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Computerizing Efficient Estimation of a
Pathwise Differentiable Target Parameter

Mark J. van der Laan, Marco Carone, and Alexander R. Luedtke

Abstract

Frangakis et al. (2015) proposed a numerical method for computing the effi-
cient influence function of a parameter in a nonparametric model at a specified
distribution and observation (provided such an influence function exists). Their
approach is based on the assumption that the efficient influence function is given
by the directional derivative of the target parameter mapping in the direction of
a perturbation of the data distribution defined as the convex line from the data
distribution to a pointmass at the observation. In our discussion paper Luedtke et
al. (2015) we propose a regularization of this procedure and establish the validity
of this method in great generality. In this article we propose a generalization of
the latter regularized numerical delta method for computing the efficient influence
function for general statistical models, and formally establish its validity under
appropriate regularity conditions. Our proposed method consists of applying the
regularized numerical delta-method for nonparametrically-defined target parame-
ters proposed in Luedtke et al. 2015 to the nonparametrically-defined maximum
likelihood mapping that maps a data distribution (normally the empirical distri-
bution) into its Kullback-Leibler projection onto the model. This method formal-
izes the notion that an algorithm for computing a maximum likelihood estimator
also yields an algorithm for computing the efficient influence function at a user-
supplied data distribution. We generalize this method to a minimum loss-based
mapping. We also show how the method extends to compute the higher-order
efficient influence function at an observation pair for higher-order pathwise dif-
ferentiable target parameters. Finally, we propose a new method for computing
the efficient influence function as a whole curve by applying the maximum like-
lihood mapping to a perturbation of the data distribution with score equal to an
initial gradient of the pathwise derivative. We demonstrate each method with a
variety of examples.



1 Introduction

Let O1, . . . , On be independent and identically distributed copies of a random
variable O with probability distribution P0. Let O be a support of P0. We
will assume that O ⊂ IRd is a Euclidean set of dimension d. It is assumed
that P0 is an element of a given set of probability distributions M, which is
called the statistical model. Let Ψ :M→ IR be a real valued statistical target
parameter mapping that maps any probability distribution in the statistical
model into a real number and the estimand of interest is given by Ψ(P0). The
goal of this article is to construct a fully computerized efficient estimator of
ψ0 = Ψ(P0). The generalization to multidimensional target parameters Ψ is
immediate, by simply applying our method to each component of Ψ.

It is assumed that Ψ is pathwise differentiable (Bickel et al., 1997) at any
P 0 ∈ M for any parametric path {P 0

δ : δ} ⊂ M through P 0 at δ = 0 in a
user-supplied class of such paths:

d

dδ
Ψ(P 0

δ )

∣∣∣∣
δ=0

= P 0D(P 0)S,

where S is the score of the path at δ = 0 and D(P 0) is a so-called gradi-
ent of the pathwise derivative at P 0. The scores and gradient are viewed as
elements of the Hilbert space L2

0(P 0) of functions of O with mean zero and
finite variance under P 0, endowed with inner product 〈f, g〉P 0 = P 0fg, the
covariance operator under P 0. Here we used the notation Pf =

∫
f(o)dP (o).

Let ‖ f ‖P 0=
√
〈f, f〉P 0 be the corresponding norm in this Hilbert space. Let

T (P 0) be the closure of the linear span of the set of scores generated by this
class of parametric paths. This subspace of the Hilbert space L2

0(P 0) is referred
to as the tangent space at P 0. The canonical gradient D∗(P 0) is the unique
gradient that is an element of this tangent space T (P 0): D∗(P 0) ∈ T (P 0). The
canonical gradient is also called the efficient influence function. Thus D∗(P 0)
is either a score at P 0 itself of one of these paths {P 0

δ : δ}, or one can find
a sequence of scores Sm such that ‖ Sm − D∗(P 0) ‖P 0→ 0 as m → ∞. We
assume that D∗(P 0) is not only defined as an element of L2

0(P 0), but that
D∗(P 0)(o) is well defined for any possible realization of O ∼ P0, and

‖ D∗(P 0) ‖∞≡ sup
o∈O
| D∗(P 0)(o) |<∞.

An estimator ψn of ψ0 = Ψ(P0) is asymptotically efficient if and only if
it is asymptotically linear at P0 with influence function equal to the efficient
influence function:

ψn − ψ0 = PnD
∗(P0) + oP (1/

√
n),
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where Pn is the empirical probability distribution so that Pnf = 1
n

∑n
i=1 f(Oi)

(Bickel et al., 1997). For such an estimator we have
√
n(ψn−ψ0)⇒d N(0, σ2

0 =
P0D

∗(P0)2). Any regular asymptotically linear estimator has an asymptotic
variance that is larger or equal than σ2

0. One often refers to σ2
0 as the gener-

alized Cramer-Rao lower bound. In order for the efficient influence function
to generate an achievable information bound σ2

0 it is important that the class
of submodels at P 0 in the above definition is chosen rich enough so that it
generates a maximal tangent space T (P 0).

A well known general method for construction of an efficient estimator is
the one-step estimator (Bickel et al., 1997). Given an initial estimator P 0

n ∈M
of P0 one defines the one-step estimator as follows:

ψ1
n = Ψ(P 0

n) + PnD
∗(P 0

n).

Pathwise differentiable parameters allow a first-order Taylor expansion of the
following form: for any pair P, P 0 ∈M

Ψ(P )−Ψ(P 0) = (P −P 0)D∗(P ) +R2(P, P 0) = −P 0D∗(P ) +R2(P, P 0), (1)

where R2(P, P 0) is a particular second-order term. Given D∗(P ), one can
simply define R2(P, P 0) as Ψ(P ) − Ψ(P 0) + P 0D∗(P ) (Bickel et al., 1997).
Given (1), and general empirical process results (van der Vaart and Wellner,
1996), it follows that ψ1

n is asymptotically efficient if D∗(P 0
n) falls in a P0-

Donsker class with probability tending to 1, P0{D∗(P 0
n) −D∗(P0)}2 = oP (1),

and R2(P 0
n , P0) = oP (1/

√
n).

Another general method for construction of an efficient estimator is the
method of targeted maximum likelihood or, more generally, the method of tar-
geted minimum loss-based estimation (van der Laan and Rubin, 2006; van der
Laan, 2008; Rose and van der Laan, 2011). In this targeted maximum likeli-
hood method one constructs a parametric path {P 0

n(δ) : δ} dominated by P 0
n

so that
d

dδ
log

dP 0
n(δ)

dP 0
n

∣∣∣∣
δ=0

spans D∗(P 0
n), and the first step TMLE-update of P 0

n is then defined as P 1
n =

P 0
n(δ0

n), where δ0
n = arg maxδ Pn log dP 0

n(δ)/dP 0
n . This process is then iterated

till convergence defined by δkn ≈ 0 at which point PnD(P k
n ) ≈ 0. If we denote

the final update of P 0
n with P ∗n , then the TMLE of ψ0 is defined as the plug-

in estimator Ψ(P ∗n). In many examples the TMLE algorithm converges in
one step or can be stopped at one or a few steps at which point PnD(P k

n ) =
oP (1/

√
n) so that for practical purposes convergence has been achieved. In the

more general targeted minimum loss-based estimation framework one utilizes

2

http://biostats.bepress.com/ucbbiostat/paper340



that Ψ(P0) = Ψ1(Q0) for some parameter Q(P0) and that the efficient influence
function D∗(P0) can be represented as D∗(Q0, G0) for some other nuisance
parameter G0. One now defines an initial estimator (Q0

n, G
0
n) of (Q0, G0), and

one replaces the − log dP 0(δ)/dP 0 loss by a user-supplied loss L(Q0
n(δ)) with

submodel chosen so that d
dδ
L(Q0

n(δ))
∣∣
δ=0

spans D∗(Q0
n, G

0
n). Again, given (1)

and PnD
∗(P ∗n) = 0, it follows that

Ψ(P ∗n)−Ψ(P0) = (Pn − P0)D∗(P ∗n) +R2(P ∗n , P0),

so that under the same conditions as mentioned above for the one-step esti-
mator (with P 0

n replaced by P ∗n), Ψ(P ∗n) is asymptotically efficient.
Thus, construction of an efficient estimator of ψ0 requires at minimal cal-

culation of D∗(P 0)(Oi), i = 1, . . . , n, at an initial estimator P 0. Depending on
the choice of least favorable submodel used in TMLE it may require calculation
of D∗(P 0)(o) at realizations o outside the sample, but for an appropriately cho-
sen least favorable submodel it will only require (D∗(Pm)(Oi) : i = 1, . . . , n)
at the m-th step.

Analytic computation of D∗(P 0) can be challenging, especially in models
M that have a tangent space at P 0 smaller than L2

0(P 0), involving calculation
of a gradient of the pathwise derivative and subsequently projecting it on the
tangent space T (P 0) in L2

0(P 0). Even in nonparametric models where the
(NP)MLE requires an implicit algorithm, typically D∗(P 0) does not exists in
closed form, but instead, its general definition requires inversion of an infinite
dimensional linear Hilbert space operator (the so called information operator).
Another minor complication is that the pathwise derivative requires coming
up with an appropriate large enough class of parametric paths, although the
only essential feature of this class is its corresponding tangent space.

Therefore, one can conclude that the analytic computation of the efficient
influence function requires a skill that is not necessarily part of the toolkit of
the applied computationally-savvy statistician that wants to compute an effi-
cient estimator. This motivated the article (Frangakis et al., 2015) to develop
a framework that allows for numerical computation of the efficient influence
function given the statistical model and target parameter mapping. They pro-
posed a numerical approximation for target parameter mappings on nonpara-
metric statistical models based on the functional delta-method which defines
the influence function of an estimator (and equivalently, a mapping defined on
a nonparametric model) as a functional derivative in the direction of a convex
line from the data distribution to a pointmass at an observation Oi. As pointed
out in (Luedtke et al., 2015) this representation does not always apply and a
regularization in which the pointmass is replaced by a kernel centered at the
observation Oi was proposed and its validity established under weak regularity
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conditions. The purpose of this article is to generalize this result to arbitrary
statistical models. We present D∗(P 0)(o) as a derivative of a function of ε at
ε = 0, where this function is determined by P 0. The evaluation of this func-
tion at ε is equivalent with computing an MLE (or, more generally, minimum
loss estimator) based on an infinite sample from a simple ε-perturbation of
P 0. This yields both an analytic representation as well as a numerical method
for approximating D∗(P 0)(o). In addition, this same MLE can be used for
any pathwise differentiable target parameter, so that this potentially compu-
tationally intensive step does not need to be redone for each choice of target
parameter. The minimization of the empirical risk (i.e., computing the MLE)
or solving its score equations can be computationally challenging, but it is now
a problem that can be solved computationally, without any need for expertise
in efficiency theory and Hilbert space based analytic calculations, making ef-
ficient estimation much more accessible to the typical practitioner. We will
suggest approximations to deal with the computational implementation of the
MLE over the typically infinite dimensional model M. Finally, we will pur-
sue further generalizations to higher-order efficient influence functions and we
show an alternative target parameter-specific perturbation of P 0 for which this
method yields the whole efficient influence function as a function of O.

1.1 Organization of article

This article is organized as follows. In Section 2 we present the general method
for evaluation of D∗(P 0)(o), which sets up the function of ε determined by P 0,
where evaluation of this function corresponds with maximizing a log-likelihood
over a submodel of M, and then defines D∗(P 0)(o) as the derivative of this
function at ε = 0. This results in a numerical approximation by approximating
this derivative with a difference at ε ≈ 0. There are a variety of steps that
allows one to select simpler choices of such functions of ε, and they will be
discussed. In Section 3 we present the main theorem and its proof. In this
section, we also present sufficient conditions for the conditions of this main
theorem based on a study of the log-likelihood as well as sufficient conditions
based on a study of its corresponding score equations. The latter study yield
an alternative analytic representation of the efficient influence function.

In Section 4 we present the general method for evaluation of D∗(Q0, G0)(o),
which sets up the function of ε determined by (Q0, G0), where evaluation of this
function corresponds with minimizing an empirical risk over a subspace of the
parameter space of Q, and then defines D∗(Q0, G0)(o) as the derivative of this
function at ε = 0. The numerical approximation is obtained by approximating
this derivavative with a difference at ε ≈ 0. In Section 5, analogue to Section

4
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3, we present the theory and proof establishing the validity of this method. We
also highlight an important special case of our theorem when it is known that
the second-order term satisfies so called robustness w.r..t misspecification of G:
R2((Q,G), (Q1, G1)) = 0 if G = G1. In that case, the numerical approximation
will quickly converge to the derivative, and the conditions in our theorem are
particularly weak.

Finally, in Sections 6, 7 and 8, we verify the conditions of our theorem
for three examples, and discuss the practical implementation of the numerical
approximation method. The examples cover parametric models, the bivari-
ate right-censored data model, and a causal inference model. In Section 9
we provide a numerical method for computing the second-order efficient influ-
ence function in the case that the target parameter is second-order pathwise
differentiable, thereby allowing for the construction of second-order one-step
estimator or second-order TMLE based on such a numerical approximation. In
Section 10 we present a similar method but applied to a targeted perturbation
model {P 0

ε : ε} with score at ε = 0 equal to an initial gradient, which results in
a numerical approximation of the efficient influence function o → D∗(P 0)(o)
at all o ∈ O. We show that the latter method is also tailored to computing a
TMLE. We conclude with a discussion in Section 11.

2 General numerical method for calculation of

efficient influence function, applied to data

distribution P 0

In this article we will present two general methods for calculation ofD∗(P 0)(Oi)
at an initial estimator P 0 of P0 (we will suppress the n in P 0

n since n will be
fixed throughout). In the first method we obtain a perturbation P̃ 0

ε of P 0,
while in the second more general method we obtain a perturbation Q̃0

ε of the
relevant part Q0 = Q(P 0). In this section we focus on the first method, and
in a later Section 4 this method is generalized to the second method. The
method involves a number of steps, where each step is covered by a subsec-
tion. In each subsection we will first present the step and subsequently the
step will be discussed.

5
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2.1 Step O: (Possibly) Reduce dimension of data based
on P 0, without changing efficient influence function

This step can be skipped for an initial read and understanding, but becomes
very practical once one starts implementing this method on high dimensional
data structures O.

Consider a reductionOr = f(O,P 0) and denote the probability distribution
of Or under O ∼ P 0 with P 0

r . Note that for each P ∈ M, we can define the
probability distribution Pr of f(O,P ) when O ∼ P . That is, f defines a
statistical modelMr for the reduced data structure Or. Consider an analogue
target parameter Ψr :Mr → IR. Suppose now that this choice of reduction f
and parameter Ψr are chosen in such a way so that Ψr(P

0
r ) = Ψ(P 0), and that

the canonical gradient of Ψr :Mr → IR has a canonical gradient D∗r(P
0
r )(Or)

at P 0
r equal to D∗(P 0)(O):

D∗r(P
0
r )(Or) = D∗(P 0)(O).

In that case, we redefine our Oi as Ori, i = 1, . . . , n, P 0 as P 0
r , M as Mr,

Ψ as Ψr, and use our numerical algorithm to compute the efficient influence
function of Ψr at P 0

r .
As we will see below, our method relies on setting a smoothing level λ =

λ(ε). If O is very high dimensional, i.e. d is very large, then our proposed
smoothing levels λ(ε) might become impractical computationally (i..e, ε will
have to be selected closer to zero than computer precision can handle requiring
special numerical methods). In these cases, such a reduction of the data from
O to Or can make the method more practical without any loss of its validity.

Let’s consider an example. Let O = (W,A, Y ) ∼ P 0, M is the non-
parametric model, and Ψ(P ) = EPEP (Y | A = 1,W ). Suppose that the
covariate vector is very high dimensional. Let ḡ0(W ) = P 0(A = 1|W ),
Q̄0(W ) = EP 0(Y | A = 1,W ), and Q0

W = P 0
W is the probability distribu-

tion of W under P 0. The efficient influence function at P 0 is given by (e.g.,
(Rose and van der Laan, 2011))

D∗(P 0)(o) =
A

ḡ0(W )
(Y − Q̄0(W )) + Q̄0(W )−Q0

W Q̄
0.

Suppose now that we define Or = (Wr ≡ (Q̄0(W ), ḡ0(W )), A, Y ) ∼ P 0
r , and

define Ψr :Mr → IR as

Ψr(Pr) = EPrEPr(Y | A = 1,Wr).

6
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Note that the dimension of Or is only 4. Of course, by the same general
formula, the efficient influence function of Ψr at P 0

r is given by:

D∗(P 0
r )(Or) =

A

g0
r(W )

(Y − Q̄0
r(W )) + Q̄0

r(W )−Q0
Wr
Q̄0
r.

Now, note that g0
r(W ) = P 0(A = 1 | Q̄0(W ), ḡ0(W )) = ḡ0(W ), Q̄0

r(W ) =
EP 0(Y | A = 1, Q̄0(W ), ḡ0(W )) = Q̄0(W ), and Q0

Wr
Q̄0
r = Q0

W Q̄
0. As a conse-

quence, we have

D∗(P 0
r )(Or) =

A

ḡ0(W )
(Y − Q̄0(W )) + Q̄0(W )−Q0

W Q̄
0 = D∗(P 0)(O).

That is, the proposed data reduction Or and target parameter Ψr yields the
same efficient influence function D∗(P 0). In general, if under P 0 certain condi-
tional distributions depend on a subset of O only through a summary measure
(depending on P 0), then one wants to include these summary measures in the
reduced data Or. This is formally demonstrated in our third example in Sec-
tion 9. In the next steps, for notational convenience, we still use the notation
O, Ψ and M, assuming that these have already been redefined if indeed such
a data reduction Or was carried out.

2.2 Step I: Define perturbation of P 0 in direction of a
single observation

Define a path {P 0
ε = (1 − ε)P 0 + ε∆λ,o : ε}, where ∆λ,o is a probability

distribution of O that 1) puts all its mass on a neighborhood B(o : λ) around
the observation o whose size is indexed by the smoothing parameter λ ≥ 0
and 2) is absolute continuous w.r.t. P 0 if λ > 0, while ∆0,o is the probability
distribution that puts mass 1 on o. For example, ∆λ,o could be defined as the
probability distribution with density being the uniform distribution on the
cube

∏d
j=1(oj − λ, oj + λ). It will be assumed that the value of λ is implied

by ε, i.e. λ = λ(ε), so that P 0
ε is fully defined by ε. Both ε and λ will be

chosen to be close to zero, and appropriate rates for λ(ε) will be presented in
our theorems.

Various remarks are in place here. Firstly, we note that for models M
that are not nonparametric this path {P 0

ε : ε} is not a submodel of M, even
though its center P 0 ∈ M is in the model. Secondly, we also note that for
each fixed λ > 0, the Radon-Nykodim derivative dP 0

ε /dP
0 exists, and for ε

approximating 0 this Radon-Nykodim derivative approximates 1.

7
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Thirdly, in various examples one can select λ = 0, but in examples in
which Ψ(P ) depends on local features of P (such as density or conditional
mean) and the model M is infinite dimensional, then it is often necessary to
use a λ(ε) > 0 at a rate in ε slower than ε. We suggest the following rule
of thumb for deciding between λ = 0 and using an appropriate λ(ε) > 0.
Suppose Ψ is continuous at P 0 ∈M w.r.t. uniform convergence of cumulative
distribution functions in the following way: for a sequence (P 0

m : m) ⊂M for
which the cumulative distribution functions F 0

m of P 0
m converge uniformly to

the cumulative distribution function F 0 of P 0, we have Ψ(P 0
m) → Ψ(P 0) as

m → ∞. In that case, we can select λ = 0. If this is not the case then the
continuity of Ψ at a P 0 relies on convergence of local features of the sequence
P 0
m such as convergence of the density of P 0

m (w.r.t. P 0) to the density of
P 0. Another rule of thumb one might apply is that if the MLE Ψ(P̃ 0

n) of
Ψ(P 0) under sampling from P 0 is consistent, where P̃ 0

n is an MLE over M
of P 0 based on O1, . . . , On ∼ P 0, possibly defined according to (Kiefer and
Wolfowitz, 1956), then one sets λ = 0, but if the MLE requires regularization
of some type, then we use a λ(ε) > 0. The above rules of thumb are not meant
to be theorems, but they are supposed to provide the practitioner with some
practical guidance and understanding about why and when the smoothing λ
may be essential. Either way, setting λ = λ(ε) > 0 according to the rates
suggested by our theorems will provide validity of the method, even if λ = 0
would have worked as well.

Finally, let’s provide a formal mathematical motivation for the choice of
λ > 0 which actually suggests concrete rates λ(ε) in ε. Suppose Ψ(P ) depends
on P in an essential way through its density. Then a condition that allows
easy verification of some of the key conditions in our theorems is that dP 0

ε /dP
0

converges to 1 as ε→ 0 w.r.t. an appropriate norm. We have

dP 0
ε

dP 0
− 1 = (1− ε) + ε

d∆λ,o

dP 0
− 1 = ε

(
d∆λ,o

dP 0
− 1

)
.

This results in the following trivial but useful lemma.

Lemma 1 Let ‖ f ‖∞= supo∈O | f(o) | be the supremum norm of a function
f . If supo∈O d∆λ,o/dP

0(o) < r(λ) for some real valued function r(λ) > 0, then

‖ dP
0
ε

dP 0
− 1 ‖∞= O(εr(λ)).

Thus, if λ = λ(ε) is chosen so that εr(λ(ε)) → 0, then the density dP 0
ε /dP

0

converges uniformly to 1. For example, if µ is the Lebesgue measure, d∆λ,o/dµ

8
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is a d-variate uniform kernel density on the cube
∏d

j=1(o(j) − λ, o(j) + λ),

dP 0/dµ > δ for some δ > 0 on
∏d

j=1(o(j)− λ, o(j) + λ), then we have

d∆λ,o

dP 0
≤ λ−d

δ
.

In this case, we have supremum norm convergence of dP 0
ε /dP

0 to 1 if ελ−d → 0
as ε→ 0, so that we can select λ(ε) >> ε1/d.

In fact, to verify one of our key conditions, we might need this uniform
convergence to occur at a rate such that quadratic differences involving inte-
grals of (dP 0

ε /dP
0 − 1)2 will converge to zero at rate o(ε). Such second-order

terms are naturally bounded by a constant times ‖ dP 0
ε /dP

0 − 1 ‖2
∞. In our

uniform d-variate kernel example, this can thus be arranged to hold by

ελ−2d = o(1), which holds if λ(ε) >> ε1/2d.

In essence, our theorem will demonstrate that we will be able to conclude that
this choice of λ(ε) >> ε1/(2d), although potentially (much) too conservative,
will provide guarantee that our numerical method works.

2.3 Step II: Define a submodel of our statistical model
so that the efficient influence function at P 0 is still
the same

In many cases one can define a smaller modelM(P 0) ⊂M so that the canon-
ical gradient of Ψ : M(P 0) → IR at P 0 is identical to the canonical gradient
D∗(P 0) of Ψ :M→ IR at P 0. Specifically, the tangent space at P 0 ofM(P 0)
needs to equal the actual tangent space T (P 0) at P 0 in model M, or only
exclude scores in T (P 0) that are orthogonal to D∗(P 0) in L2

0(P 0). By select-
ingM(P 0) smaller, our next step will be computationally less demanding. To
start with one can define M(P 0) ⊂ {P ∈ M : dP/dP 0 < M} so that all its
probability distributions are absolutely continuous w.r.t. P 0 with a density
uniformly bounded by a M <∞. We assume that this step is carried out.

A common class of examples of modelsM are such that the density dP/dµ
factorizes in dP/dµ = pQpG for two variation independent parameters P →
Q(P ) and P → G(P ) defined onM while Ψ(P ) = Ψ1(Q(P )) for some mapping
Ψ1. Since this factorization of the density of O implies that G is a so called
orthogonal nuisance parameter of Q and thereby of Ψ(P ), it follows that the
efficient influence function is not affected by knowledge on G. In this case,
one should define M(P 0) = {P ∈ M : P � P 0, G(P ) = G(P 0)} as the

9
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model in which G is treated as known and set equal to G0 = G(P 0). In
greater generality, if each P in M is identified by two variation independent
parameters (Q(P ), G(P )), Ψ(P ) = Ψ1(Q(P )), and the tangent space of G :
M→ {G(P ) : P ∈ M} at P 0 is orthogonal to the tangent space of Q at P 0,
then one should define

M(P 0) = {P ∈M : P � P 0, G(P ) = G(P 0)}.

2.4 Step III: Define the MLE mapping at the pertur-
bation P 0

ε of P 0 in direction of single observation

We now define the MLE at the perturbation P 0
ε :

P̃ 0
ε ≡ arg max

P∈M(P 0)
P 0
ε log

dP

dP 0
. (2)

It is assumed that this MLE P̃ 0
ε exists and is an element of M(P 0), so that,

in particular, P̃ 0
ε � P 0.

Again, we have a few remarks. Firstly, because P 0
ε � P 0 for λ > 0, if

λ > 0, this log-likelihood can be represented as
∫

log dP
dP 0

dP 0
ε

dP 0dP
0 showing that

it is a regularized likelihood in which all measures have densities w.r.t. P 0,
allowing us to map a rate of convergence of dP 0

ε /dP
0 into a rate of convergence

of dP̃ 0
ε /dP

0.
Secondly, note that ifM(P 0) is the set of all possible probability distribu-

tions absolute continuous w.r.t. P 0, i..e. M is a nonparametric model, then
P̃ 0
ε = P 0

ε .
Thirdly, very importantly, this MLE choice P̃ 0

ε can be replaced by any other
algorithm that maps P 0

ε into a P̃ 0
ε ∈ M as long as it satisfies P 0

ε D
∗(P̃ 0

ε ) = 0.
In particular, as we will point out P̃ 0

ε can be defined as a solution of a rich set
of score equations of the above log-likelihood defining P̃ 0

ε .
In order to implement this MLE (2) one may define a finite partition ∪mj=1Oj

of O (e.g., implied by a d-dimensional grid), and one approximates M(P 0)
with M(P 0)m defined by approximating each density p = dP/dP 0 with P ∈
M(P 0) by a histogram type-density pm =

∑m
j=1 IOjp(mj) that is constant

within each Oj and equal to p at some midpoint mj ∈ Oj, j = 1, . . . ,m. In
addition, one replaces P 0

ε by such a histogram approximation P 0
ε,m = (1 −

ε)P 0
m + ε∆λ,o with P 0

m ∈M(P 0)m. One now defines the MLE P̃ 0
ε,m ∈M(P 0)m

as in (2). This discretized MLE corresponds now with maximizing a function
that maps an m-dimensional vector into a real number (the corresponding
log-likelihood value), so that one can use standard optimization routines for
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finding the desired maximum. Here m does not need to be selected larger than
is needed for dK,L(P̃ 0

ε,m, P̃
0
ε ) = O(1/n) under which condition the effect of m on

the approximation of D∗(P 0)(o) is negligible for the purpose of constructing
an efficient estimator.

An alternative method for approximating the solution P̃ 0
ε is to take a very

large Monte-Carlo sample from P 0
ε , and compute a regularized MLE (e.g.,

super-learner based on the log-likelihood loss) (or regular MLE if regularization
is not needed). For example, one might use cross-validation to select among
many candidate estimators of p̃0

ε that are an element of M(P 0), just like one
might compute the best density estimator of p̃0

ε based on a super-learner. In
this manner, one literally just applies a regularized MLE.

2.5 Step IV: Evaluate differential of target parameter
at small value ε

Evaluate:

D∗ε (P
0)(o) ≡ Ψ(P̃ 0

ε )−Ψ(P 0)

ε
. (3)

Under our regularity conditions,

D∗(P 0)(o) = lim
ε→0

Ψ(P̃ 0
ε )−Ψ(P 0)

ε
,

so that D∗ε (P
0)(O) ≈ D∗(P 0)(o) for ε ≈ 0.

We make the following remarks. Firstly, if one would fix λ > 0, then, under
our regularity conditions, we have:

lim
ε→0

Ψ(P̃ 0
ε )−Ψ(P 0)

ε
= ∆λ,oD

∗(P 0),

where the right-hand side is an average of values ofD∗(P 0)(o) in a λ-neighborhood
of o. This makes clear that it is just a matter of letting λ converge to zero
slowly enough relative to ε→ 0.

We can also provide the following analogue analytic formula for calculation
of D∗(P 0)(o). Let P̃ 0

ε,λ be the perturbation model in which λ and ε are two
separate parameters (not linked through a rate λ(ε)). Under our regularity
conditions, we have

D∗(P 0)(o) = lim
λ→0

lim
ε→0

Ψ(P̃ 0
ε,λ)−Ψ(P 0)

ε
. (4)

11
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So in order to obtain this analytic formula for D∗(P 0)(o) there is no need
to worry about an appropriate rate of λ(ε): one fixes λ > 0, computes the
derivative w.r.t ε of ε→ Ψ(P̃ 0

ε,λ) at ε = 0, and finally, one takes the limit of λ→
0 of the resulting function of λ. Note that this analytic formula for D∗(P 0)(o)
does not require knowing about pathwise derivatives and projections in Hilbert
spaces.

Under the weak differentiability condition on Ψ along the path {P̃ 0
ε,λ : ε}

for a fixed λ > 0, a further simplification of this analytic formula (4) is given
by:

D∗(P 0)(o) = lim
λ→0

lim
ε→0

dΨ(P 0)

(
P̃ 0
ε,λ − P 0

ε

)
, (5)

where dΨ(P 0)(h) = d
dδ

Ψ(P 0 + δh)
∣∣
δ=0

is the Gateaux derivative of Ψ in the
direction h.

Finally, we refer to our alternative analytic formula (9) based on score
equations for P̃ 0

ε .

2.6 Applying the method to multiple observations si-
multaneously.

Suppose we replace in the above perturbation {P 0
ε : ε} of P 0 ∆λ,o by

∆λ,(oi:i) ≡
1

n

n∑
i=1

∆λ,oi ,

the average of the kernels ∆λ,oi across all observations oi, i = 1, . . . , n, and
define again:

D̄∗n,ε(P
0) ≡ Ψ(P̃ 0

ε )−Ψ(P 0)

ε
.

Under the same regularity conditions as our Theorem, we obtain:

1

n

n∑
i=1

D∗(P 0)(oi) ≡ lim
ε→0

Ψ(P̃ 0
ε )−Ψ(P 0)

ε
,

so that D̄∗n,ε(P
0) ≈ 1

n

∑n
i=1 D

∗(P 0)(oi). This can then be used to define the
one-step estimator in one numerical step:

ψ1
n,ε = Ψ(P 0

n) + D̄∗n,ε(P
0).

This proves that we can construct in one computational step an asymptotically
efficient estimator.
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However, statistical inference will also require to estimate the variance of
this estimator. A common estimator of this variance is given by the empirical
variance of the influence functions:

σ2
n = PnD

∗
ε (P

0
n)2.

If n is very large, one might approximate this variance estimator by

σ̃2
n =

1

n

J∑
j=1

∑
i∈Cj

D∗ε (P
0
n)(oi)


2

,

where ∪jCj is a partitioning of the total sample {1, . . . , n}. One could now
use the above numerical method with ∆{Oi:i∈Cj},λ =

∑
i∈Cj ∆Oi,λ instead of

∆λ,o to compute
∑

i∈Cj D
∗
ε (P

0)(Oi) at once. In this manner, by selecting a
size for the clusters Cj one can trade-off computation time and precision of
the variance estimator.

One could also estimate the variance of the one-step estimator with the
bootstrap, but that might require additional regularity conditions.

3 Main theorem establishing validity of the

numerical method for computing efficient

influence function

We will provide the proof of the method below, and then state the resulting
main theorem.

By definition of the MLE P̃ 0
ε as a maximizer of the log-likelihood over

M(P 0), we have that P 0
ε S = 0 for any score in the tangent space T (P̃ 0

ε ) of one
of our paths through and at P̃ 0

ε . If D∗(P̃ 0
ε ) (known to be an element of T (P̃ 0

ε ))
is itself a score of one such path, then we obtain P 0

ε D
∗(P̃ 0

ε ) = 0. In some
examples, the efficient influence function is not necessarily a score but can
only be approximated by a sequence of scores. The following result provides
now the desired equation.

Result 1 Assume either ‖ dP 0
ε

dP̃ 0
ε
‖P̃ 0

ε
< ∞ or that D∗(P̃ 0

ε ) is an actual score in

T (P̃ 0
ε ). Then,

P 0
ε D
∗(P̃ 0

ε ) = 0.

13
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The bounded norm assumption in this result is certainly expected to hold in
great generality since a P̃ 0

ε that assigns mass close to zero to an area where P 0
ε

has support would make the log-likelihood in (2) negative, while P̃ 0
ε is supposed

to maximize this log-likelihood. In particular, if P 0 is discrete, then P̃ 0
ε puts

positive mass on each of the support points of P 0 so that the assumption holds.
Proof of Result 1: Since D∗(P̃ 0

ε ) ∈ T (P̃ 0
ε ), there exists a sequence of scores

Sm at P̃ 0
ε so that ‖ D∗(P̃ 0

ε,λ)− Sm ‖P̃ 0
ε
→ 0 as m→∞. We have P 0

ε Sm = 0 for
all m. Thus,

P 0
ε D
∗(P̃ 0

ε ) = P 0
ε {D∗(P̃ 0

ε )− Sm}

=

∫
dP 0

ε

dP̃ 0
ε

{D∗(P̃ 0
ε )− Sm}dP̃ 0

ε

≤ ‖ dP
0
ε

dP̃ 0
ε

‖P̃ 0
ε
‖ {D∗(P̃ 0

ε )− Sm} ‖P̃ 0
ε

→ 0 as m→∞.

Here we used that dP 0
ε

dP̃ 0
ε
<∞ has a bounded norm, which holds by assumption.

This proves the result. 2

Combining this with identity (1) at P = P̃ 0
ε yields

Ψ(P̃ 0
ε )−Ψ(P 0) = (P 0

ε − P 0)D∗(P̃ 0
ε ) +R2(P̃ 0

ε , P
0).

If dP̃ 0
ε /dP

0− 1 converges to zero w.r.t. an appropriate norm (such as L2(P 0)-
norm) at a rate o(

√
ε), then one would have that the second-order term

R2(P̃ 0
ε , P

0) = o(ε). Note also that

(P 0
ε − P 0)D∗(P̃ 0

ε ) = ε(∆λ,o − P 0)D∗(P̃ 0
ε ),

where ∆λ,of is an average of f(o′) for values o′ in a λ-neighborhood of o w.r.t.
the probability distribution ∆λ,o. Thus, consistency of P̃ 0

ε , some continuity of
D∗(P )(O) at P 0 and o, and λ(ε)→ 0 should imply

(∆λ,o − P 0)D∗(P̃ 0
ε ) = D∗(P 0)(o) + o(1).

This now establishes that

lim
ε→0

Ψ(P̃ 0
ε )−Ψ(P 0)

ε
= D∗(P 0)(o).

This proves the following general theorem in which we state the general
conditions, without providing worked out sufficient conditions yet.
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Theorem 1 Assume

Solving efficient influence function equation: Given P 0, for any ε ∈ (−δ, δ)
for some δ > 0, we define a P̃ 0

ε ∈M that satisfies P 0
ε D
∗(P̃ 0

ε ) = 0. If P̃ 0
ε

is defined as the MLE (2), then it suffices to assume that either D∗(P̃ 0
ε )

is a score in T (P̃ 0
ε ) or we have ‖ dP 0

ε

dP̃ 0
ε
‖P̃ 0

ε
<∞, for all ε ∈ (−δ, δ).

Convergence rate of MLE as ε→ 0: R2(P̃ 0
ε , P

0) = o(ε);

Continuity of efficient influence function at P 0 and o:

lim
ε→0

(∆λ,o − P 0)D∗(P̃ 0
ε ) = D∗(P 0)(o).

Then

D∗(P 0)(o) = lim
ε→0

Ψ(P̃ 0
ε )−Ψ(P 0)

ε
.

If one fixes λ > 0 as ε → 0, and the conditions above hold but now with
the continuity of the efficient influence function condition replaced by

lim
ε→0

(∆λ,o − P 0)D∗(P̃ 0
ε ) = ∆λ,oD

∗(P 0),

then we have

lim
ε→0

Ψ(P̃ 0
ε,λ)−Ψ(P 0)

ε
= ∆λ,oD

∗(P 0).

Thus, if also limλ→0 ∆λ,oD
∗(P 0) = D∗(P 0)(o), an analytic formula of D∗(P 0)(o)

is given by:

D∗(P 0)(o) = lim
λ→0

lim
ε→0

Ψ(P̃ 0
ε,λ)−Ψ(P 0)

ε
.

In the next subsection we study the regularity condition named ”conti-
nuity of the efficient influence function at P 0 and o”. The most important
condition of Theorem 1 is R2(P̃ 0

ε , P
0) = o(ε), which may actually require a

carefully selected rate λ(ε). To establish sufficient conditions for the latter,
in the subsequent subsection we will study convergence of the MLE P̃ 0

ε to P 0

with respect to the Kullback-Leibler divergence. We will then present the re-
sulting corollary of our general Theorem 1, presenting sufficient and concrete
conditions.

We then proceed with convergence rate results for the MLE based on using
that P̃ 0

ε solves the score equations defined by the log likelihood. The latter will
be used to provide convergence in supremum norm of the density dP̃ 0

ε /dP
0, as

well as establish a weaker convergence of the cumulative distribution function
of P̃ 0

ε to the cumulative distribution function of P 0 for the case that λ = 0
and Ψ(P ) is a smooth enough function of P . It will also provide us with an
alternative analytic formula for D∗(P 0)(o).

15

Hosted by The Berkeley Electronic Press



3.1 Continuity of efficient influence function at P 0 and
o

The following theorem establishes a sufficient condition for the required con-
tinuity of efficient influence function in P and O.

Theorem 2 Let B(o : λ) be the support of ∆λ,o. Let r(λ) be a constant so that
supo′∈O d∆λ,o(o

′)/dP 0(o′) < r(λ). Assume that ‖ D∗(P̃ 0
ε )−D∗(P 0) ‖P 0→ 0 as

ε→ 0, and that

lim
λ→0

∫
D∗(P 0)(o′)d∆λ,o(o

′) = D∗(P 0)(o).

In addition, suppose that one of the following two assumptions (A1), (A2)
holds: As ε→ 0, either

(A1) : sup
o′∈B(o:λ(ε))

| D∗(P̃ 0
ε )−D∗(P 0) | (o′)→ 0,

or
(A2) : r(λ(ε))0.5 ‖ D∗(P̃ 0

ε )−D∗(P 0) ‖P 0→ 0.

Then, we have
lim
ε→0

(∆λ(ε),o − P 0)D∗(P̃ 0
ε ) = D∗(P 0)(o).

Proof: In this proof λ = λ(ε). To start with, by our first assumption,
P 0D∗(P̃ 0

ε )→ P 0D∗(P 0) = 0 as ε→ 0. In addition, we have∫
D∗(P̃ 0

ε )(o′)d∆λ,o(o
′)−D∗(P 0)(o) =

∫
(D∗(P̃ 0

ε )−D∗(P 0))(o′)d∆λ,o(o
′)

+

∫
D∗(P 0)(o′)d∆λ,o(o

′)−D∗(P 0)(o′).

The second term is covered by assumption. Using Cauchy-Schwarz, the first
term can be bounded by

‖ d∆λ,o/dP
0 ‖P 0‖ D∗(P̃ 0

ε )−D∗(P 0) ‖P 0≤ r(λ)0.5 ‖ D∗(P̃ 0
ε )−D∗(P 0) ‖P 0 ,

which converges to zero if (A2) holds. If we assume (A1), then the first term
is bounded by

sup
o′∈B(o:λ)

| D∗(P̃ 0
ε )−D∗(P 0) | (o′) | .

This proves the statement when assuming (A1). 2

Under (A1), the above theorem would hold for λ = 0. Assumption (A2)
is of interest as an alternative of (A1) since it provides the desired condition
without relying on uniform convergence of the efficient influence function at
the MLE P̃ 0

ε to D∗(P 0).
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3.2 Convergence rate of the MLE w.r.t. log-likelihood
dissimilarity

The following theorem provides a rate of convergence result for the MLE P̃ 0
ε

as ε→ 0.

Theorem 3 Recall that, by assumption,M(P 0) only includes distributions P
with dP/dP 0 < M , so that dP̃ 0

ε /dP
0 < M for all ε ∈ [0, δ) for some δ > 0.

Let L(P, P 0) = − log dP/dP 0. Let r(λ) be a rate in λ so that

‖ d∆λ,o

dP 0
‖P 0< r(λ).

By Lemma 1, if the dimension of O is d, ∆λ,o is absolute continuous w.r.t.
Lebesgue measure µ with a multivariate uniform kernel density centered at o
with bandwidth λ, dP 0/dµ > δ > 0 for some δ > 0 on the support of this
kernel, then this rate is given by r(λ) = O(λ−d).

Then,
P 0L(P̃ 0

ε , P
0) = O(ε2r(λ)2).

Proof: We have

0 ≤ P 0L(P̃ 0
ε , P

0)

= (P 0 − P 0
ε )L(P̃ 0

ε , P
0) + P 0

ε L(P̃ 0
ε , P

0)

≤ (P 0 − P 0
ε )L(P̃ 0

ε , P
0)

= −ε(∆λ,o − P 0)L(P̃ 0
ε , P

0)

= −ε
∫
d∆λ,o − dP 0

dP 0
L(P̃ 0

ε , P
0)dP 0

≤ ε ‖ d∆λ,o − dP 0

dP 0
‖P 0‖ L(P̃ 0

ε , P
0) ‖P 0 .

For the log-likelihood loss we have the property that

P 0{L(P1, P
0)}2 ≤MP 0L(P1, P

0)

for some M <∞ defined in terms of supo dP̃
0
ε /dP

0 <∞ (Lemma 2 in (van der
Laan et al., 2004)). This is based on Lemma in (van der Vaart, 1998) (Lemma
5.35, asymptotic statistics) stating that for any pair (P 0, P ) P 0 log dP 0/dP ≥∫

(
√
dP/dP 0 − 1)2dP 0. Thus, we have shown that for ε small enough

P 0L(P̃ 0
ε , P

0) ≤Mε ‖ d∆λ,o − dP 0

dP 0
‖P 0

√
P 0L(P̃ 0

ε , P
0),
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which proves

P 0L(P̃ 0
ε , P

0) = O(ε2) ‖‖ d∆λ,o − dP 0

dP 0
‖2
P 0 .

This completes the proof. 2

3.3 Corollary of Theorem 1.

Given this rate of convergence result of the MLE, and the fact that the square-
root of Kullback-Leibler divergence is equivalent with the L2(P 0)-norm when
assuming lim supε→0 ‖ dP̃ 0

ε /dP
0 ‖∞< ∞ (van der Vaart, 1998), one will typi-

cally be able to show that R2(P̃ 0
ε , P

0) = O(ε2r2(λ)) (by using Cauchy-Schwarz
inequality). This results in the following corollary of Theorem 1.

Theorem 4 Let r(λ) be a rate in λ so that

‖ d∆λ,o

dP 0
‖P 0< r(λ).

We make the following assumptions.

Solving efficient influence function equation: Given P 0, for any ε ∈ (−δ, δ)
for some δ > 0, P̃ 0

ε ∈ M is defined and it satisfies dP̃ 0
ε /dP

0 < M < ∞
for some M <∞, and P 0

ε D
∗(P̃ 0

ε ) = 0. If P̃ 0
ε is defined as the MLE (2),

then it suffices to assume that either D∗(P̃ 0
ε ) is a score in T (P̃ 0

ε ) or we

have ‖ dP 0
ε

dP̃ 0
ε
‖P̃ 0

ε
<∞, for all ε ∈ (−δ, δ).

Convergence rate of MLE as ε→ 0: Assume that

R2(P̃ 0
ε , P

0) < C ‖ dP̃ 0
ε /dP

0 − 1 ‖2
P 0 for some C <∞.

Assume that λ(ε) is chosen so that ε2r2(λ(ε)) = o(ε);

Continuity of efficient influence function at P and o: Assume that

‖ D∗(P̃ 0
ε )−D∗(P 0) ‖P 0< C ‖ dP̃ 0

ε /dP
0 − 1 ‖P 0

for some (universal in ε ∈ (−δ, δ)) C <∞, and that

lim
λ→0

∫
D∗(P 0)(o′)d∆λ,o(o

′) = D∗(P 0)(o).
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Then,
‖ dP̃ 0

ε /dP
0 − 1 ‖2

P 0= O(ε2r2(λ(ε))).

In addition,

D∗(P 0)(o) = lim
ε→0

Ψ(P̃ 0
ε )−Ψ(P 0)

ε
.

If one fixes λ > 0 as ε→ 0, then we have

lim
ε→0

Ψ(P̃ 0
ε )−Ψ(P 0)

ε
= ∆λ,oD

∗(P 0)(o).

3.4 Convergence of MLE based on score equation of
MLE

The above Theorem 4 provides a concrete rate λ(ε) that yields the validity of
our numerical method. This Theorem 4 selects λ(ε) in such a way so that the
density dP 0

ε /dP
0 converges to 1 at a specified rate in ε and, as a consequence,

the corresponding MLE dP̃ 0
ε /dP

0 converges to 1 at the same rate.
However, there are some issues we have not addressed yet. Suppose that

our target parameter Ψ allows the choice λ = 0. Then, the previous theorem
is not applicable, but Theorem 1 still is. In this case, dP 0

ε /dP
0 is not even

defined. However, the cumulative distribution function F 0
ε of P 0

ε converges at
rate ε to the cumulative distribution function F 0 of P 0. In this subsection we
provide a theorem that allows us to prove that this uniform convergence of
cumulative distribution function yields the uniform convergence of F̃ 0

ε to F 0

at the same rate ε.
The method below will be formulated to be general enough so that one can

also use it to establish uniform convergence of dP̃ 0
ε /dP

0 to 1 at a rate for the
case that we use a λ(ε) > 0. Such a result might not be necessary for applying
Theorem 4, but nonetheless it tells us about how well our numerical algorithm
will converge. In addition, one might be defining P̃ 0

ε as a solution of the score
equations, instead of as an MLE (even though these might agree to be the
same), so that one should also be able to establish the desired convergence of
its density dP̃ 0

ε /dP
0 based on the score equations.

Let p̃0
ε = dP̃ 0

ε /dP
0 be the density w.r.t. P 0. Let P 0

ε Sh(p̃
0
ε) = 0 be a score

equation for the MLE P̃ 0
ε obtained by differentiating the log likelihood in (2)

along a path {P̃ 0
ε,h,δ : δ} (dominated by P 0) through P̃ 0

ε at δ = 0 and score
Sh(p̃

0
ε) at δ = 0. One can select a whole collection of such paths and we will

denote the index set containing all possible choices h with H. We assume that
this set of scores is chosen rich enough so that the equation P 0

ε Sh(p̃
0
ε) = 0 for

all h ∈ H uniquely identifies p̃0
ε among all densities in M(P 0) (w.r.t. P 0).
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This is crucial in order to be able to establish the invertibility condition on U1

in our proof below.
Recall that O ∈ IRd and that O is a support of O ∼ P0. Let ε ∈ (−δ∗, δ∗)

for some δ∗ > 0. Let (D(O), ‖ · ‖) be a Banach space of multivariate real
valued functions f : O ⊂ IRd → IR containing all densities of M w.r.t. P 0,
endowed with norm ‖ · ‖. The latter norm could be the supremum norm

‖ f ‖= supo∈O | f(o) |, the L2(P 0)-norm ‖ f ‖=
√∫

f 2(o)dP 0(o), or the

supremum norm ‖
∫ ·

0
fdP 0 ‖∞ of the corresponding cumulative distribution

functions.
One should select the norm ‖ · ‖ so that ‖ p0

ε − p0 ‖ converges to zero at
rate ε, and the result of the theorem will then establish this same or similar
rate of convergence for ‖ p̃0

ε − p0 ‖. So if one selects λ = 0, then one might
select the supremum norm of the cumulative distribution function, which is
the weakest norm among the three examples above. However, if Ψ depends
on local features and one thus selects a λ > 0, then one needs to select one
of the density norms so that we get the desired convergence of the density of
P̃ 0
ε . Another important point is that the stronger the available convergence

result for P 0
ε −P 0 and thus the stronger the norm ‖ · ‖ one selects, the weaker

the required Frechet differentiability condition (6) below is which is defined in
terms of this norm ‖ · ‖.

Given P 0, let U(p̃, ε) ≡ (P 0
ε Sh(p̃) : h ∈ H). Let `∞(H) be the class of real

valued function f : H → IR endowed with the supremum norm. We assume
that U : (D(O), ‖ · ‖1) × [−δ∗, δ∗] → `∞(H). That is, U is a mapping that
maps any function in D(O) and real number in (−δ∗, δ∗) into a function in
`∞(H).

We have U(p̃0
ε , ε) = 0 and U(p0, 0) = 0, where p0 = dP 0/dP 0 = 1, but for

notational ease we denote it with p0. This yields the starting identity:

U(p̃0
ε , 0)− U(p0, 0) = −{U(p̃0

ε , ε)− U(p̃0
ε , 0)}

= −ε(∆λ,o − P 0)S(p̃0
ε),

where we define S(p̃) = (Sh(p̃) : h ∈ H). Let U1(p0, 0)(f) = d
dδ
U(p0 + δf, 0)

∣∣
δ=0

be the Gateaux derivative of p→ U(p, 0) at p0 in the direction f ∈ D(O). We
note that U1(p0, 0) : (D(O), ‖ · ‖1) → `∞(H). We assume that U is Frechet
differentiable in its first coordinate at p0 in the sense that U1(p0, 0) yields the
desired linear approximation in the following uniform sense:

lim
ε→0

‖ U(p̃0
ε , 0)− U(p0, 0)− U1(p0, 0)(p̃0

ε − p0) ‖∞
‖ p̃0

ε − p0 ‖1

= 0. (6)
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So we obtained the following:

U1(p0, 0)(p̃0
ε − p0) = −ε(∆λ,o − P 0)S(p̃0

ε) + o(‖ p̃0
ε − p0 ‖1).

We also assume that the linear mapping U1(p0, 0) : (D(O), ‖ · ‖1) → `∞(H)
has a bounded inverse U1(p0, 0)−1 : `∞(H)→ (D(O), ‖ · ‖1). Then, we obtain:

p̃0
ε − p0 = −εU1(p0, 0)−1(∆λ,o − P 0)S(p̃0

ε) + o(‖ p̃0
ε − p0 ‖1). (7)

We also assume that for a specified bound r1(λ)

sup
ε∈(−δ∗,δ∗)

sup
h∈H
| (∆λ,o − P 0)Sh(p̃

0
ε) |= O(r1(λ)). (8)

Note that if λ > 0, and one of the density norms ‖ · ‖ is chosen, using the
Cauchy-Schwarz inequality, we can bound the left-hand side in (8) with:

‖ d∆λ,o − dP 0

dP 0
‖P 0 sup

h∈H,ε∈(−δ∗,δ∗)
‖ Sh(p̃0

ε) ‖P 0 .

The first factor can be bounded by O(r(λ)0.5) (see Theorem 4), while conver-
gence of p̃0

ε − p0 should provide a bound O(1) on the second factor, so that for
the case that λ > 0 and a density norm is selected r1(λ) = r(λ)0.5.

Under the assumption (8) we have

‖ U1(p0, 0)−1(∆λ,o − P 0)S(p̃0
ε) ‖= O(r1(λ)).

Taking the ‖ · ‖-norm on both sides of (7) yields then:

‖ p̃0
ε − p0 ‖1= O(εr1(λ)) + o(‖ p̃0

ε − p0 ‖1).

This implies
‖ p̃0

ε − p0 ‖1= O(εr1(λ)).

We state this convergence of the density p̃0
ε to p0 w.r.t ‖ · ‖-norm in the

theorem below, but we first proceed with the derivation of an analytic formula
for D∗(P 0)(o).

Suppose now that λ is fixed (not a function of ε). Then, we have obtained:

p̃0
ε,λ − p0 = −εU1(p0, 0)−1(∆λ,o − P 0)S(p̃0

ε) + o(ε).

To start with, assume the following for fixed λ > 0: if ‖ p̃0
ε,λ − p0 ‖= O(ε),

then suph∈H,o | Sh(p̃0
ε)− Sh(p0) | (o) = o(1). Then, the right-hand side of the

above displayed equation is approximated by −εU1(p0, 0)−1(∆λ,oS(p0)) + o(ε).
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In addition, suppose Ψ is (Hadamard) differentiable at P 0 in the following
sense: if (p̃0

ε,λ − p0)/ε converges w.r.t. ‖ · ‖ to f as ε→ 0, then

Ψ(P̃ 0
ε,λ)−Ψ(P 0) = dΨ(P 0)(p̃0

ε,λ − p0) + o(ε).

Then, it follows

Ψ(P̃ 0
ε,λ)−Ψ(P 0)

ε
= −dΨ(P 0)U1(p0, 0)−1(fλ,o) + o(1),

where fλ,o ≡ ∆λ,oS(p0). Finally, assume that

lim
λ→0

sup
h∈H
| ∆λ,oSh(p

0)− Sh(p0)(o) |= 0.

Then, we have shown

lim
λ→0

lim
ε→0

Ψ(P̃ 0
ε,λ)−Ψ(P 0)

ε
= −dΨ(P 0)U1(p0, 0)−1(S(p0)(o)).

Notice that for a fixed o, h → Sh(p
0)(o) ∈ `∞(H), so that indeed this inverse

U1(p0, 0)−1(S(p0)(o)) is well defined. Since we also showed that the left-hand
side equals D∗(P 0)(o) this proves the following analytic formula for the efficient
influence function

D∗(P 0)(o) = −dΨ(P 0)U1(p0, 0)−1(S(p0)(o)).

In some statements below we use the notation p̃0
ε,λ to stress the dependence

on λ.

Theorem 5 Given P 0, let U(p̃0
ε , ε) ≡ (P 0

ε Sh(p̃
0
ε) : h ∈ H) be a collection of

score equations solved by p̃0
ε = dP̃ 0

ε /dP
0 for a given ε.

Let O ∈ IRd and let O be a support of O ∼ P0. Let ε ∈ (−δ∗, δ∗) for
some δ∗ > 0. Let (D(O), ‖ · ‖1) be a Banach space of multivariate real valued
functions f : O ⊂ IRd → IR containing all densities of M w.r.t. P 0, endowed
with a norm ‖ · ‖. Let `∞(H) be the class of real valued function f : H →
IR endowed with the supremum norm. We assume that U : (D, ‖ · ‖1) ×
[−δ∗, δ∗]→ `∞(H).

We make the following assumptions:

Solves score equation: for each ε ∈ (−δ∗, δ∗), p̃0
ε is well defined and solves

U(p̃0
ε , ε) = 0 and, in particular, U(p0, 0) = 0;
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Frechet differentiability at P 0: Let U1(p0, 0)(f) = d
dδ
U(p0 + δf, 0)

∣∣
δ=0

be
the Gateaux derivative in direction f ∈ D(O). We note that U1(p0, 0) :
(D(O), ‖ · ‖1) → `∞(H). We assume that U is Frechet differentiable
in its first coordinate at p0 in the sense that U1(p0, 0) yields the desired
linear approximation in the following uniform sense:

lim
ε→0

‖ U(p̃0
ε , 0)− U(p0, 0)− U1(p0, 0)(p̃0

ε − p0) ‖∞
‖ p̃0

ε − p0 ‖1

= 0.

Bounded inverse of the derivative at P 0: Assume that the linear map-
ping U1(p0, 0) : (D(O), ‖ · ‖1)→ `∞(H) has a bounded inverse U1(p0, 0)−1 :
`∞(H)→ D(O).

Consistency condition: Assume that for some λ→ r1(λ), we have

sup
ε∈(−δ∗,δ∗)

sup
h∈H
| (∆λ,o − P 0)Sh(p̃

0
ε,λ) |= O(r1(λ)).

Then,
‖ p̃0

ε,λ − p0 ‖= O(εr1(λ)).

Suppose now that the above conditions and the next two conditions hold for
a fixed λ > 0. Firstly, if ‖ p̃0

ε − p0 ‖= O(ε), then

sup
h∈H,o

| Sh(p̃0
ε,λ)− Sh(p0) | (o)→ 0,

as ε → 0. Secondly, Ψ is (Hadamard) differentiable at P 0 in the following
sense: if (p̃0

ε,λ − p0)/ε converges w.r.t. ‖ · ‖ to f as ε→ 0, then

Ψ(P̃ 0
ε,λ)−Ψ(P 0) = dΨ(P 0)(p̃0

ε,λ − p0) + o(ε).

Finally, assume that

lim
λ→0

sup
h∈H
| ∆λ,oSh(p

0)− Sh(p0)(o) |= 0.

Then,

D∗(P 0)(o) = lim
λ→0

lim
ε→0

Ψ(P̃ 0
ε,λ)−Ψ(P 0)

ε
= −dΨ(P 0)U1(p0, 0)−1(S(p0)(o)). (9)
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The analytic formula (9) for D∗(P 0)(o) is the generalization of the formula
df(β0){−P 0 d

dβ0S(β0)}−1S(β0)(o) for the efficient influence function of f(β) for

a parametric model {pβ : β} at β0 in terms of the gradient df(β0) of f and
the inverse of the information matrix applied to the score vector S(β0))(o).

As with the Kullback-Leibler divergence result for the MLE, the con-
vergence of p̃0

ε − p0 to zero at rate εr1(λ) will typically immediately im-
ply that R2(P̃ 0

ε , P
0) = O(ε2r1(λ)2), thereby providing a rate λ(ε) for which

ε2r1(λ)2 = o(ε), as required in our general Theorem 1.

3.5 Existence of desired MLE based on implicit function
theorem

In the previous subsections we established a rate of convergence of the MLE
p̃0
ε to p0 w.r.t. Kullback-Leibler divergence (and thereby L2(P 0)-norm) and a

user-supplied norm ‖ · ‖, respectively, where this rate is expressed in terms
of ε and λ(ε). This allowed us to provide a slow enough rate λ(ε) for which
‖ p̃0

ε − p0 ‖ converges to zero fast enough so that R2(P̃ 0
ε , P

0) = o(ε), a crucial
condition of Theorem 1.

Another key condition of our general Theorem 1 is the actual existence of
the MLE (or solution of score equation) P̃ 0

ε solving P 0
ε D
∗(P̃ 0

ε ) = 0, given P 0

and ε. Of course, given a particular M(P 0), one might be able to explicitly
establish this result.

The goal of this subsection is to utilize the so called implicit function
theorem in order to establish this existence. This will now rely on stronger
differentiability conditions on the score equation, but these conditions are still
very reasonable if we use a supremum norm ‖ dP/dP 0 ‖∞= supo∈O | dP/dP 0 |
(o) on the density, and a fixed λ > 0.

The following theorem is an immediate consequence of the implicit function
theorem (see e.g. Chapter 6 in (van der Laan, 1996b)).

Theorem 6 In this theorem we will let λ > 0 be fixed and thus be disentan-
gled from ε. Given P 0, consider the following function in (ε, p̃): U(p̃, ε) ≡
(P 0

ε Sh(p̃) : h ∈ H), where P 0
ε = (1 − ε)P 0 + ε∆λ,o. Let O ∈ IRd and let O be

a support of O ∼ P0. Let ε ∈ (−δ∗, δ∗) for some δ∗ > 0. Let (D(O), ‖ · ‖∞)
be a Banach space of multivariate real valued functions f : O ⊂ IRd → IR
containing all densities of M w.r.t. P 0, endowed with the supremum norm
over O. Let (D(O), ‖ · ‖∞)× [−δ∗, δ∗]) be the product Banach space endowed
with the max norm: ‖ (f, ε) ‖= max(‖ f ‖∞, | ε |). Let `∞(H) be the class of
real valued function f : H → IR endowed with the supremum norm. Note that
U : (D, ‖ · ‖∞)× [−δ∗, δ∗]→ `∞(H).
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Beyond this general definition of U , we make the following assumptions:

efficient influence function spanned by score equations: Assume that a
solution p̃0

ε of U(p̃, ε) = 0 also satisfies P 0
ε D
∗(p̃0

ε) = 0, and that U(p0, 0) =
0.

Continuous Frechet differentiability of U at (p0, 0): We assume that U
is Frechet differentiable at any (p̃, ε) in neighborhood of (p0, 0):

lim
δ→0

sup
‖f,e‖≤1

‖ U(p̃+ δf, ε+ δe)− U(p̃, ε)− δdU(p̃, ε)(f, e) ‖∞
δ

= 0.

In addition, we assume that the derivative dU(p0, 0) is continuous at
(p0, 0): if (p̃n, εn) converges to (p̃, ε) w.r.t ‖ · ‖, then

sup
‖(f,e)‖<1

‖ dU(p̃n, εn)(f, e)− dU(p̃, ε)(f, e) ‖∞→ 0.

Let U1(p0, 0)(f) = d
dδ
U(p0 + δf, 0)

∣∣
δ=0

be the Gateaux derivative in the

direction f ∈ D(O) and let U2(p0, 0)(e) = d
dε
U(p0, ε)

∣∣
ε=0

. We note that
the derivative dU(p0, 0) : (DO), ‖ · ‖∞) × [−δ∗, δ∗] is a linear operator
given by

dU(p0, 0)(f, e) = U1(p0, 0)(f) + U2(p0, 0)(e).

We also note that U1(p0, 0) : (D(O), ‖ · ‖∞)→ `∞(H).

Bounded invertibility of derivative: Assume that the linear mapping U1(p0, 0) :
(D(O), ‖ · ‖∞) → `∞(H) has a bounded inverse U1(p0, 0)−1 : `∞(H) →
(D(O), ‖ · ‖∞).

Then there are open neighborhoods A0 ⊂ [−δ∗, δ∗] of 0 and B0 ⊂ (D(O), ‖ · ‖∞)
of p0 such that for each ε ∈ A0 there is a unique p̃0

ε ∈ B0 such that U(p̃0
ε , ε) = 0.

Moreover, if we define Θ : A0 → B0 so that p̃0
ε = Θ(ε) for ε ∈ A0, then for A

and B small enough, Θ is continuously differentiable mapping from A into B.
Its derivative is given by:

Θ′(ε) = −(U1(Θ(ε), ε))−1U2(Θ(ε), ε).

The important implication of this theorem is that under the stated dif-
ferentiability and invertibility condition on the score equation U() at a fixed
λ > 0, one now knows that for a given ε ≈ 0, there exists a unique p̃0

ε in
a neighborhood of p̃0 and the mapping ε → p̃0

ε is continuously differentiable
as a mapping from a neighborhood of 0 into the Banach space endowed with
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the supremum norm. If for a given ε ≈ 0, one finds a solution of the score
equation, one will have to verify that it is close to p0, since only then we have
the guarantee that this will be this unique solution in the neighborhood of p0

that is very smooth in ε. So due to this theorem, we now know that if we
select ε small enough, we will be able to find a solution p̃0

ε close to p0, thereby
establishing the existence. Moreover, the continuous differentiability of this
local solution teaches us immediately that for any fixed λ > 0, we have

‖ p̃0
ε − p0 ‖∞= O(ε).

So it establishes that for each fixed λ > 0 the solution p̃0
ε converges in supre-

mum norm to p0 at rate O(ε). Under the conditions stated in this theorem for
fixed λ, and limλ→0 suph | ∆λ,oSh(p

0) − Sh(p0)(o) |= 0, the analytic formula
(9) follows as well.

4 General numerical method for calculation of

efficient influence function, applied to rele-

vant part of P 0

As before, the method involves a number of steps, and below we provide these
steps. Step 0, and the discussions and remarks in Section 2 are equally relevant
for this method, but are not repeated here.

4.1 Step I: Define relevant part of data generating dis-
tribution and loss function

Let Ψ :M→ IR be such that Ψ(P ) = Ψ1(Q(P )) for some Ψ1 and Q :M→
F ≡ {Q(P ) : P ∈M}. Let L(Q)(O) be a loss function so that

Q(P0) = arg min
Q∈F

P0L(Q).

Let Q0 = Q(P 0). We assume that there exists a collection of paths {Q0
δ :

δ} ⊂ F in F through Q0 at δ = 0 so that the closure of the linear span of its
generalized scores d

dδ
L(Q0

δ)
∣∣
δ=0

in L2
0(P 0) contains D∗(P 0).

The efficient influence function will depend on P 0 through Q0 and a nui-
sance parameter G0 = G(P 0), so that we can also denote it with D∗(Q0, G0).
For most loss functions L(Q), the above condition that D∗(P 0) needs to be a
score of this loss L will typically require that G is a nuisance parameter whose
tangent space at P 0 is orthogonal to the tangent space of Q at P 0. However,
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we suspect that there are cases in which the loss L(Q) = LG0(Q) depends on
G0 and where one can still generate the D∗(P 0) as score of LG0(Q0

δ) at δ = 0
even when G is not orthogonal to Q.

4.2 Step I: Define a perturbation of P 0 in the direction
of a single observation

We define the same path P 0
ε = (1 − ε)P 0 + ε∆λ,o as before, where λ = λ(ε).

Given (Q0, G0) defined above, we can select P 0 as any probability distribution
that is compatible with these two initial estimators (Q0, G0).

4.3 Define a submodel of our statistical model for rele-
vant part so that the efficient influence function at
P 0 is still the same

As discussed earlier, in many cases one can define a smaller model M(P 0) ⊂
M so that the canonical gradient of Ψ :M(P 0)→ IR at P 0 is identical to the
canonical gradient D∗(P 0). Let F(P 0) = {Q(P ) : P ∈ M(P 0)} ⊂ F be the
corresponding model for Q0.

4.4 Define the Minimum Loss Estimator (MLE) map-
ping at the perturbation of P 0

We now define the minimum loss estimator (MLE) mapping applied to the
perturbation P 0

ε :
Q̃0
ε ≡ arg min

Q∈F(P 0)
P 0
ε L(Q). (10)

It is assumed that this MLE Q̃0
ε exists and is an element of F(P 0).

This choice Q̃0
ε can be replaced by any ε→ Q̃0

ε that satisfies that for each
ε ∈ (−δ∗, δ∗) (for some δ∗ > 0)

P 0
ε D
∗(Q̃0

ε , G
0) = 0.

4.5 Evaluate differential of target parameter at small
value ε

Evaluate

D∗ε (P
0)(o) ≈ Ψ1(Q̃0

ε)−Ψ1(Q0)

ε
for ε ≈ 0,
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where we remind the reader that λ = λ(ε) is a function of ε so that ε ≈ 0
implies λ(ε) ≈ 0.

Under our regularity conditions,

D∗(P 0)(o) ≡ lim
ε→0

Ψ1(Q̃0
ε)−Ψ1(Q0)

ε
,

so that D∗ε (P
0)(o) indeed approximates D∗(P 0))(o).

If one would fix λ > 0, then we have:

lim
ε→0

Ψ1(Q̃0
ε)−Ψ1(Q0)

ε
= ∆λ,oD

∗(P 0).

5 Main Theorem for establishing validity of

method applied to relevant part of P 0

The validity of the method is proven as follows. Firstly, we have P 0
ε D
∗(Q̃ε

0, G
0) =

0. The analogue of identity of (1) is given by: for any pair (Q̃0, Q0 = Q(P 0))
and G0 = G(P 0), we have

Ψ1(Q̃0)−Ψ1(Q0) = −P 0D∗(Q̃0, G0) +R2((Q̃0, G0), (Q0, G0)), (11)

where R2((Q1, G1), (Q2, G2)) is a second-order term in differences (Q1 − Q2)
and (G1 −G2). This yields:

Ψ1(Q̃0
ε)−Ψ1(Q0) = (P 0

ε − P 0)D∗(Q̃0
ε , G

0) +R2((Q̃0
ε , G

0), (Q0, G0)). (12)

As before we assume that λ = λ(ε) is chosen so that the strong consistency
condition R2((Q̃0

ε , G
0), (Q0, G0)) = o(ε) holds. This gives then

Ψ1(Q̃0
ε)−Ψ1(Q0) = ε(∆λ,o − P 0)D∗(Q̃0

ε , G
0) + o(ε).

Finally, we need a continuity condition on the efficient influence function so
that

(∆λ,o − P 0)D∗(Q̃0
ε , G

0) = D∗(Q0, G0)(o) + o(1). (13)

This proves the following analogue of Theorem 1.

Theorem 7 Assume

Solving efficient influence function equation: Given P 0, for any ε ∈ (−δ∗, δ∗)
for some δ∗ > 0, we define a Q̃0

ε ∈ F(P 0) that satisfies P 0
ε D
∗(Q̃0

ε , G
0) =

0.
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Convergence rate of MLE as ε→ 0: R2((Q̃0
ε , G

0), (Q0, G0)) = o(ε);

Continuity of efficient influence function at P 0 and O:

lim
ε→0

(∆λ,o − P 0)D∗(Q̃0
ε , G

0) = D∗(Q0, G0)(o).

Then

D∗(Q0, G0)(o) = lim
ε→0

Ψ1(Q̃0
ε)−Ψ1(Q0)

ε
.

If one fixes λ > 0 as ε → 0, and the conditions above hold but now with
the continuity of the efficient influence function condition replaced by

lim
ε→0

(∆λ,o − P 0)D∗(Q̃0
ε , G

0) = ∆λ,oD
∗(Q0, G0),

then we have

lim
ε→0

Ψ1(Q̃0
ε)−Ψ(Q0)

ε
= ∆λ,oD

∗(Q0, G0)(o).

5.1 Continuity of efficient influence function condition

The generalization of Theorem 2 is immediate and is given by the following.

Theorem 8 Let B(o : λ) be the support of ∆λ,o. Let r(λ) be a constant so that
supo′∈O d∆λ,o/dP

0(o′) < r(λ). Assume that ‖ D∗(Q̃0
ε , G

0)−D∗(Q0, G0) ‖P 0→
0 as ε→ 0, and that

lim
λ→0

∫
D∗(Q0, G0)(o′)d∆λ,o(o

′) = D∗(Q0, G0)(o).

In addition, suppose that one of the following two assumptions (A1), (A2)
holds: as ε→ 0, either

(A1) : sup
o′∈B(o:λ(ε))

| D∗(Q̃0
ε , G

0)−D∗(Q0, G0) | (o′)→ 0,

or
(A2) : r(λ(ε))0.5 ‖ D∗(Q̃0

ε , G
0)−D∗(Q0, G0) ‖P 0→ 0.

Then,
lim
ε→0

(∆λ(ε),o − P 0)D∗(Q̃0
ε , G

0) = D∗(Q0, G0)(o).
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5.2 Convergence rate of MLE condition.

The following theorem generalizes Theorem 3.

Theorem 9 Let L(Q,Q0) = L(Q)−L(Q0). We assume the following property
of the loss-function L(Q) (see (van der Laan et al., 2006; van der Vaart et al.,
2006)) wander:

sup
ε∈(−δ∗,δ∗)

P 0{L(Q̃0
ε , Q

0)}2

P 0L(Q̃0
ε , Q

0)
< M for some M <∞.

Let r(λ) be a rate in λ so that

‖ d∆λ,o

dP 0
‖P 0< r(λ).

Lemma 1 provides conditions under which r(λ) = O(λ−d).
Then,

P 0L(Q̃0
ε , Q

0) = O(ε2r2(λ)).

Proof: We have

0 ≤ P 0L(Q̃0
ε , Q

0)

= (P 0 − P 0
ε )L(Q̃0

ε , Q
0) + P 0

ε L(Q̃0
ε , Q

0)

≤ (P 0 − P 0
ε )L(Q̃0

ε , Q
0)

= −ε(∆λ,o − P 0)L(Q̃0
ε , Q

0)

= −ε
∫
d∆λ,o − dP 0

dP 0
L(Q̃0

ε , Q
0)dP 0

≤ ε ‖ d∆λ,o − dP 0

dP 0
‖P 0‖ L(Q̃0

ε , Q
0) ‖P 0 .

By assumption

sup
ε∈(−δ∗,δ∗)

P 0{L(Q̃0
ε , Q

0)}2

P 0L(Q̃0
ε , Q

0)
< M

for some M <∞.
Thus, we have shown that

P 0L(Q̃0
ε , Q

0) ≤Mε ‖ d∆λ,o − dP 0

dP 0
‖P 0

√
P 0L(Q̃0

ε , Q
0),

which proves

P 0L(Q̃0
ε , Q

0) = O(ε2) ‖‖ d∆λ,o − dP 0

dP 0
‖2
P 0 .

This completes the proof. 2
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5.3 Corollary of Theorem 7.

The previous two subsections provide the following corollary of Theorem 7.

Theorem 10 Let r(λ) be a rate in λ so that

‖ d∆λ,o

dP 0
‖P 0< r(λ).

Lemma 1 provides conditions under which r(λ) = O(λ−d). Let

dP 0(Q,Q0) = P 0{L(Q)− L(Q0)}.

We assume the following property of the loss-function L(Q):

sup
ε∈(−δ∗,δ∗)

P 0{L(Q̃0
ε , Q

0)}2

P 0L(Q̃0
ε , Q

0)
< M for some M <∞.

Assume

Solving efficient influence function equation: Given P 0, for any ε ∈ (−δ∗, δ∗)
for some δ∗ > 0, we define a Q̃0

ε ∈ F(P 0) that satisfies P 0
ε D
∗(Q̃0

ε , G
0) =

0;

Convergence rate of MLE as ε→ 0: If R2((Q̃0
ε , G

0), Q0, G0)) = 0, then
skip this condition. Otherwise, assume that R2((Q̃0

ε , G
0), (Q0, G0)) <

CdP 0(Q̃0
ε , Q

0) for some C <∞, and that λ(ε) is chosen so that ε2r2(λ(ε)) =
o(ε);

Continuity of efficient influence function at P and o: Assume that ‖ D∗(Q̃0
ε , G

0)−
D∗(Q0, G0) ‖P 0< C

√
dP 0(Q̃0

ε , Q
0) for some universal C <∞, and that

lim
λ→0

∫
D∗(Q0, G0)(o)d∆λ,o(o) = D∗(Q0, G0)(o).

Then,
dP 0(Q̃0

ε , Q
0) = O(ε2r2(λ(ε))).

In addition,

D∗(Q0, G0)(o) = lim
ε→0

Ψ1(Q̃0
ε)−Ψ1(Q0)

ε
.

If one fixes λ > 0 as ε→ 0, then we have

lim
ε→0

Ψ1(Q̃0
ε)−Ψ1(Q0)

ε
= ∆λ,oD

∗(Q0, G0).
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5.4 Theorem relying on second-order term being zero.

In many examples, so called problems in which the efficient influence func-
tion is double robust (see e.g., (Robins et al., 2000; Rotnitzky et al., 2012;
van der Laan and Robins, 2003; Rose and van der Laan, 2011), we have
R2((Q̃0, G0), (Q0, G0)) = 0 for any (Q̃0, Q0, G0). In that case, the identity
(12) becomes:

Ψ1(Q̃0
ε)−Ψ1(Q0) = ε(∆λ,o − P 0)D∗(Q̃0

ε , G
0). (14)

So now we only have to assume (13) to obtain the desired result. We will state
this remarkable powerful theorem for this important special case.

Theorem 11 Let r(λ) be a rate in λ so that

‖ d∆λ,o

dP 0
‖P 0< r(λ).

Lemma 1 provides conditions under which r(λ) = O(λ−d). Let

dP 0(Q,Q0) = P 0{L(Q)− L(Q0)}.

We assume the following property of the loss-function L(Q):

sup
ε∈(−δ∗,δ∗)

P 0{L(Q̃0
ε , Q

0)}2

P 0L(Q̃0
ε , Q

0)
< M (15)

for some M <∞.
Assume

Solving efficient influence function equation: Given P 0, for any ε ∈ (−δ∗, δ∗)
for some δ∗ > 0, we define a Q̃0

ε ∈ F(P 0) that satisfies P 0
ε D
∗(Q̃0

ε , G
0) =

0.

Convergence of MLE as ε→ 0: Assume that λ(ε) is chosen so that ε2r2(λ(ε)) =
o(1);

Continuity of efficient influence function at P and O: Assume that dP 0(Q̃0
ε , Q

0)→
0 as ε→ 0 implies ‖ D∗(Q̃0

ε , G
0)−D∗(Q0, G0) ‖P 0→ 0 as ε→ 0. Assume

also that

lim
λ→0

∫
D∗(Q0, G0)(o′)d∆λ,o(o

′) = D∗(Q0, G0)(o).
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Then,
dP 0(Q̃0

ε , Q
0) = o(1).

In addition,

D∗(Q0, G0)(o) = lim
ε→0

Ψ1(Q̃0
ε)−Ψ1(Q0)

ε
.

If one fixes λ > 0 as ε→ 0, then we have

lim
ε→0

Ψ1(Q̃0
ε)−Ψ1(Q0)

ε
= ∆λ,oD

∗(Q0, G0)(o).

6 Example I: Parametric model

6.1 Parametric model: Assuming invertibility of infor-
mation matrix

Let O ∼ Pθ0 ∈M = {Pθ : θ ∈ Θ} for some Euclidean subset Θ ∈ IRL for some
L. This model could still be a nonparametric model if O is discrete valued.
Suppose that our statistical target parameter is Ψ(Pθ) = Ψ1(θ) ∈ IR for some
specified function Ψ1 that is continuously differentiable, where it is assumed
that θ is strongly identifiable from Pθ in the sense that dKL(pθm , pθ) → 0 as
m→∞ implies ‖ θm − θ ‖→ 0.

Let Sθ be the score vector, I(θ) = −Pθ ddθSθ the information operator, as-
sumed to be invertible, and f(θ) = d

dθ
Ψ1(θ) is the gradient of Ψ1. Then the

efficient influence function at Pθ is given by D∗(θ)(o) = f(θ)>I(θ)−1Sθ(o).
Let’s assume that either all probability distributions inM are absolutely con-
tinuous w.r.t. Lebesgue measure (O is continuous) or counting measure (O is
discrete). Let’s denote this dominating measure with µ and the density of Pθ
is denoted with pθ = dPθ/dµ.

Let P 0 = Pθ0 ∈M be given, and let P 0
ε = (1− ε)P 0 + ε∆o, where ∆o(A) =

I(o ∈ A) is the probability distribution that puts mass 1 on o. Even if O is
continuous we will use a λ = 0, in which case dP 0

ε /dP
0 does not exist. The

MLE applied to P 0
ε is defined as

P̃ 0
ε = arg max

P∈M
P 0
ε log p.

Equivalently, we could define this MLE in terms of θ:

θ̃0
ε = arg max

θ∈Θ
P 0
ε log pθ.

This corresponds with determining a maximum of a multivariate real valued
function. The only practical complication occurs if O is continuous, in which
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case evaluation of this function involves an integral
∫

log pθ(o)dP
0
ε (o), which

might then be either approximated through histogram approximations of pθ
and p0

ε , or by a sample mean over a large Monte Carlo sample from P 0
ε . Note

that a proportion ε of the observations in the Monte-Carlo sample are equal
to o. The latter Monte-Carlo method seems to be the most appealing, since
it just requires computing a standard MLE (as one would compute on a data
set). The numerical approximation of the efficient influence function at o is
now given by

Ψ1(θ̃0
ε )−Ψ1(θ0)

ε
.

Let’s now verify the validity of the method by verifying the conditions of
Theorem 1. Firstly, the MLE solves the L-dimensional equation P 0

ε S(θ̃0
ε ), and

since the efficient influence function is a linear combination of the L scores,
this immediately implies P 0

ε D
∗(θ̃0

ε ) = 0. Secondly, if p0 > δ > 0 on O, then
a standard consistency proof based on the log-likelihood (simplified version of
proof of Theorem 9), establishes that dKL(pθ̃0ε , p

0) converges to zero at rateO(ε)

(since dP 0
ε /dP

0 does not exist when O is continuous, we do not immediately
obtain the desired ε2-rate). By the strong identifiability of θ from pθ this now
yields ‖ θ̃0

ε −θ0 ‖→ 0 as ε→ 0. We will now proceed with applying Theorem 5
(i.e., a standard M-estimator analysis in this finite dimensional case) based on
the score equations P 0

ε S(θ̃0
ε ) = 0 and P 0S(θ0) = 0. It follows that if θ → I(θ),

θ → Sθ ∈ L2(Pθ0) is continuous at θ0, and I(θ0) is invertible (thereby also
θ → I(θ)−1 is continuous at θ0), then

(θ̃0
ε − θ0)/ε = I(θ0)−1Sθ0(o) + o(1).

Finally, since Ψ1 is differentiable at θ0 the latter implies

Ψ1(θ̃0
ε )−Ψ1(θ0)

ε
= f(θ0)>I−1

θ0 Sθ0(o) + o(1),

so that its limit for ε→ 0 equals D∗(Pθ0)(o).

6.2 Parametric model, only assuming identifiability of
target parameter.

As above, let O ∼ Pθ0 ∈M = {Pθ : θ ∈ Θ} for some Euclidean subset Θ ∈ IRL

for some L, and that the statistical target parameter is given by Ψ(Pθ) =
Ψ1(θ) ∈ IR for some specified function Ψ1 that is continuously differentiable.
It is assumed that Ψ :M→ IR is pathwise differentiable at P with canonical
gradient D∗(P ), for all P ∈M.
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Let Sθ be the score vector. The tangent space is the finite dimensional
linear space spanned by the components of this score vector, possibly smaller
than L if the model is over-parameterized. Since D∗(P ) is an element of the
tangent space, it is a linear combination of scores. Let P 0 = Pθ0 ∈M be given,
and let P 0

ε = (1 − ε)P 0 + ε∆λ,o, where δλ,o(x) = 1
λd
K
(
x−0
λ

)
is a multivariate

density kernel centered at o with bandwidth λ.
As above let’s assume that either all probability distributions in M are

absolutely continuous w.r.t. Lebesgue measure (O is continuous) or counting
measure (O is discrete). Let’s denote this dominating measure with µ and the
density of Pθ is denoted with pθ = dPθ/dµ. Contrary to the case in which
we assume identifiability of θ from Pθ above, if O is continuous we will use a
λ > 0, so that we can apply our rate of convergence dKL(P̃ 0

ε , P
0) = O(ε2r2(λ)).

The MLE applied to P 0
ε is defined as

P̃ 0
ε = arg max

P∈M
P 0
ε log p.

Since we are not assuming identifiability of θ, this MLE can be compatible
with a set of values in the parameter space Θ.

To implement the MLE we apply a standard MLE to a large Monte-Carlo
sample. The numerical approximation of the efficient influence function at o
is now given by

Ψ(P̃ 0
ε )−Ψ(P 0)

ε
.

Let’s now verify the validity of the method by verifying Theorem 1. Firstly,
the MLE solves the L-dimensional equation P 0

ε S(θ̃0
ε ), and since the efficient

influence function is a linear combination of the L scores, this immediately im-
plies P 0

ε D
∗(P̃ 0

ε ) = 0. If p0 > δ > 0, then Theorem 3 yields that dKL(P̃ 0
ε , P

0) =
O(ε2r2(λ)). Thus, we select λ = λ(ε) so that ελ−d = o(1). To verify the conti-
nuity condition of the efficient influence function we can apply Theorem 2. So
the above consistency need to be used to establish ‖ D∗(P̃ 0

ε )−D∗(P 0) ‖P 0→ 0
as ε→ 0, and that

lim
λ→0

∫
D∗(P 0)(o′)d∆λ,o(o

′) = D∗(P 0)(o).

In addition, we might assume condition (A1) of Theorem 2: supo′∈B(o:λ(ε)) |
D∗(P̃ 0

ε )−D∗(P 0) | (o′)→ 0 = o(1). These are very weak regularity conditions.
This verifies all conditions of Theorem 1 and thus establishes the validity of the
numerical method for calculating D∗(P 0)(o), under weak regularity conditions.
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7 Example II: Estimation of bivariate survival

function based on bivariate right-censored

data.

In many censored data models in which the full-data model is nonparametric
(and certainly when it is not), the efficient influence function does not exist in
closed form. For example, interval censoring with more than two monitoring
times, double censored data in which the survival time is subject to both
left and right-censoring, bivariate right-censored data, and so on (van der
Laan, 1996b,a; Chang and Yang, 1987; Chang, 1990; Groeneboom and Wellner,
1992). Essentially, whenever the censoring is defined by multiple censoring
variables, typically the efficient influence function does not exist in closed form.
Here we select one of such type of censored data structures to demonstrate the
applicability of our numerical method.

Let (T1, T2) be a bivariate survival time and denote its bivariate cumulative
distribution function with Q0. Let (C1, C2) be a bivariate censoring time, and
assume that (C1, C2) is independent of (T1, T2). Let G0 be the cumulative
distribution function of (C1, C2). Let the observed data on a unit be given
by O = (T̃1 = min(T1, C1),∆1 = I(T1 ≤ C1), T̃2 = min(T2, C2),∆2 = I(T2 ≤
C2)). The probability distribution P0 of O is determined by (Q0, G0), and can
thus be denoted with PQ0,G0 , where the statistical model is defined as M =
{PQ,G : Q ∈ F , G ∈ G}, where F and G consists of all bivariate cumulative
distribution functions. This is not a fully nonparametric statistical model
since the assumption of independent censoring is stronger than coarsening at
random.

Let’s assume that (T1, T2) and (C1, C2) are continuous, so that any Q and
G are absolutely continuous w.r.t. Lebesgue measure with densities q and g,
respectively. Each subdistribution of O has now a Lebesque density:

pQ,G(t̃1, t̃2, 1, 1) = Ḡ(t̃1, t̃2)q(t̃1, t̃2)

pQ,G(t̃1, t̃2, 1, 0) =

∫ ∞
t̃1

g(t1, t̃2)dt1

∫ ∞
t̃2

q(t̃1, t2)dt2

pQ,G(t̃1, t̃2, 0, 1) =

∫ ∞
t̃2

g(t̃1, t2)dt2

∫ ∞
t̃1

q(t1, t̃2)dt1

pQ,G(t̃1, t̃2, 0, 0) = g(t̃1, t̃2)Q̄(t̃1, t̃2),

where Ḡ(t1, t2) = P (C1 > t1, C2 > t2) and Q̄(t1, t2) = P (T1 > t1, T2 > t2).
Let pQ and hG denote the factors of the density pQ,G: pQ,G = pQhG. The
statistical target parameter Ψ : M → IR is defined by Ψ(P ) = Q̄(t10, t20) =
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P (T1 > t10, T2 > t20) for some given point (t10, t20) in the plane.
Let G0, Q0 be given, and P 0 = PQ0,G0 . Let ψ0 = Ψ(P 0). We will assume

that Q0 has compact support [0, τ1] × [0, τ2] ⊂ IR2
≥0, Ḡ0(τ1, τ2) > 0, and q0 >

δ > 0 on [0, τ1] × [0, τ2] for some δ > 0. Under this condition, Ψ is pathwise
differentiable at P 0 = PQ0,G0 and the efficient influence function D∗(Q0, G0)
can be represented in the following manner. Define the nonparametric score
operator AQ0 : L2

0(Q0) → L2
0(P 0) as AQ0(S)(O) = EQ0(S(T1, T2) | O), and

its adjoint A>G0 : L2
0(P 0) → L2

0(Q0) as A>G0(V )(T ) = EG0(V (O) | T1, T2).
Then, one can define the so called nonparametric information operator IP 0 :
L2

0(Q0) → L2
0(Q0) as IP 0 = AQ0A>G0 . Under the above conditions on Q0, G0,

we have that IP 0 : L2
0(Q0) → L2

0(Q0) is invertible and has a bounded inverse
I−1
P 0 , and

D∗(P 0) = AQ0I−1
P 0 (κψ0),

where κQ0(T1, T2) = I(T1 > t10, T2 > t20) − Ψ1(Q0), where Ψ1 is defined by
Ψ(P ) = Ψ1(Q(P )) (van der Laan, 1996a,b).

In general, there is no closed form solution for D∗(P 0), but the inverse of
the information operator can be represented with the Neumann series I−1

P 0 =∑∞
k=0(I − IP 0)k, where I denotes the identity operator. Let D∗(P 0) be a

pointwise defined version of the above defined D∗(P 0) defined in L2
0(P 0) that is

continuous at the given observation o at which we want to compute D∗(P 0)(o).
Instead of using this highly involved algorithm in terms of the inverse of the

nonparametric information operator (as carried out in (Quale et al., 2006)) for
computing D∗(P 0)(o), we now want to use a numerical approximation method
proposed in this article. Let o = (t̃1, t̃2, δ1, δ2). Let P 0

ε = (1− ε)P 0 + ε∆λ,o be
the ε-perturbation of P 0 based on a bivariate kernel K with bandwidth λ:

∆λ,o(x1, x2, b1, b2) = I(b1 = δ1, b2 = δ2)
1

λ2
K
(
(t̃1 − x1)/λ, t̃2 − x2)/λ)

)
.

We define the corresponding perturbation Q̃0
ε of Q0 by the MLE mapping:

Q̃0
ε = arg max

Q∈F(Q0)
P 0
ε log pQ,

where F(Q0) is the set of all bivariate distributions absolute continuous w.r.t.
Q0. This MLE can be computed with the EM-algorithm: start with a F 0 = Q0,
and for m = 1, . . ., compute

Fm(t1, t2) = EP 0
ε
EFm−1(I(T1 > t1, T2 > t2) | O), for all (t1, t2) ∈ [0, τ ].

The limit of this algorithm as m→∞ is Q̃0
ε .
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In practice, we may approximate and implement this MLE Q̃0
ε as follows

resulting in an approximation Q̃0
ε,d with a histogram density. Firstly, one

defines a discrete grid approximation τ d of the support [0, τ ] of Q0, and let
q0
d be the corresponding histogram density approximation of the density q0

of Q0. For each (t1, t2) ∈ τd, let R(t1, t2) be a rectangle, so that [0, τ ] =
∪(t1,t2)∈τdR(t1, t2). This then also defines a histogram based approximation Q0

d

of the cumulative bivariate distribution function Q0. Similarly, let G0
d be an

histogram based approximation of G0 based on the same grid. For each little
rectangle R(t1, t2) in the partitioning defined by τ d, identified by (t1, t2) ∈ τ d,
let p0(t1, t2) be the probability under q0

d to fall in this rectangle (i.e., this is
just the histogram density q0

d integrated over this rectangle). Now, we start
with p0

d, set m = 0, and run the EM-algorithm for a multinomial probability
distribution: for m = 1, . . ., define

pmd (t1, t2) = EP 0
ε
Epm−1

d
(I((T1, T2) ∈ R(t1, t2)) | O), for all (t1, t2) ∈ τ d.

Here one can approximate the expectation w.r.t. P 0
ε with a large Monte Carlo

sample from P 0
ε . The limit p∞d as m → ∞ of this algorithm is a discrete

distribution representing the mass the MLE Q̃0
ε gives to each rectangle, so

that it defines a histogram density estimator q∞d whose bivariate cumulative
distribution function is our desired approximation Q̃0

ε,d of Q̃0
ε .

An alternative strategy for approximating Q̃0
ε is the one mentioned earlier:

replace each pQ with Q ∈ F(Q0) by a histogram approximation pdQ, replace p0
ε

by a histogram approximation p0
ε,d, and define the MLE as

p̃0
ε,d = arg max

pdQ,Q∈F(Q0)
P 0
ε,d log pdQ.

Finally, one could also take a very large Monte-Carlo sample from P 0
ε and

compute a regularized MLE of Q̃0
ε such as the regularized MLE in van der

Laan (1996a,b).
The numerical approximation of D∗(Q0

d, G
0
d)(o) is now given by:

Ψ(Q̃0
ε,d)−Ψ(Q0

d)

ε
,

where ε and λ will need to be chosen small enough, as discussed in detail below.
Since the perturbation Q̃0

ε,d does not depend on the target parameter, one can

use this same Q̃0
ε,d to compute the efficient influence function for the survival

probability at (t1, t2) for any (t1, t2) ∈ τ d. So even though running this EM
algorithm might take some serious computer time, in the end we obtain the
efficient influence function for a large class of target parameters.
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In order to establish the validity of the numerical method for approximating
D∗(P 0

d ) at a fixed discretization d, and recommended values for λ, ε, we apply
Theorem 11. To start with, we note that Lemma 1 we have r(λ) = λ−2. Since
this is a CAR-censored data model, we have R2((Q̃0, G0), (Q0, G0)) = 0 for
any Q̃0, given (Q0, G0). We apply this theorem with the log-likelihood loss:
L(Q) = − log pQ. Property (15) is known to hold if pQ̃0

ε,d
and pQ0

d
are bounded

away from zero on the support [0, τ ]. By assumption on q0
d and Ḡ0

d(τ) > 0, pQ0
d

is bounded away from zero. In addition, by a standard argument based on the
EM algorithm as a redistribution algorithm it follows that q̃0

ε,d ≥ p0
ε,d(·, (1, 1)),

and the latter is bounded away from zero since Ḡ0
d(τ) > 0 and q0

d bounded
away from zero on [0, τ ]. So this proves (15).

Regarding the first main condition of this theorem we need to prove that
P 0
ε,dD

∗(Q̃0
ε,d, G

0
d) = 0. Since D∗(Q̃0

ε,d, G
0
d) = AQ̃0

ε,d
I−1

Q̃0
ε,d,G

0
d

(κQ̃0
ε,d

) it follows that

it is an actual score at PQ̃0
ε,d,G

0
d
. Here we also use that, due to the discretiza-

tion, the bounded invertibility of the information operator in L2
0(Q0

d) norm
also implies bounded invertibility w.r.t. supremum/max norm, since for finite
dimensional spaces all norms are equivalent. As a consequence, it is not only
a score in L2

0(P 0), it also has a bounded max norm so that we can construct
a submodel with this score. This establishes the first main condition.

The theorem now teaches us that we need to select λ(ε) so that ε/λ → 0.
Under this condition, we have dP 0(Q̃0

ε,d, Q
0
d) → 0 as ε → 0, which implies

q̃0
ε,d−q0

d converges to zero in L2(Q0
d)-norm. We now need to verify the continuity

of the efficient influence function conditions. For notational convenience, in
the following formulas, let Q̃0

d denote Q̃0
ε,d. We have

D∗(Q̃0
d, G

0
d)−D∗(Q0

d, G
0
d) = AQ̃0

d
I−1

Q̃0
d,G

0
d

(κQ̃0
d
)− AQ0

d
I−1
Q0
d,G

0
d
(κQ0

d
)

= (AQ̃0
d
− AQ0

d
)I−1
Q0
d,G

0
d
(κ+Q0

d))

+AQ̃0
d
{I−1

Q̃0
d,G

0
d

− I−1
Q0
d,G

0
d
}(κQ0

d
) + AQ̃0

d
I−1

Q̃0
d,G

0
d

(κQ̃0
d
)− κQ0

d
).

Regarding the second term on the right-hand side we note that

I−1

Q̃0
d,G

0
d

− I−1
Q0
d,G

0
d

= −I−1

Q̃0
d,G

0
d

(IQ̃0
d,G

0
d
− IQ0

d,G
0
d
)I−1
Q0
d,G

0
d
.

At a fixed discretization, for any Q, I−1
Q,G0

d
has a bounded inverse w.r.t. supre-

mum norm (it is a finite dimensional problem in which case all norms are
equivalent). In addition, we have that q̃0

ε,d − q̃0
d converges in supremum norm

to zero as ε → 0, and all denominators in AQ̃d and AQ0
d

and thereby IQ̃0
d

are
bounded away from zero. In this manner, it is straightforward to show that
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‖ D∗(Q̃0
ε,d, G

0
d)−D∗(Q̃0

ε,d, G
0
d) ‖P̃ 0

ε
converges to zero as ε → 0, which confirms

the first condition in this continuity condition of the theorem.
Finally, we need to show that D∗(P 0

d )(o) = limλ→0 ∆λ,oD
∗(P 0

d ). This relies
on O → D∗(P 0

d )(O) being continuous at o, which holds trivially at this discrete
P 0
d . This verifies all the conditions of Theorem 11, and thus proves the validity

of the numerical approximation:

D∗(Q0
d, G

0
d)(o) = lim

ε→0

Ψ1(Q̃0
ε,d)−Ψ1(Q0

d)

ε
.

We conclude with some remarks regarding the role of discretization in this
proof. Suppose that one would be able to establish that the nonparametric
information operator IQ,G0 : L2

0(Q)→ L2
0(Q) has a bounded inverse w.r.t. the

supremum norm, thus not relying on the discretization. Then, by the same
proof as above, we would establish our desired consistency condition for the ef-
ficient influence function, uniformly in any grid approximation. Unfortunately,
bounded invertibility of the information operator w.r.t supremum norm at a
continuous Q0 is an unknown result in this complex bivariate right-censored
data model. Nonetheless, one expects it to hold: the structure of the informa-
tion operator that causes the analytic challenges is due to the singly-censored
observations, while we have shown that the nonparametric information op-
erator for general censored data structures (with positive probability on un-
censored observations) has a nice bounded inverse w.r.t supremum norm (and
even variation norm) once the regions induced by the censored observations
have full dimension (instead of lines in a plane that have probability zero).
There is no sensible reason to believe that extra censoring makes the informa-
tion operator more invertible, on the contrary, so that it is a pure technical
issue. In fact, a practical study of the Neuman series inverse in Quale et al.
(2006) showed a stable inverse in terms of the grid selected, practically con-
firming our conjecture that the information operator is indeed invertible w.r.t.
supremum norm .

If in truth the information operator has not a bounded inverse w.r.t. supre-
mum norm, then it might be possible that the norm of the inverse of the
information operator increases to larger and larger values when one lets the
mesh of the grid converge to zero. In particular, that might then mean that in
practice, when using a reasonably fine partitioning, it takes a very small ε and
λ to obtain the desired approximation. By the lack of this supremum norm
invertibility result, it is also unclear how to prove that D∗(P 0

d ) converges to
D∗(P 0) as the grid gets finer and finer, even though, again, one certainly ex-
pects this to hold. At a discretized P 0

d , one could even have selected λ = 0, but
in that case one might start relying on the grid approximation playing the role
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of λ, in which case it might become important that the grid converges slowly
relative to ε as ε→ 0, while if we use our λ, given the conjectured supremum
norm invertibility, the numerical approximation works for the above choice of
(ε, λ) satisfying ε/λ2 → 0, whatever grid we select. We prefer that λ plays
the role of regularizing the MLE, so that the convergence of our numerical
algorithm is only driven by the single parameter λ, while the choice of dis-
cretization is purely a computational consideration (chosen so that the error
due to discretization is negligible for practical purposes).

8 Example III: Counterfactual mean for two

time point intervention

We refer to (van der Laan and Gruber, 2012; Petersen et al., 2014; Bang and
Robins, 2005). Let O = (L(0), A(0), L(1), A(1), Y = L(2)) ∼ P0 and assume
a nonparametric statistical model M. Suppose that Y ∈ {0, 1} is binary. Let
d = (d0, d1) be a dynamic treatment regimen for assigning treatment A(0) and
A(1). Let Ψ :M→ IR be defined by:

Ψ(P ) = EPEP (EP (Y | L̄(1), Ā(1) = d(L̄(1))) | L(0), A(0) = d0(L(0))).

Under a causal model, the sequential randomization assumption, and a positiv-
ity assumption, Ψ(P0) equals the mean counterfactual outcome E0(Yd) under
dynamic treatment rule d. Let P 0 ∈M be given, and let P 0

ε = (1−ε)P 0+ε∆λ,o

be the perturbation of P 0 in the direction of a smoothed pointmass at o, where

δλ,o(l̄
′(2), ā′(1)) = I(ā′(1) = ā(1), l(0) = l′(0), y′ = y)Kλ(l

′(1)− l(1)).

Let L(1) ∈ IRd. For an x ∈ IRd and d-variate product density kernel K, we
define Kλ(x) = 1

λd
K(x/λ), and K(x) =

∏d
j=1Kj(xj). In this special target

parameter Ψ(P ) involving an expectation over L(0) w.r..t its true marginal
distribution (instead of some other distribution), it is not necessary to also
smooth in L(0) (Luedtke et al., 2015).

We have that any P is determined by Q(P ) and G(P ), where Q(P ) are the
conditional distributions of the L-nodes and G(P ) the conditional distributions
of the A-nodes. The parameter Ψ(P ) only depends on P through Q(P ). Let
P 0 = (Q0, G0) and P 0

ε = (Q0
ε , G

0
ε). In this nonparametric model we have that

the MLE mapping Q̃0
ε applied to P 0

ε equals Q0
ε . Thus,

Ψ(P̃ 0
ε ) = EP 0

ε
EP 0

ε
(EP 0

ε
(Y | L̄(1), Ā(1) = d(L̄(1))) | L(0), A(0) = d(L(0))),
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where each conditional expectation only depends on P 0
ε through Q0

ε . We ap-
proximate D∗(P 0)(o) with {Ψ(P 0

ε )−Ψ(P 0)}/ε for an ε ≈ 0.
Let’s first establish the validity of this method. We will apply Theorem 11,

using that R2(Q̃0
ε , G

0, Q0, G0) = 0. We have P 0
ε D
∗(Q̃0

ε , G
0) = 0 since Q̃0

ε is the
MLE. We select λ(ε) so that ελ−d → 0. The continuity of the efficient influence
function are conditions that hold if g0(d(L̄(1)), L̄(1)) > δ > 0 P 0-a.e., and g0

and the conditional means under Q0 at Ā(1) = d(L̄(1)) are continuous in L̄(1).
This verifies the conditions of the theorem and thus establishes the validity of
the method.

Let’s now discuss implementation of Ψ(P̃ 0
ε ). The outer expectation w.r.t

L(0) can be carried out with Monte-Carlo simulation. The most inner con-
ditional expectation of Y is just a sum over two values. To approximate the
conditional expectation integrating over L(1), we recommend approximating
this conditional expectation integral with a Riemann sum w.r.t. a partitioning
of the support of L(1) as discussed earlier.

To make this implementation practical for high dimensional d, the following
lemma provides a dimension reduction for L(1). This would represent Step 0
in our description of the general method.

Lemma 2 Consider the above setting with O = (L(0), A(0), L(1), A(1), Y ),
statistical model M that only makes assumptions on conditional distributions
gA(0) and gA(1) of A(0) and A(1), respectively, target parameter Ψ :M→ IR de-
fined by Ψ(P ) = EPEP (EP (Y | Ā(1) = d(L̄(1)), L̄(1)) | A(0) = d(L(0)), L(0)),
and its efficient influence function D∗(P 0) at P 0 ∈M. Let d(L(0) denote the
treatment assignment for A(0) under dynamic treatment d, and similarly let
d(L̄(1)) be the treatment assignment for A(1).

Define Or = (Lr(0) = L(0), A(0), Lr(1), A(1)), Y )), where

Lr(1) ≡ (d(L̄(1)), Q̄0
2(L̄(1)), ḡ0

1(L̄(1))

ḡ0
1(L̄(1)) = g0

A(1)(1 | A(0) = d0(L(0), L̄(1))

Q̄0
2(L̄(1)) = EP 0(Y | L̄(1), Ā(1) = d(L̄(1))).

Note that d(L(0)) and d(L̄(1)) are only functions of Lr(0) and L̄r(1), respec-
tively, so that we can also write d(Lr(0)) and d(L̄r(1)).

Since Or is a function of O, each possible probability distribution P in M
of O implies a distribution Pr of Or. Let Mr = {Pr : P ∈ M} be the model
for Or induced by M. Let Ψr :Mr → IR be defined by

Ψr(Pr) = EPrEPr(EPr(Y | L̄r(1), Ā(1) = d(L̄r(1))) | Lr(0), A(0) = d(Lr(0))).

Let D∗r(P
0
r ) be efficient influence function of Ψr at P 0

r . We have D∗r(P
0
r ) =

D∗(P 0) P 0-a.e.
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Proof: Let Q̄0
1 = EP 0(Q̄0

2 | L(0), A(0) = d(L(0))). The efficient influence
function is given by D∗(P 0) =

∑2
k=0D

∗
k(P

0), where

D∗0(P 0) = EP 0(EP 0(Y | L̄(1), Ā(1) = d(L̄(1))) | L(0), A(0) = d(L(0)))−Ψ(P 0)

= EP 0(Q̄0
2 | L(0), A(0) = d(L(0)))−Ψ(P 0)

D∗1(P 0) =
I(A(0) = d(L(0)))

g0
A(0)(A(0) | L(0))

(Q̄0
2 − Q̄0

1)

D∗2(P 0) =
I(Ā(1) = d(L̄(1)))

g0
A(0)g

1
A(1)

(Y − Q̄0
2).

To start with, since Lr(1) includes Q̄0
2, we note that Q̄0

r2 ≡ EP 0
r
(Y | L̄r(1), Ā(1) =

d(L̄r(1))) = Q̄0
2. Here, and below, we also use that d(L̄r(1)) = d(L̄(1)) by the

fact that Lr(1) includes the decision d(L̄(1)). Because Q̄0
2(L̄(1)) only depends

on L̄(1) through L̄r(1), and Lr(0) = L(0), it also follows that

Q̄0
r1 ≡ EP 0

r
(Q̄0

r2 | Lr(0), A(0) = d(Lr(0))) = EP 0(Q̄0
2 | L(0), A(0) = d(L(0)) = Q̄0

1.

In particular, this shows that

Ψr(P
0
r ) = Ψ(P 0).

Since Lr(0) = L(0), we also have that g0
r,A(0) = g0

A(0). Since Lr(1) includes

g0
A(1)(1 | L̄(1), A(0) = d(L(0))), it follows that

g0
r,A(1)(1 | L̄r(1), A(0) = d(Lr(0))) = g0

A(1)(1 | L(1), A(0) = d(L(0))).

By the same formula of the above efficient influence function but applied to
Or, we also have that D∗r(P

0
r ) is given by:

D∗r0(P 0
r ) = EP 0

r
(EP 0

r
(Y | L̄r(1), Ā(1) = d(L̄r(1))) | Lr(0), A(0) = d(Lr(0)))−Ψr(P

0
r )

= EP 0(Q̄0
2 | L(0), A(0) = d(L(0)))−Ψ(P 0)

= D∗0(P 0)

D∗r1(P 0
r ) =

I(A(0) = d(Lr(0)))

g0
r,A(0)(A(0) | Lr(0))

(Q̄0
r2 − Q̄0

r1)

=
I(A(0) = d(L(0)))

g0
A(0)(A(0) | L(0))

(Q̄0
2 − Q̄0

1)

= D∗1(P 0)

D∗r2(P 0
r ) =

I(Ā(1) = d(L̄r(1)))

g0
r,A(0)g

1
r,A(1)

(Y − Q̄0
r2)

=
I(Ā(1) = d(L̄(1)))

g0
A(0)g

1
A(1)

(Y − Q̄0
2)

= D∗2(P 0).
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This proves that D∗r(P
0
r ) = D∗(P 0), and completes the proof of the lemma. 2

9 Numerical method for calculating second-

order efficient influence function.

We refer to (Robins et al., 2008, 2009; van der Vaart, forthcoming; Carone
et al., 2014). We will use the notation P 2f =

∫
f(o1, o2)dP (o1)dP (o2) Suppose

that Ψ : M → IR is higher-order pathwise differentiable at any P ∈ M.
For the sake of demonstration, lets consider the case that it is second-order
pathwise differentiable at P 0 ∈ M. This means that for each submodel {P 0

δ :
δ} in a class of models generating the tangent space T (P 0) with dP 0

δ = (1 +
δS + 0.5δ2S2)dP 0 + o(δ2), we have

Ψ(P 0
δ )−Ψ(P 0) = δPD(1)(P 0)S+0.5δ2{PD(1)(P 0)S2 +P 2D(2)(P 0)S2}+o(δ2),

where D(1)(P 0)(O), D(2)(P 0)(O1, O2) are the first and second-order efficient in-
fluence function at P 0, respectively. Here we used the notation P 2D(2)(P 0)S2 =∫
D(2)(P 0)(o1, o2)S(o1)S(o2)dP 0(o1)dP 0(o2). The second-order efficient influ-

ence function at P has the property that for all (o1, o2) ∈ O2,

PD(2)(P )(o1, ·) = PD(2)(P )(·, o2) = PD(2)(P ) = 0.

In addition, we have that for all (o1, o2) ∈ O2, D(2)(P )(o1, ·) ∈ T (P ) and
D(2)(P )(·, o2) ∈ T (P ). The second-order pathwise differentiability typically
allows for a second-order expansion of the following type: for P, P 0 ∈M,

Ψ(P )−Ψ(P 0) = (P − P 0)D(1)(P 0) + (P − P 0)2D(2)(P 0) +R3(P, P 0), (16)

where R3(P, P 0) is a third order term in the difference P − P 0.
The second-order efficient influence function can be used to construct a

second-order one-step estimator which is asymptotically efficient under the
same conditions as previously mentioned but where the second-order term
condition R2(P 0

n , P0) = oP (1/
√
n) is replaced by R3(P 0

n), P0) = oP (1/
√
n).

For example, the second-order one-step estimator, using as initial estimator
P 0
n ∈M, is defined as (Robins et al., 2008):

ψ1
n = Ψ(P 0

n) + PnD
(1)(P 0

n) + P 2
nD

(2)(P 0
n).

Alternatively, the second-order efficient influence function can be used to con-
struct a second-order TMLE (Carone et al., 2014).
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In this section we propose a numerical method that approximatesD(2)(P 0)(o1, o2)
at a given P 0 and pair (o1, o2). Given P 0 and (o1, o2) ∈ O2, consider the fol-
lowing perturbation of P 0:

dP 0
ε,(o1,o2) =

(
1 + ε

d∆λ,o1,o2 − dP 0

dP 0

)
dP 0, (17)

where ∆λ,o1,o2 = 0.5∆λ,o1 +0.5∆λ,o2 is a mixture of ∆λ,o1 and ∆λ,o2 with weight
0.5. Alternatively, we can write P 0

ε,(o1,o2) = (1 − ε)P 0 + ε∆λ,o1,o2 . Notice that

for ε small enough this is indeed a density. As before, let P̃ 0
ε,(o1,o2) be defined

as the MLE projection of P 0
ε,(o1,o2) onto the model M:

P̃ 0
ε,(o1,o2) = arg min

P∈M(P 0)
P 0
ε,(o1,o2) log

dP

dP 0
,

assuming it exists.
We will show that, under weak regularity conditions,

f (2)(P 0, (o1, o2)) ≡ lim
λ→0

d2

dε2
Ψ(P̃ 0

ε,(o1,o2))

∣∣∣∣
ε=0

= 0.5D(2)(P 0)(o1, o1) + 0.5D(2)(P 0)(o2, o2) +D(2)(P 0)(o1, o2).

In addition, we have

f (2)(P 0, o1) ≡ lim
λ→0

d2

dε2
Ψ(P 0

ε,o1
)

∣∣∣∣
ε=0

= 2D(2)(P 0)(o1, o1)

f (2)(P 0, o2) ≡ lim
λ→0

d2

dε2
Ψ(P 0

ε,o2
)

∣∣∣∣
ε=0

= 2D(2)(P 0)(o2, o2)

As a consequence,

D(2)(P 0)(o1, o2) = f (2)(o1, o2)− 0.25f (2)(o1)− 0.25f (2)(o2).

In the next two subsections we establish the validity of this method for cal-
culating D(2)(P 0)(o1, o2). Firstly, we consider the easier case that the model
M is nonparametric, and subsequently, we show that the general validity is
proven by applying this result to a nonparametric model with target param-
eter Ψ̃(P ) = Ψ(P̃ ), where P̃ = arg maxP1∈M(P 0) P log dP1/dP

0, and showing

that this nonparametric extension Ψ̃ of Ψ has the same first and second-order
efficient influence function as Ψ at a P 0 ∈M.
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9.1 Validity of the method for nonparametric models

The following theorem establishes the validity of the proposed method for a
nonparametric model.

Theorem 12 Suppose M(P 0) is nonparametric so that P̃ 0
ε,(o1,o2) = P 0

ε,(o1,o2)

for all ε ∈ (−δ, δ) for some δ > 0.
Assume (16) at P 0

ε,(o1,o2) and P 0:

Ψ(P 0
ε,(o1,o2))−Ψ(P 0) = (P 0

ε,(o1,o2) − P 0)D(1)(P 0) + (P 0
ε,(o1,o2) − P 0)2D(2)(P 0)

+R3(P 0
ε,(o1,o2), P

0).

In addition, assume D(1)(P 0) is continuous at o1 and o2, D(2)(P 0) is contin-
uous at (o1, o2), (o1, o1) and (o2, o2). Finally, assume that R3(P 0

ε,(o1,o2), P
0) =

o(ε2).
We have

f (2)(P 0, (o1, o2)) ≡ lim
λ→0

d2

dε2
Ψ(P̃ 0

ε,(o1,o2))

∣∣∣∣
ε=0

= 0.5D(2)(P 0)(o1, o1) + 0.5D(2)(P 0)(o2, o2) +D(2)(P 0)(o1, o2).

In addition, we have

f (2)(P 0, o1) ≡ lim
λ→0

d2

dε2
Ψ(P 0

ε,o1
)

∣∣∣∣
ε=0

= 2D(2)(P 0)(o1, o1)

f (2)(P 0, o2) ≡ lim
λ→0

d2

dε2
Ψ(P 0

ε,o2
)

∣∣∣∣
ε=0

= 2D(2)(P 0)(o2, o2)

As a consequence, we have

D(2)(P 0)(o1, o2) = f (2)(o1, o2)− 0.25f (2)(o1)− 0.25f (2)(o2).

Proof of Theorem 12: For notational convenience, in this proof let P 0
ε =

P 0
ε,(o1,o2). (16) at P = P 0

ε yields:

Ψ(P 0
ε )−Ψ(P 0) = (P 0

ε − P 0)D(1)(P 0) + (P 0
ε − P 0)2D(2)(P 0) +R3(P 0

ε , P
0).
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We now use that

(P 0
ε − P 0)D(1)(P 0) = ε∆λ,(o1,o2)D

(1)(P 0)

= 0.5ε∆λ,o1D
(1)(P 0) + 0.5ε∆λ,o2D

(1)(P 0)

(P 0
ε − P 0)2D(2)(P 0) = ε2∆2

λ,(o1,o2)D
(2)(P 0)

= ε20.25∆2
λ,o1

D(2)(P 0) + ε20.25∆2
λ,o2

D(2)(P 0)

+ε20.5∆λ,o1∆λ,o2D
(2)(P 0).

The continuity assumptions imply that the expectations w.r.t. ∆2
λ,o1

, ∆2
λ,o2

and ∆λ,o1,o2 of D(2)(P 0) converge to the pointless evaluation at (o1, o1), (o2, o2),
(o1, o2), respectively, as λ→ 0. Thus, we conclude that

Ψ(P 0
ε )−Ψ(P 0) = 0.5ε∆λ,o1D

(1)(P 0) + 0.5ε∆λ,o2D
(1)(P 0)

+ε20.25∆2
λ,o1

D(2)(P 0) + ε20.25∆2
λ,o2

D(2)(P 0)

+ε20.5∆λ,o1∆λ,o2D
(2)(P 0) +R3(P 0

ε , P
0).

Thus,

f (2)(P 0, (o1, o2)) ≡ lim
λ→0

d2

dε2
Ψ(P 0

ε )

∣∣∣∣
ε=0

= 0.5D(2)(P 0)(o1, o1) + 0.5D(2)(P 0)(o2, o2) +D(2)(P 0)(o1, o2).

Similarly, we can show f (2)(P 0, o) = 2D(2)(P 0)(o, o). Using that R3(P 0
ε , P

0) =
o(ε2), it follows:

f (2)(o1, o2)− 0.25f (2)(o1)− 0.25f (2)(o2) = D(2)(P 0)(o1, o2).

This completes the proof of Theorem 12. 2

9.2 Validity of method for general models

We will now generalize the proof to arbitrary models. The key insight is that
1) we can apply the above proof to Ψ̃ :MNP (P 0)→ IR to obtain the numerical
approximation result for the second-order efficient influence function D̃(2)(P 0),
and 2), we will show below that the first and second-order efficient influence
function of Ψ̃ at a P 0 ∈M are identical to the first and second-order efficient
influence function of Ψ :M→ IR at P 0.

The following lemma provides an important building block of the proof
and is itself of interest. It shows that given a one dimensional parametric
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model {Pε : ε} ⊂ MNP through P ∈ M with score S∗, its corresponding
MLE-submodel {P̃ε : ε} ⊂ M, where P̃ε is the Kullback-Leibler projection of
Pε onto M, has score S̃ = Π(S∗ | T (P )) (i.e., the projection of S∗ on the
tangent space T (P ) in the Hilbert space L2

0(P )).

Lemma 3 Consider a submodel {Pε : ε} ⊂ MNP through P ∈ M at ε = 0
with score S∗ ∈ L2

0(P ). Here S∗ = limε→0
dPε−dP
dPε

with this limit defined in the
Hilbert space L2

0(P ).
Let P̃ε = arg maxP1∈M(P ) Pε log dP1/dP , and recall that T (P ) is the tangent

space at P for model M(P )� P . Note that {P̃ε : ε} ⊂ M(P ).

Regularity conditions: Assume the score S̃ ≡ limε→0
dP̃ε−dP
εdP

of {P̃ε : ε}
at ε = 0 exists as a limit in L2

0(P ). Assume that P̃ε solves score equations
PεSh(P̃ε) = 0 for h ∈ H, where, for each P1 ∈ M, the closure of the linear
span of {Sh(P1) : h ∈ H} ⊂ T (P1) in L2

0(P1) equals T (P1). Assume that

sup
h∈H
| (P̃ε − P ){Sh(P̃ε)− Sh(P )} | = o(ε)

sup
h∈H
| (Pε − P ){Sh(P̃ε)− Sh(P )} | = o(ε).

Then, S̃ is given by
S̃ = Π(S∗ | T (P )).

Proof: Let S(P ) = (Sh(P ) : h ∈ H). We have P̃εS(P̃ε) = 0 and PεS(P̃ε) = 0.
Thus:

(P̃ε − P )S(P̃ε) = (Pε − P )S(P̃ε).

The left-hand side can be written as:

P
dP̃ε − dP

dP
S(P̃ε).

The right-hand side can be written as:

P
dPε − dP

dP
S(P̃ε).

By assumption, (P̃ε−P ){S(P̃ε)−S(P )} = o(ε) and (Pε−P ){S(P̃ε)−S(P )} =
o(ε). Thus,

P
dP̃ε − dP
εdP

S(P ) = P
dPε − dP
εdP

S(P ) + o(1).
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Taking the limit for ε → 0 on both sides, and using that, by assumption, the
limit for ε → 0 of the integrand converges in L2

0(P ) to the desired score, we
obtain

PS̃S(P ) = PS∗S(P ).

Thus P (S̃ − S∗)Sh(P ) = 0 for all h ∈ H. Since the linear span of {Sh(P ) :
h ∈ H} equals T (P ) this implies S∗− S̃ ⊥ T (P ). Since S̃ ∈ T (P ), this proves
S̃ = Π(S∗|T (P )). 2

Building on this lemma, the following theorem establishes that the first
and second-order efficient influence function of the nonparametric extension
Ψ̃ of Ψ at a P 0 ∈ M is equal to the first and second-order efficient influence
function Ψ at P 0.

Theorem 13 Consider a model M and Ψ :M→ IR. Let P 0 ∈ M be given.
Let M(P 0) = {P1 ∈ M : P1 � P 0} and let T (P 0) ⊂ L2

0(P 0) be the tangent
space at P 0.

Consider now a locally nonparametric modelMNP (P 0) ⊃M(P 0) with tan-
gent space at P 0 equal to L2

0(P 0) and dominated by P 0, and the nonparametric
extension Ψ̃ :MNP (P 0)→ IR of Ψ defined by

Ψ̃(P ) = Ψ(P̃ ),

where
P̃ = arg max

P1∈M(P 0)
P log dP1/dP

0.

Here, for each P ∈ MNP (P 0), P̃ ∈ M(P 0) solves PSh(P̃ ) = 0 for h ∈ H,
where the closure of the linear span of {Sh(P̃ ) : h ∈ H} ⊂ L2

0(P̃ ) equals T (P̃ ).
Assume that the regularity conditions of the previous Lemma 3 hold for each

submodel {P 0
ε : ε} ⊂ MNP (P 0) over a class J ∗ of submodels whose tangent

space equals L2
0(P 0). In addition, assume that Ψ is pathwise differentiable

along a class of submodels that includes (or equals) the corresponding class J
of submodels {P̃ 0

ε : ε} ⊂ M with tangent space T (P 0).
Let D(1)(P 0) be the efficient influence function of Ψ : M → IR at P 0.

Then, Ψ̃ is pathwise differentiable at P 0 with efficient influence function

D̃1(P 0) = D(1)(P 0).

Suppose now that Ψ and Ψ̃ are second-order pathwise differentiable at P 0

along the classes J and J ∗ of submodels, respectively. Let D(2)(P 0) be the
second-order efficient influence function of Ψ : M → IR at P 0, and let
D̃(2)(P 0) be the second-order efficient influence function of Ψ̃ :MNP (P 0)→ IR
at P 0. Then, we also have

D̃(2)(P 0) = D(2)(P 0).
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Proof: We provide the proof of the last statement which assumes Ψ is second-
order pathwise differentiable at P 0. The first statement is a direct consequence
of this proof. By definition of second-order pathwise differentiability of Ψ at
P 0 w.r.t. the class J of submodels, for each submodel {P 0

ε : ε} in J ∗ with
score S∗, we have

Ψ̃(P 0
ε ) = Ψ(P̃ε)

= Ψ(P 0) + εP 0D(1)(P 0)S̃ + 0.5ε2{P 0D(1)(P 0)S̃2 + P 02D(2)(P 0)S̃2}+ o(ε2).

However, by Lemma 3, S̃ = Π(S∗ | T (P 0)) and D(1)(P 0) ∈ T (P 0) so that
P 0D(1)(P 0)S̃ = P 0D(1)(P 0)S∗. We also have Ψ(P 0) = Ψ̃(P 0) since P 0 ∈ M.
Since D(2)(P 0)(o1, ·) ∈ T (P 0), and D(2)(P 0)(·, o2) ∈ T (P 0), for all (o1, o2) ∈
O2, we have∫

D(2)(P 0)(o1, o2)S̃(o1)dP 0(o1) =

∫
D(2)(P 0)(o1, o2)S∗(o1)dP 0(o1),

and applying this again to the integral over o2, we obtain∫ {∫
D(2)(P 0)(o1, o2)S∗(o1)dP 0(o1)

}
S̃(o2)dP 0(o2)

=
∫ {∫

D(2)(P 0)(o1, o2)S̃(o2)dP 0(o2)
}
S∗(o1)dP 0(o1)

=
∫ ∫

D(2)(P 0)(o1, o2)S∗(o2)dP 0(o2)S∗(o1)dP 0(o1)
= P 02D(2)(P 0)S∗2.

Thus, we have shown:

Ψ̃(P 0
ε ) = Ψ̃(P 0)+P 0D(1)(P 0)S∗+0.5ε2P 02D(2)(P 0)S∗2}+0.5ε2P 0D(1)(P 0)S̃2+o(ε2).

Note that the last second-order expansion of Ψ̃ was implied by the second-
order pathwise differentiability of Ψ at P 0. If S̃2 can be replaced by S∗2 , then
this proves second-order pathwise differentiability of Ψ̃ at P 0 with the same
first and second-order efficient influence function. So we still need to show that
P 0D(1)(P 0)(S̃2−S∗2) = 0. Since Ψ̃ :MNP → IR is assumed to be second-order
pathwise differentiable, we also have

Ψ̃(P 0
ε ) = Ψ̃(P 0)+P 0D(1)(P 0)S∗+0.5ε2P 02D(2)(P 0)S∗2}+0.5ε2P 0D(1)(P 0)S∗2+o(ε2).

Thus, taking the difference between the two second-order expansions of Ψ̃(P 0
ε ),

dividing by ε2, and taking the limit as ε → 0, shows that P 0D(1)(P 0)S̃2 =
P 0D(1)(P 0)S∗2 . This completes the proof. As a remark, we strongly suspect
that P 0D(1)(P 0)(S̃2−S∗2) = 0 without having to assume second-order pathwise
differentiability of Ψ̃. 2

50

http://biostats.bepress.com/ucbbiostat/paper340



Due to this theorem we only need to develop a method for determining
the first and second-order efficient influence function of Ψ̃ : MNP (P 0) → IR
for a nonparametric model. Theorem 12 provides the proof of its validity for
general target parameters defined on a nonparametric model, which thus also
applies to this particular Ψ̃. This results in the following final theorem.

Theorem 14 Assume the conditions of Theorem 13, including second-order
pathwise differentiability of both Ψ and Ψ̃ at P 0 ∈M. Then, Ψ̃ :MNP (P 0)→
IR, defined by Ψ̃(P ) = Ψ(P̃ ) with P̃ = arg maxP1∈M(P 0) P log dP1/dP

0, has
the same first and second-order efficient influence functions D(1)(P 0) and
D(2)(P 0), respectively, as Ψ.

Consider the submodels Pε,o1 = (1−ε)P 0+ε∆λ,o1, Pε,o2 = (1−ε)P 0+ε∆λ,o2,
and Pε,(o1,o2) = (1− ε)P 0 + ε∆λ,(o1,o2).

Assume (16) for Ψ̃ at P 0
ε,(o1,o2) and P 0:

Ψ̃(P 0
ε,(o1,o2))− Ψ̃(P 0) = (P 0

ε,(o1,o2) − P 0)D(1)(P 0) + (P 0
ε,(o1,o2) − P 0)2D(2)(P 0)

+R3(P 0
ε,(o1,o2), P

0).

In addition, assume D(1)(P 0) is continuous at o1 and o2, D(2)(P 0) is contin-
uous at (o1, o2), (o1, o1) and (o2, o2). Finally, assume that R3(P 0

ε,(o1,o2), P
0) =

o(ε2).
We have

f (2)(P 0, (o1, o2)) ≡ lim
λ→0

d2

dε2
Ψ(P̃ 0

ε,(o1,o2))

∣∣∣∣
ε=0

= 0.5D(2)(P 0)(o1, o1) + 0.5D(2)(P 0)(o2, o2) +D(2)(P 0)(o1, o2).

In addition, we have

f (2)(P 0, o1) ≡ lim
λ→0

d2

dε2
Ψ(P̃ 0

ε,o1
)

∣∣∣∣
ε=0

= 2D(2)(P 0)(o1, o1)

f (2)(P 0, o2) ≡ lim
λ→0

d2

dε2
Ψ(P 0

ε,o2
)

∣∣∣∣
ε=0

= 2D(2)(P 0)(o2, o2)

In particular,

D(2)(P 0)(o1, o2) = f (2)(o1, o2)− 0.25f (2)(o1)− 0.25f (2)(o2).
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10 Using a targeted perturbation to compute

efficient influence function as a function

In the previously discussed methods, we used a perturbation P 0
ε,o at P 0 ∈ M

in the direction of a possible realization o of O that provided an MLE P̃ 0
ε so

that

D∗Ψ(P 0)(o) = lim
ε→0

Ψ(P̃ 0
ε )−Ψ(P 0)

ε

is the efficient influence function of Ψ : M → IR at P 0 evaluated at o. Here
we used the notation D∗Ψ(P ) for the efficient influence function of Ψ :M→ IR
at P . Thus, even though the algorithm only yields the efficient influence
function at a single value o, the same P̃ 0

ε can be used to obtain the efficient
influence function at o of any pathwise differentiable target parameter Ψ de-
fined on the model M. Nonetheless, if our goal is an efficient estimator of a
particular Ψ(P0), then, the fact that P̃ 0

ε can be universally applied across all
target parameters is not very helpful. In that case the disadvantage of the
proposed algorithm is that for the purpose of constructing an efficient estima-
tor of Ψ(P0) with corresponding influence function based inference, one needs
to rerun it for each observation o = Oi, i = 1, . . . , n. Another disadvantage of
the perturbation P 0

ε,o is that it typically requires a smoothing parameter λ.
In this section we propose another perturbation P 0

ε that is specifically
targeted towards our specific Ψ, and as a result the corresponding P̃ 0

ε will
now yield the whole function o→ D∗(P 0)(o). This perturbation will not rely
on a smoothing parameter, but will rely on having an initial gradient at P 0 of
Ψ. To construct an efficient estimator of Ψ(P0) and a corresponding confidence
interval one only needs to run this algorithm once.

Let D(P 0)(O) be a gradient of Ψ :M→ IR. A gradient is often much easier
to find than the actual canonical gradient and can be found by representing the
pathwise derivative along a path as a covariance of the score of the path with a
particular fixed function (same for all paths), where this latter function is now
a gradient of the pathwise derivative. Alternatively, one might have a simple
estimator available that is known to be asymptotically linear so that D(P 0)
can be defined as the influence function of that estimator. One can also define
a nonparametric extension ΨNP : MNP → IR so that ΨNP (P ) = Ψ(P ) for
P ∈ M, and define D(P 0) as the gradient of the pathwise derivative of ΨNP .
The latter gradient can be computed as a standard gradient as in the Appendix
A2 of Rose and van der Laan (2011). Let {P 0

ε : ε} ⊂ MNP be a parametric
model through P 0 at ε = 0 with score equal to D(P 0). It is assumed that this
model is chosen so that all probability distributions in this parametric family
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are dominated by P 0. For example, we might use the exponential model:

dP 0
ε (o) = C(ε, P 0) exp(εD(P 0))dP 0(o),

where C(ε, P 0) = {
∫
o

exp(εD(P 0)(o))dP 0(o)}−1 is the normalizing constant.
If ε is forced to be small enough, then one can also select the easier parametric
family:

dP 0
ε (o) = (1 + εD(P 0)(o))dP 0(o).

Suppose now that the regularity conditions of Lemma 3 apply to {P 0
ε : ε}

and its corresponding MLE

P̃ 0
ε = arg max

P1∈M(P 0)
P 0
ε log dP1/dP

0,

defined as earlier. Then, by application of Lemma 3, we have that the score
of {P̃ 0

ε : ε} at ε = 0 equals the projection of D(P 0) onto the tangent space
T (P 0), which thus equals the efficient influence function D∗(P 0):

D∗(P 0) = lim
ε→0

dP̃ 0
ε − dP 0

εdP 0
.

Thus, by selecting ε as a small value, for any o ∈ O, we can approximate
D∗(P 0)(o) with

dP̃ 0
ε − dP 0

εdP 0
(o).

Theorem 15 Let D(P 0) be a gradient of Ψ :M→ IR. Let {P 0
ε : ε} � P 0 be

a parametric model through P 0 at ε = 0 with score at ε = 0 equal to D(P 0).
Suppose that the regularity conditions of Lemma 3 apply to {P 0

ε : ε} and its
corresponding MLE

P̃ 0
ε = arg max

P1∈M(P 0)
P 0
ε log dP1/dP

0,

where M(P 0) is a submodel of M, dominated by P 0, whose tangent space at
P 0 equals the tangent space ofM at P 0. Then, the efficient influence function
at P 0 can be represented as:

D∗(P 0) = lim
ε→0

dP̃ 0
ε − dP 0

εdP 0
.
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10.1 TMLE

The parametric submodel {P̃ 0
ε : ε} ⊂ M is a least favorable parametric model

through P 0 at ε = 0, since its score at ε = 0 equals the efficient influence
function D∗(P 0). As a consequence, it can be used to compute a TMLE. So
let

ε0n = arg max
ε
Pn log

dP̃ 0
ε

dP 0
,

and define the update of P 0 as P 1
n = P̃ 0

ε0n
. Since ε0n is an interior maximum, it

can be shown that under regularity conditions and under the assumption that
P 0 approximates P0, this one-step update already satisfies

PnD
∗(P 1

n) = oP (1/
√
n).

As a consequence, under the usual regularity conditions of the TMLE, we have
that Ψ(P 1

n) is asymptotically efficient. Instead of stopping at the first step,
one could also iterate the updating process till convergence: P k+1

n = P̃ k
n,εkn

,

where εkn = arg maxε Pn log dP̃ k
n,ε/dP

k, k = 1, 2, . . ., till εKn ≈ 0. Then, we will
have PnD

∗(PK) ≈ 0.
Let’s consider the one-step TMLE. Note that this might require computing

P̃ 0
ε for a grid of ε-values, but one can also implement Newton-Raphson type

algorithm by using that the derivative of the log likelihood in ε at a particular
ε0 is defined by the score of P̃ 0

ε at ε0 , and the latter score can be estimated
with the numerical approximation (dP̃ 0

ε+δ−dP 0/(δdP 0) for some small δ. Since
εn will be of the order of the Kullback-Leibler divergence between P 0 and P0,
the MLE εn can be expected to be larger than 1/

√
n, so that this TMLE will

thus not require searching for very small values ε.

10.2 Example: Bivariate right-censored data

Consider the bivariate right-censored data model in which we assume that
(C1, C2) is independent of (T1, T2), and our target parameter Ψ(P ) = P (T1 >
t10, T2 > t20) is the survival probability at (t10, t20). Recall that the density
of P factorizes into pQpG. The efficient influence function D∗(P ) is the same
in the model M(G0) that assumes that the censoring cumulative distribution
function G is known as in the actual modelM. Thus, we can select a gradient
of Ψ :M(G0)→ IR. We can use the inverse probability of censoring weighted
gradient:

D(P 0) =
I(T̃1 > t10, T̃2 > t20)∆1∆2

Ḡ0(T̃1, T̃2)
−Ψ(P 0).
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Consider now the following submodel through P 0:

dP 0
ε (O) = dP 0(O)(1 + εD(P 0)).

We now define the MLE

P̃ 0
ε = arg max

P1∈M(G0)
P 0
ε log dP1/dP

0.

Note that dP1/dP
0 = pQ1/pQ0 so that this MLE only involves maximizing

over the parameter space of bivariate cumulative distributions Q. The imple-
mentation of P̃ 0

ε can be implemented using discretization techniques as earlier
described for the single observation perturbation P 0

ε,o. Thus the MLE P̃ 0
ε is

determined by a Q̃0
ε and G0. For small ε > 0, we now have that

D∗(P 0) ≈ dP̃ 0
ε − dP 0

dP 0ε
=
pQ̃0

ε
− pQ0

pQ0ε
.

One could use ε = 1/
√
n since then the approximation error for the efficient

influence function will be O(1/
√
n), and that is still smaller or equal than the

rate at which the initial estimator P 0 converges to P0 and thereby D∗(P 0)
converges to D∗(P0), so that the finite sample behavior of the one-step esti-
mator or TMLE is not meaningfully affected by this approximation error. As
described above, we can now also immediately implement a TMLE by solv-
ing for ε that maximizes Pn log dP̃ 0

ε /dP
0, so that the TMLE of Ψ(P0) can be

defined as Ψ(P̃ 0
εn).

10.3 Generalization to minimum loss-based mapping

Consider the case that Ψ(P ) = Ψ1(Q(P )), Q(P ) = arg minQ∈Q(M) PL(Q) for
a loss function (O,Q) → L(Q)(O), and D∗(P ) = D∗(Q(P ), G(P )) for some
nuisance parameter G(P ). Let (Q0, G0) be given and consider a mapping
(Q,G) → PQ,G ∈ M, so that we can define P 0 = PQ0,G0 ∈ M as a uniquely
defined data distribution consistent with (Q0, G0). Let Q0

ε ∈ Q(M) be a
perturbation of Q0 chosen so that P 0

ε = PQ0
ε ,G

0 is a perturbation of P 0 with
score at ε = 0 equal to an initial gradient D(Q0, G0). We now define the
minimum loss projection Q̃0

ε of Q0
ε onto the model space Q(P 0) ⊂ Q(M) as

follows:
Q̃0
ε = arg min

Q∈Q(P 0)
P 0
ε L(Q),

where Q(P 0) is an appropriate subspace of the parameter space {Q(P ) : P ∈
M}. The key assumption is that the set of score equations PεSh(Q̃

0
ε) = 0, h ∈
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H, solved by this MLE Q̃0
ε is rich enough so that solving these score equations

implies P 0
ε D
∗(Q̃0

ε , G
0) = 0. Here Sh(Q) = d

dδ
L(Qh,δ)

∣∣
δ=0

is the generalized
score at Q using a path {Qh,δ : δ} ⊂ Q(M) through Q at δ = 0, indexed by a
choice h ranging over an index set H. Under appropriate regularity conditions,
we have that for small ε > 0

D∗(Q0, G0) ≈
dPQ̃0

ε ,G
0 − dPQ0,G0

dPQ0,G0ε
.

The result follows immediately if one can show that the mapping (Q,G) →
PQ,G is chosen so that for all h ∈ H

d

dδ
L(Qh,δ)

∣∣∣∣
δ=0

= − d

dδ
log

dPQ0
h,δ,G

0

dPQ0,G0

∣∣∣∣∣
δ=0

, at Q = Q̃0
ε .

11 Discussion

In this article we demonstrated that one can compute the efficient influence
function at a data distribution P 0 in the statistical model by computing a
maximum likelihood estimator P̃ 0

ε , or, more generally, a minimum loss-based
estimator Q̃0

ε , but with the usual empirical distribution replaced by a pertur-
bation P 0

ε of P 0 and selecting ε ≈ 0. We proposed two types of perturbation,
a perturbation in the direction of a single observation and a targeted per-
turbation defined by its score at ε = 0 being an initial gradient. The first
perturbation can be inputted in the target parameter mapping and results in
that way in an approximation for the efficient influence function at P 0 for
any target parameter. The targeted perturbation directly generates the whole
efficient influence function at P 0 as a function in o. The first perturbation
relies on a regularization/smoothing parameter which needs to be tuned as a
function of ε ,while the targeted perturbation does not depend on such a tun-
ing parameter. We developed formal conditions under which these methods
for computing the efficient influence function are valid, which appear to be
very weak. We also demonstrated the methods with three examples. In future
work we plan to implement these methods and corresponding one-step and
TML estimators in order to evaluate and develop its practical feasibility in
realistic estimation problems. Our results promise the development of efficient
TMLE of pathwise differentiable target parameters that are only based on the
capability to compute an MLE over the statistical model at a smooth pertur-
bation of initial estimator P 0, thereby making efficient estimation accessible
to computer savvy scientists that are good in implementing algorithms that
maximize a criterion.
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