,gi
[f(Oi, Zi)|Oi−1], PQ0,gnf ≡ n−1

∑n
i=1EPQ0,gi

[f(Oi, Zi)|Oi−1].

The supremum norm of a function f : O × [0, 1] → Rd is denoted ‖f‖∞. If d = 1 and f is mea-
surable, then the L2(PQ0,gr)-norm of f is given by ‖f‖2

2,P 2
Q0,g

r
≡ PQ0,grf

2. If f is only a function of W ,

then we denote ‖f‖2,QW,0 its L2(PQ0,gr)-norm, to emphasize that it only depends on the marginal distri-
bution QW,0. With a slight abuse of notation, if f is only a function of (A,W ), then ‖f‖22,QW,0 is the

L2(PQ0,gr)-norm of w 7→ f(1, w). In particular, for QY , Q
′
Y ∈ QY and g, g′ ∈ G, ‖QY − Q′Y ‖22,PQ0,g

r
=

EPQ0,g
r (QY (A,W )−Q′Y (A,W ))2, and ‖g − g′‖22,QW,0 = EQW,0

(
(g(1|W )− g′(1|W ))2

)
.

2.6 Asymptotics

Our main result rely on the following assumptions.

A1. The conditional distribution of Y given (A,W ) under Q0 is not degenerated.

Existence and convergence of projections.

A2. For each n ≥ 1, there exists QY,βn,0 ∈ Q1,n satisfying

PQ0,grL(QY,βn,0) = inf
QY,β∈Q1,n

PQ0,grL(QY,β).

There also exists QY,β0 ∈ Q1 such that, for all δ > 0,

PQ0,grL(QY,β0) < inf{
QY ∈Q1:‖QY −QY,β0‖2,PQ0,g

r≥δ
}PQ0,grL(QY ).

A3. For each n ≥ 1, there exists gn,0 ∈ G1,n satisfying

PQ0,grLQY,β0 (gn,0)/gr = inf
g∈G1,n

PQ0,grLQY,β0 (g)/gr. (12)
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There also exists g∗0 ∈ G1 such that, for all δ > 0,

PQ0,grLQY,β0 (g∗0)/gr < inf{
g∈G1:‖g−g∗0‖2,QW,0≥δ

}PQ0,grLQY,β0 (g)/gr. (13)

A4. Assume that QY,β0 from A2 and g∗0 from A3 exist. For each ε ∈ E , introduce

QY,β0(ε) ≡ expit (logit(QY,β0) + εH(g∗0)) , (14)

where H(g∗0)(O) ≡ (2A− 1)/g∗0(A|W ). Then, there is a unique ε0 ∈ E such that

ε0 ∈ arg min
ε∈E

PQ0,g∗0
Lkl(QY,β0(ε)). (15)

Reasoned complexity.

A5. The two entropy conditions J(1,Q1,n, ‖ · ‖2,PQ0,g
r ) = o(

√
n) and J(1, L(Q1,n), ‖ · ‖2,PQ0,g

r ) = o(
√
n)

hold.

A5*. If {δn}n≥1 is a sequence of positive numbers, then δn = o(1) implies J(δn,Q1,n, ‖ · ‖2,PQ0,g
r ) = o(1).

A6. The entropy condition J(1,G1,n, ‖ · ‖2,QW,0) = o(
√
n) holds.

A6*. If {δn}n≥1 is a sequence of positive numbers, then δn = o(1) implies J(δn,Gn‖ · ‖2,QW,0) = o(1).

Theorem 1 (Asymptotic study of the targeted CARA RCT). Assume that A2, A3, A5 and A6 are met.
Then, the targeted CARA design converges in the sense that ‖gn − g∗0‖2,QW,0 → 0 in probability as n→∞.
If, in addition, A4 holds, then the TMLE ψ∗n consistently estimates ψ0. Moreover, if A1, A5* and A6*
also hold, then

√
n/Σn(ψ∗n − ψ0) is approximately standard normally distributed, where Σn is the explicit

estimator given in (20).

The last statement in the above theorem underpins the statistical analysis of the proposed targeted
CARA RCT. In particular, denoting ξ1−α/2 the (1− α/2)-quantile of the standard normal distribution, the

interval
[
ψ∗n ± ξ1−α/2

√
Σn/n

]
is a confidence interval of asymptotic level (1− α).

3 Comments on Section 2

3.1 A closer look at the parameter of interest and the optimal randomization scheme

Central to our approach is formulating ψ0 as the value at f0 of the mapping Υ : F → [−1, 1] given by (2).
Let M denote the set of all possible distributions of O. Because we slightly changed perspective and now
think in terms of distributions PQ,g ∈ M instead of f ∈ F, it is convenient to introduce the mapping
Ψ :M→ [−1, 1] characterized by

Ψ(PQ,g) ≡
∫

(QY (1, w)−QY (0, w))dQW (w) = EPQ,g (QY (1,W )−QY (0,W )) .

Since Ψ only depends on PQ,g through Q, we will now on systematically write Ψ(Q) in place of Ψ(PQ,g) to
alleviate notation.

The mapping Ψ is pathwise differentiable. Its efficient influence curve sheds light on the asymptotic
properties of all regular and asymptotically linear estimators of ψ0 = Ψ(Q0). The latter statement is
formalized in the following lemma —we refer the reader to (Bickel, Klaassen, Ritov, and Wellner, 1998,
van der Laan and Robins, 2003, van der Vaart, 1998) for definitions and proofs.
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Lemma 1. The mapping Ψ : M → [−1, 1] is pathwise differentiable at every PQ,g ∈ M wrt the max-
imal tangent space. Its efficient influence curve at PQ,g, denoted D(PQ,g), orthogonally decomposes as
D(PQ,g)(O) = DW (Q)(W ) +DY (QY , g)(O) with

DW (Q)(W ) ≡ QY (1,W )−QY (0,W )−Ψ(Q),

DY (QY , g)(O) ≡ 2A− 1

g(A|W )
(Y −QY (A,W )) .

The variance VarPQ,g(D(P )(O)) is a generalized Cramér-Rao lower bound for the asymptotic variance of
any regular and asymptotically linear estimator of Ψ(Q) when sampling independently from PQ,g. Moreover,
if either QY = Q′Y or g = g′ then EPQ,g(D(PQ′,g′)(O)) = 0 implies Ψ(Q) = Ψ(Q′).

The last statement of Lemma 1, often referred to as a “double-robustness” property, assures that D can
be deployed to safeguard against model mis-specifications when estimating ψ0. This is especially relevant
in an RCT setting, since the randomization scheme g is known whenever one samples an observation from
PQ,g.

By Lemma 1, the asymptotic variance of a regular, asymptotically linear estimator under independent
sampling from PQ0,g is lower-bounded by

min
g∈G

VarPQ0,g
(D(PQ0,g)(O)) = min

g∈G
EPQ0,g

(
(Y −QY,0(A,W ))2

g2(A|W )

)
.

In this light, targeting g0 defined by (3) means that the goal of adaptation is to reach a randomization
scheme of higher efficiency, i.e., to obtain a valid estimate of ψ0 using as few blocks of patients as possible.
As mentioned in section 2.1 , though not used in our approach, g0 actually has a closed form expression
g0(1|W ) = σ0(1,W )/(σ0(1,W ) + σ0(0,W )), where σ2

0(A,W ) is the conditional variance of Y given (A,W )
under Q0. Under this randomization scheme, the treatment arm with higher probability for a patient with
baseline covariates W is the one for which the conditional variance of the response is higher.

3.2 On the data-adaptive loss-based estimation of QY,0

The reference randomization scheme gr offers the opportunity to differentially weight each observation in (8).
This action impacts the convergence of QY,βn and thus that of gn, as seen in Sections 2.6 and 2.4 (the limit
g∗0 depends on gr).

As we already emphasized, the working model Q1,n may depend on sample size n. If it does, then the
sequence of working models must be non-decreasing and Q1 ≡ ∪n≥1Q1,n can be interpreted as the limiting
working model for QY,0. We would typically recommend to start with Q1 = . . . = Qn0 all equal to a small
set, with a user-supplied, deterministic n0, then to let the complexity grow with n. It is known, however,
that such a growth must remain tethered. Assumptions A5 and A5* provide appropriate conditions on the
complexity of Q1,n. We refer to Section 3.5 for a discussion of their meaning.

The combined choice of loss function L and working modelQ1,n determines the technique used to estimate
QY,0. For instance, in the traditional parametric approach, the working model Q1,n does not depend on
n and is indexed by a fixed, finite-dimensional parameter set. Under the LASSO methodology, which we
carefully describe and study in Section 5, logit(Q1,n) is the linear span of a given basis, with constraints on
the linear combinations imposed through the definition of Bn.

3.3 On the data-adaptive loss-based estimation of g0

The optimal randomization scheme g0 is defined as a minimizer of a certain criterion over the class G
of all randomization schemes, see (3). Thus, our loss-based estimation of g0 based on On consists of
defining gn+1 as the minimizer in g of an estimator of the optimality criterion over the user-supplied class
of randomization schemes G1,n, see (7) and the next paragraph. This approach is applicable in the largest
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generality. Alternatively, if W is discrete, then g0 takes finitely many values and gn+1 can be defined
explicitly based on QY,βn and On. This is also the case if one is willing to assign treatment only based on
a discrete summary measure V of W . In this context, g0 is defined as in (3), where the arg min is over
the subset of G consisting of those randomization schemes which depend on W only through V . We refer
the readers to (Chambaz and van der Laan, 2013) for details. Note that assigning treatment based on
such summary measures is perhaps too restrictive in real-life RCTs where response to treatment may be
correlated with a large number of a patient’s baseline characteristics, some of which being continuous.

We now turn to the joint justification of (6) and (7). The key point is the following equality, valid for
every g′ ∈ G:

g0 = arg min
g∈G

EPQ0,g
′

(
(Y −QY,0(A,W ))2

g(A|W )g′(A|W )

)
. (16)

Equality (16) tells us that g0 can be estimated using observations drawn from PQ0,g′ based on the loss
function LQY provided it is weighted by 1/g′. Our observations O1, . . . , On are drawn from PQ0,g1 , . . . , PQ0,gn ,
respectively. In this light, (16) also validates (7).

Like Q1,n, the working model G1,n ⊂ G may depend on sample size n. If it does, then the sequence
must be non-decreasing and G1 ≡ ∪n≥1G1,n can be interpreted as the limiting working model for g0. The
additional constraint that G1 be uniformly bounded away from 0 and 1 is important. It implies the following
pivotal property: no matter how gr ∈ G is chosen in Section 2.3, there exists some constant κ > 0, such that
max(‖gr/g‖∞ , ‖g/gr‖∞) ≤ κ, for all g ∈ G1. For ease of reference, we call it the dominated ratio property
of G1.

Using a fixed working model for g0, i.e., setting G1 = G1,n for every n ≥ 1, is a valuable option. However,
in some situations, e.g. if the population is very heterogeneous, using a fixed, large working model G1 may
delay, sample size-wise, the adaptation, thereby depriving the trial of the advantages of an adaptive design.
By allowing G1,n to depend on n, one gains the flexibility to enrich the working model for g0 according
to the modesty or generosity of the sample size. Similar to what we suggested for Q1,n in Section 3.2, we
would recommend to start with G1 = . . . = Gn0 all equal to a small set, typically the singleton {gb}, then
to let the complexity of G1,n augment with n, though not too abruptly. Assumptions A6 and A6* provide
appropriate conditions on the complexity of G1,n. We refer to Section 3.5 for a discussion of their meaning.
The assumptions are mild, and allow us to use the LASSO to target the optimal randomization scheme g0,
just like we can use the LASSO to estimate QY,0, see Section 5.

3.4 On targeted minimum loss estimation

The conception of ψ∗n defined in (11) follows the paradigm of targeted minimum loss estimation. In the
setting of a covariate-adjusted RCT with a fixed design and a fixed working model Q1, a TMLE estimator
is unbiased and asymptotically Gaussian regardless of the specification of Q1. Chambaz and van der Laan
(2013) show that unbiasedness and asymptotic normality still hold in a framework very similar to that of
the present article when the randomization schemes depend on W only through a summary measure taking
finitely many values and when Q1 is a simple linear model. Such a configuration can be obtained as a
particular case of the example developed in Section 5.

Although using a mis-specified parametric working model Q1 for QY,0 does not hinder the consistency
of the estimator of ψ0, it may affect its efficiency and the convergence of the CARA design to the targeted
optimal design. By relying on more flexible randomization schemes and on more adaptive estimators of
QY,0, we may better adapt to the optimal randomization scheme g0 through better variable adjustments
and the targeted construction of the instrumental loss function LQY . Because g0 is the Neyman design, our
approach yields greater efficiency through better variable adjustments and more accurate estimation of the
variance of the estimator.

Consider now (9) and (11). The model (9) goes through QY,βn at ε = 0 and satisfies the score condition
∂
∂εL

kl(QY,βn(ε))|ε=0 = DY (QY,βn , gn). If we set Q∗βn ≡ (QW,n, Q
∗
Y,βn

), where QW,n is the empirical marginal
distribution of W , then ψ∗n = Ψ(Q∗βn), assuring that ψ∗n is indeed a substitution estimator of ψ0 = Ψ(Q0).
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3.5 On the assumptions

Assumption A2 stipulates the existence of a projection QY,βn,0 of QY,0 onto every working model Q1,n.
It may depend on the user-supplied reference randomization scheme gr. If QY,0 ∈ Q1, i.e., if Q0 is well-
specified, then the existence of QY,β0 = QY,0 is granted. If QY,0 6∈ Q1, i.e., if Q1 is mis-specified, then A2
also stipulates the existence of a projection QY,β0 of QY,0 onto Q1. It may also depend on gr.

Similar comments apply to A3. Note that each gn,0 and the limiting randomization scheme g∗0 depend
on gr only through QY,β0 : replacing gr with any arbitrarily chosen g ∈ G in (12) or (13) does not alter the
values of gn,0 and g∗0. Furthermore, (6) and (13) yield that

g∗0 = arg min
g∈G1

{
VarPQ0,g

(DY (QY,0, g)(O)) + PQ0,g
(QY,0 −QY,β0)2

g2

}
.

This shows that if QY,β0 = QY,0 and g0 ∈ G1, then g∗0 = g0, the optimal randomization scheme. In general,
g∗0 minimizes an objective function which is the sum of the Cramér-Rao lower bound and a second-order
residual. This underscores the motivation for using a flexible estimator in estimating QY,0: by minimizing
the second-order residual, we get closer to adapting towards the desired optimal randomization criterion.

Recall that QY,βn is characterized by (8) and that QW,n is the empirical marginal distribution of W .
Heuristically, if the equality QY,β0 = QY,0 holds then one should be able to prove that Ψ((QW,n, QY,βn)) is
a consistent estimator of ψ0. Since QY,β0 = QY,0 also yields that ε0 = 0 is the unique solution to (15) in
A4, one understands that updating QY,βn to Q∗Y,βn ≡ QY,βn(εn) and Ψ((QW,n, QY,βn)) to ψ∗n as described in
(10) and (11) should preserve the consistency in the initially well-specified framework. In the more likely
situation where Q1 is mis-specified, hence QY,β0 6= QY,0 and ε0 6= 0, there is no reason to believe that
Ψ((QW,n, QY,βn)) should be a consistent estimator of ψ0. In this light, the updating procedure bends the
inconsistent initial estimator into a consistent one by drawing advantage from the double-robustness of D
that we presented in Lemma 1.

In Sections 3.2 and 3.3, we commented on the interest of letting the working models Q1,n and G1,n depend
on sample size n. Assumptions A5 and A6 put very mild constraints on how the complexities of the working
models should evolve with n to guarantee the convergence of gn and consistency of ψ∗n. The constraints are
expressed in terms of bracketing integral. We refer the reader to (van der Vaart, 1998, Examples 19.7-19.11,
Lemma 19.15) for typical examples. They include “well-behaved” parametric and Vapnik-Cervonenkis (VC)
classes. Assumptions A5* and A6* should be interpreted as more stringent conditions imposed upon Q1,n

and G1,n. Indeed, for instance,

J(1,G1,n, ‖ · ‖2,QW,0)/
√
n ≤ J(1/

√
n,G1,n, ‖ · ‖2,QW,0)

because the entropy with bracketing is non-increasing, so that A6* does imply A6 (take δn = 1/
√
n). The

need for more stringent conditions arises when studying the convergence in law of ψ∗n.

4 Building blocks of Theorem 1

We now carry out the theoretical study of the targeted CARA design and its corresponding estimator
described in Section 2. All proofs are relegated to Section A.1.

We first focus on the convergence of the estimators QY,βn . The counterpart to this result in the i.i.d.
setting is well established (Pollard, 1984, van der Vaart, 1998, among others). The following proposition
revises those results for the current statistical setting.

Proposition 1 (convergence of QY,βn). Under A2, A5, ‖QY,βn −QY,β0‖2,PQ0,g
r
→ 0 in probability as

n→∞.

We now turn to the convergence of the sequence of randomization schemes.
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Proposition 2 (convergence of the targeted CARA design). Under A2, A3, A5 and A6, it holds that
‖gn − g∗0‖2,QW,0 → 0 in probability as n→∞.

The following corollary of Proposition 2 will also prove useful.

Corollary 1. In the setting of Proposition 2, it also holds that ‖gn − g∗0‖2,QW,0, ‖1/gn − 1/g∗0‖2,QW,0,∥∥n−1
∑n

i=1 gi − g∗0
∥∥

2,QW,0
, and

∥∥n−1
∑n

i=1 1/gi − 1/g∗0
∥∥

2,QW,0
converge to 0 in probability and in L1 as n→

∞.

At this stage, the consistency of ψ∗n can be established. The proof relies on the convergence of Q∗Y,βn to
a limiting conditional distribution, which is a fluctuation of the limit QY,β0 of QY,βn , see Proposition 1.

Proposition 3 (consistency of ψ∗n). Suppose that A2, A3, A4, A5 and A6 are met. Define

Q∗Y,β0 ≡ expit (logit(QY,β0) + ε0H(g∗0)) , (17)

with H(g∗0)(O) ≡ (2A− 1)/g∗0(A|W ) and Q∗β0 ≡ (QW,0, Q
∗
Y,β0

). It holds that ‖Q∗Y,βn −Q
∗
Y,β0
‖2,PQ0,g

r → 0 in
probability as n→∞. Moreover, Ψ(Q∗β0) = ψ0 and ψ∗n consistently estimates ψ0.

We need further notation to state our last building block. For both β = β0 and β = βn, introduce d∗Y,β
given by

d∗Y,β(O,Z) ≡ 2A− 1

Z

(
Y −Q∗Y,β(A,W )

)
. (18)

Define also

Σ0 ≡ PQ0,g∗0

(
d∗Y,β0 +DW (Q∗β0)

)2
= PQ0,g∗0

(
D(PQ∗β0 ,g

∗
0
)
)2
, (19)

Σn ≡ 1

n

n∑
i=1

(
d∗Y,βn(Oi, Zi) +DW (Q∗βn)(Wi)

)2
, (20)

where we recall that Q∗βn ≡ (QW,n, Q
∗
Y,βn

).

Proposition 4 (asymptotic linearity and central limit theorem for ψ∗n). Assume that A1–A6* are met.
Then Σn = Σ0 + oP (1) with Σ0 > 0, and

ψ∗n − ψ0 = (Pn − PQ0,gn)
(
d∗Y,β0 +DW (Q∗β0)

)
+ oP (1/

√
n). (21)

Moreover,
√

Σn/n(ψ∗n − ψ0) converges in law to the standard normal distribution.

Equality (21) is an asymptotic linear expansion of ψ∗n under our targeted, adaptive sampling scheme. It
is the key to the central limit theorem for

√
n(ψ∗n − ψ0).

5 Example: targeted LASSO-based CARA RCT

In Sections 2, 3 and 4, we have presented a general framework for constructing and analyzing CARA RCTs
using data-adaptive loss-based estimators for the nuisance parameters, coupled with the TMLE method-
ology to estimate the study parameter of interest. As described in Section 1, high-dimensional settings
are increasingly common in clinical trials working with heterogeneous populations. A popular device in
high-dimensional statistics, due to its computational feasibility and amenability to theoretical study, is the
LASSO methodology. In a nutshell, the LASSO is a shrinkage and selection method for generalized regres-
sion models that optimizes a loss function of the regression coefficients subject to constraint on the L1 norm.
It was introduced by Tibshirani (1996) for obtaining estimators with fewer nonzero parameter values, thus
effectively reducing the number of variables upon which the given solution is dependent. In this section, we
illustrate the application of the proposed framework using the LASSO to estimate the conditional response
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and the optimal randomization scheme. The methodology introduced in Chambaz and van der Laan (2013)
is a special case of this targeted LASSO-based CARA RCT.

For simplicity, we assume that all components of W are continuous. With a little extra work, discrete
components could be handled as A is handled in (23).

Let `1 ≡ {β ∈ RN :
∑

j∈N |βj | < ∞}. Consider {bn}n≥1, {b′n}n≥1, {dn}n≥1, and {d′n}n≥1 four non-
decreasing, possibly unbounded sequences over R+ and, for some M,M ′ > 0 and every n ≥ 1, introduce the
sets

Bn ≡
{
β ∈ `1 : ‖β‖1 ≤ min(bn,M) and ∀j > dn, β

j = 0
}

(22)

and B′n defined like Bn with b′n, d′n and M ′ substituted for bn, dn, and M , respectively. Let {φj : j ∈ N}
be a uniformly bounded set of functions from W to R. Without loss of generality, we may assume that
‖φj‖∞ = 1 for all j ∈ N. By choice, the functions φj (j ∈ N) share a common bounded support W, and
all belong to the class of sufficiently smooth functions, in the sense that there exists α > dim(W)/2 such
that all partial derivatives up to order α of all φj exist and are uniformly bounded (see van der Vaart, 1998,
Example 19.9).

For each β ∈ `1, we denote QY,β : A×W → R and γβ : A×W → R the functions characterized by

QY,β(A,W ) ≡ expit

∑
j∈N

(
β2jA+ β2j+1(1−A)

)
φj(W )

 , (23)

γβ(1|W ) = 1− γβ(0|W ) ≡ expit

∑
j∈N

βjφj(W )

 .

The LASSO-based CARA RCT design corresponds to a special choice of working models {Q1,n}n≥1,
{G1,n}n≥1, and loss function L for QY,0. We take Q1,n ≡ {QY,β : β ∈ Bn} with M a deterministic upper-
bound on | logit(Y )| and the quasi negative-log-likelihood loss function L = Lkl (4). Note that the elements
of Q1 ≡ ∪n≥1Q1,n are uniformly bounded away from 0 and 1. We also take G1,n ≡ {γβ : β ∈ B′n}. The
elements of G1 ≡ ∪n≥1G1,n are randomization schemes uniformly bounded away from 0 and 1 by expit(−M ′)
and expit(M ′), respectively (M ′ ' 4.6 provides the lower- and upper-bounds 0.01 and 0.99).

Based on On, we estimate QY,0 with QY,βn+1 , where βn+1 is given in (8) (set i = n+ 1 in the formula).
Then we target g0 with gn+1 given in (7) (set i = n+ 1 in the formula), i.e.

gn+1 ∈ arg min
β∈B′n

1

n

n∑
i=1

LQY,βn (γβ)(Oj)

gj(Aj |Wj)
. (24)

The minimization (8) with the constraint ‖β‖1 ≤ min(bn,M), see (22), can be rewritten as a minimization
free of the latter constraint by adding a term of the form λn‖β‖1 to the empirical criterion, where λn depends
on bn. Note that when dn or d′n is held constant and M or M ′ is infinite by choice, then (8) or (24) should
be interpreted as a standard parametric procedure rather than as a LASSO.

Theorem 1 has the following corollary.

Corollary 2 (asymptotic study of the targeted LASSO-based CARA RCT). Assume that A1, A2, A3, and
A4 are met. Then, the targeted LASSO-based CARA design converges in the sense that ‖gn−g∗0‖2,QW,0 → 0

in probability as n → ∞. Moreover, the TMLE ψ∗n consistently estimates ψ0, and
√
n/Σn(ψ∗n − ψ0) is

approximately standard normally distributed, where Σn is the explicit estimator given in (20).

This corollary teaches us with minimal conditions on the smoothness of the basis functions, the targeted
LASSO-based CARA RCT produces a convergent design and a consistent and asymptotically Gaussian
estimator for the study parameter.
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6 Simulation study

In this section, we exemplify the theoretical results from the previous sections with a brief simulation study.
Specifically, we wish to (i) illustrate the robustness of the proposed TMLE estimator for the study parameter
ψ0, under possibly grossly mis-specified conditional response models, (ii) show the use of data-adaptive
LASSO estimators to learn the conditional response in the construction and analysis of the targeted CARA
RCT, and (iii) evaluate the performances of the different strategies. The simulation study is conducted
using R (R Core Team, 2014).

6.1 Data-generating distribution

Under Q0, W = (U, V, Z1, . . . , Z20) consists of 22 independent random variables, where U,Z1, . . . , Z20 are
all uniformly distributed on [0, 1], and V ∈ {1, 2, 3} is such that V = 1, V = 2 and V = 3 with probabilities
1/2, 1/3, and 1/6, respectively. Moreover, under Q0 and conditionally on (A,W ), Y is drawn from the
Gamma distribution with conditional mean

QY,0(A,W ) ≡ 2AV + (1−A)V/2

and conditional variance

σ2
0(A,W ) ≡

(
AV

3(1 + Z1)
+

4(1−A)

3(1 + Z1)

)2

.

It is easy to check that ψ0 = 2.5 and that the optimal randomization scheme g0 is given by g0(1|W ) ≡
V/(4 + V ).

6.2 Loss functions and working models

To simplify the language, we refer to a model that accounts for the relevant covariates as a correctly specified
model, even though the functional form may not be correct.

Estimation of the conditional response

Because Y is continuous and unbounded, we perform a linear transformation before the estimation proce-
dures to scale Y within (0, 1), then apply the reverse transformation to the final TMLE estimate of ψ0 and
the corresponding variance estimates. We use the quasi negative-log-likelihood loss function Lkl given by
(4).

At sample size n, we consider two working models Q1,n for the conditional response. One is the following
mis-specified logistic regression model:

Qp1,n ≡
{
QpY,β(A,W ) ≡ expit (β1A+ β2U) : β ∈ R2

}
.

Contrary to what the notation suggests, it does not change as the sample size grows. It is fitted using
the glm function in R with the weights as given in (8). Note that the model fails to take into account the
covariate V which drives the response in the underlying data-generating process.

The second one, denoted Q`1,n, is a LASSO logistic working model. Let dn ≡ min(20, b
√
n/4c). If n is

such that dn ≤ 5, then Q`1,n consists of

Q`Y,β(A,W ) ≡ expit
(
β(A,U,Z1, . . . , Zdn , AU,AZ1, . . . , AZdn)>

)
(all β ∈ Bn ≡ R2dn+3).

If n is such that dn > 5, then Q`1,n consists of

Q`Y,β(A,W ) ≡ expit
(
β(A,U, V, Z1, . . . , Zdn , AU,AV,AZ1, . . . , AZdn)>

)
(all β ∈ Bn ≡ R2dn+5).

The resulting sequence of working models is non-decreasing in sample size. The models is fitted using the
cv.glmnet function from the package glmnet (Friedman, Hastie, and Tibshirani, 2010), with weights given
in (8) and the option "lambda.1se".
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Estimation of the optimal randomization scheme g0

We also consider two working models G1,n = G1 for the optimal randomization scheme. The first one,
denoted Gm1 , is a mis-specified logistic model given by

gmβ (A = 1 |W ) ≡ expit (β0 + β1U) (all β ∈ R2).

The second one, denoted Gc1, is a correctly specified logistic model given by

gcβ(A = 1 |W ) ≡ expit (β0 + β1U + β2V ) (all β ∈ R3).

The models are fitted using numerical methods to optimize the user-chosen adaptation criterion in (6). We
implement this fitting using the optim function with a quasi-Newton method (method="BFGS"). To satisfy
the boundedness conditions, the resulting probability estimates are pre-specified to be truncated to lie within
[0.05, 0.95]. However, in the actual simulation runs, all estimates lying comfortably within this interval, and
hence no truncation took place.

6.3 Study designs

For each pair of working models for the conditional response and for the optimal randomization scheme,
we construct a CARA RCT by initializing at a sample size of n = 300, and then sequentially recruiting
patients in blocks of size 200, up to n = 3100. For the initial sample of n = 300, treatment is randomly
assigned based on the balanced randomization scheme gb. Subsequently, given n observations, we estimate
the conditional response and use this to construct the treatment randomization scheme gn+1 used for the
next block of 200 patients. We also use this conditional response estimate and the sequence of randomization
schemes used so far to obtain a TMLE estimate ψ∗n of ψ0.

In addition to these CARA RCTs, we also consider a fixed design RCT with treatment randomly as-
signed based on the balanced randomization scheme gb. We obtain the corresponding TMLE estimates by
fluctuating the initial conditional response estimates based on the logistic model {QpY,β : β ∈ R2}.

6.4 Results

For each trial design proposed in Section 6.3, we run 500 independent simulated trials. Three figures
summarize the results of the simulation study. Each of them consists of two similar graphics, the LHS graphic
corresponding to the simulated trials based on the mis-specified model Gm1 for the optimal randomization
scheme, and the RHS graphic to the simulated trials based on the correctly specified model Gc1. The subtitles
“A~U” and “A~U+V” are the R formulas that encode for Gm1 and Gc1, respectively.

Figure 1 depicts the performance of ψ∗n in terms of bias (first row), sample variance (second row) and
mean squared error (MSE, third row). We note that, despite the mis-specified response models, all TMLE
estimators are consistent for the treatment effect parameter ψ0. It appears that the LASSO-based estimator
may converge at a faster rate. This may be due to its increased efficiency (i.e., smaller sample variance) and
more aggressive bias reduction. Recall that the optimality criterion for our adaptive randomization aims
at maximizing efficiency of the trial through the minimization of the asymptotic variance of the estimators.
The increased efficiency of the LASSO-based CARA RCT, despite a larger working model for the conditional
response (increasing with sample size), suggests that a flexible data-adaptive response model coupled with
CARA design could indeed better achieve the optimality criterion, compared to a CARA design based on a
parametric response model, at least in situations where the parametric model fails to account for important
confounding variables. We also note that, under the data-generating process described in Section 6.1,
the working model for the optimal randomization scheme has little effect on the efficiency of the TMLE
estimators. Yet, comparing the LHS and RHS graphics in Figure 1 suggests that Gm1 , the smaller, mis-
specified model for the optimal randomization scheme allows for slightly more aggressive bias reduction at
smaller sample sizes than Gc1, its larger, correctly specified counterpart.
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Let us turn now to the coverage of our CLT-based, 95%-confidence intervals (CIs). The empirical coverage
probabilities are depicted in Figure 2. On the one hand, we see that the empirical coverages are often below
the nominal coverage when using the mis-specified working model Gm1 for the optimal randomization scheme
and either Qp1,n or Q`1,n as working models for the conditional response (LHS graphic in Figure 2). On
the other hand, the coverage improves drastically when using the correctly specified working model Gc1 for
the optimal randomization scheme and either Qp1,n or Q`1,n as working models for the conditional response
(RHS graphic in Figure 2). For a more precise assessment, we frame the coverage evaluation in terms of
hypotheses testing. For a given design (and its resulting CLT-based CIs) and at each intermediate sample
size n, let C be the number of times in the 500 simulations when the CI covers the parameter of interest
ψ0. The random variable C is distributed from the Binomial distribution with parameter (500, π). For a
given significance level 0 < α < 1, introduce the null hypotheses H1−α

0 : “π ≥ 1 − α” and its one-sided
alternative H1−α

1 : “π < 1−α”. We perform one-sided tests of H1−α
0 against H1−α

1 and display the p-values
for α = 5% (Figure 3, first row) and α = 6% (Figure 3, second row). On the one hand, the LHS graphic
in Figure 3 reveals that 95% coverage is often not guaranteed when using the mis-specified working model
Gm1,n for the optimal randomization scheme and either Qp1,n or Q`1,n as working models for the conditional
response, but also that 94% coverage cannot be ruled out. On the other hand, the RHS graphic in Figure 3
suggests that 95% coverage cannot be ruled out when using the correctly specified model Gc1,n for the optimal

randomization scheme and either Qp1,n or Q`1,n as working models for the conditional response.

7 Discussion

We have presented in this article a new group-sequential CARA RCT design and corresponding analytical
procedure that admits the use of flexible data-adaptive techniques. The proposed method extends the work
of Chambaz and van der Laan (2013) by providing robust inference of the study parameter under the most
general settings. Our framework adopts a loss-based approach in estimating the optimal randomization
scheme, and hence can target general optimality criteria that may not have a closed-form solutions. More-
over, our use of loss-based data-adaptive estimation over general classes of functions (which may change
with sample size), both in constructing the treatment randomization schemes and in predicting the un-
known conditional response, may potentially improve the randomization adaptation towards the optimality
criterion.

We established that, under appropriate entropy conditions on the classes of functions, the resulting
sequence of randomization schemes converges to a fixed scheme, and the proposed treatment effect estimator
is consistent (even under a mis-specified response model), asymptotically Gaussian, giving rise to valid
confidence intervals of given asymptotic levels. Moreover, the limiting randomization scheme coincides with
the unknown optimal randomization scheme when, simultaneously, the response model is correctly specified
and the optimal randomization scheme belongs to the limit of the user-supplied classes of randomization
schemes. We illustrated the applicability of these general theoretical results with a LASSO-based CARA
RCT. In this example, both the response model and the optimal treatment randomization are estimated
using a sequence of LASSO logistic models that may increase with sample size. It follows immediately from
our general theorems that this LASSO-based CARA RCT converges to a fixed randomization scheme and
yields consistent and asymptotically Gaussian effect estimates, under minimal conditions on the smoothness
of the basis functions in the LASSO logistic models.

We conducted a simulation study to evaluate the performance of the proposed methods. It confirmed
the robustness of the TMLE estimators under mis-specified response models. Coverage of the CLT-based
confidence intervals are assessed through by hypotheses testing. Overall there is no evidence (across 500
independent simulations) that the 95%-confidence intervals would have coverages that are less than 94%. In
addition, we do observe improved coverage when using the correct working model for the optimal randomiza-
tion scheme. In this simulation study, the increased efficiency of CARA design with a LASSO-based response
model, compared to the CARA (or balanced) design with a parametric response model, demonstrates that
the use of data-adaptive response models can indeed more effectively steer the adaptation towards the opti-
mality criterion (which was chosen to be efficiency in our example). More comprehensive empirical studies
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are needed to generalize these facts to other simulation scenarios.

We will soon make available a R package to allow interested readers to test the procedure. In the future,
we will also consider alternative strategies to randomly assign successive patients to the treatment arms
in such a way that the overall empirical conditional distribution of treatment given baseline covariates be
as close as possible to the current best estimator of the targeted optimal randomization scheme. This will
require both new theoretical developments and simulation studies.

A Appendix

The expression “a . b” means that there exists a universal, positive constant c such that a ≤ c × b. We
use 1 {C} to denote the indicator function of the set C. We denote the uniform norm of a real-valued
operator Π on F as ‖Π‖F ≡ supf∈F |Π(f)|. Given two measurable functions f, λ of (O,Z) and the random
variable Λ = λ(O,Z), we find it convenient to use shorthand notation PQ0,gfΛ ≡ EPQ0,g

(f(O,Z)Λ) and

PnfΛ ≡ EPn(f(O,Z)Λ) = n−1
∑n

i=1 f(Oi, Zi)λ(Oi, Zi). From here onward, the uncountable supremum is
interpreted as the essential supremum.

Section A.1 presents the proofs of Propositions 1, 2, 3, 4, Corollary 1, Theorem 1 and Corollary 2.
Technical results underpinning the proofs of Section A.1 are gathered in Section A.2.

A.1 Main proofs

Proof of Proposition 1. We apply Lemma 4 with Θ ≡ Q1, Θn ≡ Q1,n, d the distance induced on Θ by
the norm ‖ · ‖2,PQ0,g

r , M and Mn characterized over Θ by M(QY ) ≡ PQ0,grL(QY ) and Mn(QY ) ≡
PnL(QY )gr/Z = n−1

∑n
i=1 L(QY )(Oi)g

r(Ai | Wi)/Zi. Assumption A2 implies that (a) and (b) from
Lemma 4 are met. It remains to prove that (c) also holds or, in other terms, that ‖Mn −M‖Q1,n = oP (1).

For any QY ∈ Θ, characterize `(QY ) by setting `(QY )(O,Z) ≡ L(QY )(O)gr(A|W )/Z. Then we can
rewrite ‖Mn −M‖Q1,n as follows:

‖Mn −M‖Q1,n = ‖Pn`− PQ0,grL‖Q1,n = ‖(Pn − PQ0,gn)`‖Q1,n = ‖Pn − PQ0,gn‖`(Q1,n).

The dominated ratio property implies that J(1, `(Q1,n), ‖·‖2,PQ0,g
r ) = O(J(1, L(Q1,n), ‖·‖2,PQ0,g

r ) = o(
√
n),

by A5. Since `(Q1) is uniformly bounded by construction, Lemma 8 applies and yields ‖Pn−PQ0,gn‖`(Q1,n) =
oP (1).

Thus, we can apply Lemma 4. It yields that ‖QY,βn − QY,β0‖2,PQ0,g
r = oP (1), which is the desired

result.

The next proof goes along similar lines.

Proof of Proposition 2. We apply Lemma 4 with Θ ≡ G1, Θn ≡ G1,n, d the distance induced on Θ by
the norm ‖ · ‖2,QW,0 , M and Mn characterized over Θ by M(g) ≡ PQ0,grLQY,β0 (g)/gr and Mn(g) ≡
PnLQY,βn (g)/Z = n−1

∑n
i=1 LQY,βn (g)(Oi)/Zi. Assumption A3 implies that (a) and (b) from Lemma 4

are met. It remains to prove that (c) also holds or, in other terms, that ‖Mn −M‖G1,n = oP (1).

Let ` and `n be characterized over G1 by `(g)(O,Z) ≡ LQY,β0 (g)(O)/Z on the one hand and `n(g)(O,Z) ≡
LQY,βn (g)(O)/Z on the other hand. A simple decomposition and the triangle inequality yield the following
inequality:

‖Mn −M‖G1,n = ‖(Pn`− PQ0,grLQY,β0/g
r) + Pn(`n − `)‖G1,n

≤ ‖Pn`− PQ0,grLQY,β0/g
r‖G1,n + ‖Pn(`n − `)‖G1,n

= ‖(Pn − PQ0,gn)`‖G1,n + ‖Pn(`n − `)‖G1,n
= ‖Pn − PQ0,gn‖`(G1,n) + ‖Pn(`n − `)‖G1,n . (25)
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Consider the first RHS term in (25). Because Y and QY,β0 are bounded, and because G1 is bounded away
from 0 and 1 by construction, it holds that J(1, `(G1,n), ‖ · ‖2,QW,0) = O(J(1, 1/G1,n, ‖ · ‖2,QW,0)) = o(

√
n) by

A6. Since `(G1) is uniformly bounded, Lemma 8 applies and yields ‖Pn − PQ0,gn‖`(G1,n) = oP (1).

We now turn to the second RHS term in (25). Note |Lls(QY,βn)− Lls(QY,β0)| . |QY,βn −QY,β0 | because
Y is bounded and G1 is uniformly bounded. This justifies the second inequality below, the first one being
a consequence of the uniform boundedness of G1,n, and the last one a consequence of the fact that gr is
bounded away from 0:

‖Pn(`n − `)‖G1,n . Pn|Lls(QY,βn)− Lls(QY,β0)|/Z
. Pn|QY,βn −QY,β0 |/Z
= PQ0,gn |QY,βn −QY,β0 |/Z + (Pn − PQ0,gn)|QY,βn −QY,β0 |/Z
. PQ0,gr |QY,βn −QY,β0 |+ (Pn − PQ0,gn)|QY,βn −QY,β0 |/Z.

The Cauchy-Schwarz inequality implies that PQ0,gr |QY,βn − QY,β0 | ≤ ‖QY,βn − QY,β0‖2,PQ0,g
r = oP (1)

by Proposition 1, whose assumptions are met. For any QY ∈ Q1, introduce h(QY ) characterized by
h(QY )(O,Z) ≡ |QY,βn(A,W )−QY,β0(A,W )|/Z. Obviously,

|(Pn − PQ0,gn)|QY,βn −QY,β0 |/Z| ≤ ‖(Pn − PQ0,gn)h‖Q1,n = ‖Pn − PQ0,gn‖h(Q1,n).

Since Q1 and G1 are uniformly bounded away from 0 and 1 by construction, it holds that h(Q1) is uniformly
bounded and that J(1, h(Q1,n), ‖ · ‖2,PQ0,g

r ) = O(J(1, {|QY −QY,β0 : QY ∈ Q1,n|}, ‖ · ‖2,PQ0,g
r ) = o(

√
n) by

A5. Therefore, Lemma 8 applies and yields ‖Pn − PQ0,gn‖h(Q1,n) = oP (1).

We thus have showed that both ‖Pn − PQ0,gn‖`(G1,n) = oP (1) and ‖Pn(`n − `)‖G1,n = oP (1), hence
‖Mn−M‖G1,n = oP (1) in light of (25). Consequently, we can apply Lemma 4. It yields that ‖gn−g∗0‖2,QW,0 =
oP (1), which is the desired result.

Proof of Corollary 1. Since G1 is uniformly bounded, ‖gn − g∗0‖2,QW,0 = oP (1) implies ‖gn − g∗0‖2,QW,0 → 0
in L1 as n → ∞. Since (i) 1/gn − 1/g∗0 = (g∗0 − gn)/gng

∗
0, and (ii) G1 is uniformly bounded away from 0

and 1, ‖1/gn − 1/g∗0‖2,QW,0 → 0 follows from ‖gn − g∗0‖2,QW,0 → 0, both in probability and in L1 as n→∞.
Consider now the L1-convergence of ‖n−1

∑n
i=1 gi − g∗0‖2,QW,0 . By convexity,

E

∥∥∥∥∥ 1

n

n∑
i=1

gi − g∗0

∥∥∥∥∥
2,QW,0

 ≤ 1

n

n∑
i=1

E
(
‖gi − g∗0‖2,QW,0

)
.

We already know that E(‖gn − g∗0‖2,QW,0) = o(1). Applying Cesaro’s lemma yields that n−1
∑n

i=1E(‖gi −
g∗0‖2,QW,0) = o(1), too. From this, we deduce that ‖n−1

∑n
i=1 gi − g∗0‖2,QW,0 → 0 in L1 as n → ∞. This

implies that the convergence also holds in probability because G1 is uniformly bounded. Likewise,

E

∥∥∥∥∥ 1

n

n∑
i=1

1/gi − 1/g∗0

∥∥∥∥∥
2,QW,0

 ≤ 1

n

n∑
i=1

E
(
‖1/gi − 1/g∗0‖2,QW,0

)
,

where E(‖1/gn − 1/g∗0‖2,QW,0) = o(1) is already known. Thus, the same argument as above yields that
‖n−1

∑n
i=1 1/gi − 1/g∗0‖2,QW,0 → 0 in L1 and in probability as n→∞. This completes the proof.

Proof of Proposition 3. This is a three-part proof. First, we show that |εn − ε0| = oP (1). Second, we prove
that ‖Q∗Y,βn −Q

∗
Y,β0
‖2,PQ0,g

r = oP (1). Third, we demonstrate that Ψ(Q∗β0) = ψ0, then that ψ∗n consistently
estimates ψ0.

We apply (van der Vaart, 1998, Theorem 5.9) (substituting Mn and M for Ψn and Ψ) with Θ ≡
E , d the Euclidean distance, M and Mn characterized over Θ by M(ε) = PQ0,g∗0

DY (QY,β0(ε), g∗0), and
Mn(ε) = PnDY (QY,βn(ε), gn)gn/Z, see (14) and (9) for the definitions of QY,β0(ε) and QY,βn(ε). From the
differentiability of ε 7→ Lkl(QY,β(ε)), validity of the differentiation under the integral sign, and definition of
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ε0 (15), we deduce that M(ε0) = 0. By definition of εn (10), Mn(εn) = 0 too. Assumption A4 implies that
the second condition of the theorem is met. Therefore it suffices to check that the first one holds too, i.e.
to prove that ‖Mn −M‖E = oP (1).

Introduce F = {fε : ε ∈ E} with fε(O,Z) ≡ (2A − 1)(Y − QY,β0(ε)(A,W ))/Z for each ε ∈ E . We start
with the following derivation:

‖Mn −M‖E = sup
ε∈E

∣∣∣∣Pn(fε +
2A− 1

Z
(QY,β0(ε)−QY,βn(ε))

)
− PQ0,gnfε

∣∣∣∣
≤ ‖Pn − PQ0,gn‖F + sup

ε∈E

∣∣∣∣Pn 2A− 1

Z
(QY,β0(ε)−QY,βn(ε))

∣∣∣∣ . (26)

Consider the first RHS term in (26). Set ε1, ε2 ∈ E . Because the expit function is 1-Lipschitz and G1

is uniformly bounded, it holds that ‖fε1 − fε2‖∞ . |ε1 − ε2|. Since E is a bounded set by construction,
the uniformly bounded, parametric class F satisfies J(1,F , ‖ · ‖2,PQ0,g

r ) < ∞ (see van der Vaart, 1998,
Example 19.7). Consequently, we can apply Lemma 8 (with a fixed class) and conclude that ‖Pn−PQ0,gn‖F =
oP (1).

Next, the second term in the RHS of (26) is upper-bounded by ∆n ≡ supε∈E Pn|QY,β0(ε)−QY,βn(ε)|/Z.
Since (i) expit is 1-Lipschitz, (ii) Q1,n is bounded away from 0 and 1, and logit is Lipschitz on any compact
subset of ]0, 1[, it holds that

∆n ≤ sup
ε∈E

Pn |logit(QY,β0)− logit(QY,βn) + ε(H(gn)−H(g∗0))| /Z

. Pn|QY,β0 −QY,βn |/Z + Pn|1/gn − 1/g∗0|/Z
= (Pn − PQ0,gn)|QY,β0 −QY,βn |/Z + PQ0,gn |QY,β0 −QY,βn |/Z

+(Pn − PQ0,gn)|1/gn − 1/g∗0|/Z + PQ0,gn |1/gn − 1/g∗0|/Z. (27)

While studying the second RHS term of (25) in the proof of Proposition 2, we proved the following facts:
PQ0,gn |QY,β0 −QY,βn |/Z . PQ0,gr |QY,β0 −QY,βn | = oP (1) and (Pn − PQ0,gn)|QY,β0 −QY,βn |/Z = oP (1) (the
assumptions of Proposition 2 are met here too). Therefore, it only remains to study the two rightmost
terms in the RHS of (27). Since G1 is uniformly bouded away from 0, (Pn − PQ0,gn)|1/gn − 1/g∗0|/Z =
O(‖Pn − PQ0,gn‖1/G1,n). Moreover, Lemma 8 applies because 1/G1 is uniformly bounded and A6 is met,
hence ‖Pn − PQ0,gn‖1/G1,n = oP (1) and (Pn − PQ0,gn)|1/gn − 1/g∗0|/Z = oP (1). Finally,

PQ0,gn |1/gn − 1/g∗0|/Z . PQ0,gr |1/gn − 1/g∗0| ≤ ‖1/gn − 1/g∗0‖2,QW,0 = oP (1)

by Cauchy-Schwarz and Corollary 1, whose assumptions are met here too. In summary, ∆n = oP (1).

We have show that the RHS expression in (26) converges to 0 in probability as n → ∞, hence ‖Mn −
M‖E = oP (1). Thus, all assumptions of Lemma 4 hold, from which we deduce that εn converges to ε0 as
n→∞. This completes the first part of the proof.

Let QY ×G×E be equipped with the norm characterized by ‖(QY , g, ε)‖ = ‖QY ‖2,PQ0,g
r +‖g‖2,QW,0 + |ε|.

Propositions 1, 2 and the first part of the proof imply that (QY,βn , gn, εn) converges to (QY,β0 , g
∗
0, ε0) in

probability wrt ‖ · ‖ as n→∞. Let f : QY × G × E → QY be characterized by

f(QY , g, ε)(O) ≡ expit (logit(QY (A,W )) + ε(2A− 1)/g(A|W )) (28)

Set (QY,1, g1, ε1), (QY,2, g2, ε2) ∈ QY × G × E . Because (i) expit is 1-Lipschitz, (ii) Q1,n is bounded away
from 0 and 1, and logit is Lipschitz on any compact subset of ]0, 1[, (iii) G1 is uniformly bounded away from
0, (iv) E is a bounded set, it holds that

‖f(QY,1, g1, ε1)− f(QY,2, g2, ε2)‖2,PQ0,g
r

≤ ‖ logit(QY,1)− logit(QY,2)‖2,PQ0,g
r + ‖ε2(1/g1 − 1/g2)‖2,QW,0 + ‖(ε1 − ε2)/g1‖2,QW,0

. ‖QY,1 −QY,2‖2,PQ0,g
r

+ ‖g1 − g2‖2,QW,0 + |ε1 − ε2| = ‖(QY,1, g1, ε1)− (QY,2, g2, ε2)‖
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(f is Lipschitz). Therefore, the convergence ‖(QY,βn , gn, εn)−(QY,β0 , g
∗
0, ε0)‖ = oP (1) and equalities Q∗Y,βn =

f(QY,βn , gn, εn), Q∗Y,β0 = f(QY,β0 , g
∗
0, ε0), entail ‖Q∗Y,βn −Q

∗
Y,β0
‖2,PQ0,g

r = oP (1), hence our first claim. This
completes the second part of the proof.

The second claim follows from the double-robustness of the efficient influence curve D. Indeed, M(ε0) =
PQ0,g∗0

DY (Q∗Y,β0 , g
∗
0) = 0 from the first part of this proof, and PQ0,g∗0

DW (Q∗β0) = 0 from the definitions of Ψ
and DW , hence PQ0,g∗0

D(PQ∗β0 ,g
∗
0
) = 0. Thus, Lemma 1 guarantees that Ψ(Q∗β0) = Ψ(Q0) since PQ0,g∗0

and

PQ∗β0 ,g
∗
0

share the same g∗0. We now turn to the third and last claim. For both β = β0 and β = βn, introduce

q∗Y,β characterized by
q∗Y,β(W ) ≡ Q∗Y,β(1,W )−Q∗Y,β(0,W ). (29)

Define also Q∼βn ≡ (QW,0, Q
∗
Y,βn

) and ψ∼n ≡ Ψ(Q∼βn). Since gr is bounded away from 0, the Cauchy-Schwarz
inequality yields

|ψ∼n − ψ0| = |ψ∼n −Ψ(Q∗β0)| = |PQ0,gr(Q
∗
Y,βn −Q

∗
Y,β0)(2A− 1)/gr|

. PQ0,gr |Q∗Y,βn −Q
∗
Y,β0 | ≤ ‖Q

∗
Y,βn −Q

∗
Y,β0‖2,PQ0,g

r = oP (1).

Furthermore, ψ∗n−ψ∼n = (Pn−PQ0,gn)(q∗Y,βn−q
∗
Y,β0

)+(Pn−PQ0,gn)q∗Y,β0 . By similar arguments as before, we
establish that (Pn − PQ0,gn)(q∗Y,βn − q

∗
Y,β0

) = oP (1). In addition, the law of large numbers (for independent,
identically distributed random variables, since q∗Y,β0 is a bounded function of W only) guarantees that
(Pn − PQ0,gn)q∗Y,β0 = oP (1). In summary, ψ∗n − ψ0 = (ψ∗n − ψ∼n ) + (ψ∼n − ψ0) = oP (1), as stated. This
completes the proof.

The asymptotic linear expansion (21) in Proposition 4 is a by-product of the exact linear expansion that
we state and prove below. Recall the definitions of d∗Y,β and q∗Y,β (β = β0 or β = βn) given in (18) and (29).

Lemma 2 (exact linear expansion of ψ∗n). It follows from the definition of ψ∗n that

ψ∗n − ψ0 = −PQ0,g∗0
D(PQ∗βn ,g

∗
0
) (30)

= (Pn − PQ0,gn)(d∗Y,β0 +DW (Q∗β0))

+(Pn − PQ0,gn)
(
(d∗Y,βn − d

∗
Y,β0) + (q∗Y,βn − q

∗
Y,β0)

)
. (31)

Proof of Lemma 2. Consider (30). By Lemma 1, the efficient influence curve decomposes as D(PQ∗βn ,g
∗
0
) =

DY (Q∗Y,βn , g
∗
0)+DW (Q∗βn). Define qY,0(W ) ≡ QY,0(1,W )−QY,0(0,W ). Firstly, PQ0,g∗0

DW (Q∗βn) = PQ0,g∗0
q∗Y,βn−

ψ∗n. Secondly, PQ0,g∗0
DY (Q∗Y,βn , g

∗
0) = PQ0,g∗0

(2A − 1)(Y − Q∗Y,βn)/g∗0 = PQ0,g∗0
(qY,0 − q∗Y,βn). Adding these

two equalities yields PQ0,g∗0
D(PQ∗βn ,g

∗
0
) = PQ0,g∗0

qY,0 − ψ∗n = ψ0 − ψ∗n, which is the desired result.

We now turn to (31). Denote Pn,gn the empirical distribution of On weighted by gn(Ai|Wi)/gi(Ai|Wi).
By construction of the fluctuation (9) and definition of εn (10), it holds that Pn,gnDY (Q∗Y,βn , gn) = 0.
Moreover, (11) can be rewritten as PnDW (Q∗βn) = 0. Therefore, (30) is equivalent to

ψ∗n − ψ0 = (Pn − PQ0,g∗0
)DW (Q∗βn) +

(
Pn,gnDY (Q∗Y,βn , gn)− PQ0,g∗0

DY (Q∗Y,βn , g
∗
0)
)
. (32)

Adding and subtracting (Pn − PQ0,g∗0
)DW (Q∗β0) to the first term in the RHS expression of (32) implies

(Pn − PQ0,g∗0
)DW (Q∗βn) = (Pn − PQ0,g∗0

)DW (Q∗β0) + (Pn − PQ0,g∗0
)(DW (Q∗βn)−DW (Q∗β0))

= (Pn − PQ0,g∗0
)DW (Q∗β0) + (Pn − PQ0,g∗0

)(q∗Y,βn − q
∗
Y,β0)

= (Pn − PQ0,gn)DW (Q∗β0) + (Pn − PQ0,gn)(q∗Y,βn − q
∗
Y,β0), (33)

where the last equality is valid because DW (Q∗β0), q∗Y,βn , q∗Y,β0 are functions of W only. As for the second
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term in the RHS expression of (32), it equals

1

n

n∑
i=1

(
gn(Ai|Wi)

gi(Ai|Wi)

2Ai − 1

gn(Ai|Wi)
(Yi −Q∗Y,βn(Ai,Wi))− PQ0,g∗0

2A− 1

g∗0(A|W )
(Y −Q∗Y,βn)

)

=
1

n

n∑
i=1

(
2Ai − 1

gi(Ai |Wi)
(Yi −Q∗Y,βn(Ai,Wi))− PQ0,gi

2A− 1

gi(A |W )
(Y −Q∗Y,βn)

)
= (Pn − PQ0,gn)d∗Y,βn

= (Pn − PQ0,gn)d∗Y,β0 + (Pn − PQ0,gn)(d∗Y,βn − d
∗
Y,β0). (34)

The equalities (32), (33) and (34) imply (31).

It appears that the second term in the RHS expression of (31) is asymptotically negligible at rate
√
n.

Indeed,

Lemma 3. It holds that (Pn − PQ0,gn)
(

(d∗Y,βn − d
∗
Y,β0

) + (q∗Y,βn − q
∗
Y,β0

)
)

= oP (1/
√
n).

Proof of Lemma 3. The key to this proof is Lemma 10.

Introduce Q∗1,n ≡ {f(QY,β , g, ε) : QY,β ∈ Q1,n, g ∈ G1,n, ε ∈ E}, where f is given by (28), and set δ > 0.
The elements of Q∗1,n are uniformly bounded away from 0 and 1. By A5, A6 and Lemma 11, the bracketing
numbers N(δ, logit(Q1,n), ‖ · ‖2,PQ0,g

r ) and N(δ, 1/Q1,n, ‖ · ‖2,PQ0,g
r ) are finite. Obviously, the bracketing

number N(δ, E , | · |) is finite too. Choose arbitrarily three collections of δ-brackets of smallest possible
cardinality that cover logit(Q1,n), 1/G1,n, and E . Given f(QY,β, g, ε) ∈ Q∗1,n, let [lQ, uQ], [lg, ug] and [lε, uε]
be δ-brackets from these collections and containing logit(QY,β), 1/g and ε, respectively. We can assume
without loss of generality that the uniform lower- and upper-bounds of logit(Q1,n) (respectively, 1/G1,n)
are also lower- and upper-bounds on lQ, uQ, (respectively, lg, ug). We can also assume that |lε|, |uε| ≤
supε∈E |ε|. Characterize λ and γ by setting λ(O) ≡ AlεH(ug)(O)+(1−A)uεH(lg)(O) and, similarly, γ(O) ≡
AuεH(lg)(O) + (1−A)lεH(ug)(O). Then [expit(lQ + λ), expit(uQ + γ)] is a bracket containing f(QY,β, g, ε).
Since expit is 1-Lipschitz, it follows that (expit(uQ + γ)− expit(lQ + λ))2 ≤ ((uQ − lQ) + (γ − λ))2 ≤ 2(uQ−
lQ)2 + 2(γ − λ)2 where (γ − λ)2 . (uε − lε)2 + (H(ug) − H(lg))

2 . (uε − lε)2 + (ug − lg)2. Consequently,
there exists a universal constant c ≥ 1 such that [expit(lQ + λ), expit(uQ + γ)] be a cδ-bracket. Thus,
N(δ,Q∗1,n, ‖ · ‖2,PQ0,g

r ) ≤ N(δ/c, logit(Q1,n), ‖ · ‖2,PQ0,g
r )×N(δ/c, 1/G1,n, ‖ · ‖2,QW,0)×N(δ/c, E , | · |) hence,

by Lemma 11, J(δ,Q∗1,n, ‖ · ‖2,PQ0,g
r ) . J(δ,Q1,n, ‖ · ‖2,PQ0,g

r ) +J(δ,G1,n, ‖ · ‖2,QW,0) +J(δ, E , | · |). Therefore,
A5* and A6* imply that if δn = o(1) then J(δn,Q∗1,n, ‖ · ‖2,PQ0,g

r ) = o(1) as well. Now, we use this to prove
the lemma.

For each QY ∈ Q∗1,n, characterize dY (QY ) by setting dY (QY )(O,Z) ≡ (2A− 1)(Y −QY (A,W ))/Z. By
uniform boundedness of ∪n≥1Q∗1,n, Y and Z, the existence of a sequence of envelope functions satisfying
(a) in Lemma 10 is granted. Moreover, Lemma 11 yields that there exists c > 0 such that J(δ, dY (Q∗1,n), ‖ ·
‖2,PQ0,g

r ) ≤ cJ(δ,Q∗1,n, ‖ · ‖2,PQ0,g
r ) for all δ > 0. Thus, δn = o(1) implies J(δn, dY (Q∗1,n), ‖ · ‖2,PQ0,g

r ) = o(1),
and condition (b) in Lemma 10 is met too. Now, the convergence ‖Q∗Y,βn−Q

∗
Y,β0
‖2,PQ0,g

r = oP (1), established

in Proposition 3, implies PQ0,gr(dY (Q∗Y,βn) − dY (Q∗Y,β0))2 = oP (1) by Cauchy-Schwarz, since |dY (Q∗Y,βn) −
dY (Q∗Y,β0)| . |Q∗Y,βn −Q

∗
Y,β0
|. We apply Lemma 10 to obtain

√
n(Pn − PQ0,gn)(d∗Y,βn − d

∗
Y,β0

) = oP (1).

Now, for each QY ∈ Q∗1,n, characterize qY (QY ) by setting qY (QY )(W ) ≡ QY (1,W )−QY (0,W ). Choose
a collection of N(δ,Q∗1,n, ‖ · ‖2,PQ0,g

r ) δ-brackets [lk, uk] covering Q∗1,n and set arbitrarily QY ∈ Q∗1,n.
Assume without loss of generality that QY ∈ [l1, u1] and characterize l′1 and u′1 by setting l′1(W ) ≡
l1(1,W )−u1(0,W ) and u′1(W ) ≡ u1(1,W )− l1(0,W ). It holds that qY (QY ) ∈ [l′1, u

′
1] and PQ0,gr(u

′
1− l′1)2 ≤

2δ2/c for 0 < c ≡ min(inf gr, 1 − sup gr) < 1. Thus, N(δ, qY (Q∗1,n), ‖ · ‖2,PQ0,g
r ) ≤ N(

√
2/cδ,Q∗1,n, ‖ ·

‖2,PQ0,g
r ), hence J(δn, qY (Q∗1,n), ‖ · ‖2,PQ0,g

r ) = o(1) whenever δn = o(1): condition (b) in Lemma 10 is
met. Condition (a) in the same lemma is also met since ∪n≥1qY (Q∗1,n) is uniformly bounded. Moreover,
‖Q∗Y,βn − Q

∗
Y,β0
‖2,PQ0,g

r = oP (1) implies ‖qY (Q∗Y,βn) − qY (Q∗Y,β0)‖2,PQ0,g
r = oP (1) since PQ0,gr(qY (Q∗Y,βn) −

qY (Q∗Y,β0)2 ≤ 2PQ0,gr(Q
∗
Y,βn

(1,W ) − Q∗Y,β0(1,W ))2 + 2PQ0,gr(Q
∗
Y,βn

(1,W ) − Q∗Y,β0(1,W ))2 and, for both
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a = 0, 1, PQ0,gr(Q
∗
Y,βn

(a,W )−Q∗Y,β0(a,W ))2 = PQ0,gr(Q
∗
Y,βn
−Q∗Y,β0)21{A = a}/gr(a|W ) . PQ0,gr(Q

∗
Y,βn
−

Q∗Y,β0)2 because gr is bounded away from 0 and 1. We apply Lemma 10 to obtain
√
n(Pn − PQ0,gn)(q∗Y,βn −

q∗Y,β0) = oP (1).

This completes the proof.

The proof of Proposition 4 is now at hand.

Proof of proposition 4. We first note that (21) follows straightforwardly from Lemmas 2 and 3.

Set f0 ≡ d∗Y,β0 +DW (Q∗β0) and fn ≡ d∗Y,βn +DW (Q∗βn). With this notation, Σ0 = PQ0,g∗0
f2

0 , Σn = Pnf
2
n.

Introduce also Sn ≡ PQ0,gnf
2
0 . For either (f, β) = (f0, β0) or (f, β) = (fn, βn), it holds that

PQ0,gnf
2 =

1

n

n∑
i=1

PQ0,gif
2

= PQ0,g∗0

(
DW (Q∗β)2 + 2DY (Q∗Y,β, g

∗
0)DW (Q∗β)

)
+

1

n

n∑
i=1

PQ0,g∗0

(Y −Q∗Y,β)2

g∗0gi

= PQ0,g∗0

(
DW (Q∗β)2 + 2DY (Q∗Y,β, g

∗
0)DW (Q∗β)

)
+ PQ0,g∗0

(Y −Q∗Y,β)2

g∗0

1

n

n∑
i=1

1/gi.

Now, because (Y −Q∗Y,β)2 ≤ 1 and g∗0 is bounded away from 0 and 1, the Cauchy-Schwarz inequality yields

|PQ0,gnf
2 − PQ0,g∗0

f2| =

∣∣∣∣∣PQ0,g∗0

(Y −Q∗Y,β)2

g∗0

(
1

n

n∑
i=1

1/gi − 1/g∗0

)∣∣∣∣∣
. PQ0,g∗0

∣∣∣∣∣ 1n
n∑
i=1

1/gi − 1/g∗0

∣∣∣∣∣ ≤
∥∥∥∥∥ 1

n

n∑
i=1

1/gi − 1/g∗0

∥∥∥∥∥
2,QW,0

. (35)

Thus, taking f = f0 and applying corollary 1, we obtain E(Sn) = Σ0 + o(1) and Sn = Σ0 + oP (1) ( Note
that Σ0 > 0 by A1. Let us show now that Σn = Σ0 + oP (1) by proving Σn − Sn = oP (1). We use the
following decomposition:

Σn − Sn = (Pn − PQ0,gn)(f2
n − f2

0 ) + (Pn − PQ0,gn)f2
0 + PQ0,gn(f2

n − f2
0 )

= (Pn − PQ0,gn)(f2
n − f2

0 ) + (Pn − PQ0,gn)f2
0 + PQ0,g∗0

(f2
n − f2

0 ) + oP (1), (36)

where the second equality holds because PQ0,gnf
2 = PQ0,g∗0

f2 + oP (1) for both f = f0 and f = fn (by
(35) and Corollary 1). Because f0 and all fn’s (n ≥ 1) are uniformly bounded, the first term in the RHS
expression of (36) satisfies

|(Pn − PQ0,gn)(f2
n − f2

0 )| . |(Pn − PQ0,gn)(fn − f0)|
= |(Pn − PQ0,gn)(d∗Y,βn − d

∗
Y,β0) + (q∗Y,βn − q

∗
Y,β0)| = oP (1/

√
n)

by Lemma 3 (see (29) for the definition of q∗Y,β). Since f0 is bounded, the Kolmogorov strong law of large
numbers (Sen and Singer, 1993, Theorem 2.4.2) guarantees that the second term in the RHS expression of
(36) converges to 0 P -almost-surely, hence (Pn − PQ0,gn)f2

0 = oP (1). Consider now the third term in the
RHS expression of (36). Note that (fn−f0)(O,Z) = (2A−1)(Q∗Y,β0−Q

∗
Y,βn

)(A,W )/Z+(q∗Y,βn−q
∗
Y,β0

)(W )−
(ψ∗n − ψ0), hence |fn − f0| . |Q∗Y,β0 −Q

∗
Y,βn
| + |q∗Y,βn − q

∗
Y,β0
| + |ψ∗n − ψ0| because Z is bounded away from

0 and 1. Using again (i) that f0 and all fn’s (n ≥ 1) are uniformly bounded, and (ii) the Cauchy-Schwarz
inequality and the dominated ratio property, we get

|PQ0,g∗0
(f2
n − f2

0 )| . |PQ0,g∗0
(fn − f0)|

. PQ0,g∗0
|Q∗Y,βn −Q

∗
Y,β0 |+ PQ0,g∗0

|q∗Y,βn − q
∗
Y,β0 |+ |ψ

∗
n − ψ0|

. ‖Q∗Y,βn −Q
∗
Y,β0‖2,PQ0,g

r + ‖q∗Y,βn − q
∗
Y,β0‖2,PQ0,g

r + |ψ∗n − ψ0|.
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We know that ‖Q∗Y,βn − Q∗Y,β0‖2,PQ0,g
r = oP (1) by Proposition 1, we showed at the end of the proof of

Lemma 3 that this implies ‖q∗Y,βn−q
∗
Y,β0
‖2,PQ0,g

r = oP (1), and Proposition 3 guarantees that ψ∗n−ψ0 = oP (1).

Consequently, |PQ0,g∗0
(f2
n − f2

0 )| = oP (1). We have thus proven that all terms in the RHS expression of (36)
are oP (1), hence Σn − Sn = oP (1) and Σn = Σ0 + oP (1), as we claimed earlier.

We show now that (21), which we rewrite here ψ∗n − ψ0 = (Pn − PQ0,gn)f0 + oP (1/
√
n), implies that√

n/Σ0(ψ∗n − ψ0) converges in law to the standard normal distribution. This is a consequence of (Sen and
Singer, 1993, Theorem 3.3.7) because (i) Sn/E(Sn) − 1 = oP (1), and (ii) for each α > 0, E(Pnf

2
01{f2

0 ≥
α2nE(Sn)}) = o(E(Sn)) trivially holds since f0 is bounded and E(Sn) = Σ0 + o(1) with Σ0 > 0. Then
Slutsky’s lemma and Σn = Σ0 +oP (1) yield the convergence in law of

√
n/Σn(ψ∗n−ψ0) to the same limiting

distribution. This completes the proof.

The proof of Corollary 2 boils down to (i) showing that A5, A5*, A6, A6* are met and (ii) applying
Theorem 1.

Proof of Corollary 2. We show below that A5 and A5* are met. A parallel argument can be used to show
that A6 and A6* hold too. Since A1–A4 are satisfied by assumption, Theorem 1 thus applies and yields
the stated result.

Fix δ > 0, a sequence {δn}n≥1 of positive numbers such that δn = o(1), and n ≥ 1. By construction,
the functions φj (j ∈ N) all belong to a class C of smooth functions over the bounded support W such
that all partial derivatives up to order α > dim(W)/2 of all f ∈ C exist and are uniformly bounded by a
constant C > 0. By (van der Vaart, 1998, Example 19.9), it holds that logN(δ, C, ‖ · ‖2,PQ0,g

r ) . δ−V for
V ≡ dim(W)/α < 2.

Note that F ≡ {
∑

j∈N βjφj =
∑dn

j=0 βjφj : β ∈ Bn} is a subset of C, provided that the constant C in the
definition of C is large enough (if not, it suffices to replace C with MC, with M the constant involved in
(22)). We apply three times Lemma 11 to obtain that J(δ,F , ‖ · ‖2,PQ0,g

r ) & J(δ, logit(Q1,n), ‖ · ‖2,PQ0,g
r ) &

J(δ,Q1,n, ‖ · ‖2,PQ0,g
r ) & J(δ, Lkl(Q1,n), ‖ · ‖2,PQ0,g

r ): from left to right, the inequalities follow from (i) the
third claim of Lemma 11 with h, h′ given by h(O) ≡ A and h′(O) ≡ (1−A), (ii) from the sixth claim with
φ ≡ expit, which is increasing and 1-Lipschitz, and (iii) from the seventh claim with h given by h(O) ≡ Y .
Therefore,

J(δn, L
kl(Q1,n), ‖ · ‖2,PQ0,g

r ) . J(δn,Q1,n, ‖ · ‖2,PQ0,g
r )

. J(δn, C, ‖ · ‖2,PQ0,g
r ) .

∫ δn

0
ε−V/2dε = o(1),

and A5* is fulfilled. Choosing δn = 1/
√
n yields that A5 is also fulfilled. This completes the proof.

A.2 Useful technical results

Convergence of M-estimators.

The following lemma is a simple adaptation of (van der Vaart and Wellner, 1996, Corollary 3.2.3).

Lemma 4 (convergence of M -estimators). Let Mn be a real-valued, stochastic processes indexed by a metric
space (Θ, d), and let M : Θ → R be a real-valued, deterministic function over Θ. Consider a sequence of
subsets Θn ⊂ Θ and the following assumptions:

(a) There exists θ0 ∈ Θ such that M(θ0) < infθ/∈T M(θ) for every open set T ⊂ Θ containing θ0.

(b) For each n ≥ 1, there exists θ∗n ∈ Θn such that M(θ∗n) = infθ∈Θn M(θ). Moreover, M(θ∗n) −M(θ0) =
o(1).

(c) It holds that ‖Mn −M‖Θn = oP (1).
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Under the above three assumptions, if θn ∈ Θn satisfies Mn(θn)−Mn(θ∗n) ≤ 0 for all n ≥ 1, then d(θn, θ0) =
oP (1).

Proof of Lemma 4. Set n ≥ 1. By (a), it holds that

0 ≤ M(θn)−M(θ0)

= (M(θn)−Mn(θn)) + (Mn(θn)−Mn(θ∗n)) + (Mn(θ∗n)−M(θ∗n)) + (M(θ∗n)−M(θ0)) .

The above first and third RHS terms are both upper-bounded by ‖Mn −M‖Θn . The second RHS term
is non-positive by definition of θn. The fourth RHS terms is o(1) by (b). Thus, it actually holds that
0 ≤M(θn)−M(θ0) ≤ 2‖Mn −M‖Θn + o(1) = oP (1) by (c).

Set ε > 0. By (a), there exists δ > 0 such that d(θn, θ0) ≥ ε implies M(θn)−M(θ0) ≥ δ. Since we have
shown that M(θn)−M(θ0) = oP (1), we can therefore conclude that d(θn, θ0) = oP (1) too.

Maximal inequalities and convergence of empirical processes.

In this article, we repeatedly exploit uniform laws of large numbers. They are derived from maximal
inequalities for martingales by van Handel (2011) that also played an important role in (Chambaz and
van der Laan, 2011a,c). For completeness, we now state these results.

Let φ : R→ R+ be such that φ(x) = ex − x− 1. Let F be a class of measurable functions, n ≥ 1 be an
integer, K > 0 and δ > 0 be two positive constants. For each f ∈ F , n(Pn − PQ0,gn)f =

∑n
i=1(f(Oi, Zi)−

PQ0,gif) is a discrete martingale sum.

Set N = N(δ,F , ‖ · ‖2,PQ0,g
r ), the δ-bracketing number of F wrt ‖ · ‖2,PQ0,g

r . Following van Handel

(2011), we define a (δ, n,F ,K)-bracketing set as a collection {(Λji ,Γ
j
i ) : i ≤ n}j≤N of random variables

such that (i) for each f ∈ F , there exits j ≤ N satisfying Λji ≤ f(Oi, Zi) ≤ Γji for all i ≤ n, and (ii)

for all j ≤ N , 2K2n−1
∑n

i=1 PQ0,giφ(|Λji − Γji |/K) ≤ δ2. Let N (δ, n,F ,K) denote the cardinality of the
smallest (δ, n,F ,K)-bracketing set. Finally, introduce for each f ∈ F the random variable Rn,K(f) =
2K2n−1

∑n
i=1 PQ0,giφ(|f |/K).

Lemma 5 (Proposition A.2 by van Handel (2011)). There exists an universal constant C > 0 such that,
for all R > 0,

P

(
sup
f∈F

1 {Rn,K(f) ≤ R}max
i≤n

i

n
(Pi − PQ0,gi) f ≥ α

)
≤ 2 exp

(
− nα2

C2(c1 + 1)R

)
,

for any α, c0, c1 > 0 such that c2
0 ≥ C2(c1 + 1) and

c0√
n

∫ √R
0

√
logN (ε, n,F ,K)dε ≤ α ≤ c1R

K
.

Lemma 6 (Corollary A.8 by van Handel (2011)). Suppose the class F is finite. For all R > 0 and any
event C,

E

(
max
f∈F

1 {nRn,K(f) ≤ R}max
i≤n

i (Pi − PQ0,gi) f

)
≤

√
2R log

(
1 +

|F|
P (C)

)
+ 8K log

(
1 +

|F|
P (C)

)
.

If, in addition, maxf∈F ‖f‖∞ ≤ U , then K can be replaced with U/3 in the second term of the above RHS
expression.

Importantly, van Handel (2011)’s proofs of Lemmas 5 and 6 remain valid when the class F is allowed to
depend on n. To use lemmas 5 and 6, it is necessary to get a grip on N (δ, n,F ,K) and the random variables
Rn,K(f), f ∈ F . The next lemma is helpful in this regard.

Recall that, by the dominated ratio property of G1, ‖g/gr‖∞ ≤ κ for all g ∈ G1.
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Lemma 7 (L2-norm version of lemma 7 by Chambaz and van der Laan (2011c)). Assume that U ≡
supf∈F ‖f‖∞ is finite. Then, for all f ∈ F , Rn,4U (f) ≤ 4/3n

∑n
i=1 PQ0,gi |f |2. Moreover, it holds that

N (
√

2κδ, n,F , 4U) ≤ N(δ,F , ‖ · ‖2,PQ0,g
r ).

Proof of Lemma 7. Set f ∈ F , i ≤ n, and m ≥ 2. It holds that PQ0,gi |f |
m ≤ Um−2PQ0,gi |f |

2 ≤
m!
2 U

m−2PQ0,gi |f |
2. Therefore, for K = 4U ,

2K2PQ0,giφ(|f |/K) = 2(4U)2
∑
m≥2

PQ0,gi |f |m

m!(4U)m

≤ 2(4U)2
∑
m≥2

m!
2 U

m−2PQ0,gi |f |2

m!(4U)m
= 16

∑
m≥2

PQ0,gi |f |2

4m
= 4PQ0,gi |f |2/3.

The monotone convergence theorem guarantees the first equality. Summing up the above inequalities for
i = 1, . . . , n yields the first bound.

Let (`j , uj)j≤N be a set of N = N(δ,F , ‖ · ‖2,PQ0,g
r ) δ-brackets covering F wrt ‖ · ‖2,PQ0,g

r . Let Λji =

max(`j(Oi, Zi),−U) and Γji = min(uj(Oi, Zi), U) for all i ≤ n, j ≤ N . Set f ∈ F and j ≤ N such

that f ∈ [`j , uj ]. Then, for all i ≤ n, (i) Λji ≤ f(Oi, Zi) ≤ Γji , (ii) −U ≤ Λji ≤ Γji ≤ U , and (iii)

`j ≤ Λji ≤ Γji ≤ uj . Thus, for all m ≥ 2,

PQ0,gi |Λ
j
i − Γji |

m ≤ (2U)m−2PQ0,gi |Λ
j
i − Γji |

2 ≤ (2U)m−2κPQ0,gr |Λ
j
i − Γji |

2

≤ (2U)m−2κPQ0,gr |`j − uj |2 ≤ (2U)m−2κδ2 ≤ m!

2
(2U)m−2κδ2.

Consequently, still using K = 4U , it holds that

2K2PQ0,giφ(|Λji − Γji |/4U) = 2(4U)2
∑
m≥2

PQ0,gi |Λ
j
i − Γji |m

m!(4U)m
≤ 32U2

∑
m≥2

m!
2 (2U)m−2κδ2

m!(4U)m
= 2κδ2.

Again, the monotone convergence theorem validates the first equality. Summing up the above inequali-
ties for i = 1, . . . , n yields 2K2n−1

∑n
i=1 PQ0,giφ(|Λji − Γji |/K) ≤ 2κδ2, hence {(Λji ,Γ

j
i ) : i ≤ n}j≤N is a

(
√

2κδ, n,F ,K)-bracketing set and N (
√

2κδ, n,F , 4U) ≤ N(δ,F , ‖ · ‖2,PQ0,g
r ). This completes the proof.

By combining Lemmas 5 and 7, we now establish a uniform law of large numbers.

Lemma 8. Let {Fn}n≥1 be a sequence of sets of measurable functions such that U ≡ supf∈∪n≥1Fn ‖f‖∞ be

finite. If J(
√

2/3κU,Fn, ‖ · ‖2,PQ0,g
r ) = o(

√
n), then for all α > 0 there exists c > 0 and n0 ≥ 1 such that,

for every n ≥ n0,

P

(
sup
f∈Fn

(Pn − PQ0,gn) f ≥ α

)
≤ 2e−nc.

Consequently, supf∈Fn |(Pn − PQ0,gn)f | converges to 0 P -almost surely.

Lemma 8 modifies Theorem 8 in Chambaz and van der Laan (2011c) to use an L2-metric and allow the
classes of functions to change with n.

Proof of Lemma 8. Set α > 0, and let K = 4U , R = 4/3U2, c1 = αK/R, c0 = C
√
c1 + 1, where C is the

universal constant from Lemma 5. Note that
√
R/2κ =

√
2/3κU . By assumption, there exists n0 ≥ 1 such

that, for all n ≥ n0, J(
√
R/2κ,Fn, ‖ · ‖2,PQ0,g

r ) ≤
√
nα/c0

√
2κ.

Set n ≥ n0. By Lemma 7, N (
√

2κδ, n,Fn, 4U) ≤ N(δ,Fn, ‖ · ‖2,PQ0,g
r ). Therefore,

c0√
n

∫ √R
0

√
logN (ε, n,Fn, 4U)dε ≤

√
2κc0√
n

∫ √R/2κ
0

√
logN(ε,Fn, ‖ · ‖2,PQ0,g

r )dε

=

√
2κc0√
n

J(
√
R/2κ,Fn, ‖ · ‖2,PQ0,g

r ) ≤ α =
c1R

K
.

25 Hosted by The Berkeley Electronic Press



Lemma 5 applies and yields here

P

(
sup
f∈Fn

(Pn −PQ0,gn)f ≥ α

)
≤ P

(
sup
f∈Fn

max
i≤n

i

n
(Pi − PQ0,gi)f ≥ α

)
≤ 2e−nc,

with c = α2/c2
0R. This completes the proof.

Lemma 5 also allows us to adapt the maximal inequality of (van der Vaart, 1998, Lemma 19.34), valid
under independent, identically distributed sampling, to our targeted, adaptive sampling. We state and prove
this result in lemma 9. We introduce the function Log given by Log(x) ≡ max(1, log(x)) (all x > 0).

Lemma 9. Let F be a class of measurable, real-valued functions and δ > 0 be such that PQ0,grf
2 ≤ δ2 for

every f ∈ F . Let F be an envelope function of F . Define a(ε) = ε/
√

LogN(ε,F , ‖ · ‖2,PQ0,g
r ) for all ε > 0.

For each n ≥ 1, it holds that

√
nE(‖Pn − PQ0,gn‖F ) . J(δ,F , ‖ · ‖2,PQ0,g

r ) +
√
nE
(
PQ0,gnF1

{
F >

√
na(δ)

})
(37)

≤ J(δ,F , ‖ · ‖2,PQ0,g
r ) +

√
nκPQ0,grF1

{
F >

√
na(δ)

}
. (38)

Proof of Lemma 9. The proof parallels that of (van der Vaart, 1998, Lemma 19.34).

Preliminary. Inequality (38) follows readily from (37) because F1 {F >
√
na(δ)} is non-negative and G1

is endowed with the dominated ratio property. To understand the sum of two terms on the RHS of (37),
first note that E(‖Pn − PQ0,gn‖F ) is upper-bounded by

E

(
sup
f∈F
|(Pn − PQ0,gn)f1{F ≤

√
na(δ)}|

)
+ E

(
sup
f∈F
|(Pn − PQ0,gn)f1{F >

√
na(δ)}|

)
. (39)

Now, for every f ∈ F ,

|(Pn − PQ0,gn)f1{F >
√
na(δ)}| ≤ (Pn + PQ0,gn)F1{F >

√
na(δ)},

hence, by the tower rule, the second term in (39) is smaller than E((Pn + PQ0,gn)F1{F >
√
na(δ)}) =

2E(PQ0,gnF1{F >
√
na(δ)}). Thus, to prove (37), it remains to show that

√
n times the first term in (39)

is smaller than J(δ,F , ‖ · ‖2,PQ0,g
r ), up to a universal, multiplicative constant.

Before proceeding, note that N(ε, {f1{F ≤
√
na(δ)} : f ∈ F}, ‖ · ‖2,PQ0,g

r ) ≤ N(ε,F , ‖ · ‖2,PQ0,g
r ) for

all ε > 0, so that we may assume, without loss of generality, that supf∈F ‖f‖∞ ≤
√
na(δ). What follows is

based on a chaining technique to replace F with a finite class.

Chaining. We now define a nested sequence of partitions on F , then deduce a finite representation of F
from it. Fix q0 such that δ ≤ 2−q0 ≤ 2δ. For each integer q ≥ q0, denote Ñq ≡ N(2−q,F , ‖ · ‖2,PQ0,g

r ). Since
ε 7→ N(ε,F , ‖ · ‖2,PQ0,g

r ) is non-decreasing, it holds that

∑
q≥q0

2−q
√

Log Ñq .
∫ δ

0

√
LogN(ε,F , ‖ · ‖2,PQ0,g

r )dε. (40)

1. For each q ≥ q0, cover F with Ñq many brackets [lq,i, uq,i]i≤Ñq such that PQ0,gr∆
2
q,i ≤ 2−2q for all

i ≤ Ñq. Note that we may assume, without loss of generality, that ∆q,i ≡ uq,i − lq,i ≤ 2F ≤ 2
√
na(δ)

for all i ≤ Ñq. Define Fq,1 ≡ [lq,1, uq,1] then, recursively, Fq,i ≡ [lq,i, uq,i]
⋂(⋃

j<i[lq,j , uq,j ]
)c

for

2 ≤ i ≤ Ñq. We have our first partition: F =
⋃Ñq
i=1Fq,i, which we call partition of F at level q.

From the sequence of partitions {{Fq,i : i ≤ Ñq}}q≥q0 , we derive a nested sequence of partitions as
follows. The first partition is {Fq0,i : i ≤ Ñq0} itself. Then, recursively, at a level q such that {Fq,i : i ≤
Ñq} is not a successful refinement of {F(q−1),i : i ≤ Ñq−1}, we replace each partitioning set at level q
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by its intersection with all partitioning sets at level (q−1). All partitioning sets derived in this fashion
from Fq,i are associated with the same ∆q,i. For a given q ≥ q0, the possibly new partition consists of

at most Nq =
∏q
q′=q0

Ñq′ partitioning sets. Using the inequality
√

LogNq ≤
∑q

q′=q0

√
Log Ñq′ , we see

that (40) is preserved in the sense that∑
q≥q0

2−q
√

LogNq ≤
∑
q≥q0

2−q
q∑

q′=q0

√
Log Ñq

.
∑
q≥q0

2−q
√

Log Ñq ≤
∫ δ

0

√
LogN(ε,F , ‖ · ‖2,PQ0,g

r )dε. (41)

2. At each level q ≥ q0 and for each Fq,i (i ≤ Nq), fix a representative fq,i ∈ Fq,i. For every f ∈ F , if
f ∈ Fq,i, then we set πqf ≡ fq,i and ∆qf ≡ ∆q,i. Introduce aq0 ≡ 2a(2−q0) = 2−q0+1/

√
LogNq0 and,

for each q > q0, f ∈ F , Bq0f ≡ 0,

aq ≡ 2−q+1/
√

LogNq,

Aq−1f ≡ 1
{

∆q0f ≤
√
naq0 , . . . ,∆q−1f ≤

√
naq−1

}
,

Bqf ≡ 1
{

∆q0f ≤
√
naq0 , . . . ,∆q−1f ≤

√
naq−1,∆qf >

√
naq
}
.

By nestedness of the sequence of partitions, f 7→ Aqf and f 7→ Bqf are constant over each Fq,i
(i ≤ Nq). Moreover, Bqf + Aqf = Aq−1f for all q > q0 and f ∈ F . In addition, since ε 7→ a(ε) is
non-decreasing, ∆q0f ≤ 2F ≤ 2

√
na(δ) ≤ 2

√
na(2−q0) =

√
naq0 , hence Aq0f = 1.

Using these facts, any f ∈ F decomposes as

f = πq0f +
∑

q≥q0+1

(f − πqf)Bqf +
∑

q≥q0+1

(πqf − πq−1f)Aq−1f. (42)

To see this, note first that either (i) Bqf = 0 for all q ≥ q0, which implies, by recursion, that Aqf = 1 for
all q ≥ q0, or (ii) there exists q1 ≥ q0 such that Bq1f = 1, in which case Bqf = 0 for all q ≥ q0, q 6= q1,
and Aqf = 1 for all q0 ≤ q < q1, Aqf = 0 for all q ≥ q1. If (i) holds, then we deal with a telescopic
sum and (42) boils down to f = πq0f + limq→∞ πqf − πq0f . The above equality is valid because both
πqf and f are in the bracket [lq, uq], whose size ‖uq − lq‖2,PQ0,g

r → 0 as n → ∞. If (ii) holds, then

f = πq0f + (f − πq1f) +
∑q1

q=q0+1(πqf − πq−1f) is evidently true.

Define for convenience Fa = {πq0f/
√
n : f ∈ F}, Fb = {

∑
q≥q0+1(f − πqf)Bqf/

√
n : f ∈ F}, and

Fc = {
∑

q≥q0+1(πqf − πq−1f)Aq−1f/
√
n : f ∈ F}. Each sum in the definition of Fb consists of at

most one single term. Each sum in the definition of Fc is either finite, or telescopic, with a limit, in
which case the dominated convergence theorem guarantees that PQ0,gn

∑
q≥q0+1(πqf−πq−1f)Aq−1f =∑

q≥q0+1 PQ0,gn(πqf − πq−1f)Aq−1f . Therefore, (42) yields

E(‖(Pn − PQ0,gn)‖F )/
√
n ≤ E(‖(Pn − PQ0,gn)‖Fa)

+ E(‖(Pn − PQ0,gn)‖Fb) + E(‖(Pn − PQ0,gn)‖Fc). (43)

We shall study in turn each term in the RHS expression of (43).

Class Fa. For every f ∈ F , (i) |πq0f | ≤
√
na(δ) ≤

√
na(2−q0) =

√
naq0/2, hence suph∈Fa ‖h‖∞ ≤ aq0/2,

and (ii) PQ0,gr(πq0f)2 ≤ δ2 (true by assumption). Apply Lemma 6 with F = Fa, C the whole probability
space, U = aq0/2, K = 4U , R = 4κδ2/3 (an upper-bound on nRn,4U (πq0f/

√
n) valid uniformly in f ∈ F by

Lemma 7): it holds that

nE (‖Pn − PQ0,gn‖Fa) . δ
√

LogNq0 + aq0 LogNq0

≤ 2−q0
√

LogNq0 + 2−q0+1 LogNq0√
LogNq0

≤
∑
q≥q0

2−q
√

LogNq. (44)
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Class Fb. For every q > q0, f ∈ F , |f − πqf | ≤ ∆qf implies

|(Pn − PQ0,gn)(f − πqf)| ≤ (Pn + PQ0,gn)∆qf ≤ |(Pn − PQ0,gn)∆qf |+ 2PQ0,gn∆qf.

Thus, by using repeatedly the triangle inequality and the dominated convergence theorem, we obtain

E(‖Pn − PQ0,gn‖Fb)

≤
∑

q≥q0+1

E

(
sup
f∈F
|(Pn − PQ0,gn)∆qfBqf/

√
n|

)
+ 2

∑
q≥q0+1

E

(
sup
f∈F

PQ0,gn∆qfBqf/
√
n

)
. (45)

Consider the first term in the RHS expression of (45). Fix q > q0. Note that f, f ′ ∈ Fq,i implies
∆qfBqf = ∆qf

′Bqf
′. So, the supremum supf∈F |(Pn − PQ0,gn)∆qfBqf/

√
n| is actually a maximum over

a set of cardinality Nq. Moreover, for each f ∈ F , (i) 0 ≤ ∆qfBqf ≤ ∆q−1fBqf ≤
√
naq−1, hence

suph∈Fb ‖h‖∞ ≤ aq−1, and (ii) PQ0,gr(∆qfBqf)2 ≤ 2−2q. Apply Lemma 6 with F = Fb, C the whole
probability space, U = aq−1, K = 4U , R = 4κ2−2q/3 (an upper-bound on nRn,4U (∆qfBqf/

√
n) valid

uniformly in f ∈ F by Lemma 7): it holds that

nE

(
sup
f∈F
|(Pn − PQ0,gn)∆qfBqf/

√
n|

)
. 2−q

√
LogNq + aq−1 LogNq

= 2−q
√

LogNq + 2−q+2 LogNq√
LogNq

. 2−q
√

LogNq. (46)

Consider now the second term in (45). Fix q > q0 and f ∈ F . Since Bqf = 1 only if
√
naq < ∆qf , it follows

that √
naqPQ0,gi∆qfBqf ≤ PQ0,gi (∆qf)2Bqf ≤ 2−2q

for every 1 ≤ i ≤ n. Therefore,

sup
f∈F

PQ0,gn∆qfBqf/
√
n ≤ 2−2q/naq . 2−q

√
LogNq/n. (47)

By (45), summing up (46) and (47) over q > q0 finally yields

nE(‖Pn − PQ0,gn‖Fb) .
∑

q≥q0+1

2−q
√

LogNq. (48)

Class Fc. Fix q > q0. Note that f, f ′ ∈ Fq,i implies (πqf − πq−1f)Aqf = (πqf
′ − πq−1f

′)Aqf
′. So, the

supremum ‖Pn − PQ0,gn‖Fc is actually a maximum over a set of cardinality Nq. Moreover, for each f ∈ F ,
(i) |πqf − πq−1f |Aq−1f ≤ ∆q−1fAq−1f ≤

√
naq−1, hence suph∈Fc ‖h‖∞ ≤ aq−1, from which we also deduce

that (ii) PQ0,gr((πqf − πq−1f)Aq−1f)2 ≤ PQ0,gr(∆qf)2 ≤ 2−2q. Therefore, the same reasoning as the one
which lead us to (48) applies again, and we obtain

nE(‖Pn − PQ0,gn‖Fc) .
∑

q≥q0+1

2−q
√

LogNq. (49)

Combining (43), (44), (48), (49), and (41) completes the proof.

To prove Proposition 4, we must study the convergence in probability of empirical processes indexed by
estimated functions. Lemma 10 below provides sufficient conditions to derive such convergences. The version
of this lemma under a i.i.d. sampling scheme is given by (van der Vaart and Wellner, 2007, Theorem 2.2).
Here, we provide its extension to the current targeted adaptive sampling scheme. The proof of Lemma 10
hinges on Lemma 9.
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Lemma 10 (convergence of empirical processes indexed by estimated functions). For each n ≥ 1, let
Fn = {fθ,η : θ ∈ Θ, η ∈ Tn} be a class of measurable, real-valued functions, with envelope function Fn.
Suppose the following holds:

(a) The sequence {Fn}n≥1 satisfies the Lindeberg condition: PQ0,grF
2
n = O(1) and, for every δ > 0,

PQ0,grF
2
n1{Fn > δ

√
n} = o(1).

(b) If δn = o(1), then it holds that J(δn,Fn, ‖ · ‖2,PQ0,g
r ) = o(1).

If ηn ∈ Tn is such that supθ∈Θ PQ0,gr(fθ,ηn−fθ,η0)2 = oP (1) for some η0 ∈ ∩p≥1∪n≥pTn, then supθ∈Θ |
√
n(Pn−

PQ0,gn)(fθ,ηn − fθ,η0)| = oP (1).

Proof of lemma 10. Define the random class F̃0
n ≡ {fθ,ηn − fθ,η0 : θ ∈ Θ}. We wish to prove that

√
n‖Pn −

PQ0,gn‖F̃0
n

= oP (1). Set arbitrarily α > 0, ε > 0, and introduce F0
n ≡ {fθ,η − fθ,η0 : θ ∈ Θ, η ∈ Tn}, which

admits 2Fn as an envelope function. For every δ > 0, it holds that J(δ,F0
n, ‖·‖2,PQ0,g

r ) . J(δ,Fn, ‖·‖2,PQ0,g
r ).

Consequently, by (b) and (ii) in Lemma 12 below, there exists δ0 > 0 and n0 ≥ 1 such that, for all n ≥ n0,
J(δ0,F0

n, ‖ · ‖2,PQ0,g
r ) ≤ αε. Define T 0

n(δ0) ≡ {η ∈ Tn : supθ∈Θ PQ0,gr(fθ,η − fθ,η0) ≤ δ2
0}, and F0

n(δ0) ≡
{fθ,η − fθ,η0 : θ ∈ Θ, η ∈ T 0

n(δ0)} ⊂ F0
n. By assumption, there exists n1 ≥ 1 such that P (ηn 6∈ T 0

n(δ0)) ≤ ε
whenever n ≥ n1.

Set n ≥ max(n0, n1). By the Markov inequality, and because ηn ∈ T 0
n(δ0) implies F̃0

n ⊂ F0
n(δ0), it holds

that

P
(√

n‖Pn − PQ0,gn‖F̃0
n
≥ α

)
≤ P

(
ηn 6∈ T 0

n(δ0)
)

+ α−1E
(√

n‖Pn − PQ0,gn‖F̃0
n
1{ηn ∈ T 0

n(δ0)}
)

≤ ε+ α−1E
(√
n‖Pn − PQ0,gn‖F0

n(δ0)1{ηn ∈ T 0
n(δ0)}

)
≤ ε+ α−1E

(√
n‖Pn − PQ0,gn‖F0

n(δ0)

)
. (50)

By Lemma 9, whose conditions are met,

E
(√
n‖Pn − PQ0,gn‖F0

n(δ0)

)
. J(δ0,F0

n(δ0), ‖ · ‖2,PQ0,g
r ) +

√
nPQ0,grFn1{Fn >

√
nan(δ0)/2}

. J(δ0,F0
n, ‖ · ‖2,PQ0,g

r )

+an(δ0)−1PQ0,grF
2
n1{Fn >

√
nan(δ0)/2}, (51)

where an(δ0) ≡ δ0/
√

LogN(δ0,F0
n(δ0), ‖ · ‖2,PQ0,g

r ). By (i) in Lemma 12 below, m 7→ J(δ0,F0
m(δ0), ‖ ·

‖2,PQ0,g
r ) is a bounded function. We also know that, for all m ≥ 1,

J(δ0,F0
m(δ0), ‖ · ‖2,PQ0,g

r ) ≥ δ0

√
LogN(δ0,F0

m(δ0), ‖ · ‖2,PQ0,g
r ) = δ2

0/am(δ0).

In particular, m 7→ am(δ0) must be bounded away from 0. Let c > 0 be such that am(δ0) ≥ c for all m ≥ 1.
With this in mind, (51) implies

E
(√
n‖Pn − PQ0,gn‖F0

n(δ0)

)
≤ J(δ0,F0

n, ‖ · ‖2,PQ0,g
r ) + c−1PQ0,grF

2
n1{Fn >

√
nc/2},

where J(δ0,F0
n, ‖ · ‖2,PQ0,g

r ) ≤ αε by construction. Assumption (b) guarantees that there exists n2 ≥ 1 such

that m ≥ n2 implies PQ0,grF
2
m1{Fm >

√
mc/2} ≤ αcε. In summary, provided that n ≥ max(n0, n1, n2),

(50) and (51) yield P (
√
n‖Pn − PQ0,gn‖F̃0

n
≥ α) ≤ 3ε. In other words,

√
n‖Pn − PQ0,gn‖F̃0

n
= oP (1). This

completes the proof.

The next two lemmas proved useful in our demonstrations.

Lemma 11. Let F be a uniformly bounded class of measurable, real-valued functions. Let h, h′ be two
measurable, bounded, real-valued functions. We do not assume that h, h′ ∈ F . Set δ > 0.
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• Define F ′ equal either to {f − h : f ∈ F}, or {f |h| : f ∈ F}, or {f |h| + f ′|h′| : f, f ′ ∈ F}, or
{|f | : f ∈ F}, or {f2 : f ∈ F}, or {φ(f) : f ∈ F} where φ is non-decreasing and Lipschitz, or
{h log(f) + (1 − h) log(1 − f) : f ∈ F} if the functions in F and h take their values in [0, 1] and are
uniformly bounded away from 0 and 1. It holds that J(δ,F ′, ‖ · ‖2,PQ0,g

r ) . J(δ,F , ‖ · ‖2,PQ0,g
r ).

• Define F ′ = {
√
f : f ∈ F} if the functions in F are non-negative. It holds that J(δ,F ′, ‖ · ‖2,PQ0,g

r ) .

J(
√
δ,F , ‖ · ‖2,PQ0,g

r ).

Proof of Lemma 11. Fix δ > 0 and M > 0 such that supf∈F ‖f‖∞ ≤M <∞. Let N ≡ N(δ,F , ‖·‖2,PQ0,g
r ),

and consider a collection of δ-brackets {[li, ui] : i ≤ N} that covers F .

• Case F ′ = {f − h : f ∈ F}. The collection of δ-brackets obtained by substituting [li − h, ui − h] for
[li, ui], all i ≤ N , covers F ′. This proves the first claim.

• Case F ′ = {f |h| : f ∈ F}. The collection of δ‖h‖∞-brackets obtained by substituting [li|h|, ui|h|] for
[li, ui], all i ≤ N , covers F ′. This proves the second claim.

• Case F ′ = {f |h|+f ′|h′| : f, f ′ ∈ F}. The collection of brackets consisting of [li|h|+lj |h′|, ui|h|+uj |h′|],
all i, j ≤ N , covers F ′. Consider i, j ≤ N , and set γij ≡ ui|h| + uj |h′|, λij ≡ li|h| + lj |h′|, c ≡
2
√
‖h‖2∞ + ‖h′‖2∞: it holds that PQ0,gr(γij − λij)2 ≤ c2δ2.

Therefore, N(δ,F ′, ‖ · ‖2,PQ0,g
r ) ≤ N(δ/c,F , ‖ · ‖2,PQ0,g

r )2, from which the third claim follows.

• Case F ′ = {|f | : f ∈ F}. Set f ∈ F , and assume without loss of generality that f ∈ [l1, u1]. Define
F+ ≡ 1{f > 0}, F− ≡ 1{f < 0}, G+ ≡ 1{l1 > 0}, G− ≡ 1{u1 < 0}, and G0 ≡ 1{l1 ≤ 0 ≤ u1}. Then

F+(l1)+ + F−(u1)− ≤ |f | ≤ F+u1 − F−l1

with
F+(l1)+ + F−(u1)− = G+l1 −G−u1 ≡ λ1,

and

F+u1 − F−l1 = G+u1 −G−l1 +G0 (F+u1 − F−l1)

≤ G+u1 −G−l1 +G0(u1 − l1) ≡ γ1.

Thus λ1 ≤ |f | ≤ γ1, where γ1 − λ1 = u1 − l1, hence PQ0,gr(γ1 − λ1)2 ≤ δ2.

Therefore, N(δ,F ′, ‖ · ‖2,PQ0,g
r ) ≤ N(δ,F , ‖ · ‖2,PQ0,g

r ), from which the fourth claim follows.

• Case F ′ = {f2 : f ∈ F}. Set f ∈ F , and assume without loss of generality that f ∈ [l1, u1].
Let [λ1, γ1] be the bracket that we just built. The inequalities λ1 ≥ 0 and f2 ≤ M2 imply that
λ2

1 ≤ f2 ≤ min(γ2
1 ,M

2). Set λ2 ≡ λ1, γ2 ≡
√

min(γ2
1 ,M

2) so that λ2
2 ≤ f2 ≤ γ2

2 . Obviously,
γ2

2 − λ2
2 ≤ 2γ2(γ2 − λ2) ≤ 2M(γ1 − λ1), hence PQ0,gr(γ

2
2 − λ2

2)2 ≤ 4M2δ2.

Therefore, N(δ,F ′, ‖ · ‖2,PQ0,g
r ) ≤ N(δ/2M,F , ‖ · ‖2,PQ0,g

r ), from which the fifth claim follows.

• Case F ′ = {φ(f) : f ∈ F}. Say that φ is c-Lipschitz. The collection of cδ-brackets obtained by
substituting [φ(li), φ(ui)] for [li, ui], all i ≤ N , covers F ′. This proves the sixth claim.

• Case F ′ = {h log(f) + (1 − h) log(1 − f) : f ∈ F}. Set f ∈ F , and assume without loss of generality
that f ∈ [l1, u1] and 0 < inff∈F f ≤ l1 ≤ u1 < supf∈F f < 1. Define λ3 ≡ h log(l) + (1− h) log(1− l)
and γ3 ≡ h log(u) + (1−h) log(1− u). It holds that λ3 ≤ h log(f) + (1−h) log(1− f) ≤ γ3. Moreover,
0 ≤ γ3 − λ3 . (u1 − l1) because log is Lipschitz on any compact subset of (0, 1). Consequently, there
exists c ≥ 1 such that PQ0,gr(γ3 − λ3)2 ≤ c2δ2.

Therefore, N(δ,F ′, ‖ · ‖2,PQ0,g
r ) ≤ N(δ/c,F , ‖ · ‖2,PQ0,g

r ), from which the seventh claim follows.
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• Case F ′ = {
√
f : f ∈ F}. Set f ∈ F , and assume without loss of generality that f ∈ [l1, u1] and

l1 ≥ 0. Then
√
l1 ≤

√
f ≤ √u1. Moreover, (

√
u1 −

√
l1)2 ≤ (

√
u1 −

√
l1)(
√
u1 +

√
l1) = u1 − l1. The

Cauchy-Schwarz inequality yields PQ0,gr(u1 − l1) ≤
√
PQ0,gr(u1 − l1)2 ≤

√
δ.

Therefore, N(δ,F ′, ‖ · ‖2,PQ0,g
r ) ≤ N(

√
δ,F , ‖ · ‖2,PQ0,g

r ), from which the eighth claim follows.

This completes the proof.

Lemma 12. For each n ≥ 1, let Fn be a class of measurable, real-valued functions such that δn = o(1)
implies J(δn,Fn, ‖ · ‖2,PQ0,g

r ) = o(1). Then (i) J(δ,Fn, ‖ · ‖2,PQ0,g
r ) = O(1) for every δ > 0, and (ii) for

every ε > 0, there exist δ > 0 and n1 ≥ 1 such that J(δ,Fn, ‖ · ‖2,PQ0,g
r ) ≤ ε for all n ≥ n1.

Proof of Lemma 12. We prove (i) and (ii) by contradiction.

Suppose there exists δ > 0 such that lim supn→∞ J(δ,Fn, ‖ · ‖2,PQ0,g
r ) = ∞. Without loss of generality,

we can assume that J(δ,Fn, ‖ · ‖2,PQ0,g
r ) ≥ 22n for each n ≥ 1. Now,

J(δ,Fn, ‖ · ‖2,PQ0,g
r ) = J(δ/2,Fn, ‖ · ‖2,PQ0,g

r ) +

∫ δ

δ/2

√
logN(ε,Fn, ‖ · ‖2,PQ0,g

r )dε,

with

2J(δ/2,Fn, ‖ · ‖2,PQ0,g
r ) ≥ δ

√
logN(δ/2,Fn, ‖ · ‖2,PQ0,g

r ) ≥ 2

∫ δ

δ/2

√
logN(ε,Fn, ‖ · ‖2,PQ0,g

r )dε.

Therefore, J(δ,Fn, ‖ · ‖2,PQ0,g
r ) ≥ 22n implies J(δ/2,Fn, ‖ · ‖2,PQ0,g

r ) ≥ 22n/2 hence, by recursion,

J(δ/2n,Fn, ‖ · ‖2,PQ0,g
r ) ≥ 22n/2n = 2n.

The sequence {δn}n≥1 given by δn = δ/2n satisfies δn = o(1) and limn→∞ J(δn,Fn, ‖ · ‖2,PQ0,g
r ) = ∞, in

contradiction with the assumption of the lemma. This completes the proof of (i).

Now, assume that there exists ε > 0 such that, for all δ > 0, there exists n1 ≥ 1 for which J(δ,Fn1 , ‖ ·
‖2,PQ0,g

r ) > ε. In particular, we can construct by recursion an increasing sequence {ϕ(n)}n≥1 such that,
for all n ≥ 1, J(1/n,Fϕ(n), ‖ · ‖2,PQ0,g

r ) > ε. This induces the existence of a sequence {δn}n≥1 such that
δn = o(1) and lim supn→∞ J(δn,Fn, ‖ · ‖2,PQ0,g

r ) > ε, in contradiction with the assumption of the lemma.
This completes the proof of (ii).
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Figure 1: Performance TMLE across 500 simulations. Each row corresponds to a performance measure
(top: bias, middle: sample variance, bottom: MSE). Each column corresponds to a working model for the
optimal randomization scheme (left: mis-specified working model Gm1 , right: correctly specified working
model Gc1). The red and green dots correspond to our CARA RCT with different working models for the
conditional response (red: LASSO working model Q`1,n, green: parametric working model Qp1,n). The blue

dots correspond to a RCT with a fixed design set to the balanced randomization scheme gb and Qp1,n as
(fixed) parametric working model for the conditional response.
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Figure 2: Empirical coverage of CLT-based 95% CIs across 500 simulations. Each column corre-
sponds to a working model for the optimal randomization scheme (left: mis-specified working model Gm1 ,
right: correctly specified working model Gc1). The red and green dots correspond to our CARA RCT with
different working models for the conditional response (red: LASSO working model Q`1,n, green: parametric
working model Qp1,n). The blue dots correspond to a RCT with a fixed design set to the balanced random-

ization scheme gb and Qp1,n as (fixed) parametric working model for the conditional response. The yellow
lines indicate the confidence levels 95% and 94%.
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Figure 3: Hypotheses testing to assess, across 500 simulations, the quality of coverage guaran-
teed by the CLT-based 95%-CI. Each row corresponds to a null hypothesis H1−α

0 : “π ≥ 1 − α” (top:
α = 5%, bottom: α = 6%), where π is the actual coverage guaranteed by each CI, which should satisfy
by construction π ≥ 95%. Each column corresponds to a working model for the optimal randomization
scheme (left: mis-specified working model Gm1 , right: correctly specified working model Gc1). The red and
green colors correspond to our CARA RCT with different working models for the conditional response (red:
LASSO working model Q`1,n, green: parametric working model Qp1,n). The blue color correspond to a RCT

with a fixed design set to the balanced randomization scheme gb and Qp1,n as (fixed) parametric working
model for the conditional response. The yellow line indicates the threshold 0.05.
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