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The Statistics of Sensitivity Analyses

Alexander R. Luedtke, Ivan Diaz, and Mark J. van der Laan

Abstract

Suppose one wishes to estimate a causal parameter given a sample of observa-
tions. This requires making unidentifiable assumptions about an underlying causal
mechanism. Sensitivity analyses help investigators understand what impact vio-
lations of these assumptions could have on the causal conclusions drawn from
a study, though themselves rely on untestable (but hopefully more interpretable)
assumptions. Dı́az and van der Laan (2013) advocate the use of a sequence (or
continuum) of interpretable untestable assumptions of increasing plausibility for
the sensitivity analysis so that experts can have informed opinions about which
are true. In this work, we argue that using appropriate statistical procedures when
conducting a sensitivity analysis is crucial to drawing valid conclusions about a
causal question and understanding what assumptions one would need to make to
do so. Conducting a sensitivity analysis typically relies on estimating features
of the unknown observed data distribution, and thus naturally leads to statistical
problems about which optimality results are already known. We present a general
template for efficiently estimating the bounds on the causal parameter resulting
from a given untestable assumption. The sequence of assumptions yields a se-
quence of confidence intervals which, given a suitable statistical procedure, attain
proper coverage for the causal parameter if the corresponding assumption is true.
We illustrate the pitfalls of an inappropriate statistical procedure with a toy exam-
ple, and apply our approach to data from the Western Collaborative Group Study
to show its utility in practice.



1 Introduction

Many scientific questions are causal rather than associational. Answering causal questions re-

quires making certain unverifiable assumptions (Neyman, 1990; Rubin, 1974; Robins, 1986; Pearl,

2000). One can often attempt to answer a causal question by collecting a random sample of indi-

viduals from an observational or experimental study and estimating a statistical parameter which,

under these unverifiable assumptions, is equal to the causal quantity of interest. These unverifi-

able assumptions are referred to as identifiability assumptions because they allow one to identify

knowledge of the statistical parameter with knowledge of the causal parameter.

Identifiability assumptions can be implausible in many applications. Sensitivity analyses allow

investigators to understand how their analysis would change under varying degrees of violations

of these assumptions. Robins et al. (1999) describe a roadmap to evaluate the sensitivity to nonig-

norable missingness in missing data applications and unmeasured confounding in causal inference

applications. In particular, they suggest specifying some semiparametric model for the missing-

ness mechanism or counfounding relationship indexed by a sensitivity parameter, and reporting

confidence intervals for the parameter of interest for each value of this sensitivity parameter. Simi-

lar approaches were considered in related articles (Rotnitzky et al., 1998; Scharfstein et al., 1999).

If the chosen semiparametric form is correct, then such analyses often yield an interpretable sen-

sitivity parameter. Nonetheless, these sensitivity parameters become hard to interpret when (as is

typical) this semiparametric form is incorrect.

In response to these earlier approaches, Dı́az and van der Laan (2013) advocate the use of sensi-

tivity analyses which avoid the specification of difficult to interpret misspecified semiparametric

models. They aim to make the assumptions behind the sensitivity analysis as transparent as pos-

sible so that their validity can be judged by non-statisticians. They illustrate the utility of such an

approach by demonstrating the effectiveness of a Chagas disease treatment. Causal conclusions

were previously thought impossible for this application due to the inevitable informative dropout

resulting from the disease’s long (30 year) incubation period. This long incubation period also
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renders randomized studies prohibitively expensive, so that researchers can only use observational

data to evaluate the efficacy of treatment.

VanderWeele and Arah (2011) give general formulas for the bias of the statistical parameter for the

causal parameter if one assumes that adjusting for an unmeasured confounder would make the pa-

rameter identifiable. This approach yields an interpretable sensitivity parameter under sometimes

strong simplifying assumptions, such as that this unmeasured confounder is binary. Obtaining

confidence bounds for the causal parameter requires obtaining confidence bounds for a statistical

parameter that adjusts for measured confounders, and thus requires modern statistical approaches

for these confidence bounds to be valid. Similar approaches were used to get bounds for interaction

parameters (VanderWeele et al., 2012) and for direct effects (VanderWeele, 2010). The bounds in

Ding and VanderWeele (2015) are defined using this approach, but require far fewer parameters

than the earlier methods when the unmeasured confounder is not binary.

These sensitivity analysis procedures are related to the partial identification literature which de-

velops bounds on the difference between the causal and statistical parameter that hold under very

weak assumptions (if any), such as bounds on the outcome (Manski, 1990; Horowitz and Manski,

2000; Manski, 2003; MacLehose et al., 2005). Though the bounds resulting from these analyses

are convincing when informative, in many cases they can be too conservative to be informative

about even the sign of an effect.

In this work we demonstrate the importance of using an appropriate statistical procedure when

conducting a sensitivity analysis. In principle this should be obvious, but seems important to point

out given the ubiquity of misspecified (semi)parametric working models in the field. The fact that

one needs to use a modern statistical procedure when conducting a sensitivity analysis should not

be a cause for concern–such methods already exist for many problems of interest, so one can often

use pre-existing software packages to implement them.

Given a suitable statistical procedure, one has a valid sensitivity analysis provided the unverifiable

assumption corresponding to the sensitivity parameter holds. For this reason we encourage statis-
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ticians to make this assumption as interpretable as possible so that subject matter experts can have

informed opinions about them.

Our presentation follows that of Dı́az and van der Laan (2013), with our emphasis placed on the key

role that statistics must play in any sensitivity analysis procedure. Section 2 outlines the objective

of sensitivity analyses and shows how they can fail when not paired with an appropriate statistical

procedure. Section 3 describes a statistically valid sensitivity analysis procedure. Section 3.2,

which details the statistical estimation of bounds on the bias of the statistical parameter for the

causal parameter, did not appear in Dı́az and van der Laan (2013). Sections 2 and 3 alternate

between a discussion that applies to general sensitivity analyses and a discussion of a running toy

example. Section 4 details an application of our approach to estimate the additive effect of smoking

on coronary heart disease in a real data example.

2 Why statistics is important in sensitivity analyses

Section 2.1 sets up the problem. Section 2.2 presents a sensitivity analysis procedure that yields a

confidence interval for the causal parameter of interest provided one has valid confidence intervals

for an a priori specified statistical parameter. Section 2.3 gives an example of how this procedure

fails when one uses an inappropriate procedure to estimate this statistical parameter.

2.1 The problem

General discussion

Suppose one wishes to estimate a causal parameter ψcausal. The observed data distribution is P0

and, under causal assumptions which cannot be verified using data, we can identify a statistical

parameter Ψ(P0) with the causal parameter ψcausal, i.e. Ψ(P0) = ψcausal. We start by describing an

analysis under these identifiability assumptions, and then discuss how sensitivity analyses can be

used to understand what happens under violations of these assumptions.

For simplicity, suppose we observe n observations O1, ..., On drawn i.i.d. from some distribution
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P0. The results also apply to other sampling schemes with little modification. Generally one

attempts to obtain an asymptotic confidence interval CIstat = [Ln, Un] for Ψ(P0) with coveraging

approaching, e.g., 95% as sample size grows. We focus on 95% coverage throughout this article,

though the extension is obvious. The bounds Ln and Un are data dependent, and generally

Un − Ln converges to zero (in probability) as sample size grows. (?)

We make this assumption throughout. We have emphasized that the practitioner hopes that CIstat

has coverage approaching 95%, i.e.

the random interval CIstat contains Ψ(P0) with probability approaching 0.95. (??)

Using an inappropriate statistical procedure can yield a CI for which (??) does not hold, but we

make the assumption (??) until stated otherwise. Under our identifiability assumptions, ψcausal =

Ψ(P0) and the CI is also asymptotically valid for ψcausal.

The purpose of sensitivity analyses is to explore what happens under violations of these identifia-

bility assumptions, i.e. to see how dramatically an analysis would change if ψcausal 6= Ψ(P0), given

that some interpretable condition holds.

Example

We will use the potential outcomes framework when presenting our example, though the same

result applies in other frameworks. Define the full data as (W,Y0, Y1), where Y0 is the counter-

factual outcome under no treatment, Y1 is the counterfactual outcome under treatment, and W is

a vector of covariates. We assume that all outcomes are bounded in [0, 1]. We observe an i.i.d.

sample drawn from (W,A, Y ) ∼ P0, where Y = YA is the outcome of interest under the observed

treatmentA. We make the stable unit treatment value assignment assumption that the potential out-

comes for one unit do not change with the treatment of other units and the positivity assumption
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that P0(A = 1|W ) > 0 with probability 1 over draws of W .

Our causal parameter of interest is ψcausal = E[Y1]. Our statistical parameter of interest is the

G-computation formula Ψ(P0) = EE[Y |A = 1,W ] (Robins, 1986). If A is independent of Y1

given W , then Ψ(P0) = ψcausal. In this example we are concerned with the situation where this

independence may not hold.

We use a simple data generating distribution for our toy example. Suppose W is discrete and

takes on four levels. Let the data be generated as follows, where U is some unobserved con-

founder:

U ∼ Bernoulli(0.9)

W |U ∼ Unif{1, 2, 3, 4}

A|U,W ∼ Bernoulli (0.75I(W = 1) + 0.98UI(W 6= 1))

Y1|A,U,W ∼ Bernoulli (0.8AUI(W 6= 1)) ,

and we let Y0 = 0 with probability 1. One can verify that ψcausal = E[Y1] = 0.54, while Ψ(P0) =

EE[Y |A = 1,W ] = 0.60. Thus Ψ(P0) is not identified with ψcausal due to the confounding by

U .

We will return to this toy example throughout. A Monte Carlo simulation for this example can be

found in Appendix B to allow readers to avoid the straightforward but tedious calculations needed

to verify the numerical results related to this example.

2.2 Sensitivity analyses under condition (??)

General discussion

Suppose that Ψ(P0) is not identified with ψcausal. If no adjustment is made, CIstat has coverage for

ψcausal approaching zero as sample size grows. Trivially, the amount that we need to shift our CI to

obtain valid coverage for ψcausal is exactly ψcausal − Ψ(P0). This shift does not have to do with the
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sample. Suppose we know that ψcausal−Ψ(P0) belongs to some known interval CIdiff = [Ldiff, Udiff].

In Section 3.2 we weaken this assumption and allow CIdiff to rely on P0 and be estimated from the

data. Given that Ldiff ≤ ψcausal −Ψ(P0) ≤ Udiff, we know that

CIcausal = [Ln + Ldiff, Un + Udiff]

has asymptotic coverage of at least 0.95 for ψcausal. These bounds are necessarily loose under

(?) and (??). In particular, these two assumptions imply that Ln and Un converge to Ψ(P0) in

probability, so the non-identiability of ψcausal implies that Ldiff 6= Udiff: otherwise we could learn

ψcausal using data alone in the infinite sample limit. It follows that the width of CIcausal will not

shrink to zero with sample size whenever ψcausal is unidentifiable.

In practice CIdiff may be too wide to be informative. In this case, one could use an interval

CIδdiff = [Lδdiff, U
δ
diff], indexed by some low dimensional parameter δ such that, for some inter-

pretable Condition δ,

ψcausal −Ψ(P0) ∈ CIδdiff under Condition δ.

This Condition δ should be interpretable in the entire nonparametric model, in contrast to ear-

lier approaches which develop sensitivity parameters which tied to an untestable (semi)parametric

model (see, e.g., Robins et al., 1999). Often one can take δ to be univariate so that δ = 1 indicates

no additional assumption, while δ = 0 indicates that CIδdiff = [0, 0] and is thus unachievable given

non-identifiability. One can interpret each CIδcausal = [Ln + Lδdiff, Un + U δ
diff] as a valid confidence

interval for ψcausal provided Condition δ holds. Dı́az and van der Laan (2013) stress that subject

matter experts should be able to hypothesize about plausible values of δ.

Following this section, we generally omit δ from the notation for Ldiff, Udiff, and CIdiff, with the

understanding that these quantities are indexed by a sensitivity parameter δ.
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Example

We wish to give an interval CIdiff that contains ψcausal under Condition δ. Note that

ψcausal = E
[
E[Y1|A = 0,W ]P0(A = 0|W ) + E[Y |A = 1,W ]P0(A = 1|W )

]
. (1)

Suppose |E[Y1|A = 0,W ] − E[Y |A = 1,W ]| ≤ δ with probability 1 over draws of W . That is,

the average potential outcomes under treatment do not differ by more than δ between the treated

and untreated individuals in any strata of covariates. This holds trivially for δ = 1 by the bounds

on the outcome. Then (1) and some basic calculations yield that

−δP0(A = 0) ≤ ψcausal −Ψ(P0) ≤ δP0(A = 0). (2)

The above bound is generally loose in the sense that for some (most) P0 one cannot exhibit a causal

distribution for which P0 is an observed data distribution resulting from this causal distribution and

ψcausal −Ψ(P0) attains the prescribed upper or lower bound. For our toy example, A = 0 with low

probability so this approach yields a reasonably tight bound. In particular, P0(A = 0) ≈ 0.15,

which yields upper and lower bounds on ψcausal−Ψ(P0) of±0.15δ. Thus if a subject matter expert

knew that the probability that A = 0 is no greater than, e.g., 0.2, then (2) yields an informative

bound on ψcausal −Ψ(P0), namely ±0.2δ.

We can also get a tighter bound under an alternative Condition δ which uses relative risks rather

than differences. Suppose that, with probability 1 over draws of the covariate W and some δ >

0,

−δE[Y |A = 1,W ] ≤ E[Y1|A = 0,W ]− E[Y |A = 1,W ] ≤ δ (1− E[Y |A = 1,W ]) .

Consider the lower bound. Given thatE[Y |A = 1,W ] > 0, the above says that E[Y1|A=0,W ]
E[Y |A=1,W ]

≥ 1−δ

for some δ > 0, i.e. that the relative risk of Y1 = 1 among untreated versus treated people is at
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least 1 − δ in every strata of covariates. Similarly, the above says that E[1−Y1|A=0,W ]
E[1−Y |A=1,W ]

≥ 1 − δ,

which is a similar relative risk bound but now for the risk of Y1 = 0. At δ = 1 the above condition

reproduces the known bounds on the outcome. For rare (or highly common) outcomes it is worth

using a two-dimensional δ parameter in the above expression, one for the lower bound and one for

the upper, but for simplicity we do not explore this here. Plugging the above bound into (1) yields

that

−δE [E[Y |A = 1,W ]P0(A = 0|W )]

≤ ψcausal −Ψ(P0) ≤ δE [E[1− Y |A = 1,W ]P0(A = 0|W )] . (3)

For a given δ, the bound in (3) will always be half the width of the bound in (2). In our toy example,

the lower and upper bounds are approximately −0.07δ and 0.08δ. Nonetheless, this tighter bound

relies on P0 through more than just the marginal censoring mechanism, so estimating the bounds

will be more difficult than for (2). In Section 3.2 we discuss how one can estimate these upper and

lower bounds and account for this when developing confidence intervals.

Manski (2003) considers bounds on causal parameters which reduce to using the known bounds

on the outcome in great detail. That work also gives bounds under other assumptions, such as

monotonicity assumptions, which may help inspire other choices of Condition δ.

2.3 Sensitivity analyses when (??) does not hold because the estimator is inconsistent

General discussion

We have glossed over another issue which, unlike the sensitivity analysis, can be mitigated by

using a proper statistical procedure and gathering more data. We have assumed that we have an

asymptotically valid confidence interval CIstat satisfying (?) and (??), which immediately implies

Ln → Ψ(P0) and Un → Ψ(P0). Assuming a misspecified parametric or semiparametric model,

for instance, will often yield a point estimate which is consistent for the wrong quantity, namely
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Ψ1(P0) 6= Ψ(P0). As the estimate is typically taken to be the center of a CI (or at least contained

within the CI), the investigator will report a CIstat for which both the lower and upper bound con-

verge to Ψ1(P0) in probability. Thus CIstat will have coverage approaching zero for our statistical

parameter Ψ(P0).

The following decomposition will help to clarify the discussion:

ψ̂ − ψcausal = ψ̂ −Ψ1(P0) + Ψ1(P0)−Ψ(P0)︸ ︷︷ ︸
statistical bias

+ Ψ(P0)− ψcausal︸ ︷︷ ︸
confounding bias

.

We are referring to zeroth-order bias when we say “statistical bias”, which can (often) be thought

the limit of the bias of ψ̂ for Ψ(P0) as sample size grows. Our sensitivity analysis gives us a

bound on the confounding bias, telling us that (we are at least confident that) the confounding

bias is bounded between Ldiff and Udiff. However, our statistical bias may render CIcausal invalid.

Alternatively, it may just so happen that our bounds on the confounding bias actually bound the

sum of the statistical and confounding biases, i.e. ψcausal − Ψ1(P0) ∈ CIdiff. In this case CIcausal

will be valid provided (??) holds, there is no reason to assume that this is the case. We have

worked hard to ensure that we believe that ψcausal − Ψ(P0) falls within the interval of interest

under an interpetable condition. It is often hard to understand what Ψ1(P0) even is, i.e. what

feature of our observed population of interest Ψ1 returns. It therefore seems unlikely that we can

feel confident that ψcausal − Ψ1(P0) ∈ CIdiff. The same problem holds if CIdiff had been derived

to bound ψcausal − Ψ1(P0) from the outset: statisticians cannot communicate this quantity to one

another, let alone to subject matter experts.

Example

Suppose one uses maximum likelihood estimation among individuals with A = 1 to estimate the

following misspecified model for E[Y |A = 1,W ]:

mβ(W ) = β134I(W 6= 2) + β2I(W = 2).

9
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The above model is misspecified because in truth E[Y |A = 1,W ] = 0.8I(W 6= 1). The infinite

sample limits of the maximum likelihood estimators are (β∗134, β
∗
2) ≈ (0.56, 0.80). Suppose one

also incorrectly estimates P0(A = 1|W ) as

gη(W ) = η12I(W ≤ 2) + η34I(W ≥ 3).

The above model is misspecified because in truth P0(A = 1|W ) = 0.75 + 0.132I(W 6= 1). The

infinite sample limits of the maximum likelihood estimators are (η∗12, η
∗
34) ≈ (0.82, 0.88).

Because the outcome regression and propensity score are misspecified in this example, many stan-

dard estimators will be inconsistent for Ψ(P0): G-estimation and the inverse probability weighted

estimator have limits of approximately 0.62, while the double robust one-step estimator has limit

approximately 0.61. Targeted minimum loss-based estimators (TMLEs) represent another class of

doubly robust estimators. Because both the propensity score and outcome regression are incon-

sistent in this example, its limit will depend on the fluctuation submodel used to implement the

TMLE. Nonetheless, the TMLE will be inconsistent in this example just as is the double robust

one-step estimator.

For all of these estimators, ψcausal − Ψ1(P0) 6∈ CIδdiff when δ = 1 and CIδdiff is known. We note that

ψcausal − Ψ1(P0) nearly falls in CIδdiff for δ = 1 when one uses a double robust estimator in this

example. Given that we have misspecified the outcome and treatment mechanism, it is perhaps

inappropriate to consider coverage of the true CIδdiff rather than the estimated CIδdiff as discussed

in Section 3.2. Nonetheless, this destroys the interpretability of Condition δ, as Condition δ is

interpreted with respect to parameters of the true observed data distribution P0.

Clearly it would not be difficult in a large sample to correctly estimate the treatment mechanism

and outcome regression correctly for a covariate with only four levels. Though contrived, we

have presented these estimators to give what we view as one of the simplest examples of how

inconsistent estimation of Ψ(P0) can invalidate an otherwise solid sensitivity analysis. In a general

setting, using parametric models to estimate the needed components of the likelihood will often
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yield oversmoothed estimators which converge to the wrong limit as sample size grows. IfW were

high-dimensional, then one might also be overly ambitious in estimating the needed components

of the likelihood and obtain undersmoothed estimates with large bias that shrinks slowly as sample

size grows. In this case the estimators of Ψ(P0) will often be consistent but (??) will fail to

hold because the confidence interval around the estimate of Ψ(P0) is generally constructed under

the assumption that the needed components of the likelihood converge to their limits sufficiently

quickly.

3 Conducting a statistically valid sensitivity analysis

In this section we outline how one can overcome the statistical obstacles presented in the previous

section. Section 3.1 shows that the results of Section 2.3 do not preclude interpretable sensitivity

analyses by exhibiting a large class of estimators which yield valid confidence intervals for the

statistical parameter. Section 3.2 shows how we can perform a sensitivity analysis even when

the confidence interval exhibited in Section 2.2 is unknown because it depends on features of the

observed data distribution.

3.1 Needing to satisfy (??) is reasonable

General discussion

In most problems, there are many estimators which are consistent. One such class of estimators

is the class of double robust methods such as TMLE and estimating equation methodology can

can produce estimators that are consistent for Ψ(P0) in many problems. Of course, consistency

alone does not guarantee (??). One also needs to be able to construct a valid confidence interval

for the target of interest, which typically relies on the estimator’s the bias being small relative to

the variance. Fortunately, these double robust methods often also satisfy this property by being

so-called asymptotically linear estimators with the property that, for a mean zero, finite variance

11
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function ICψ̂(Oi) known as the influence curve,

√
n
[
ψ̂ −Ψ(P0)

]
≈ 1√

n

n∑
i=1

ICψ̂(Oi) for large sample sizes. (4)

The approximation becomes arbitrarily precise (in probability) as the sample grows. The depen-

dence of ICψ̂ on P0 is omitted in the notation. In causal inference applications, influence curves

typically rely on P0 through outcome regressions and the treatment mechanism. The form of the

influence curve will vary depending on the parameter of interest. Given (4), the variance of the

influence curve will generally be estimable from the data. Because the influence curve is mean

zero, CIs for Ψ(P0) which satisfy (??) are given by

CIstat =

[
ψ̂ − 1.96

σ̂√
n
, ψ̂ + 1.96

σ̂√
n

]
,

where σ̂2 is an estimate of the variance of ICψ̂(O).

Asymptotic linearity will typically only hold when one can estimate the parts of P0 used to define

the influence curve ICψ̂. Developing an estimator which satisfies (4) generally requires estimating

one or several outcome regression(s) and the treatment mechanism well. By “well”, we mean

that these estimators should be estimated consistently with, e.g., mean squared error that shrinks

sufficiently quickly as sample size grows. Due to the required consisistency, parametric working

models are generally insufficient for estimating these parts of the likelihood. Instead, one can

use machine learning methods or ensemble learners that combine multiple candidate estimators to

estimate these quantities if asymptotic linearity is desired.

There is a rich literature on the development of asymptotically linear estimators for causal param-

eters. See van der Laan and Robins (2003) and van der Laan and Rose (2011) for an overview.

Sophisticated machine learning and ensemble algorithms have also been developed and integrated

into the estimation of causal inference parameters. This allows one to avoid committing to incor-

rectly specified parametric working models, thereby making (4) more plausible. Using machine
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learning algorithms to estimate the nuisance functions is becoming more popular: Setoguchi et al.

(2008); Lee et al. (2010) suggest using various machine learning approaches to estimate propen-

sity scores, and van der Laan and Dudoit (2003); van der Laan and Rubin (2006); van der Laan

and Rose (2011) suggest using a cross-validation based ensemble algorithm to estimate both the

outcome regression and propensity score. In observational studies, estimating both the propensity

score and the outcome regression using data adaptive approaches, and then subsequently reducing

bias using estimating equations or TMLE, is essential to make the error term in (4) negligible.

Using estimators which can optimally select among a collection of candidate estimators (in terms

of, e.g., mean squared error) is especially appealing because often this yields tight control of the

remainder term in (4). The super-learning methodology satisfies this optimality criteria (van der

Laan et al., 2007; Polley and van der Laan, 2010).

We have shown that, under (4), one can develop a CI for ψcausal. More generally, such a CI is valid

whenever the CIstat gives valid coverage for Ψ(P0).

Example

Double robust estimating equation and targeted minimum loss based estimators for Ψ(P0) have

been presented in van der Laan and Robins (2003) and van der Laan and Rose (2011), respectively.

When both the outcome regression and treatment mechanism are estimated consistently and at a

fast enough rate, these estimators have influence curve

ICψ̂(O) =
A

P0(A = 1|W )
(Y − E[Y |A = 1,W ]) + E[Y |A = 1,W ]−Ψ(P0).

The assumption that both the outcome regression and treatment mechanism are estimated well

enough can be unpleasant in practice. A recent work presents an estimator which is asymptotically

linear with valid inference when only one of these objects is estimated well (van der Laan, 2014).

This approach can be integrated into a sensitivity analysis, but we omit such discussion here.
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3.2 Bounds on the causal bias unknown

General discussion

Suppose that CIdiff relies on the observed data distribution P0. This holds in our example, see (2)

and (3). In this section we make this dependence explicit by writing Ldiff(P0) and Udiff(P0). Note

that Ldiff and Udiff are now parameters which take as input an observed data distribution and output

a number. Thus, provided Ldiff is sufficiently smooth in the sense discussed in Section 1.4.1 of

van der Laan and Robins (2003), it is reasonable to expect that, for an influence curve ICˆ̀, we can

develop an asymptotically linear estimators of Ldiff with the property that

√
n
[
ˆ̀

causal − Ldiff(P0)
]
≈ 1√

n

n∑
i=1

ICˆ̀(Oi) for large sample sizes.

If Udiff is sufficiently smooth, then we would expect to be able to develop an estimator so that the

same two expressions above hold with ˆ̀
causal, Ldiff(P0), and ICˆ̀ replaced by ûcausal, Udiff(P0), and

ICû, respectively. Combining the above and (4) yields

√
n
[
ψ̂ + ˆ̀

causal − (Ψ(P0) + Ldiff(P0))
]
≈ 1√

n

n∑
i=1

[
ICψ̂(Oi) + ICˆ̀(Oi)

]
.

The right hand side converges to a mean zero normal distribution with variance equal to the

variance of the difference of influence curves on the right. An analogous argument yields that

Ψ(P0) + Udiff(P0) has influence curve ICψ̂ + ICû. Hence the joint distribution of these two in-

fluence curves applied to O ∼ P0 converges to a multivariate normal distribution with mean zero

and covariance matrix given by that of the two-dimensional random variable with coordinates

ICψ̂(O) + ICˆ̀(O) and ICψ̂(O) + ICû(O). Given a consistent estimate Σ̂ of the covariance ma-

trix, one can take Monte Carlo draws (Z1
L, Z

1
U), ..., (Zm

L , Z
m
U ) from theN(0, Σ̂) distribution. Given

these draws, one can then choose ŝ to be the 95% quantile of max{Zk
L,−Zk

U} among the observa-
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tions k ∈ {1, ...,m}. In that case, the confidence interval

[
ψ̂ + ˆ̀

causal −
ŝ√
n
, ψ̂ + ûcausal +

ŝ√
n

]
(5)

will contain the causal parameter with probability approaching 0.95 under Condition δ. One could

alternatively replace ŝ in the lower bound with a ŝL and ŝ in the upper bound with ŝU and choose an

empirically valid confidence interval (in the Monte Carlo draws) which minimizes ŝU + ŝL. This

may be beneficial when, e.g., the lower bound is significantly easier to estimate than the upper

bound and one wants to make the confidence interval lower bound tighter to reflect this.

Horowitz and Manski (2000) used a similar approach to get a confidence region for the bounds in

the partial identifiability context. Woutersen (2006) considered how to develop such a confidence

region given a asymptotically linear estimators of the upper and lower bound in partial identifiabilty

problems. Both of these works actually consider a refined procedure which guarantees coverage

for the parameter ψcausal, rather than the entire region [Ψ(P0) + Ldiff,Ψ(P0) + Udiff] known to con-

tain ψcausal, with probability approaching 0.95. Such refinements will be analogous for sensitivity

analyses, but we do not explore them here.

Example

First consider the looser bound in (2). Using that P0(A = 0) = E[I(A = 0)], we find that an

asymptotically linear estimator of the upper bound when δ = 1 is given by ûcausal = 1
n

∑n
i=1 I(Ai =

0), and an asymptotically linear estimator for the lower bound when δ = 1 is given by ˆ̀
causal =

−ûcausal. This yields ICû(O) = I(A = 0) − P0(A = 0) and ICˆ̀(O) = −ICû(O). For sensi-

tivity parameter values of δ < 1, these estimates and influence curves can simply be scaled by

multiplying by δ.

Now consider the tighter bound in (3). We can estimate P0(A = 0) as we did for (2), but it remains

to estimate E[E[Y |A = 1,W ]P0(A = 0|W )]. Conveniently, this quantity is a key component

of the effect of treatment among the untreated. Similar approaches to those used for the effect

15
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of treatment among the treated can be used to develop an asymptotically linear estimator for this

quantity (see Chapter 8 of van der Laan and Rose, 2011).

4 Real data example

We now apply our method to data from the Western Collaborative Group Study (WCGS) (Rosen-

man et al., 1964, 1975). The WCGS was a prospective cohort study designed to learn about the

effect of binary personality type (Type A or B) on coronary heart disease (CHD) within an eight and

a half year period. The data is publicly available through the epitools package in R (Aragon,

2012). Here we will not consider the effect of personality type on CHD due to the difficulties of

temporality among the baseline random variables and interpretation of an intervention on personal-

ity type. We will instead focus on the effect of smoking status on CHD. This example is particularly

useful for testing a sensitivity analysis method because the causal link between smoking and CHD

is well-established in the literature. A similar decision was made by Ding and VanderWeele (2015)

when evaluating their sensitivity analysis procedure on a historical data set exploring the effect of

smoking on lung cancer.

We use the variable definitions given in Table 1, which includes the confounders for which we

adjust. Our objective is to estimate the average effect of smoking on CHD events within 8 1/2

years, i.e. ψcausal = E[Y1 − Y0]. We do not adjust for baseline blood pressure or cholesterol to

avoid potential reverse causality problems. Some readers may be concerned with the interpretation

of setting smoking status to one since we have not specified the number of cigarettes smoked

per day. In this case we define our intervention as one in which we only intervene on smoking

status, and then allow smokers to decide how many cigarettes to smoke per day. Specifically,

this corresponds to letting individuals randomly choose the number of cigarettes smoked per day

according to the frequency of cigarettes smoked per day among observed smokers in their strata of

covariates (van der Laan et al., 2005).

Our objective is to get inference for the additive treatment effect of smoking status on CHD, i.e.

16
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Notation Measurement
W Baseline: age, height, weight, indicator of Type

A personality
A Baseline smoking status (indicator of smoking at

least one cigarette per day)
Y Coronary heart disease event within 8 1/2 years

Table 1: Definition of measured potential confounders, treatment, and outcome in the WCGS.
Baseline covariates (W ) and treatment (A) were measured at baseline, and the outcome is an
indicator of a CHD event within an 8 1/2 year period.

ψcausal = E[Y1 − Y0]. To do this, we will use the G-computation formula as described in (Robins,

1986). That is, we will attempt to estimate the statistical parameter Ψ(P0) = EE[Y |A = 1,W ]−

EE[Y |A = 0,W ]. Under nearly identical conditions described for the toy example in Section 2.1,

Ψ(P0) is identified with the causal average treatment effect. The only additional assumption is that

we require both Y0 and Y1 to be independent of A given W , where previously we only required

this independence for Y1.

We use a bivariate sensitivity parameter δ = (δ−, δ+), where δ− and δ+ fall in [0, 1]. Condition δ

is satisfied when the following two inequalities hold with probability 1 over draws of the covariate

W :

−δ−E[Y |A = 0,W ] ≤ E[Y0|A = 1,W ]− E[Y |A = 0,W ] ≤ δ+E[1− Y |A = 0,W ]

−δ−E[Y |A = 1,W ] ≤ E[Y1|A = 0,W ]− E[Y |A = 1,W ] ≤ δ+E[1− Y |A = 1,W ].

A straightforward extension of (3) shows that, under Condition δ,

Ldiff(P0) = − E
[
δ−E[Y |A = 1,W ]P0(A = 0|W ) + δ+E[1− Y |A = 0,W ]P0(A = 1|W )

]
Udiff(P0) =E

[
δ+E[1− Y |A = 1,W ]P0(A = 0|W ) + δ−E[Y |A = 0,W ]P0(A = 1|W )

]
. (6)

Below we refer to individuals who smoke in the observed population as “natural smokers” and

people who do not smoke in the observed population as “natural nonsmokers”. We also refer to
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the risk ratio as the RR. Condition δ implies the following four inequalities within each stratum of

the covariates:

I1) E[Y1|A=0,W ]
E[Y |A=1,W ]

≥ 1 − δ−: The RR for a natural nonsmoker versus a natural smoker having a

CHD event if, contrary to fact, everyone is intervened upon to be a smoker is at most 1− δ−.

I2) E[Y0|A=1,W ]
E[Y |A=0,W ]

≥ 1 − δ−: The RR for a natural smoker versus a natural nonsmoker having a

CHD event if, contrary to fact, everyone is intervened upon not to smoke is at most 1− δ−.

I3) E[1−Y1|A=0,W ]
E[1−Y |A=1,W ]

≥ 1−δ+: The RR for a natural nonsmoker versus a natural smoker not having

a CHD event if, contrary to fact, everyone is intervened upon to be a smoker is at most 1−δ+.

I4) E[1−Y0|A=1,W ]
E[1−Y |A=0,W ]

≥ 1−δ+: The RR for a natural smoker versus a natural nonsmoker not having

a CHD event if, contrary to fact, everyone is intervened upon not to smoke is at most 1− δ+.

The validity of the lower bound Ldiff(P0) only relies on I1) and I4). Under I1), natural nonsmokers

are not too protected from CHD events by some unmeasured cause. Under I4), smokers are not

too inclined towards CHD events by some unmeasured cause. The prevalence of coronary events

is low in our data set (257/3154 ≈ 0.08), so large values of δ− should be more plausible than large

values of δ+.

We first estimate the G-computation estimand given by EE[Y |A = 1,W ] − EE[Y |A = 0,W ]

using the TMLE as presented in Chapter 7 of van der Laan and Rose (2011). We then estimate

the interval CIcausal resulting from (6) using a TMLE algorithm described in Appendix A. Given

the broader focus of this paper, we omit a theoretical analysis of the asymptotic properties of this

estimator, though refer the reader to van der Laan and Rose (2011) for a general template for how

to analyze such an estimator. We use 2.5 × 104 draws from a bivariate normal distribution to

implement the confidence bound estimation procedure described in Section 3.2.

Interested readers can reproduce our results using the code in Appendix C. Code to replicate our

analysis and generate the figures can be found in Appendix C.
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Figure 1: 95% confidence bounds for the average treatment effect of smoking on CHD events: (a)
lower bound at a continuum of δ values, (b) confidence bounds at several δ values.

Figure 1a shows how the lower bound is impacted by different choices of δ. Consider δ+ =

0.02, and suppose that the probability of not having a CHD event is at most 0.3 within all strata

of covariates (according to our estimate of E[1 − Y |A = 0,W ], the maximum probability of

not having a CHD event is approximately 0.25). In this case I4) is satisfied provided E[Y0|A =

1,W ] ≤ E[Y |A = 1,W ] + 0.015, so that within any stratum of covariates natural smokers could

have an at most a 1.5% higher additive heart attack risk than natural nonsmokers if an intervention

had set everyone to be nonsmokers at baseline. For the lower bound on the average treamtent

effect to remain positive, we then need that δ− is no more than approximately 0.4. Inequality I2)

is irrelevant for the lower bound on the average treamtent effect, so we focus on I1). This says

that if we intervened in the population to make everyone a smoker then, within each stratum of

covariates, the relative risk of a heart attack between natural nonsmokers and natural smokers is no

less than 60%.

Figure 1b provides similar insights for the lower bounds, but also allows one to visualize the

upper bound for the average treatment effect under different choices of δ. From these choices of

sensitivity parameters, it appears unlikely that the average treatment effect of smoking on CHD

events within eight and a half years will be larger than 0.12 in this population.
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5 Discussion

Sensitivity analyses shed further light on the plausibility of a causal question. We have followed

the approach of Dı́az and van der Laan (2013) in advocating the use of an easily interpretable

sensitivity analysis parameter that allows subject matter experts to have informed opinions on

what values are plausible. If one knew the underlying observed data distribution then one could

immediately report a bound on the causal parameter of interest given a value of the sensitivity

parameter. Of course one never exactly knows the observed data distribution.

Here enters statistics. We have showed that using an inconsistent statistical procedure can in-

validate a sensitivity analysis procedure. We outlined powerful nonparametric approaches which

typically allow one to avoid this issue. We also showed how to incorporate these approaches to

estimate the bounds that one has on the causal bias given an interpretable but unverifiable assump-

tion. Though our statistical discussion relied on asymptotic arguments, these methods have been

shown to perform well in a wide variety of situations. The arguments change very little if one can

instead rely on finite sample concentration inequalities to bound the statistical quantity of interest,

though such approaches tend to be conservative.

In certain situations sensitivity analyses may fail to yield informative bounds on a causal quantity.

There are several ways to deal with this problem. If logistically and ethically feasible, one could

gather further covariates on the individuals in the study so that the needed identifiability assump-

tions are more plausible. Otherwise, one can always interpret the statistical parameter without any

reference to causation. Whether or not this parameter is of interest depends on the problem.

The objective of a sensitivity analysis is to better understand the gap between a causal parameter

and an unknown but estimable statistical parameter. If one has a bad estimate of the statistical

parameter then this endeavor is futile. Thus we advocate for the implementation of cutting edge

statistical approaches when conducting sensitivity analyses.
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Appendices

A TMLE for causal bounds for the average treatment effect

A.1 Estimator

Suppose we have obtained an estimate ψ̂ of Ψ(P0) = EE[Y |A = 1,W ]−EE[Y |A = 0,W ] using

the TMLE presented in Chapter 7 of van der Laan and Rose (2011). The procedure also yields an

estimate of the influence curve, which we term ÎC ψ̂. This influence curve estimate takes as input

an observation and outputs a number. The TMLE is defined in such a way that the empirical mean

of ÎC ψ̂(O) is zero.

We now present a TMLE procedure to estimate the causal bounds for the average treatment effect

at a fixed δ. We remind the reader from (6) that these bounds are defined as

Ldiff(P0) = − E
[
δ−E[Y |A = 1,W ]P0(A = 0|W ) + δ+E[1− Y |A = 0,W ]P0(A = 1|W )

]
Udiff(P0) =E

[
δ+E[1− Y |A = 1,W ]P0(A = 0|W ) + δ−E[Y |A = 0,W ]P0(A = 1|W )

]
.

We note that the choice of δ has no effect on the algorithm until Step 5.

1. Regress Ai against Wi, i = 1, ..., n, to obtain an estimate of the probability of treatment

given covariates, and refer to this estimate of P0(A = 1|W ) as gn(W ).

2. Regress Yi against Ai and Wi, i = 1, ..., n, to obtain the regression function En[Y |A,W ],

which takes as input A and W .

3. Run an intercept-free logistic regression of Yi against the two covariates H0(Oi) = (1 −

Ai)
gn(Wi)

1−gn(Wi)
and H1(Oi) = Ai

1−gn(Wi)
gn(Wi)

with offset logitEn[Yi|Ai,Wi], i = 1, ..., n. Label

the estimated coefficients on H0 and H1 as ε0 and ε1, respectively.
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4. Define the following fluctuation of En[Y |A,W ]:

E∗n[Y |A,W ] = logit−1
(

logitEn[Y |A,W ] + ε0(1− A)
gn(W )

1− gn(W )
+ ε1A

1− gn(W )

gn(W )

)
.

5. Define our estimates of Ldiff(P0) and Udiff(P0) as

ˆ̀
causal =

1

n

n∑
i=1

−
[
δ−En[Y |A = 1,Wi] (1− Ai) + δ+ (1− En[Y |A = 0,Wi])Ai

]︸ ︷︷ ︸
=fδˆ̀(Oi)

ûcausal =
1

n

n∑
i=1

[
δ+ (1− En[Y |A = 1,Wi]) (1− Ai) + δ−En[Y |A = 0,Wi]Ai

]︸ ︷︷ ︸
=fδû(Oi)

.

6. For each i, define the influence curve estimate for ˆ̀
causal and ûcausal as

ÎC ˆ̀(Oi) =
δ+(1− Ai)gn(Wi)− δ−Ai(1− gn(Wi))

Aign(Wi) + (1− Ai)(1− gn(Wi))
(Yi − E[Y |Ai,Wi]) + f δˆ̀(Oi)− ˆ̀

causal

ÎC û(Oi) =
δ−(1− Ai)gn(Wi)− δ+Ai(1− gn(Wi))

Aign(Wi) + (1− Ai)(1− gn(Wi))
(Yi − E[Y |Ai,Wi]) + f δû(Oi)− ûcausal.

7. Define Σ̂ as the empirical covariance matrix of the function (ÎC ψ̂+ ÎC ˆ̀, ÎC ψ̂+ ÎC û) applied

to the n observations.

8. Construct the confidence interval as in (5), using the sample size n and the estimates ψ̂,

ˆ̀
causal, ûcausal, and Σ̂.

In our application to the WCGS study we implement Steps 1 and 2 using the ensemble algo-

rithm known as super-learner (van der Laan et al., 2007). We used the implementation in the

SuperLearner package (Polley and van der Laan, 2013), and included as candidate algorithms

SL.glm, SL.randomForest, SL.earth, SL.glmnet, and SL.gam.

Our estimator has been defined so that the influence curve estimates in Step 6 have empirical mean

zero when applied to the data. Careful readers will notice that we have not written our estimator
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using the usual TMLE setup in Step 5. That is, we have not defined some distribution P ∗n and

then written ˆ̀
causal = Ldiff(P

∗
n), and likewise we have not done this for ûcausal. Nonetheless, our

estimator respects the bounds on the parameter space and thus there exists a distribution P ∗n such

that ˆ̀
causal = Ldiff(P

∗
n), and likewise there exists a P ∗n such that ûcausal = Udiff(P

∗
n). We refer readers

interested in a more traditional substitution-type estimator to the implementation of the estimator

for a closely related problem in Chapter 8 of van der Laan and Rose (2011).

A.2 How we derived our estimator

We now briefly describe how we came up with our estimator for Ldiff(P0). The estimator for

Udiff(P0) was derived analogously. Fix δ. First, we found the canonical gradient of the parameter

Ldiff which takes as input a distribution P and outputs a real number Ldiff(P ). The canonical

gradient is given by

IC(P )(O) =
δ+(1− A)gP (W )− δ−A(1− gP (Wi))

AgP (W ) + (1− A)(1− gP (W ))
(Y − EP [Y |A,W ])︸ ︷︷ ︸

DY (EP [Y |·,·],gP )

+f δˆ̀,P (O)−Ψ(P ),

where gP (W ) = P (A = 1|W ) and

f δˆ̀,P (O) = −
[
δ−EP [Y |A = 1,W ] (1− A) + δ+ (1− EP [Y |A = 0,W ])A

]
.

We refer the reader to Pfanzagl (1990) for details on the importance of the canonical gradient in

semiparametric efficiency theory. We fluctuated our initial estimate En[Y |A,W ] of the outcome

regression so that

1

n

n∑
i=1

DY (E∗n[Y |·, ·], gn)(Oi) = 0.
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We then chose our estimator of Ldiff(P0) so that

1

n

n∑
i=1

[
f δˆ̀,P (Oi)− ˆ̀

causal

]
= 0.

Let P ∗n be any distribution with EP ∗
n
[Y |A,W ] = E∗n[Y |A,W ] and gP ∗

n
= gn. Straightforward

calculations show that our procedure yields that that

ˆ̀
causal − Ldiff(P0) ≈

1

n

n∑
i=1

[IC(P ∗n)(Oi)− EP0 [IC(P ∗n)(O)]] ,

where the approximation holds up to a double robust remainder term which is small if the outcome

regression and treatment mechanism are estimated well.

B Toy example code

1 rm ( l i s t = l s ( ) )
# Number o f s i m u l a t i o n s t o draw

3 n=1 e7

5 # True E [Y |A, U,W]
EYgivenAUW = f u n c t i o n (AA,UU,WW) {0 . 8 ∗AA∗UU∗ (WW>=2)}

7

# S i m u l a t e t h e d a t a
9 U = rbinom ( n , 1 , 0 . 9 )

W = sample ( 1 : 4 , n , r e p l a c e =TRUE)
11 A = rbinom ( n , 1 , 0 . 7 5 ∗ (W==1) + 0 . 9 8 ∗U ∗ (W>=2) )

Y = rbinom ( n , 1 , EYgivenAUW (A, U,W) )
13

# Data s e t r e s t r i c t e d t o t r e a t e d i n d i v i d u a l s
15 A1 . i n d s = which (A==1)

U1 = U[ A1 . i n d s ]
17 W1 = W[ A1 . i n d s ]

A1 = A[ A1 . i n d s ]
19 Y1 = Y[ A1 . i n d s ]

21 # Approximate E [ Y1 ]
p s i . c a u s a l = mean ( EYgivenAUW ( 1 ,U,W) )

23 # Approximate EE [Y |A=1 ,W]
Ps iP0 = mean (W==1)∗mean ( Y1 [ which (W1==1) ] ) + mean (W==2)∗mean ( Y1 [ which (W1==2) ] )

+
25 mean (W==3)∗mean ( Y1 [ which (W1==3) ] ) + mean (W==4)∗mean ( Y1 [ which (W1==4) ] )

27

# E s t i m a t i n g P s i ( P0 )
29 # E s t i m a t e t h e m i s s p e c i f i e d m {\ b e t a } (W)
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mW = mean ( Y1 [W1==1 | W1==3 | W1==4] ) ∗ (W==1 | W==3 | W==4) + mean ( Y1 [W1==2] )
∗ (W==2)

31 # E s t i m a t e t h e m i s s p e c i f i e d g {\ e t a } (W)
gW = mean (A[W<=2]) ∗ (W<=2) + mean (A[W>=3]) ∗ (W>=3)

33

# $G$−e s t i m a t i o n
35 Ps i1P0 . g e s t = mean (mW)

# I n v e r s e p r o b a b i l i t y o f t r e a t m e n t w e i g h t e d ( IPTW ) e s t i m a t o r
37 Ps i1P0 . i p tw = mean (A∗Y/gW)

# Double r o b u s t e s t i m a t i n g e q u a t i o n
39 Ps i1P0 . d r = mean (A∗ (Y−mW) /gW + mW)

41

# Deve lop ing CI { d i f f }
43 # EY .A1Wk = E [Y |A=1 ,W=k ]

EY .A1W1 = mean ( Y1 [W1==1] )
45 EY .A1W2 = mean ( Y1 [W1==2] )

EY .A1W3 = mean ( Y1 [W1==3] )
47 EY .A1W4 = mean ( Y1 [W1==4] )

49 # E [Y |A=1 ,W]
EY .A1W = EY .A1W1∗ (W==1) + EY .A1W2∗ (W==2) + EY .A1W3∗ (W==3) + EY .A1W4∗ (W==4)

51

# EA .Wk = Pr (A=1 |W=k )
53 EA .W1 = mean (A[W==1] )

EA .W2 = mean (A[W==2] )
55 EA .W3 = mean (A[W==3] )

EA .W4 = mean (A[W==4] )
57

# Pr (A=1 |W)
59 EA .W = EA .W1∗ (W==1) + EA .W2∗ (W==2) + EA .W3∗ (W==3) + EA .W4∗ (W==4)

61 # T i g h t bounds
# LB { d i f f }

63 l b . d i f f = −mean (EY .A1W∗(1−EA .W) )
# UB { d i f f }

65 ub . d i f f = mean (A==0) − l b . d i f f

67

69 p r i n t ( ’ The c a u s a l p a r a m e t e r i s ’ )
p s i . c a u s a l

71 p r i n t ( ’ The s t a t i s t i c a l p a r a m e t e r i s ’ )
Ps iP0

73 p r i n t ( ’ The e s t i m a n d u s i n g t h e m i s s p e c i f i e d $G$−e s t i m a t i o n i s ’ )
Ps i1P0 . g e s t

75 p r i n t ( ’ The e s t i m a n d u s i n g t h e m i s s p e c i f i e d IPTW e s t i m a t o r i s ’ )
Ps i1P0 . i p tw

77 p r i n t ( ’ The e s t i m a n d u s i n g t h e m i s s p e c i f i e d do u b l e r o b u s t e s t i m a t o r i s ’ )
Ps i1P0 . d r

79

p r i n t ( ’ P0 (A=0) i s a p p r o x i m a t e l y ’ )
81 1−mean (A)
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83 # p s i { c a u s a l}−P s i ( P0 )>LB { d i f f } when d e l t a =1
p r i n t ( p a s t e ( round ( p s i . c a u s a l−PsiP0 , 5 ) , ’ i s g r e a t e r t h a n ’ , round ( l b . d i f f , 5 ) ) )

85 # p s i { c a u s a l}−P s i 1 ( P0 )>LB { d i f f } when d e l t a =1 f o r t h e m i s s p e c i f i e d $G$−
e s t i m a t o r

p r i n t ( p a s t e ( round ( p s i . c a u s a l−Ps i1P0 . g e s t , 5 ) , ’ i s NOT g r e a t e r t h a n ’ , round ( l b .
d i f f , 5 ) ) )

87 # p s i { c a u s a l}−P s i 1 ( P0 )>LB { d i f f } when d e l t a =1 f o r t h e m i s s p e c i f i e d IPTW
e s t i m a t o r

p r i n t ( p a s t e ( round ( p s i . c a u s a l−Ps i1P0 . ip tw , 5 ) , ’ i s NOT g r e a t e r t h a n ’ , round ( l b .
d i f f , 5 ) ) )

89 i f ( p s i . c a u s a l−Ps i1P0 . dr<=l b . d i f f ) {
# p s i { c a u s a l}−P s i 1 ( P0 )>LB { d i f f } when d e l t a =1 f o r t h e m i s s p e c i f i e d do ub l e

r o b u s t e s t i m a t o r
91 p r i n t ( p a s t e ( round ( p s i . c a u s a l−Ps i1P0 . dr , 5 ) , ’ i s NOT g r e a t e r t h a n ’ , round ( l b .

d i f f , 5 ) ) )
} e l s e {

93 p r i n t ( ’ Not enough Monte C a r l o draws t o show t h a t p s i { c a u s a l}−P s i 1 ( P0 )>LB {
d i f f } when d e l t a =1 f o r t h e m i s s p e c i f i e d do ub l e r o b u s t e s t i m a t o r . ’ )

p r i n t ( ’ C losed form c a l c u l a t i o n s show p s i { c a u s a l }= 0 . 5 4 , P s i ( P0 ) approx
0 . 6 1 1 4 , and LB { d i f f }=−0.0708. ’ )

95 }

C Real data example code

Utility function file: functions.R

1 # E s t i m a t e EE [Y |A=1 ,W] − EE [Y |A=0 ,W] u s i n g a TMLE
t m l e p s i <− f u n c t i o n ( q1 , q0 , g , a , y ) {

3

g [ g < 0 . 0 1 ] <− 0 . 0 1
5 g [ g > 0 . 9 9 ] <− 0 . 9 9

7 q <− a ∗ q1 + (1−a ) ∗ q0

9 eps <− c o e f ( glm ( y ˜ 0 + o f f s e t ( q l o g i s ( q ) ) + I ( a / g − (1−a ) / (1−g ) ) ,
f a m i l y = b i n o m i a l ( ) ) )

11

q1 <− p l o g i s ( q l o g i s ( q1 ) + eps / g )
13 q0 <− p l o g i s ( q l o g i s ( q0 ) − eps / (1−g ) )

q <− a ∗ q1 + (1−a ) ∗ q0
15

p s i <− mean ( q1 − q0 )
17 e i f <− ( a / g − (1−a ) / (1−g ) ) ∗ ( y − q ) + ( q1 − q0 ) − p s i

19 r e t u r n ( l i s t ( p s i = p s i , e i f = e i f ) )

21 }

23 # R e t u r n a f u n c t i o n which e s t i m a t e s t h e uppe r and lower bounds f o r a g i v e n
# v a l u e o f t h e s e n s i t i v i t y p a r a m e t e r .

25 tm lebounds <− f u n c t i o n ( q1 , q0 , g , a , y , p s i h a t , normaldraws ) {

29
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27 p s i <− p s i h a t $ p s i

29 g [ g < 0 . 0 1 ] <− 0 . 0 1
g [ g > 0 . 9 9 ] <− 0 . 9 9

31

q <− a ∗ q1 + (1−a ) ∗ q0
33

eps0 <− c o e f ( glm ( y ˜ 0 + o f f s e t ( q l o g i s ( q0 ) ) + I ( g / (1−g ) ) ,
35 f a m i l y = b i n o m i a l ( ) , s u b s e t = a == 0) )

eps1 <− c o e f ( glm ( y ˜ 0 + o f f s e t ( q l o g i s ( q1 ) ) + I ((1−g ) / g ) ,
37 f a m i l y = b i n o m i a l ( ) , s u b s e t = a == 1) )

39 q0 <− p l o g i s ( q l o g i s ( q0 ) + eps0 ∗ g / (1−g ) )
q1 <− p l o g i s ( q l o g i s ( q1 ) + eps1 ∗ (1−g ) / g )

41

q <− a ∗ q1 + (1−a ) ∗ q0
43

fun <− f u n c t i o n (dM, dP , c o n f i d ) {
45 # E f f i c i e n t i n f l u e n c e f u n c t i o n o f E [ E [YY|AA=1 ,WW] P (AA=0 |WW) ]

# qq = E [YY|AA=1 ,WW]
47 # gg = P (YY=1 |WW)

e i f . fun <− f u n c t i o n ( qq , gg , aa , yy ) {
49 e s t . eq = ( aa ∗ (1 − gg ) / gg ) ∗ ( yy − qq ) + (1 − aa − (1 − gg ) ) ∗ qq +

qq ∗ (1−gg )
e s t = mean ( e s t . eq )

51 e i f = e s t . eq − e s t
r e t u r n ( l i s t ( e i f = e i f , e s t = e s t ) )

53 }

55 l 1 <− e i f . fun (−q1 , g , a ,−y )
u1 <− e i f . fun (1−q1 , g , a ,1−y )

57 l 0 <− e i f . fun (−q0 ,1−g ,1−a ,−y )
u0 <− e i f . fun (1−q0 ,1−g ,1−a ,1−y )

59

l b <− dM ∗ l 1 $ e s t − dP ∗ u0$ e s t
61 ub <− dP ∗ u1$ e s t − dM ∗ l 0 $ e s t

63 e i f l b <− dM ∗ l 1 $ e i f − dP ∗ u0$ e i f + p s i h a t $ e i f
e i f u b <− dP ∗ u1$ e i f − dM ∗ l 0 $ e i f + p s i h a t $ e i f

65

n <− l e n g t h ( y )
67 dd <− d a t a . f rame ( e i f l b , e i f u b )

s igma <− cov ( dd )
69 s igma . e i g <− e i g e n ( s igma )

sigma . s q r t <− s igma . e i g $ v e c t o r s %∗% d i a g ( s q r t ( s igma . e i g $ v a l u e s ) ) %∗% s o l v e
( s igma . e i g $ v e c t o r s )

71 Zs <− ( normaldraws%∗%sigma . s q r t ) / s q r t ( n )

73 s <− q u a n t i l e ( pmax ( Zs [ ,1 ] ,−Zs [ , 2 ] ) , p r o b s = 0 . 9 5 )

75 r e t u r n ( c ( p s i + l b − s , p s i + ub + s ) )

77 }
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79 r e t u r n ( fun )

81 }

83 # E s t i m a t e c o n f i d e n c e bounds f o r t h e c a u s a l a v e r a g e t r e a t m e n t e f f e c t a t
d i f f e r e n t v a l u e s o f t h e

# s e n s i t i v i t y p a r a m e t e r s .
85 t m l e c a u s a l <− f u n c t i o n ( q1 , q0 , g , a , y , dMlim = c ( 0 , 0 . 6 5 ) , dPl im = c ( 0 , 0 . 0 8 )

,
n p o i n t s = 101 , c o n f i d = 0 . 9 5 , num . mc=2 .5 e4 ) {

87

dM <− seq ( dMlim [ 1 ] , dMlim [ 2 ] , l e n g t h . o u t = n p o i n t s )
89 dP <− seq ( dPl im [ 1 ] , dPl im [ 2 ] , l e n g t h . o u t = n p o i n t s )

91 p s i h a t <− t m l e p s i ( q1 , q0 , g , a , y )

93 # Use t h e same Monte C a r l o draw f o r a l l s e t t i n g s
normaldraws <− c b i n d ( rnorm ( num . mc ) , rnorm ( num . mc ) )

95 boundfun <− tm lebounds ( q1 , q0 , g , a , y , p s i h a t , normaldraws )

97 ds <− expand . g r i d (dM, dP )
c i s <− t ( a p p l y ( ds , 1 , f u n c t i o n ( x ) boundfun ( x [ [ 1 ] ] , x [ [ 2 ] ] , c o n f i d ) ) )

99

co lnames ( ds ) <− c ( ’dM’ , ’ dP ’ )
101 co lnames ( c i s ) <− c ( ’ l l ’ , ’ u l ’ )

103 r e s <− c b i n d ( ds , c i s )
r e t u r n ( r e s )

105 }

Code to run analysis and generate plots

1 # P r e l i m i n a r i e s
rm ( l i s t = l s ( ) )

3 l i b r a r y ( e p i t o o l s )
l i b r a r y ( S u p e r L e a r n e r )

5 l i b r a r y ( r a n d o m F o r e s t )
l i b r a r y ( e a r t h )

7 l i b r a r y ( g lmne t )
l i b r a r y ( gam )

9 l i b r a r y ( g g p l o t 2 )
l i b r a r y ( d p l y r )

11 l i b r a r y ( r e s h a p e 2 )

13 s e t . s e ed ( 1 2 3 )

15 # Rep lace wi t h d i r e c t o r y f u n c t i o n s . R i s i n
se twd ( ’ . ’ )

17

# Read i n t h e f u n c t i o n s

31
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19 s o u r c e ( ’ f u n c t i o n s . R ’ )
# Read i n t h e d a t a

21 d a t a ( wcgs )

23 # S e l e c t v a r i a b l e s t o use
y <− s e l e c t ( wcgs , chd69 ) [ , 1 ]

25 a <− as . numer ic ( s e l e c t ( wcgs , n c i g s 0 ) [ , 1]>0)
w <− s e l e c t ( wcgs , age0 , h e i g h t 0 , weight0 , d i b p a t 0 )

27

# Super− l e a r n e r l i b r a r y
29 l i b <− c ( ’SL . glm ’ , ’SL . r a n d o m F o r e s t ’ , ’SL . e a r t h ’ , ’SL . g lmne t ’ , ’SL . gam ’ )

# Outcome r e g r e s s i o n f i t
31 f i t y <− S u p e r L e a r n e r (Y = y , X = d a t a . f rame ( a=a , w) , f a m i l y = b i n o m i a l ( ) ,

SL . l i b r a r y = l i b )
33 # T r e a t m e n t mechanism f i t

f i t a <− S u p e r L e a r n e r (Y = a , X = w, f a m i l y = b i n o m i a l ( ) , SL . l i b r a r y = l i b )
35

# E s t i m a t e o f E [Y |A=1 ,W]
37 q1 <− p r e d i c t ( f i t y , newdata = d a t a . f rame ( a = 1 , w) ) $ p re d [ , 1 ]

# E s t i m a t e o f E [Y |A=9 ,W]
39 q0 <− p r e d i c t ( f i t y , newdata = d a t a . f rame ( a = 0 , w) ) $ p re d [ , 1 ]

# E s t i m a t e o f P (A=1 |W)
41 g <− p r e d i c t ( f i t a , newdata = w) $ p re d [ , 1 ]

43 summary ( q1 )
summary ( q0 )

45 summary ( g )

47 # E s t i m a t e EE [Y |A=1 ,W] − EE [Y |A=0 ,W]
p s i h a t <− t m l e p s i ( q1 , q0 , g , a , y )

49

# R e t u r n bounds f o r c a u s a l p a r a m e t e r a t d i f f e r e n t v a l u e s o f t h e s e n s i t i v i t y
p a r a m e t e r s

51 s e n s a n a l y s i s <− t m l e c a u s a l ( q1 , q0 , g , a , y )

53 # Make p l o t s
dd <− mel t ( s e n s a n a l y s i s , i d . v a r s = c ( ’ dP ’ , ’dM’ ) ,

55 m e a s u r e v a r s = c ( ’ u l ’ , ’ l l ’ ) )

57 t a b l e ( dd$ v a r i a b l e )
l e v e l s ( a s . f a c t o r ( dd$ v a r i a b l e ) )

59

dd$ v a r i a b l e <− as . f a c t o r ( dd$ v a r i a b l e )
61 l e v e l s ( dd$ v a r i a b l e ) <− c ( ’ Lower L i m i t ’ , ’ Upper L i m i t ’ )

63 pp <− g g p l o t ( dd [ a s . c h a r a c t e r ( dd$ v a r i a b l e ) == ’ Lower L i m i t ’ , ] , a e s ( x=dM, y=dP , z=
va lue , f i l l = va lue , c o l o u r = v a l u e ) ) +
theme bw ( ) + theme ( p a n e l . g r i d . major = e l e m e n t b l a n k ( ) , p a n e l . g r i d . minor =

e l e m e n t b l a n k ( ) ) +
65 s c a l e x c o n t i n u o u s ( expand=c ( 0 , 0 ) ) + s c a l e y c o n t i n u o u s ( expand=c ( 0 , 0 ) ) +

geom t i l e ( ) + s t a t c o n t o u r ( b r e a k s =0 , l i n e m i t r e =10 , s i z e =1 , c o l o u r = ’ #2C2C2C ’ ,
l i n e t y p e = ’ dashed ’ ) +

67 s c a l e f i l l g r a d i e n t 2 ( name= ’ Lower Bound\ n f o r Average \ n T r e a t m e n t E f f e c t ’ , low
= ’ b l u e ’ , h igh = ’ d a r k g r e e n ’ , mid= ’ w h i t e ’ ) +
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s c a l e c o l o u r g r a d i e n t 2 ( low= ’ b l u e ’ , h igh = ’ d a r k g r e e n ’ , mid= ’ w h i t e ’ , g u i d e =
FALSE) +

69 x l a b ( e x p r e s s i o n ( d e l t a ˆ ’− ’ ) ) + y l a b ( e x p r e s s i o n ( d e l t a ˆ ’+ ’ ) )
ggsave ( pp , f i l e = ’ lower . pdf ’ , w id th =6 , h e i g h t =4)

71 pp

73 d P q u a r t i l e s <− q u a n t i l e ( dd$dP , ( 0 : 4 ) / 4 )
dd2 <− dd [ i s . e l e m e n t ( dd$dP , d P q u a r t i l e s ) , ]

75 dd2$dP <− f a c t o r ( dd2$dP )
pp <− g g p l o t ( dd2 , a e s ( x=dM, y= va lue ,

77 group = i n t e r a c t i o n ( v a r i a b l e , dP ) , c o l o u r =dP ) ) + theme bw ( ) +
theme ( p a n e l . b o r d e r = e l e m e n t r e c t ( f i l l = NA, c o l o u r = ” gray20 ” , s i z e =1) ) +

79 geom h l i n e ( y i n t e r c e p t =0 , c o l o u r = ’ gray20 ’ ) + geom l i n e ( ) +
geom h l i n e ( y i n t e r c e p t = p s i h a t $ p s i , l i n e t y p e = ’ dashed ’ ) +

81 a n n o t a t e ( ’ t e x t ’ , l a b e l = ’ h a t ( p s i ) ’ , x=max ( dd2$dM) ∗ 0 . 9 7 , y= p s i h a t $ p s i + 0 . 0 0 7 , p a r s e
=TRUE) +

s c a l e x c o n t i n u o u s ( expand = c ( 0 , 0 ) ) +
83 s c a l e y c o n t i n u o u s ( expand = c ( 0 , 0 ) ) +

x l a b ( e x p r e s s i o n ( d e l t a ˆ ’− ’ ) ) + y l a b ( ’ Bounds f o r Average T r e a t m e n t E f f e c t ’ )
+

85 s c a l e c o l o u r d i s c r e t e ( name = e x p r e s s i o n ( d e l t a ˆ ’+ ’ ) ) +
theme ( l e g e n d . t i t l e = e l e m e n t t e x t ( s i z e =12) )

87 ggsave ( pp , f i l e = ’ c o n f i d e n c e b o u n d s . pdf ’ , w id th =6 , h e i g h t =4)
pp
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