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A Generally Efficient Targeted Minimum Loss
Based Estimator

Mark J. van der Laan

Abstract

Suppose we observe n independent and identically distributed observations of a
finite dimensional bounded random variable. This article is concerned with the
construction of an efficient targeted minimum loss-based estimator (TMLE) of a
pathwise differentiable target parameter based on a realistic statistical model.

The canonical gradient of the target parameter at a particular data distribution will
depend on the data distribution through an infinite dimensional nuisance param-
eter which can be defined as the minimizer of the expectation of a loss function
(e.g., log-likelihood loss). For many models and target parameters the nuisance
parameter can be split up in two components, one required for evaluation of the
target parameter and one real nuisance parameter. The only smoothness condition
we will enforce on the statistical model is that these nuisance parameters are mul-
tivariate real valued cadlag functions and have a finite supremum and variation
norm.

We propose a general one-step targeted minimum loss-based estimator (TMLE)
based on an initial estimator of the nuisance parameters defined by a loss-based
super-learner that uses cross-validation to combine a library of candidate estima-
tors. We enforce this library to contain minimum loss based estimators minimiz-
ing the empirical risk over the parameter space under the additional constraint that
the variation norm is bounded by a set constant, across a set of constants for which
the maximal constant converges to infinity with sample size. We show that this
super-learner is not only asymptotically equivalent with the best performing algo-
rithm in the library, but also that it always converges to the true nuisance parameter
values at a rate faster than $n̂{-1/4}$. This minimal rate applies to each dimension
of the data and even to nonparametric statistical models. We also demonstrate that



the implementation of these constant-specific minimum loss-based estimators can
be carried out by minimizing the empirical risk over linear combinations of basis
functions under the constraint that the sum of the absolute value of the coefficients
is smaller than the constant (e.g., Lasso regression), making our proposed estima-
tors practically feasible.

Based on this rate of the super-learner of the nuisance parameter, we can establish
that this one-step TMLE is asymptotically efficient at any data generating distri-
bution in the model, under very weak structural conditions on the target parameter
mapping and model. We demonstrate our general theorems by constructing such
a one-step TMLE of the average causal effect in a nonparametric model, and pre-
senting the corresponding efficiency theorem.



1 Introduction

We consider the general statistical estimation problem defined by a statistical
model for the data distribution, a Euclidean valued target parameter mapping
defined on the statistical model, and observing n independent and identically
distributed draws from the data distribution. Our goal is to construct a gen-
erally efficient substitution estimator of the target parameter. For realistic
statistical models this requires a highly data adaptive estimator. The current
wisdom is that due to the curse of dimensionality this will typically require
assuming very strong smoothness assumptions (e.g., Robins and Ritov (1997)).

There are two general methods for constructing an asymptotically efficient
estimator. Firstly, the one-step estimator is defined by adding to an initial
plug-in estimator of the target parameter an empirical mean of an estimator
of the efficient influence curve at this same initial estimator (Bickel et al.,
1993). In the special case that the efficient influence curve can be represented
as an estimating function, one can represent this methodology as an estimating
equation methodology, as has been developed for censored and causal infer-
ence models in the literature (van der Laan and Robins, 2003; Robins and
Rotnitzky, 1992). Secondly, the TMLE defines a least favorable parametric
submodel through an initial estimator of the relevant parts (nuisance parame-
ters) of the data distribution, and updates the initial estimator with the MLE
over this least favorable parametric submodel. The TMLE of the target pa-
rameter is now the resulting plug-in estimator (van der Laan and Rubin, 2006;
van der Laan, 2008; van der Laan and Rose, 2011). In this article we focus on
the TMLE since it is a more robust estimator by respecting the global con-
straints of the statistical model, which becomes evident when comparing the
two estimators in simulations for which the information is low for the target
parameter (e.g., even resulting in one-step estimators of probabilities that are
outside the (0,1) range) (e.g., (Porter et al., 2011; Sekhon et al., 2012; Gru-
ber and van der Laan, 2010)). Nonetheless, the results in this article have
immediate analogues for the one-step estimator.

To make the TMLE highly data adaptive and thereby efficient for large
statistical models we have recommended to estimate the relevant parts of the
data distribution with a super-learner based on a large library of candidate
estimators (van der Laan and Dudoit, 2003; van der Vaart et al., 2006; van der
Laan et al., 2006, 2007; Polley et al., 2012). Due to the oracle inequality for
the cross-validation selector, the super-learner will be asymptotically equiv-
alent with the oracle selected estimator even when the number of candidate
estimators in the library grows polynomial in sample size. In this article we
develop a specific super learner which adapts to the underlying variation norm
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of the relevant nuisance parameters of the data distribution. We show that
this super learner is guaranteed to converge to its true counterparts at a rate
faster than the critical rate n−1/4, even when the model only assumes that the
true nuisance parameters have a finite variation norm.

Based on this fundamental result, we can then prove a general theorem for
asymptotic efficiency of the TMLE for arbitrary statistical models. We will
also use a so called cross-validated TMLE in order to further minimize the
conditions for asymptotic efficiency (Zheng and van der Laan, 2011; van der
Laan and Rose, 2011). By also including a large variety of other estimators
in the library of the super-learner the TMLE will also have excellent prac-
tical performance for finite samples relative to competing estimators (Polley
et al., 2012). Beyond establishing these fundamental theoretical general re-
sults, we will also discuss the practical implementation of such a super-learner
and TMLE.

1.1 Organization of the article

In Section 2 we define the general estimation problem in terms of a pathwise
differentiable statistical target parameter and statistical model, and define all
the key characteristics of the estimation problem that will play a role in the
definition of the estimator and our analysis. To address the estimation problem
we will have to define the canonical gradient of the pathwise derivative, and
the nuisance parameters this canonical gradient depends upon. These nuisance
parameters will have to be estimated as part of the TMLE. We will introduce
loss functions and loss-based dissimilarities for these nuisance parameters and
define the bounded variation norm assumption on the true nuisance parameter
values. The analysis of the super-learner of these nuisance parameters and
the corresponding one-step TMLE will involve controlling various universal
bounds on the statistical model. For that purpose we will define these model
bounds. Since we will allow that some of these bounds are infinite, we will
also define a sequence of bounded statistical submodels that grows to the
complete statistical model, and the corresponding bounds that converge to
the actual (possibly infinite) model bounds as the sample size converges to
infinity. The minimal rate (i.e., worst case rate) of convergence of our super-
learner estimators of the nuisance parameter are driven by entropies for the
relevant parameter spaces, and we also need to control the entropy of the
corresponding plug-in estimator of the canonical gradient. We will define these
entropy bounds and the corresponding worst case rates of convergence for the
super-learners. These worst-case rates will always (even for nonparametric
models) be faster than the critical rate n−1/4.
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In Section 3 we define and analyze our first super-learner of the nuisance
parameters. This first super-learner incorporates candidate estimators that
minimize the empirical risk of the loss functions over all parameters in the
parameter space that have a variation norm smaller than a M <∞, across a
set of such M values. Therefore, Section 3 will start out with analyzing these
M -specific minimum loss-based estimators, and then proceeds with analyzing
the corresponding super-learner based on the oracle inequality of the cross-
validation selector. In Section 4 we analyze our second super-learner that is
similar to the first super-learner except that its candidate M -specific minimum
loss-based estimators minimize over finite epsilon-nets of the parameter space
and selects both M and the resolution ε with cross-validation. Due to previous
results for such cross-validated epsilon-net estimators we obtain a finite sample
inequality for the resulting super-learner and slightly more optimal worst-case
rates of convergence.

In Section 5 we define the one-step TMLE and discuss the local least favor-
able submodel that is used to update the super-learner estimator and establish
results that show, under regularity conditions, that the one-step TMLE already
guarantees that the empirical mean of the canonical gradient at the TMLE
equals zero up till an asymptotically negligible remainder. Subsequently, in
Section 5 we present a formal theorem establishing asymptotic efficiency of
the one-step TMLE under specified conditions. In Section 6 we define the
one-step cross-validated TMLE and present a formal theorem establishing its
asymptotic efficiency. The advantage of the cross-validated TMLE is that it
is asymptotically efficient under even weaker conditions than required for effi-
ciency of the one-step TMLE, and, in particular, it allows the model bounds
for the sieve to grow to infinity at a faster rate with sample size than for the
TMLE.

In Section 7 we discuss the practical implementation of the M -specific
minimum loss-based estimator that minimizes the empirical risk over all pa-
rameters in the parameter space that have variation norm smaller than M . We
show that this MLE can be approximated by minimizing over linear combina-
tions of basis functions under the constraint that the sum of the absolute value
of the coefficients is bounded by M . In particular, we demonstrate that for
nonparametric models these estimators can be implemented with Lasso type
regression algorithms. In Section 8 we apply our theorems to the estimation of
the average causal effect of a single time point binary treatment. We conclude
with a discussion in Section 9. Our appendix is split up in various sections
establishing the required empirical process results, and proofs of the various
lemmas the efficiency of the one-step TMLE and CV-TMLE rely upon.
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1.2 General idea

In order to follow the logic of this article it might help to understand the main
idea behind the proposed one-step TMLE. The TMLE relies on an initial
estimator of the key nuisance parameters that are required to evaluate the
efficient influence curve of the target parameter. It is well known that the
asymptotic efficiency of the TMLE mostly relies on a second order remainder
being oP (n−1/2). Therefore, one wants to construct an initial estimator of the
nuisance parameters that converges w.r.t. a suitable dissimilarity at a rate
faster than n−1/4.

The most important observation is that a minimum loss-based estimator
minimizing the empirical risk over all candidate nuisance parameter values
that have a variation norm smaller than M < ∞ converges at a rate faster
than n−1/4 to its M -specific true counterpart. By using a recent empirical
process result by (van der Vaart and Wellner, 2011) we can establish the precise
minimax rate of convergence in terms of the entropy of the model space. So,
by selecting M larger than the unknown variation norm of the true nuisance
parameter value, we obtain an initial estimator that converges at a faster rate
than n−1/4.

The second important observation is that if we define a collection of such
M -specific estimators for a set of M -values for which the maximum value con-
verges to infinity as sample size converges to infinitiy, and use cross-validation
to data adaptively select M , then the resulting cross-validated selected esti-
mator will be asymptotically equivalent with the oracle choice. This follows
from a previously established oracle inequality for the cross-validation selector,
as long as the supremum norm bound on the loss-function at the candidate
estimators does not grow too fast to infinity as a function of sample size. As a
consequence, our statistical model does not need to assume a universal bound
on the variation norm of the nuisance parameters, but it only needs to assume
that each nuisance parameter value has a finite variation norm. In this man-
ner, we can construct super-learners that have a worst case rate faster than
the critical rate n−1/4. We obtain a super-learner that also in finite samples
outperforms any competing algorithm by simply including these competing
algorithms in the library of the super-learner beyond all these M -specific min-
imum loss-based estimators.

The typical TMLE involves iteratively updating this initial estimator through
a parametric local least favorable submodel through the initial estimator/current
estimator, so that the efficient score /influence curve equation is solved exactly.
For the analysis of the TMLE it is very helpful if this TMLE algorithm con-
verges in a single or finite number of steps. In many problems this TMLE
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updating algorithm converges in one step, and we developed a so called uni-
versal least favorable submodel that guarantees this convergence in one step
(van der Laan and Gruber, 2015). However, we want our theory to apply
to general local least favorable submodels, which can be easier to implement
than a universal least favorable model. In order to deal with this challenge, we
observe that if the initial estimators of the nuisance parameters converge at a
rate faster than n−1/4, then in great generality we can show that the one-step
TMLE (thus only updating the super-learner once) already solves the efficient
score equation up till a remainder of size oP (n−1/2). This is important, since
this makes it relatively straightforward to establish the minimal rate of con-
vergence of the TMLE update of the super-learner, and typically this minimal
rate will not be worse than the rate of the super-learner itself. In this man-
ner, we establish that also the TMLE update of the super-learner achieves the
desired minimal rate faster than n−1/4.

Given the understood behavior of the super-learners and their TMLE up-
date, we can now carry out the general proof for asymptotic efficiency of the
TMLE as presented in various of our previous articles on TMLE. Some extra
care is needed in our proof since we allow that our true statistical model is
unbounded. We allow such an unbounded statistical model by approximat-
ing it by a sequence of bounded submodels that grow slowly enough (w.r.t.
sample size) to the true statistical model, and by enforcing our super-learners
to respect that sequence of models. Finally, by using the CV-TMLE we can
further reduce the conditions for asymptotic efficiency.

2 Formulation of the estimation problem, and

definitions

Let O1, . . . , On be n independent and identically distributed copies of a d-
dimensional random variable O with probability distribution P0 that is known
to be an element of a statistical model M. Let Ψ : M → IR be a one-
dimensional target parameter, so that ψ0 = Ψ(P0) is the estimand of interest
we aim to learn from the n observations o1, . . . , on. We assume that Ψ is
pathwise differentiable at any P ∈ M with canonical gradient D∗(P ): for a
specified class of one-dimensional submodels {Pε : ε ∈ (−δ, δ)} ⊂ M through
P at ε = 0 and score S = d

dε
log dPε/dP

∣∣
ε=0

, we have

d

dε
Ψ(Pε)

∣∣∣∣
ε=0

= PD∗(P )S ≡
∫
o

D∗(P )(o)S(o)dP (o).
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Here we used the notation Pf ≡
∫
f(o)dP (o) for the expectation operator

under P . The closure of the linear span of all scores generated by this class
of one-dimensional submodels in the Hilbert space L2

0(P ) (endowed with the
inner product 〈f, g〉P = Pfg) is called the tangent space at P and will be
denoted with T (P ) ⊂ L2

0(P ). For a f ∈ L2(P ), we denote its norm with
‖ f ‖P=

√
Pf 2. The canonical gradient at P is the unique gradient at P that

is also an element of the tangent space T (P ).
Let Pn be the empirical probability distribution of O1, . . . , On. We view an

estimator Ψ̂ : Mnp → IR as a mapping from the nonparametric model Mnp

to the real line so that it is well defined for any realization of the empirical
distribution Pn. We recall from efficiency theory that an estimator Ψ̂(Pn) of
ψ0 is asymptotically efficient at P0 if and only if Ψ̂(Pn) is asymptotically linear
at P0 with influence curve equal to the canonical gradient D∗(P0):

Ψ̂(Pn)−Ψ(P0) = (Pn − P0)D∗(P0) + oP (1/
√
n).

Therefore the canonical gradient is also called the efficient influence curve.
Our goal in this article is to construct a substitution estimator (i.e., a TMLE)
that is asymptotically efficient under minimal conditions.

Relevant nuisance parameters Q,G and their loss functions: Let
Q(P ) be a nuisance parameter of P so that Ψ(P ) = Ψ1(Q(P )) for some Ψ1,
so that Ψ(P ) only depends on P through Q(P ). Let Q = Q(M) = {Q(P ) :
P ∈ M} be the parameter space of this parameter Q : M → Q. Sup-
pose that Q(P ) = (Qj(P ) : j = 1, . . . , k1 + 1) has k1 + 1-components, and
Qj : M → Qj are variation independent parameters j = 1, . . . , k1 + 1. Let
Qj = Qj(M) be the parameter space of Qj. Thus, the parameter space

of Q is a cartesian product Q =
∏k1+1

j=1 Qj. In addition, suppose that for
j = 1, . . . , k1 + 1, Qj(P0) = arg minQj∈Qj P0Lj(Qj) for specified loss functions
(O,Qj) → Lj(Qj)(O). Let Q̄ = (Q1, . . . , Qk1) represent parameters that re-
quire data adaptive estimation trading off variance and bias (e.g., densities),
while Qk1+1 represents an easy to estimate parameter for which we have an
empirical estimator Q̂k1+1 available with negligible bias. The parameter Q̄(P0)
will be estimated with our proposed loss-based super-learner. We define cor-
responding loss-based dissimilarities d10j(Qj, Qj0) = P0L1j(Qj) − P0L1j(Qj0),
j = 1, . . . , k1, while d10k1+1(Qk1+1, Qk1+10) represents a norm (e.g., supremum
norm) or dissimilarity for which we know that d10k1+1(Q̂k1+1(Pn), Qk1+10) =
OP (rQ,k1+1(n)) for a known rate of convergence rQ,k1+1(n). It could be that
d10k1+1(Qk1+1, , Qk1+10) = P0L1k1+1(Qk1+1)−P0L1k1+1(Qk1+10), but that is not
necessarily the case. Let

d10(Q,Q0) = (d10j(Qj, Qj0) : j = 1, . . . , k1 + 1)
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be the collection of these k1+1 dissimilarities. We use the notation d10(Q̄, Q̄0) =
(d10j(Qj, Qj0) : j = 1, . . . , k1) for the loss-based dissimilarities for Q̄.

Suppose that D∗(P ) only depends on P through Q(P ) and an additional
nuisance parameter G(P ). Let G = (G1, . . . , Gk2+1) be a collection of k2 + 1-
variation independent parameters of G for some integer k2 + 1 ≥ 1. Thus
the parameter space of G is a cartesian product G =

∏k2+1
j=1 Gj, where Gj is

the parameter space of Gj : M → Gj. Let Gj0 = arg minG∈Gj P0L2j(Gj)
for a loss function (O,Gj)→ L2j(Gj)(O), and let d2j0(Gj, Gj0) = P0L2j(Gj)−
P0L2j(Gj0) be the corresponding loss-based dissimilarity, j = 1, . . . , k2 +1. Let
Gk2+1 represents an easy to estimate parameter for which we have a well be-
haved and understood estimator Ĝk2+1 available. We define corresponding loss-
based dissimilarities d20j(Gj, Gj0) = P0L2j(Gj) − P0L2j(Gj0), j = 1, . . . , k2,
while d20k2+1(Gk2+1, Gk2+10) represents a norm or dissimilarity for which we
know that d20k2+1(Ĝk2+1(Pn), Gk2+10) = OP (rG,k2+1(n)) for a known rate of
convergence rG,k2+1(n). As above, let d20(G,G0) = (d20j(Gj, Gj0) : j =
1, . . . , k2 + 1) be the collection of these loss-based dissimilarities, and let
d20(Ḡ, Ḡ0) = (d20j(Gj, Gj0) : j = 1, . . . , k2), where Ḡ = (G1, . . . , Gk2).

We also define

d0((Q,G), (Q0, G0)) = (d10j1(Qj, Qj10), d20j2(Gj2 , Gj20) : j1, j2)

as the collection of k1 + k2 + 2 loss based dissimilarities. We will also use the
short-hand notation d0(P, P0) for d0((Q,G), (Q0, G0)).

We define L1(Q) = (L1j(Qj) : j = 1, . . . , k1 + 1) as the vector of k1 + 1-loss
functions for Q = (Q1, . . . , Qk1+1), and similarly we define L2(G) = (L2j(Gj) :
j = 1, . . . , k2 + 1). We will also use the notation L1(Q̄) = (L1(Qj) : j =
1, . . . , k1) and L2(Ḡ) = (L2j(Gj) : j = 1, . . . , k2). We will assume that
L1(Q̄) is a convex loss function in the sense that for each j = 1, . . . , k1

P0L1j(
∑m

k=1 αkQjk) ≤
∑m

k=1 αkP0L1j(Qjk) when
∑

k αk = 1 and mink αk ≥ 0.
Similarly, we assume L2(Ḡ) is a convex loss function. Our results for the
TMLE generalize to non convex loss functions, but the convexity of the loss
functions allows a nicer representation for the super-learner oracle inequality,
and in most applications a natural convex loss function is available.

We will abuse notation by also denoting Ψ(P ) and D∗(P ) with Ψ(Q) and
D∗(Q,G), respectively. A special case is that D∗(P ) = D∗(Q(P )) does not
depend on an additional nuisance parameter G.

First order expansion of pathwise differentiable target parameter:
We define the second order remainder R2(P, P0) as follows:

Ψ(P )−Ψ(P0) = (P − P0)D∗(P ) +R2(P, P0),

7
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or equivalently,

R2(P, P0) ≡ Ψ(P )−Ψ(P0) + P0D
∗(P ).

We will also denote R2(P, P0) with R20(Q,G,Q0, G0) to indicate that it in-
volves differences between Q and Q0 and G and G0, beyond possibly some
additional dependence on P0. In our experience, this remainder R2(P, P0) can
be represented as a sum of terms of the type

∫
(H1(P ) − H1(P0))(H2(P ) −

H2(P0))f(P, P0)dP0(o) for some functionals H1, H2 and f , where, typically,
H1(P ) and H2(P ) represent functions of Q(P ) or G(P ). In certain classes
of problems we have that R2(P, P0) only involves cross-terms of the type∫

(H1(Q)−H1(Q0))(H2(G)−H2(G0))f(P, P0)dP0, so that R20(Q,G,Q0, G0) =
0 if either Q = Q0 or G = G0. In these cases, we say that the efficient influence
curve is double robust w.r.t. misspecification of Q0 and G0:

P0D
∗(P ) = Ψ(P0)−Ψ(P ) if G(P ) = G(P0) or Q(P ) = Q(P0).

Given this latter double robustness property of the canonical gradient (i.e, of
the target parameter), if P solves P0D

∗(P ) = 0, and either G(P ) = G0 or
Q(P ) = Q0, then Ψ(P ) = Ψ(P0). This allows for the construction of si called
double robust estimators of ψ0 that will be consistent if either the estimator
of Q0 is consistent or the estimator of G0 is consistent.

Support of data distribution: The support of P ∈M is defined as a set
OP ⊂ IRd so that P (OP ) = 1. It is assumed that for each P ∈M, OP ⊂ [0, τP ]
for some finite τP ∈ IRd

>0. We define τ = supP∈M τP , so that [0, τP ] ⊂ [0, τ ]
for all P ∈ M, where τ = ∞ is allowed, in which case [0, τ ] ≡ IRd

≥0. That is,
[0, τ ] is an upper bound of all the supports, and the model M states that the
support of the data structure O is known to be contained in [0, τ ].

Cadlag functions on [0, τ ], supremum norm and variation norm:
Suppose τ is finite, and, in fact, if τ is not finite, then we will apply the
definitions below to a τ = τn that is finite and converges to τ . Let D[0, τ ] be
the Banach space of d-variate real valued cadlag functions (Neuhaus, 1971).
For a f ∈ D[0, τ ], let ‖ f ‖∞= supx∈[0,τ ] | f(x) | be the supremum norm. For
a f ∈ D[0, τ ], we define the variation norm of f (Gill et al., 1995) as

‖ f ‖v=| f(0) | +
∑

s⊂{1,...,d}

∫
(0s,τs]

| f(dxs, o−s) | .

For a subset s ⊂ {1, . . . , d}, xs = (xj : j ∈ s), x−s = (xj : j 6∈ s), and the
∑

s

in the above definition of the variation norm is over all subsets of {1, . . . , d}.
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If ‖ f ‖v<∞, then we can, in fact, represent f as follows (Gill et al., 1995):

f(x) = f(0) +
∑

s⊂{1,...,d}

∫
(0s,xs]

f(dus, o−s),

where f(dus, 0−s) is the measure generated by the cadlag function us →
f(us, 0−s). For a M ∈ IR≥0, let

Fv,M = {f ∈ D[0, τ ] :‖ f ‖v< M}

denote the set of cadlag functions f : [0, τ ]→ IR with variation norm bounded
by M .

Cartesian product of cadlag function space, and its component-
wise operations: Let Dk[0, τ ] be the product Banach space of k-dimensional
(f1, . . . , fk) where each fj ∈ D[0, τ ], j = 1, . . . , k. If f ∈ Dk[0, τ ], then we
define ‖ f ‖∞= (‖ fj ‖∞: j = 1, . . . , k) as a vector whose j-th component
equals the supremum norm of the j-th component fj of f . Similarly we define
a variation norm of f ∈ Dk[0, τ ] as a vector

‖ f ‖∗v= (‖ fj ‖v: j = 1, . . . , k)

of variation norms, If f ∈ Dk[0, τ ], then ‖ f ‖P0= (‖ fj ‖P0 : j = 1, . . . , k)
is a vector whose components are the L2(P0)-norms of the components of f .
Generally speaking, in this paper any operation on a function f ∈ Dk[0, τ ],
such as taking a norm ‖ f ‖P0 , an expectation P0f , operations on a pair
of functions f, g ∈ Dk[0, τ ], such as f/g, f ∗ g, max(f, g) or an inequality
f < g, is carried out component wise: for example, max(f, g) = (max(fj, gj) :
j = 1, . . . , k) and infQ∈Q P0L1(Q) = (infQj∈Qj P0L1j(Qj) : j = 1, . . . , k1 + 1).

In a similar manner, for an M ∈ IRk
>0, let Fv,M =

∏k
j=1Fv,Mj

denote the
cartesian product. This general notation allows us to present results with
minimal notation, avoiding the need to continuously having to enumerate all
the components.

Our results will hold for general models and pathwise differentiable target
parameters, as long as the statistical model satisfies the following key smooth-
ness assumption:

Key Smoothness Assumption: For each P ∈ M, Q̄ = Q̄(P ) ∈ Dk1 [0, τ ],
Ḡ = Ḡ(P ) ∈ Dk2 [0, τ ], D∗(P ) = D∗(Q,G) ∈ D[0, τ ], L1(Q̄) ∈ Dk1 [0, τ ],
L2(Ḡ) ∈ Dk2 [0, τ ], and Q̄, Ḡ,D∗(P ), L1(Q̄), L2(Ḡ) have a finite supremum and
variation norm.

9
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Definition of bounds on the statistical model: The properties of
the super-learner and TMLE rely on bounds on the model. Our estimators
will also allow for unbounded models by using a sieve of models for which its
finite bounds approximate the actual model bound as sample size converges
to infinity. These bounds will be defined now:

τ = τ(M) = sup
P∈M

τ(P )

M1Q = M1Q(M) = sup
Q,Q0∈Q

‖ L1(Q̄)− L1(Q̄0) ‖∞

M2Q = M2Q(M) = sup
P,P0∈M

‖ L1(Q̄)− L1(Q̄0) ‖P0

{d10(Q̄, Q̄0)}0.5

M1G = M1G(M) = sup
G,G0∈G

‖ L2(Ḡ)− L2(Ḡ0) ‖∞

M2G = M2G(M) = sup
P,P0∈M

‖ L2(Ḡ)− L2(Ḡ0) ‖P0

{d20(Ḡ, Ḡ0)}0.5

MD∗ = MD∗(M) = sup
P∈M

‖ D∗(P ) ‖∞

Note that M1Q,M2Q ∈ IRk1
≥0 and M1G,M2G ∈ IRk2

≥0 are defined as vectors of con-
stants, a constant for each component of Q̄ and Ḡ, respectively. The bounds
M1Q,M2Q guarantee excellent properties of the cross-validation selector based
on the loss-function L1(Q̄). A bound on M2Q shows that the loss-based dis-
similarity d01(Q̄, Q̄0) behaves as a square of a difference between Q̄ and Q̄0.
Similarly, the bounds M1G,M2G control the behavior of the cross-validation
selector based on the loss function L2(Ḡ).

We also define the following universal variation norm bounds on the model
M:

MQ,v = sup
P∈M

‖ Q̄(P ) ‖v

MG,v = sup
P∈M

‖ Ḡ(P ) ‖v

MD∗,v = sup
P∈M

‖ D∗(P ) ‖v

ML1(Q),v = sup
P∈M

‖ L1(Q̄) ‖v

ML2(G),v = sup
P∈M

‖ L2(Ḡ) ‖v

Again, MQ,v ∈ IRk1
≥0,ML1(Q),v ∈ IRk1

≥0 and MG,v ∈ IRk2
≥0,ML2(G),v ∈ IRk2

≥0 are vec-
tors of constants, one for each component of Q̄, L1(Q̄), Ḡ, L2(Ḡ), respectively.
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Bounded and Unbounded Models: We will call the modelM bounded
if it is a model for which τ < ∞ (i.e., universally bounded support), M1Q,
M2Q, M1G, M2G, MD∗ , MQ,v, MG,v, MD∗,v, ML1(Q),v and ML2(G),v are finite. In
words, in essence, a bounded model is a model for which the supremum norm
and variation norm of Q̄(P ), Ḡ(P ), L1(Q̄), L2(Ḡ) and D∗(Q,G) are uniformly
(over the model) bounded. Any model that is not bounded will be called an
unbounded model.

Sequence of bounded submodels approximating the unbounded
model: For an unbounded modelM, our initial estimators (Q̄n, Ḡn) of (Q̄0, Ḡ0)
are defined in terms of a sequence of bounded submodels Mn ⊂ M that are
increasing in n and approximate the actual model M as n converges to infin-
ity. As a consequence, this sequence of models satisfies that for any P0 ∈ M,
there exists an N0 = N(P0), so that for n > N0 P0 ∈ Mn. The counterparts
of the above defined universal bounds onM applied to Mn are denoted with
τn,M1Q,n, M2Q,n, M1G,n, M2G,n, MD∗,n, MQ,v,n, MG,v,n, MD∗,v,n, ML1(Q),v,n and
ML2(G),v,n.

Let Qn = Q(Mn) and Gn = G(Mn) be the parameter spaces of Q and G
under model Mn, and let Q̄n = Q̄(Mn) and Ḡn = Ḡ(Mn) be the parameter
spaces of Q̄ and Ḡ. We define the following true parameters corresponding
with this model Mn:

Q̄0n = arg min
Q̄∈Q̄n

P0L1(Q̄)

Ḡ0n = arg min
Ḡ∈Ḡn

P0L2(Ḡ).

We will assume that Mn is chosen so that Qk1+1(P0n) = Qk1+1(P0) and
Gk2+1(P0n) = Gk2+1(P0), where P0n = arg maxP∈Mn P0 log dP

dP0
. That is, our

sieve is not affecting the estimation of the easy nuisance parameters Qk1+10

and Gk2+10. Note that for n > N0, we have Q0n = Q0 and G0n = G0.
In this paper our initial estimators of Q̄0 and Ḡ0 are always enforced to

be in the parameter spaces of this sequence of models Mn, but if the model
M is already bounded, then one can set Mn = M for all n. However, even
for bounded models M, the utilization of a sequence of submodels Mn with
stronger universal bounds thanM could result in finite sample improvements
(e.g., if the universal bounds on M are very large relative to sample size and
the dimension of the data).

Cross-validation: Our initial estimators rely on cross-validation. For
that purpose, Bn ∈ {0, 1}n will denote a random cross-validation scheme that
randomly splits the sample {O1, . . . , On} in a training sample {Oi : Bn(i) = 0}
and validation sample {Oi : Bn(i) = 1}. Let qn =

∑n
i=1Bn(i)/n denote
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the proportion of observations in the validation sample, and we assume that
q < qn ≤ 0.5 for some q > 0. We also assume that this random vector Bn has
only V possible realizations for a V <∞. In addition, P 1

n,Bn
, P 0

n,Bn
will denote

the empirical probability distributions of the validation and training sample,

respectively. Thus, the cross-validated risk of an estimator ˆ̄Q :Mnp → Q̄n of

Q̄0 is defined as EBnP
1
n,Bn

L1( ˆ̄Q(P 0
n,Bn

)).

Entropy bounds for Super Learner II: For M1 ∈ IRk1 and M2 ∈ IRk2 ,
we define

Q̄n,M1 ≡ Q̄n ∩ Fv,M1

Ḡn,M2 ≡ Ḡn ∩ Fv,M2 ,

the sub-parameter spaces of Q̄, Ḡ under modelMn obtained by only including
the functions for which all its components have variation norm bounded by
the corresponding constants in the vectors M1,M2. By our Key Assumption
we have that if n > N0, M1 >‖ Q̄0 ‖v and M2 >‖ Ḡ0 ‖v, then Q̄0 ∈ Q̄n,M1 and
Ḡ0 ∈ Ḡn,M2 . Let supΛ logN(εM1, Q̄n,M1 , L

2(Λ)) and supΛ logN(εM2, Ḡn,M2 , L
2(Λ))

be the k1 and k2-dimensional universal log covering numbers as a function of
ε ∈ (0, 1) for Q̄n,M1 and Ḡn,M2 , respectively. We remind the reader that a
covering number N(ε,F , L2(Λ)) is defined as the number of balls of size ε
w.r.t. L2(Λ)-norm that are needed to cover the set F of functions embedded
in L2(Λ).

The minimal rate of our second super learner II of Q̄0, Ḡ0 relies on the
following entropy bounds. Let α1 ∈ IRk1 and α2 ∈ IRk2 be vectors satisfying:
for some C <∞ (allowed to depend on M1,M2, but not on ε)

sup
Λ

log0.5N(ε, Q̄n,M1 , L
2(Λ)) ≤ Cε−(1−α1)

sup
Λ

log0.5 N(ε, Ḡn,M2 , L
2(Λ)) ≤ Cε−(1−α2).

Entropy bounds for Super Learner I: The minimal rate of our first
super learner I of Q̄0, Ḡ0 relies on the following entropy bounds α∗1, α

∗
2 which

are essentially the same as α1, α2. Let α∗1 ∈ IRk1
≥0 and α∗2 ∈ IRk2

≥0 be such that
for some C <∞

sup
Λ

log0.5(N(ε, L1(Q̄∗n,M1
), L2(Λ)) < Cε−(1−α∗1)

sup
Λ

log0.5(N(ε, L2(Ḡ∗n,M2
), L2(Λ)) < Cε−(1−α∗2),

where L1(Q̄∗n,M1
) = {L1(Q̄) : Q̄ ∈ Q̄∗n,M1

}, L2(Ḡ∗n,M2
) = {L2(Ḡ) : Ḡ ∈ Ḡ∗n,M2

},
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and

Q̄∗n,M1
≡ {Q̄ ∈ Q̄n :‖ L1(Q̄) ‖v< M1}

Ḡ∗n,M2
≡ {Ḡ ∈ Ḡn :‖ L2(Ḡ) ‖v< M2}.

By Corollary 2.6.12 in van der Vaart, Wellner (1996), we have that the
universal covering number of Fv,M is bounded as follows:

sup
Λ

log0.5N(ε,Fv,M , L2(Λ)) ≤ Cε−(1−α(d)),

where α(d) = 1/(d + 1). Let d1 ∈ INk1
>0 be the vector of integers indicating

the dimension of the domain of Q̄ = (Q1, . . . , Qk1), and similarly, let d2 ∈
IRk2
>0 be the vector of integers indicating the dimension of the domain of Ḡ =

(G1, . . . , Gk2). Thus, we have that max(α1, α
∗
1) ≥ α(d1) and max(α2, α

∗
2) ≥

α(d2).
Minimal rate for Super learner II: Let C(m1,m2) = m1 + m2

2. The
minimal rates rQ,1:k1(n) ∈ IRk1 and rG,1:k2(n) ∈ IRk2 of our super-learner II of
Q̄0 and Ḡ0 w.r.t. the loss-based dissimilarities d01(Q,Q0) and d02(G,G0) are
given by:

rQ,1:k1(n) = O
(
n
− 1

4−2α1C(M1Q,n,M2Q,n)
1

4−2α1

)
rG,1:k2(n) = O

(
n
− 1

4−2α2C(M1G,n,M2G,n)
1

4−2α2

)
.

We already defined rQ,k1+1(n) and rG,k2+1(n) as the rates of the estimators

Q̂k1+1, Ĝk2+1 of the easy parameters Qk1+10, Gk2+10. This defines rQ(n) ∈
IRk1+1 and rG(n) ∈ IRk2+1.

Minimal rate for Super Learner I: The minimal rates rQ,MLE,1:k1(n) ∈
IRk1 and rG,MLE,1:k2(n) ∈ IRk2 of our super-learner I of Q̄0 and Ḡ0 w.r.t. the
loss-based dissimilarities d01(Q,Q0) and d02(G,G0) are given by:

rQ,MLE,1:k1(n) = n−(0.5+α∗1/4)

rG,MLE,1:k2(n) = n−(0.5+α∗2/4).

Let rQ,MLE,k1+1 = rQ,k1+1 and rG,MLE,k2+1 = rG,k2+1 be the rates of the simple

estimators Q̂k1+1 and Ĝk2+1 of Qk1+10 and Gk2+10, respectively. This defines
rQ,MLE ∈ IRk1+1 and rG,MLE ∈ IRk2+1.

Guaranteed minimal rate faster than n−1/4: Since α1, α
∗
1, α2, α

∗
2 are

all larger than α(d1), α(d1), α(d2), α(d2), respectively, it follows that all four
rates are faster than n−1/4 if the model Mn grows at a slow enough rate

13

Hosted by The Berkeley Electronic Press



to M. Note also that for most sequence of models Mn, the minimal rates
rQ(n), rG(n) for super-learner II are slightly better than the minimal rates
rQ,MLE(n), rG,MLE(n) for super-learner 1.

Entropy bound for estimated efficient influence curve: Let α∗ ∈
IR>0 be chosen so that for Fn = {D∗(Q,G) : Q ∈ Qn, G ∈ Gn}/MD∗v,n with
envelope Fn < MD∗,n/MD∗v,n we have

sup
Λ

√
log(1 +N(ε ‖ Fn ‖P0 ,Fn, L2(Λ))) = O

(
1

ε1−α∗

)
.

By the same argument as above, we have α∗ > 1/(d + 1), where d is the
dimension of O.

Entropy bound for controlling TMLE update: Suppose that α̃1 ∈
IRk1
>0 is chosen so that for F1n = {L1(Q) : Q ∈ Qn}/ML1(Q)v,n with envelope

F1n < M1Q,n/ML1(Q)v,n we have

sup
Λ

√
log(1 +N(ε ‖ F1n ‖P0 ,F1n, L2(Λ))) = O

(
1

ε1−α̃1

)
.

Reduction to a single entropy bound for each nuisance parameter:
Due to the very minor differences (if any) between α1, α∗1, α̃1, there is typically
no loss to select all three equal to the an upper bound for all three so that
α1 = α∗1 = α̃1. Similarly, one would select α2 and α∗2 equal to each other.
Therefore, when reading this article, the reader can just replace (α1, α

∗
1, α̃1)

and (α2, α
∗
2) by a single α1 ∈ IRk1 and α2 ∈ IRk2 , respectively.

3 Super Learner I

3.1 An MLE restricting the variation norm

Our goal is to construct an estimator ˆ̄Q : Mnp → Q̄n of Q̄0 = Q̄(P0) =
arg minQ̄∈Q̄ P0L̄1(Q̄) so that d01(Q̄n, Q̄0) = oP (n−1/4). The following Lemma
defines such an estimator.

Lemma 1 For a given vector M ∈ IRk1
≥0 of constants, let Q̄∗n,M ⊂ {Q̄ ∈ Q̄n :‖

L1(Q̄) ‖v≤M} ⊂ Fv,M be all functions in the parameter space Q̄n for Q̄0n for
which the variation norm of its loss is smaller than M <∞. (In this definition
one can also incorporate some extra M-constraints, as long as Q̄∗n,M=∞ = Q̄n.)
If M > max(MQ,v,ML1(Q),v), then Q̄∗n,M = Q̄n. Let Q̄M∗

0n ∈ Q̄∗n,M be so that
P0L̄1(Q̄M∗

0n ) = infQ̄∈Q̄∗n,M P0L̄1(Q̄). Assume that for a fixed M <∞,

M2Q,M ≡ lim sup
n→∞

sup
Q̄∈Q̄∗n,M

‖ L1(Q̄)− L1(Q̄M∗
0n ) ‖P0

{d10(Q̄, Q̄M∗
0n )}0.5

<∞.
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Consider an estimator Q̄M
n for which

PnL1(Q̄M
n ) = inf

Q̄∈Q̄∗n,M
PnL1(Q̄) + rn,

where rn = oP (1/
√
n). Then

0 ≤ d01(Q̄M
n , Q̄

M∗
0n ) ≤ −(Pn − P0){L1(Q̄M

n )− L1(Q̄M∗
0n )}+ rn, (1)

and
d01(Q̄M

n , Q̄
M∗
0n ) = OP (r2

Q̄,MLE(n)) + rn.

Proof: In this proof we suppress the ∗ in the notation. We have

0 ≤ d01(Q̄M
n , Q̄

M
0n) = P0{L1(Q̄M

n )− L1(Q̄M
0n)}

= −(Pn − P0){L1(Q̄M
n )− L1(Q̄M

0n)}+ Pn{L1(Q̄M
n )− L1(Q̄M

0n)}
≤ −(Pn − P0){L1(Q̄M

n )− L1(Q̄M
0n)}+ rn,

which proves (1). Since L1(Q̄M
n ) − L1(Q̄M

0n) falls in a P0-Donsker class Fv,M ,
it follows that the right-hand side is OP (1/

√
n), and thus d01(Q̄M

n , Q̄
M
0n) =

OP (n−1/2). Since M2,Q,M <∞, this also implies that ‖ L1(Q̄M
n )−L1(Q̄M

0n) ‖2
P0

=
OP (1/

√
n). By empirical process theory we have that

√
n(Pn − P0)fn →p 0

if fn falls in a P0-Donsker class with probability tending to 1, and P0f
2
n →p 0

as n → ∞. Applying this to fn = L1(Q̄M
n ) − L1(Q̄M

0n) shows that (Pn −
P0)(L1(Q̄M

n )−L(Q̄M
0n)) = oP (1/

√
n), which proves d01(Q̄M

n , Q̄
M
0n) = oP (1/

√
n).

We now apply Lemma 9 with Fn = {L1(Q̄)−L1(Q̄M
0n) : Q̄ ∈ Q̄n,M}, α = α∗1,

envelope bound Mn = M and r0(n) = n−1/4, which proves that

|
√
n(Pn − P0)fn |= OP (n−α1/4).

This proves d01(Q̄M
n , Q̄

M
0n) = OP (n−(0.5+α1/4)). 2

3.2 Super-Learning: A cross-validated MLE tuning the
variation norm of the fit.

Defining the library of candidate estimators: For an M ∈ IRk1
>0, let

ˆ̄Q∗M : Mnp → Q̄∗n,M ⊂ Fv,M be the above MLE satisfying d01(Q̄n,M =
ˆ̄QM(Pn), Q̄M∗

0n ) = OP (r2
Q̄,MLE

(n)). Let K1,n,v be an ordered collection Mn
1 <

Mn
2 < . . . < MK1,n,v of k1-dimensional constants, and consider the correspond-

ing collection of K1,n,v candidate estimators ˆ̄QM with M ∈ K1,n,v. We assume
that this index set K1,n,v is increasing in n and that lim supn→∞MK1,n,v =
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max(MQ,v,ML1(Q),v). Note that for all M ∈ K1,n,v with M >‖ L1(Q̄0) ‖v, we

have that d01( ˆ̄QM(Pn), Q̄0) = OP (r2
Q̄,MLE

(n)). In addition, let ˆ̄Qj : Mnp →
Qn, j ∈ K1,n,a be an additional collection of K1,n,a estimators of Q̄0. For
example, these candidate estimators could include a variety of parametric
model as well as machine learning based estimators. This defines an index
set K1,n = K1,n,v ∪ K1,n,a representing a collection of K1n = K1,n,v + K1,n,a

candidate estimators { ˆ̄Qk : k ∈ K1n}.
Super Learner I: We define the cross-validation selector as the index

k1n = K̂1(Pn) = arg min
k∈K1n

EBnPnL1( ˆ̄Qk(P
0
n,Bn))

that minimizes the cross-validated risk EBnPnL1( ˆ̄Qk(P
0
n,Bn

)) over all choices k
of candidate estimators. Our proposed super-learner is defined by

Q̄n = ˆ̄Q(Pn) = EBn
ˆ̄Qk1n(P 0

n,Bn). (2)

The following lemma proves that the super-learner ˆ̄Q(Pn) converges to Q̄0

at least at the rate rQ̄,MLE(n): d01( ˆ̄Q(Pn), Q̄0) = OP (rQ̄,MLE(n)). This lemma
also shows that the super-learner is either asymptotically equivalent with the
oracle selected candidate estimator, or achieves the parametric rate 1/n of a
correctly specified parametric model.

Lemma 2 Let λ1 be chosen so that r2
Q̄,MLE

(n) = O(n−λ1). We have

d01(Q̄n, Q̄0n) = OP (n−λ1) +OP

(
C(M1Q,n,M2Q,n, δ)

logK1n

n

)
, (3)

where C(M1,M2, δ) = 2(1 + δ)2(2M1/3 + M2
2/δ). In addition, we have, for

any δ > 0,

d01(Q̄n, Q̄0n) ≤ (1 + 2δ)EBn min
k∈K1n

d01( ˆ̄Qk(P
0
n,Bn), Q̄0n)

+OP

(
C(M1Q,n,M2Q,n, δ)

logK1n

n

)
.

If for a fixed δ > 0, C(M1Q,n,M2Q,n, δ) logK1n/n divided by EBn mink d01( ˆ̄Qk(P
0
n,Bn

), Q̄0n)
is oP (1), then

d01( ˆ̄Q(Pn), Q̄0n)

EBn mink d01( ˆ̄Qk(P 0
n,Bn

), Q̄0n)
− 1 = oP (1).
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If for a fixed δ > 0, EBn mink d01( ˆ̄Qk(P
0
n,Bn

), Q̄0n) = OP (C(M1Q,n,M2Q,n, δ) logK1n/n),
then

d01( ˆ̄Q(Pn), Q̄0n) = OP

(
C(M1n,M2n, δ) logK1n

n

)
.

The proof of this lemma is a simple corollary of the finite sample ora-
cle inequality for cross-validation (van der Laan and Dudoit, 2003; van der
Vaart et al., 2006; van der Laan et al., 2006), also presented in Lemma 8. It
uses the convexity of the loss function to bring the EBn inside the loss-based
dissimilarity.

Super-Learner I of Ḡ0: Similarly, we can define such a super-learner of

G0. For an M ∈ IRk2
>0, let ˆ̄GM : Mnp → Ḡ∗n,M ⊂ Fv,M be the MLE of the

previous subsection for which d02(Ḡn,M = ˆ̄GM(Pn), ḠM∗
0n ) = OP (r2

Ḡ,MLE
(n)).

Let K2,n,v be an ordered collection of k2-dimensional constants, and consider

the corresponding collection of candidate estimators ˆ̄GM with M ∈ K2,n,v. We
assume the index set K2,n,v is increasing in n and that lim supn→∞MK2,n,v =
max(MG,v,ML2(G),v). Note that for all M ∈ K2,n,v with M >‖ L2(Ḡ0) ‖v, we

have that d02( ˆ̄GM(Pn), Ḡ0) = OP (n−λ2). In addition, let ˆ̄Gj : Mnp → Ḡn,
j ∈ K2,n,a, be an additional collection of K2,n,a estimators of G0. This defines

a collection of K2n = K2,n,v + K2,n,a candidate estimators { ˆ̄Gk : k ∈ K2n} of
Ḡ0.

We define the cross-validation selector as the index

k2n = K̂2(Pn) = arg min
k∈K2n

EBnPnL1( ˆ̄Gk(P
0
n,Bn))

that minimizes the cross-validated risk EBnPnL2( ˆ̄Gk(P
0
n,Bn

)) over all choices k
of candidate estimators. Our proposed super-learner of Ḡ0 is defined by

Ḡn = ˆ̄G(Pn) = EBn
ˆ̄Gkn(P 0

n,Bn). (4)

The same Lemma 2 applies to this estimator ˆ̄G(Pn) of Ḡ0.

Lemma 3 Let λ2 be chosen so that r2
Ḡ,MLE

(n) = O(n−λ2). We have

d02( ˆ̄G(Pn), Ḡ0n) = OP (n−λ2) +OP

(
C(M1G,n,M2G,n, δ)

logK2n

n

)
. (5)

In addition, we have, for any δ > 0,

d02(Ḡn, Ḡ0n) ≤ (1 + 2δ)EBn min
k∈K2n

d02( ˆ̄Gk(P
0
n,Bn), Ḡ0n)

+OP

(
C(M1G,n,M2G,n, δ)

logK2n

n

)
,
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for a constant C(M1,M2, δ) = 2(1 + δ)2(2M1/3 +M2
2/δ). If for a fixed δ > 0,

C(M1G,n,M2G,n, δ) logK2n/n divided by EBn mink d02( ˆ̄Gk(P
0
n,Bn

), Ḡ0n) is oP (1),
then

d02( ˆ̄G(Pn), Ḡ0n)

EBn mink d02( ˆ̄Gk(P 0
n,Bn

), Ḡ0n)
− 1 = oP (1).

If for a fixed δ > 0, EBn mink d02( ˆ̄Gk(P
0
n,Bn

), Ḡ0n) = OP (C(M1G,n,M2G,n, δ) logK2n/n),
then

d02( ˆ̄G(Pn), Ḡ0n) = OP

(
C(M1G,n,M2G,n, δ) logK1n

n

)
.

4 Super Learner II

For an M ∈ IRk1 we define Q̄n,M = Q̄n∩Fv,M , but one could impose additional
M -constraints as long as they disappear as M →∞. Accordingly, we define

Q̄M1
0n = arg min

Q̄∈Q̄n,M1

P0L1(Q̄).

If n > N0 and M1 >‖ Q̄0 ‖v, then Q̄M1
0n = Q̄0.

ε-nets: For an M ∈ IRk1 , let Q̄n,M,ε ⊂ Q̄n,M be an ε-net (i.e., a finite
subset) of Q̄n,M in the sense that there exists a Q̄M

0,n,ε ∈ Q̄n,M,ε so that√
d01(Q̄M

0,n,ε, Q̄
M
0,n) ≤ ε. Suppose that for a fixed M , uniformly in n and

uniformly over Q̄ ∈ Q̄n,M , the loss-based dissimilarity d01(Q̄, Q̄M
0,n)) is not

a stronger norm than the L2(P0)-norm:

C(M) = lim sup
n→∞

sup
Q̄∈Q̄n,M

d0.5
01 (Q̄, Q̄M

0n)

‖ Q̄− Q̄M
0n ‖P0

<∞. (6)

This allows us to conclude the following. Suppose thatNn,M(ε) = supΛ N(ε, Q̄n,M , L2(Λ))
as a function in ε is given. Then it follows that there exists a finite subset Q̄n,M,ε

of Q̄n,M of size Nn,M(ε) so that w.r.t. all L2(Λ)-norms, the distance between
an element in Q̄n,M and the finite set Q̄n,M,ε is smaller than ε. Then, by as-
sumption (6), we know that this finite subset Q̄n,M,ε of Q̄n,M also approximates
Q̄M

0,n within dissimilarity ε w.r.t. d01:

sup
P0∈M

min
Q̄∈Q̄n,M,ε

√
d01(Q̄, Q̄M

0n) ≤ C(M)ε.

This proves that we can guarantee the desired ε-approximation of Q̄M
0n with a

finite net of size bounded by Nn,M(ε), and in the following it is assumed that
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indeed the size of Q̄n,M,ε is bounded by Nn,M(ε). By definition of α1, we have
supΛ

√
logNn,M(ε) = O(ε−(1−α1)), and we know that α1 ≤ α(d1) = 1/(d1 + 1).

Candidate estimators: Let

Q̄n,M,ε = arg min
Q̄∈Q̄n,M,ε

PnL1(Q̄) (7)

be the ε-MLE. Let K1n,v × En be the cartesian product of a finite set K1n,v

of constants M and a finite set En of ε-values. Let K1n,v be the size of K1n,v,
and En is the size of En. We assume that En = np for some p > 0, which
allows us to approximate the minimum over all ε-values by a minimum over
En without affecting the theoretical performance of the estimator. Let Mn,v ≡
maxM∈K1n,v M be the largest M value in K1n,v. It is assumed that Mn,v equals
or exceeds the upper bound MQ,v,n of the variation norm of a Q̄ ∈ Q̄n. For each

(M, ε) ∈ K1n,v×En, this MLE (7) is a candidate estimator ˆ̄QM,ε :Mnp → Q̄n,M .

In addition, let ˆ̄Qj : Mnp → Q̄n, j ∈ Jn, be an additional set of candidate
estimators of Q̄0n. Let K1n = K1n,v ×En ∪Jn be the index set of the resulting
total set of candidate estimators, and let K1n = K1n,v+Jn be the total number
of candidate estimators. This defines now our library of candidate estimators
ˆ̄Qk, k ∈ K1n.

Super-Learner II: Let k1n ∈ K1n be the cross-validation selector of k:

k1n = arg min
k∈K1n

EBnP
1
n,BnL1( ˆ̄Qk(P

0
n,Bn)).

The super-learner is now defined as:

ˆ̄Q(Pn) = EBn
ˆ̄Qk1n(P 0

n,Bn). (8)

For example, if Jn is empty, then k1n = (Mn, εn) is the cross-validation selector
of (M, ε):

(Mn, εn) = arg min
(M,ε)∈K1n,v

EBnP
1
n,BnL1( ˆ̄Qn,M,ε(P

0
n,Bn)),

and the above super-learner is given by

ˆ̄Qe(Pn) = EBn
ˆ̄QMn,εn(P 0

n,Bn).

We will refer to this latter estimator as the cross-validated ε-net MLE.
The following lemma proves that the latter ˆ̄Qe : Mnp → Q̄n converges to

Q̄0 w.r.t. d01 at the minimax rate rQ̄(n):
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Lemma 4 We have the following finite sample inequality: for each δ > 0, we
have

E0d01(EBn
ˆ̄Qn,Mn,εn(P 0

n,Bn), Q̄0n) ≤

(1 + 2δ) min
M,ε

{
(1 + 2δ) min

Q̄∈Q̄n,M,ε
d01(Q̄, Q̄0n) + 2C(M1Q,n,M2Q,n, δ)

1 + logNn,M(ε)

nq

}
+2C(M1Q,n,M2Q,n, δ)

1 + logK1n,v

nq
.

Let M0v be the smallest M ∈ K1n,v that is larger than ‖ Q̄0 ‖v. Assume an
ε-net Q̄n,M,ε whose size Nn,M(ε) is bounded by log0.5Nn,M(ε) = O(ε−(1−α1)),
whose existence is shown above. The above implies now

E0d01(EBn
ˆ̄Qn,Mn,εn(P 0

n,Bn), Q̄0n) ≤

(1 + 2δ) min
ε

{
(1 + 2δ)ε2 + 2C(M1Q,n,M2Q,n, δ)

1 + logNn,M0,v(ε)

nq

}
+2C(M1Q,n,M2Q,n, δ)

1 + logK1n,v

nq
.

By definition of rQ(n), in particular, if

C(M1Q,n,M2Q,n, δ)
1 + logK1n,v

nq
= O(r2

Q(n)),

then
E0d01( ˆ̄Qe(Pn), Q̄0) = O(r2

Q(n)).

Under the same condition, we also have

E0d01( ˆ̄Q(Pn), Q̄0) = O(r2
Q(n)).

Analogue to above, we can also present the super-learner ˆ̄G of Ḡ0:

ˆ̄G(Pn) = EBn
ˆ̄Gkn(P 0

n,Bn). (9)

Of course, we can present the same result for this super-learner and the cross-

validated ε-net MLE ˆ̄Ge of Ḡ0.

Lemma 5 We have the following finite sample inequality: for each δ > 0, we
have

E0d02(EBn
ˆ̄Gn,Mn,εn(P 0

n,Bn), Ḡ0n) ≤

(1 + 2δ) min
M,ε

{
(1 + 2δ) min

Ḡ∈Ḡn,M,ε
d02(Ḡ, Ḡ0n) + 2C(M1G,n,M2G,n, δ)

1 + logNn,M(ε)

nq

}
+2C(M1G,n,M2G,n, δ)

1 + logK2n,v

nq
.
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Let M0v be the smallest M ∈ K2n,v that is larger than ‖ Ḡ0 ‖v and assume that
Ḡn,M,ε is an ε-net whose size Nn,M(ε) is bounded by log0.5 Nn,M(ε) < Cε−(1−α2).
The above implies:

E0d02(EBn
ˆ̄Gn,Mn,εn(P 0

n,Bn), Ḡ0n) ≤

(1 + 2δ) min
ε

{
(1 + 2δ)ε2 + 2C(M1G,n,M2G,n, δ)

1 + logNn,M0v(ε)

nq

}
+2C(M1G,n,M2G,n, δ)

1 + logK2n,v

nq
.

By the definition of rG(n), in particular, if

C(M1G,n,M2G,n, δ)
1 + logK2n,v

nq
= O(r2

Ḡ(n)),

then
E0d02( ˆ̄Ge(Pn), Ḡ0) = O(r2

Ḡ(n)).

Under the same condition, we also have

E0d02( ˆ̄G(Pn), Ḡ0) = O(r2
Ḡ(n)).

5 One-step TMLE

5.1 The one-step TMLE

We consider a one-step TMLE defined by an initial estimator Qn = Q̂(Pn) ∈
Qn, Ĝ(Pn) ∈ Gn of Q0, G0, and a finite dimensional least favorable submodel
{Qn,ε : ε} ⊂ Qn of Qn through Qn at ε = 0. Specifically, it is assumed that
the linear span of the components of its score

d

dε
L̄1(Qn,ε)

∣∣∣∣
ε=0

w.r.t. sum loss L̄1(Q) =
∑k1+1

j=1 L1j(Qj) contains the efficient influence curve
D∗(Qn, Gn) at (Qn, Gn).

Let εn = arg minε PnL̄1(Q0
n,ε) be the MLE, and we define the one-step

TMLE of Q0 as Q1
n = Qn,εn . One could iterate this process of updating to con-

struct a final update Q∗n = QK
n for K large enough that solves PnD

∗(Q∗n, Gn) =
0 exactly or numerically. In various examples this iterative TMLE converges
in one step in which case Q∗n = Q1

n.
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In this article, we study the one-step TMLE Q∗n = Q1
n, and our results

also apply to the K-th step QK
n for a fixed integer K > 1 (where K does not

depend on the data or on P0). The one-step TMLE of ψ0 is defined by the
plug-in estimator ψ∗n = Ψ(Q∗n).

We assume that
PnD

∗(Q∗n, Gn) = oP (1/
√
n). (10)

That is, it is assumed that the one-step TMLE already solves the efficient influ-
ence curve equation up till an asymptotically negligible approximation error.
In (van der Laan and Gruber, 2015) it is shown that one can always construct
a so called universal least favorable submodel with a one dimensional ε so that
d
dε
L̄1(Q0

n,ε) = D∗(Q0
n,ε, Gn) at each ε, so that indeed PnD

∗(Q0
n,εn , Gn) = 0 (ex-

actly). In addition, as formalized by Lemma 16 in the Appendix, for our choice
of initial estimators Qn, Gn of Q0, G0 a one-step TMLE will satisfy (10) for one
dimensional local least favorable submodels under weak regularity conditions.

We can establish an asymptotic efficiency theorem for our one-step TMLE
for any finite dimensional local least favorable submodel, including a universal
least favorable submodel. However, our theorem is developed for a local least
favorable submodel of the type Qε = (Q1,ε1 , . . . , Qk1+1,εk1+1

). By using such
a submodel we have Q∗jn = Qjn,εn(j) and εn(j) = arg minε PnL1j(Qjn,ε). Thus
in this case each Qjn is updated with its own εn(j), j = 1, . . . , k1 + 1. The
advantage of such a least favorable submodel is that the one-step update of
Q̄jn is not affected by the statistical behavior of the other estimators Q̄ln,
l 6= j: e.g., if one uses a single ε, the MLE εn is very much driven by the worst
performing estimator Q̄jn. By using such a submodel the rate of convergence
of the initial estimator Q̄jn is fully preserved by the TMLE-update step for
bounded models, and still well controlled for unbounded models.

A general approach for constructing such a least favorable submodel is the
following. Let D∗j (P ) be the efficient influence curve at a P for the parameter
Ψj,P :M→ IR defined by Ψj(P1) = Ψ(Q−j(P ), Qj(P1)) that sets all the other
components of Ql with l 6= j equal to its true value under P , j = 1, . . . , k1 + 1.
Then, it follows immediately from the definition of pathwise derivative that

D∗(P ) =

k1+1∑
j=1

D∗j (P ),

so that, D∗(P ) is an element of the linear span of {D∗j (P ) : j = 1, . . . , k1 + 1}.
Let {Qjn,ε(j) : ε(j)} ⊂ Qjn be so that

d

dε(j)
L1j(Qjn,ε(j))

∣∣∣∣
ε(j)=0

= D∗j (Qn, Gn), j = 1, . . . , k1 + 1.
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That is, {Qjn,ε(j) : ε(j)} is a local least favorable submodel at (Qn, Gn) for the
parameter Ψj,Qn :M→ IR, j = 1, . . . , k1 + 1. Now, define {Qn,ε : ε} ⊂ Qn by
Qn,ε = (Qnj,ε(j) : j = 1, . . . , k1 + 1). Then, we have

d

dε
L̄(Qn,ε)

∣∣∣∣
ε=0

= (D∗j (Qn, Gn) : j = 1, . . . , k1 + 1)>,

so that the submodel is indeed a local least favorable submodel.
The only key ingredient of this type of submodel we rely upon is that

the MLE εn ∈ IRk1+1 is now defined by εn(j) = arg minε(j) PnL1j(Qjn,ε(j)),
j = 1, . . . , k1 + 1, so that indeed the update for Qjn is not affected by the

other estimators Qln, l 6= j. Since Q̂k1+1(Pn) is typically an MLE of Qk1+10,
we would typically have εn(k1 + 1) = 0. Lemma 17 provides a sufficient set
of minor conditions under which this one-step TMLE will satisfy (10). We
will not assume these conditions in our general efficiency theorem below, since
there are many examples in which this TMLE solves the efficient influence
curve equation exactly without any need to verify these conditions, as in our
example.

5.2 Efficiency of the one-step TMLE

If we use super-learner II, then choose λ1 and λ2 so that r2
Q(n) = O(n−λ1)

and r2
G(n) = O(n−λ2). Our initial super-learner II satisfies that d01(Qn, Q0) =

OP (r2
Q(n)) and d01(Gn, G0) = OP (r2

G(n)), where rQ(n) = (rQ̄(n), rQ,k1+1(n))
and rG(n) = (rḠ(n), rG,k2+1(n)). If we use super-learner I, then we choose λ1

and λ2 so that r2
Q,MLE(n) = O(n−λ1) and r2

G,MLE(n) = O(n−λ2). Our initial
super-learner I satisfies that d01(Qn, Q0) = OP (r2

Q,MLE(n)) and d01(Gn, G0) =
OP (r2

G,MLE(n)), where again rQ,MLE(n) = (rQ̄,MLE(n), rQ,k1+1(n)) and rG,MLE(n) =
(rḠ(n), rG,k2+1(n)).

Let λ∗1(1 : k1) = 0.5 + α̃1/4 and λ∗1(k1 + 1) = λ1(k1 + 1). Our update Q∗n
conservatively satisfies d01(Q̄∗n, Q̄0) = OP (n−λ

∗
1) (Lemma 13 and Corollary 1).

For bounded models we could have set λ∗1 = λ1 (Lemma 14). We assumed that
Q̂k1+1 is not updated by the one-step TMLE, or that its update is not affecting
its initial rate. Let r2(n) ≡ (n−λ

∗
1 , r2

G(n)) ∈ IRk1+k2+2 so that d0(P ∗n , P0) =
OP (r2(n)).

Let rD∗,n be such that ‖ D∗(Q∗n, Gn) −D∗(Q0, G0) ‖P0= OP (rD∗,n), where
this rate will be based on knowing d0(P ∗n , P0) = OP (r2(n)), and bounds of
the model Mn that are enforced on our super-learners. Finally, we define the
following sequences of constants that control how fast we can let grow Mn

23

Hosted by The Berkeley Electronic Press



converge to a possibly unbounded model M:

C1n = rα̃1
D∗,n,1M

1−α̃1
D∗,n + r2α̃1−2

D∗,n,1M
2−2α̃1
D∗,n n−0.5MD∗v,n (11)

C2n = M
α̃1+α̃2

1

L1(Q)v,nM
α̃1
2Q,nM

1−α̃2
1

1Q,n + n−α̃1/2M
−1+2α̃2

1

L1(Q)v,nM
2α̃1(1−α̃1)
1Q,n M−2+2α̃1

2Q,n .(12)

Theorem 1 Consider the super-learners ˆ̄Q(Pn) and ˆ̄G(Pn) defined by (2) and
(4), respectively, or by (8) and (9), respectively. This defines the initial estima-

tors Q̂(Pn) = ( ˆ̄Q(Pn), Q̂k1+1(Pn)) and Ĝ(Pn) = ( ˆ̄G(Pn), Ĝk2+1(Pn)). Consider
also the above defined corresponding one-step TMLE Qn,εn of Q0, and resulting
one-step TMLE Ψ(Q∗n) of Ψ(Q0). Let r2(n) be the above defined vector of rates
so that under the assumptions of this theorem we have d0(P ∗n , P0) = OP (r2(n)).

Assume that

PnD
∗(Q∗n, Gn) = oP (n−0.5) (13)

max(M1Q,n,M
2
2Q,n) logK1n

n
= O(n−λ1) (14)

max(M1Gn ,M
2
2Gn

) logK2n

n
= O(n−λ2) (15)

n−α̃1/4C2n = O(1) (16)

C1n = o(1) (17)

R20((Q∗n, Gn), (Q0, G0)) = oP (n−1/2), (18)

where we can use that d0(P ∗n , P0) = OP (r2(n)).
Then, Ψ(Q∗n) is asymptotically efficient:

Ψ(Q∗n)−Ψ(Q0) = (Pn − P0)D∗(Q0, G0) + oP (n−0.5).

Proof: Consider the case that our initial estimators are based on Super
Learner II. Combining PnD

∗(Q∗n, Gn) = oP (1/
√
n) (13) with Ψ(Q∗n)−Ψ(Q0) =

−P0D
∗(Q∗n, Gn) +R20(Q∗n, Gn, Q0, G0) yields the identity:

Ψ(Q∗n)−Ψ(Q0) = (Pn − P0)D∗(Q∗n, Gn) +R20(Q∗n, Gn, Q0, G0) + oP (1/
√
n).

Under assumptions (14) and (15), by Lemmas 4 and 5, we have d0((Qn, Gn), (Q0, G0)) =
OP (r2

Q(n), r2
G(n)). Under the additional assumption (16), Corollary 1 shows

that this implies d01(Q∗n, Q0) = OP (n−λ
∗
1). Thus, d0(P ∗n , P0) = OP (n−λ

∗
1 , n−λ2) =

OP (r2(n)). Using this, by assumption (18), we have R20(P ∗n , P0) = oP (n−0.5).
It remains to analyze the empirical process term (Pn − P0)D∗(Q∗n, Gn). We
have

(Pn−P0)D∗(Q∗n, Gn) = (Pn−P0){D∗(Q∗n, Gn)−D∗(Q0, G0)}+(Pn−P0)D∗(Q0, G0).
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We apply Lemma 11 to the first term on the right-hand side, which proves
that the expectation of the absolute value of this first term is bounded by
OP (C1n/n

0.5), which is thus oP (n−1/2) under assumption (17). This proves
Ψ(Q∗n)−Ψ(Q0) = (Pn−P0)D∗(Q0, G0)+oP (n−0.5), and thereby the asymptotic
efficiency of the one-step TMLE. The proof is the same for the case that our
initial estimators are based on Super Learner I, but now we should apply Lem-
mas 2 and ?? to obtain d0((Qn, Gn), (Q0, G0)) = OP (rQ,MLE(n), rG,MLE(n)).

2

6 Efficiency of the one-step CV-TMLE

Cross-validated TMLE (CV-TMLE) robustifies the bias-reduction of the TMLE-
step by selecting ε based on the cross-validated risk (Zheng and van der Laan,
2011; van der Laan and Rose, 2011).

6.1 The CV-TMLE

For a given Q,G, let {Qε : ε} ⊂ Qn ⊂ Q be the same k1 + 1-dimensional
submodel through Q at ε = 0 such that the linear span of d

dε
L̄1(Qε) at ε = 0

includes D∗(Q,G), as presented in the previous section. Let Q̂ : Mnp → Qn
and Ĝ :Mnp → Gn be our initial estimators. Given a cross-validation scheme

Bn ∈ {0, 1}n, let Qn,Bn = Q̂(P 0
n,Bn

) ∈ Qn be the super-learner applied to the
training sample P 0

n,Bn
. Let

εn = arg min
ε
EBnP

1
n,BnL̄1(Qn,Bn,ε),

where the submodel {Qn,Bn,ε : ε} is the submodel through Qn,Bn at ε = 0.

This submodel uses Ĝ(P 0
n,Bn

) as an estimator of G0. Let Q∗n,Bn = Qn,Bn,εn be
the Bn-specific targeted fit of Q0. The one-step CV-TMLE of ψ0 is defined as

ψ∗n = EBnΨ(Q∗n,Bn).

As with the TMLE in the previous section, we only assume that EBnP
1
n,Bn

D∗(Q∗n,Bn , Gn,Bn) =

oP (n−1/2). By Lemma 17 in the Appendix this will hold in great generality for
local least favorable submodels, if d0((Qn, Gn), (Q0, G0)) = oP (n−0.5).

6.2 Efficiency of the one-step CV-TMLE

Let λ1 and λ2 be defined as above, so that d01(Q̂(Pn), Q0) = OP (n−λ1) and
d02(Ĝ(Pn), G0) = OP (n−λ2). Let rD∗,n be a rate such that for each Bn ‖
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D∗(Q∗n,Bn , Gn,Bn)−D∗(Q0, G0) ‖P0= oP (rD∗,n), where one should use that we
already know that d01(Q∗n,Bn , Q0) = OP (n−λ1) and d02(Gn, G0) = OP (n−λ2).

Theorem 2 Consider the super-learners Q̂(Pn) and Ĝ(Pn) defined by (2) and
(4), respectively, or by (8) and (9), respectively. Consider the above defined
corresponding one-step CV-TMLE ψ∗n = EBnΨ(Qn,Bn,εn) of Ψ(Q0).

Assume

EBnP
1
n,BnD

∗(Qn,Bn,εn , Gn,Bn) = oP (n−0.5) (19)

max(M1Q,n,M
2
2Q,n) logK1n

n
= O(n−λ1) (20)

max(M1Gn ,M
2
2Gn

) logK2n

n
= O(n−λ2) (21)

‖ D∗(Q∗n,Bn , Gn,Bn)−D∗(Q0, G0) ‖P0 = oP (rD∗,n) for a rD∗,n = o(1)(22)

EBnR20((Q∗n,Bn , Gn,Bn), (Q0, G0)) = oP (n−1/2), (23)

where for the latter two assumptions (22) and (23) one can use that for each
of the V realizations of Bn, d0(Q∗n,Bn , Q0) = OP (n−λ1) and d02(Gn,Bn , G0) =
OP (n−λ2).

Then, ψ∗n = EBnΨ(Qn,Bn,εn) is asymptotically efficient:

ψ∗n − ψ0 = (Pn − P0)D∗(Q0, G0) + oP (n−1/2).

Proof: By assumptions (20) and (21), we have

d0((Q̂(P 0
n,Bn), Ĝ(P 0

n,Bn), (Q0, G0)) = OP (r2
Q(n), r2

G(n)) = OP (n−λ1 , n−λ2).

Lemma 15 proves that under these same assumptions (20), (21), we also have,
for each Bn, d01(Q̂n,Bn,εn , Q0n) = OP (n−λ1). This proves that for each Bn,
d0((Q∗n,Bn , Gn,Bn), (Q0, G0)) = OP (n−λ1 , n−λ2). Suppose n > N0 so that Q0n =
Q0 and G0n = G0. By the identity Ψ(Q∗n,Bn)−Ψ(Q0) = −P0D

∗(Q∗n,Bn , Gn,Bn)+
R20((Q∗n,Bn , Gn,Bn), (Q0, G0)), we have

EBnΨ(Q∗n,Bn)−Ψ(Q0) = −EBnP0D
∗(Q∗n,Bn , Gn,Bn)+EBnR20((Q∗n,Bn , Gn,Bn), (Q0, G0)).

Combining this with (19) yields the following identity:

ψ∗n −Ψ(Q0) = EBn(P 1
n,Bn − P0)D∗(Q∗n,Bn , Gn,Bn)

+EBnR20((Q∗n,Bn , Gn,Bn), (Q0, G0)) + oP (n−1/2).
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By assumption (23) we have that EBnR20((Q∗n,Bn , Gn,Bn), (Q0, G0)) = oP (n−0.5).
Thus, we have shown

Ψ(Q∗n)−Ψ(Q0) = EBn(P 1
n,Bn − P0)D∗(Q∗n,Bn , Gn,Bn) + oP (n−0.5).

We now note

EBn(P 1
n,Bn
− P0)D∗(Q∗n,Bn , Gn,Bn) = EBn(P 1

n,Bn
− P0)D∗(Q0, G0)

+EBn(P 1
n,Bn
− P0){D∗(Q∗n,Bn , Gn,Bn)−D∗(Q0, G0)}

= (Pn − P0)D∗(Q0, G0) + EBn(P 1
n,Bn
− P0){D∗(Q∗n,Bn , Gn,Bn)−D∗(Q0, G0)}.

Thus, it remains to prove that EBn(P 1
n,Bn
−P0){D∗(Q∗n,Bn , Gn,Bn)−D∗(Q0, G0)} =

oP (n−0.5). For this we apply Lemma 12 with fn,ε = D∗(Q̂ε(P
0
n,Bn

), Gn,Bn) −
D∗(Q0, G0), conditional on P 0

n,Bn
, and Fn = {fn,ε : ε}. By assumption (22),

there exists a rate rD∗,n = o(1) so that ‖ fn,εn ‖P0= OP (rD∗,n), where this
rate will be determined based upon d0(P ∗n,Bn , P0) = OP (r2(n)) with r2(n) =
O((n−λ1 , n−λ2).

Note also that the envelope of Fn satisfies ‖ Fn ‖P0≤ MD∗,n. Since ε is
p-dimensional for some integer p, the entropy of Fn satisfies supQN(ε ‖ Fn ‖
,Fn, L2(Q)) < ε−p. Application of Lemma 12 proves now that, if rD∗,n = o(1),
then, given P 0

n,Bn
,

(P 1
n,Bn − P0)fn,εn = oP (n−0.5).

This proves also that EBn(P 1
n,Bn
− P0)fn,εn = oP (n−0.5). This completes the

proof. 2

7 Implementing an MLE over a class of func-

tions with variation norm bounded by a spe-

cific constant.

Our super-learner I relies on an estimator defined by minimizing PnL1(Q̄) over
all Q̄ ∈ Q̄n for which the variation norm of L1(Q̄) is bounded by some M <∞
for an ordered set of M -vectors. If for a fixed n, there exists a Mn,v ∈ IRk1 so
that for all Q̄ ∈ Q̄n, ‖ L1(Q̄) ‖v≤Mn,v ‖ Q̄ ‖v, then we can achieve this as well
by defining the MLE of Q̄ → PnL1(Q̄) over all Q̄ ∈ Q̄ with ‖ Q̄ ‖v< M , for
a series of M -vectors. Therefore we rephrase our goal as to compute a Q̄n,M

so that PnL1(Q̄n,M) = minQ̄∈Q̄n,M PnL1(Q̄) + rn, where rn is a controlled small
number. In this section, we address a concrete strategy for implementation of
this MLE.
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7.1 Approximating a function with variation norm M

by a linear combination of indicator basis functions
with L1-norm of the coefficient vector equal to M .

Any cadlag function f ∈ D[0, τ ] with finite variation norm can be represented
as follows:

f(x) = f(0) +
∑

s⊂{1,...,p}

∫
(0s,xs]

f(dus, 0−s).

For each subset s of size | s |, consider a partitioning of (0s, τs] in | s |-
dimensional cubes with width hm. Let’s denote these cubes with Rhm(j, s),

where j is the index of the j-th cube and j runs over O(1/h
|s|
m ) cubes. Let

Rhm(s) be the index set, so that we can write (0s, τs] = ∪j∈Rhm (s)Rhm(j, s).
By definition of an integral, we have f(x) = limhm→0 fm(x), where

fm(x) =
∑

s⊂{1,...,p}

∑
j∈Rhm (s)

φshm,j(x)βshm,j,

βshm,j = f(Rhm(j, s)) is the measure f assigns to the cube Rhm(j, s), and
φshm,j(x) = I(mhm(j, s) ≤ xs) is the indicator that the midpoint mhm(j, s)
of the cube Rhm(j, s) is smaller or equal than xs. By the dominated conver-
gence theorem, it also follows that ‖ fm(f) − f ‖Λ→ 0 for any L2(Λ)-norm.
Moreover, the variation norm of f is approximated by the sum of the absolute
value of all the coefficients βshm,j:

‖ f ‖v= lim
hm→0

∑
s⊂{1,...,p}

∑
j∈Rhm (s)

| βshm,j | .

Thus, we conclude that given a function f ∈ Fv,M , we can approximate it
with a finite linear combination fm(f) of basis functions φshm,j for which the
L1-norm of its coefficient vector {βshm,j : j, s} approximates the variation norm
of f .

7.2 An approximation of the MLE over functions of
bounded variation using L1-penalization.

Let’s define

Fmv,M =

 ∑
s⊂{1,...,p}

∑
j∈Rhm (s)

φshm,j(x)βshm,j :
∑
s,j

| βshm,j |≤M


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as the collection of all these finite linear combinations of this collection of basis
functions under the constraint that its L1-norm is bounded by M . Consider
the case that the parameter space Q̄j is nonparametric, so that the MLE over
Q̄j,n,Mj

of Q̄j0 would correspond with minimizing over Fv,Mj
. Note that this

does not imply that the model M is nonparametric: for example, the data
distribution could be parameterized in terms of unspecified functions Qj of
dimension d1(j), j = 1, . . . , k1 + 1, and unspecified functions Gj of dimension
d2(j), j = 1, . . . , k2 + 1.

The next lemma proves that we can approximate such an MLE over Fv,Mj

for a loss function L1j by an MLE over Fmv,Mj
by selecting m large enough.

Lemma 6 Let M ∈ IR≥0 be given. Consider f0 ∈ Fv,M ⊂ D[0, τ ] so that
for a loss function (O, f) → L(f)(O), we have P0L(f0) = minf∈Fv,M P0L(f).
Assume that if fm ∈ Fv,M converges pointwise to a f ∈ Fv,M on [0, τ ], then
L(fm) converges pointwise to L(f) on support of P0, including the support
of the empirical distribution Pn. Let f0,m ∈ Fmv,M be such that P0L(f0,m) =
minf∈Fmv,M P0L(f). We have P0(L(f0,m)− L(f0))→ 0 as hm → 0.

Consider now an fn ∈ Fv,M so that PnL(fn) = minf∈Fv,M PnL(f), and let
fn,m ∈ Fmv,M be such that PnL(fn,m) = minf∈Fmv,M PnL(f). We have Pn(L(fn,m)−
L(fn))→ 0 as hm → 0.

Proof: We want to show that P0(L(f0,m)−L(f0))→ 0. By the approximation
presented in the previous section, since f0 ∈ Fv,M , we can find a sequence
f ∗0,m ∈ Fmv,M so that f ∗0,m → f0 as hm → 0, pointwise and in L2(P0) norm. By
assumption and the dominated convergence theorem, this implies P0L(f ∗0,m)−
P0L(f0) also converges to zero as hm → 0. But, since f0,m minimizes P0L(f)
over all f ∈ Fmv,M , we have

0 ≤ P0L(f0,m)− P0L(f0) ≤ P0L(f ∗0,m)− P0L(f0)→ 0,

which proves that P0L(f0,m)− P0L(f0)→ 0, as hm → 0.
We now want to show that Pn(L(fn,m) − L(fn)) → 0 as hm → 0. Since

fn ∈ Fv,M , we can find a sequence f ∗n,m ∈ Fmv,M so that f ∗n,m → fn as hm → 0,
pointwise and in L2(Pn)-norm.

Then, by assumption and the dominated convergence theorem, PnL(f ∗n,m)−
PnL(fn) also converges to zero as hm → 0. But, since fn,m minimizes PnL(f)
over all f ∈ Fmv,M , we have

0 ≤ PnL(fn,m)− PnL(fn) ≤ PnL(f ∗n,m)− PnL(fn)→ 0,

which proves that PnL(fn,m)− PnL(fn)→ 0, as hm → 0. 2
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7.3 An approximation of the MLE over the subspace
Q̄n,M by an MLE over a constrained linear model

For notational convenience, consider the case that Qn = Q. Above we defined
a mapping from a function f ∈ Fv,M into a linear combination fm(f) ∈ Fmv,M
of basis functions for which the norm of the coefficient vector approximates
the variation norm of f . The following lemma proves in general that we
can compute the MLE over Q̄M = Q̄ ∩ Fk1v,M with the MLE over Q̄mM =

{Q̄m(Q̄) : Q̄ ∈ Q̄M}, which is a collection of these linear combinations of the
basis functions for which the L1-norm of the coefficient vector is bounded by
M . Note that Q̄mM is typically not a submodel of Q̄M , but it is obtained by
replacing each element Q̄ in Q̄M with its approximation Q̄m(Q̄).

Lemma 7 Assume that the loss function L1(Q̄) satisfies the pointwise conti-
nuity condition of the previous lemma.

For an M ∈ IRk1, let Q̄M = Q̄∩Fv,M = {Q̄(P ) : P ∈M, Q̄(P ) ∈ Fv,M} be
all functions in the parameter space for Q̄0 that have a variation norm smaller
than M < ∞. Let Q̄mM = {Q̄m(Q̄) : Q̄ ∈ Q̄M}, where Q̄m(Q̄) is defined above
as the finite dimensional linear combination of the basis functions {φshm,j : j, s}
with coefficient vector {βshm,j(Q̄) : j, s}.

Consider a Q̄0,M ∈ Q̄M so that P0L1(Q̄0,M) = minQ̄∈Q̄M P0L1(Q̄), and let
Q̄m

0,M ∈ Q̄mM be such that P0L1(Q̄m
0,M) = minQ̄∈Q̄mM P0L1(Q̄). Then, P0(L1(Q̄m

0,M)−
L1(Q̄0,M))→ 0 as hm → 0.

Similarly, consider a Q̄n,M ∈ Q̄M so that PnL1(Q̄n,M) = minQ̄∈Q̄M PnL1(Q̄),
and let Q̄m

n,M ∈ Q̄mM be such that PnL1(Q̄m
n,M) = minQ̄∈Q̄mM PnL1(Q̄). Then,

Pn(L1(Q̄m
n,M − L1(Q̄n,M))→ 0 as hm → 0.

Proof: We want to show that P0(L1(Q̄m
0,M)− L(Q̄0,M))→ 0. By the approx-

imation presented in the previous section, since Q̄0,M ∈ Fv,M , we can find a
sequence Q̄m,∗

0,M ∈ Fmv,M so that Q̄m,∗
0,M → Q̄0,M as hm → 0, pointwise and in

L2(P0) norm. By assumption and the dominated convergence theorem, this
implies P0L1(Q̄m,∗

0,M)−P0L1(Q̄0,M) also converges to zero as hm → 0. But, since

Q̄m
0,M minimizes P0L1(Q̄) over all Q̄ ∈ Q̄mM , we have

0 ≤ P0L1(Q̄m
0,M)− P0L1(Q̄0,M) ≤ P0L1(Q̄m,∗

0,M)− P0L1(Q̄0,M)→ 0,

which proves that P0L1(Q̄m
0,M)− P0L1(Q̄0,M)→ 0, as hm → 0.

We now want to show that Pn(L1(Q̄m
n,M)−L1(Q̄n,M))→ 0 as hm → 0. Since

Q̄n,M ∈ Fv,M , we can find a sequence Q̄m,∗
n,M ∈ Fmv,M so that Q̄m,∗

n,M → Q̄n,M as
hm → 0, pointwise and in L2(Pn)-norm.
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Then, by assumption and the dominated convergence theorem, PnL1(Q̄m,∗
n,M)−

PnL1(Q̄n,M) also converges to zero as hm → 0. But, since Q̄m
n,M minimizes

PnL1(Q̄) over all Q̄ ∈ Q̄mn,M , we have

0 ≤ PnL1(Q̄m
n,M)− PnL1(Q̄n,M) ≤ PnL1(Q̄m,∗

n,M)− PnL1(Q̄n,M)→ 0,

which proves that PnL1(Q̄m
n,M)− PnL1(Q̄n,M)→ 0, as hm → 0. 2

7.4 What to do with too many basis functions?

If the dimension d1(j) is large, then for hm small the linear approximations
above are expressed in terms of too many basis functions to store in memory
and to computationally handle. In the final subsection of the next section, we
suggest that one might want to randomly sample the indicator basis functions
I(· > x) by sampling the ”midpoint” x from the data itself (i.e.., include the
observed values), and variations of the data till the resulting MLE (or TMLE)
is not changing anymore by more than a statistically negligible margin. We
refer to this subsection for a more detailed discussion.

8 Example: Treatment specific mean

Let O = (W,A, Y ) ∼ P0 be a random variable consisting of a d-dimensional
vector of baseline covariates W , binary treatment A ∈ {0, 1} and binary out-
come Y ∈ {0, 1}. We observe n i.i.d. copies O1, . . . , On of O ∼ P0. Let G(P )
be the conditional probability distribution of A, given W , and let Q1(P ) be
the conditional distribution of Y , given A,W , under P . Let Q2(P ) be the
marginal cumulative probability distribution of W , and Q = (Q1, Q2). Let the
statistical model be of the form M = {P : G(P ) ∈ G, Q(P ) ∈ Q}, where G
is a possibly restricted set, and Q is nonparametric. The only key assump-
tion we will enforce on Q and G is that for each P ∈ M, Q̄1(P )(a,W ) =
EP (Y | A = a,W ) and Ḡ(P )(W ) = EP (A | W ) is a Cadlag function in
W on a set [0, τP ] ⊂ IRd, and that the variation norm of Q̄(P ) and Ḡ(P ) is
bounded. Let g(P )(a | W ) = P (A = a|W ) be the conditional probability
density. Suppose that Ḡ only depends on W through a subset of covariates
of dimension d2 ≤ d. Our target parameter Ψ : M → IR is defined by
Ψ(P ) =

∫
{Q̄1(1, w) − Q̄1(0, w)}dQ2(w) ≡ Ψ1(Q1, Q2). For notational conve-

nience, we will use Ψ for both mappings Ψ and Ψ1. The efficient influence
curve D∗(P ) = D∗(Q,G) at P is given by:

D∗(Q,G)(O) =
2A− 1

g(A|W )
(Y − Q̄1(A,W )) + Q̄1(1,W )− Q̄1(0,W )−Ψ(Q).
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We have that Ψ(P )−Ψ(P0) = (P − P0)D∗(Q,G) +R20((Q̄, Ḡ), (Q̄0, Ḡ0)),
where the second order remainder R20() is defined as follows:

R20(P, P0) = R20,1(P, P0)−R20,0(P, P0)

R20,a(P, P0) =

∫
g(a | w)− g0(a | w)

g(a | w)
(Q̄1(a, w)− Q̄10(a, w))dP0(w)

a ∈ {0, 1}.

We define the following two log-likelihood loss functions for Q̄1 and Ḡ,
respectively:

L1(Q̄1) = −
{
Y log Q̄1(A,W ) + (1− Y ) log(1− Q̄1(A,W ))

}
L2(Ḡ) = −

{
A log Ḡ(W ) + (1− A) log(1− Ḡ(W ))

}
.

We also define the corresponding two loss-based dissimilarities d01,1(Q̄1, Q̄10) =
P0{L1(Q̄1)−L1(Q̄10)} and d02(Ḡ, Ḡ0) = P0{L2(Ḡ)−L2(Ḡ0)}. Here Q2 repre-
sents the easy to estimate parameter which we will estimate with the empirical
cumulative probability distribution Q2n of W1, . . . ,Wn. We know from empiri-
cal process theory that the supremum norm of the difference of the cumulative
distribution functions Q2n and Q20 converges to zero at rate 1/

√
n. Therefore,

we define d01,2(Q2, Q20) =‖ Q2 −Q20 ‖∞.
Let the submodel M(δ, C) ⊂ M be defined by the extra restriction that

Q̄1 > δ, min(g(0 | W ), g(1 | W )) > δ, ‖ Q̄1 ‖v< C and ‖ Ḡ ‖v< C. Given a
sequence (δn, Cn)) for which δn → 0 and Cn → ∞ as n → ∞, we can define
a sequence of models Mn = M(δn, Cn) which grows from below to M as
n→∞.

Let Qn = Q1n × Q2n, Gn be the corresponding parameter spaces for Q =
(Q1, Q2) and G, and specifically, Q1n = {Q̄1 :‖ Q̄1 ‖v< Cn, Q̄1 > δn}, while
Q2n = Q2. We have the following sieve model bounds forM1Q,n,M2Q,n,M1G,n,M2G,n

(van der Laan et al., 2004) and for the supremum and variation norm of
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Q,G,L1(Q), L2(G):

M1Q,n = O(log δn)

M2Q,n = O(1/δn)

M1G,n = O(log δn)

M2G,n = O(1/δn)

MD∗,n = O(1/δn)

MQv,n = O(Cn)

MGv,n = O(Cn)

ML1(Q)v,n = O(Cnδ
−1
n )

ML2(G)v,n = O(Cnδ
−1
n )

MD∗v,n = O(Cnδ
−2
n ).

Regarding the variation norm bounds, it is easy to see that the variation norm
of log f for an f > δn is bounded by ‖ f ‖v /δn, and the variation norm of
‖ Q̄1/g ‖v involves an integral with 1/g2, which explains the δ−2

n factor.
Since the parameter spaceQ1n consists of the cadlag functions with bounded

variation norms, without any further restrictions beyond the global bounds
δn, Cn, we can select the entropy quantities for Q1 as follows: α1 = α∗1 =
α̃1 = α(d) = 1/(d + 1), where d is the dimension of W . Similarly, if Gn
consists of all cadlag functions of dimension d2, without further meaningful
restrictions beyond δn, Cn, then we can select the entropy quantities for Gn as
α2 = α∗2 = α(d2) = 1/(d2 + 1). If the model G enforces more meaningful re-
strictions than that A only depends on W through a subset of W of dimension
d2, then α2 = α∗2 can be replaced by a sharper upper bound α2 than α(d2).
The entropy bound α̃ for the parameter space of D∗(Q,G) can be set equal to
α(d) = 1/(d+ 1).

Let Q̄1n ∈ Q1n be a super-learner I of Q̄10 of the type presented in (2). Sim-
ilarly, let Ḡn ∈ Gn be such a super-learner I of Ḡ0 as presented in (4) . Suppose
that max(M1Q,n,M

2
2Q,n) logK1n/n = O(n−λ(d)) and max(M1G,n,M

2
2G,n) logK2n/n =

O(n−λ(d2)), where λ(d) = 0.5+α(d)/4 = 0.5+ 0.25(d+1)−1. Then, by Lemma
2 and Lemma 3, we have d01,1(Q1n, Q10) = OP (n−λ(d)) and d02(Ḡn, Ḡ0) =
OP (n−λ(d2)), while d01,2(Q2n, Q20) =‖ Q2n − Q20 ‖∞= OP (n−1/2). Similar re-
sults apply to our Super Learner II, but we focus here on Super Learner I.

Plugging in the above bounds forM1Q,n,M2Q,n,M1G,n,M2G,n, it follows that
it suffices to select δn so that δ−1

n = O(n0.5−0.5λ(d)(max(logK1n, logK2n))−0.5).
(Improvements can be obtained by selecting a separate δ1n for truncating
Q1 and δ2n for truncating G.) Let Kn = max(K1n, K2n) and suppose that
logKn = O(n0.5−α(d)/2). Then, it follows that this bound for δ−1

n is larger than
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nα(d)/8, so that this constraint on δn is dominated by our later constraint given
below δ−1

n = o(nα(d)/8).

8.1 One-step TMLE

Consider the submodel:

LogitQ̄1n,ε1 = LogitQ̄1n + ε1Hgn ,

where Hgn(A,W ) = (2A − 1)/gn(A | W ). Let ε1n = arg minε1 PnL1(Q̄1n,ε1),
and Q̄∗1n = Q̄1n,ε1n . The TMLE of Ψ(Q0) is given by Ψ(Q∗n), where Q∗n =
(Q̄∗1n, Q2n). The second step TMLE would result in ε1n = 0 so that it follows
that PnD

∗(Q∗n, Gn) = 0. We will now verify the other conditions of Theorem
1.

Preservation of rate of convergence of TMLE update: By Lemma
13 and its corresponding corollary 1, if C2nn

−α̃1/4 = o(1), then we also have
d01,1(Q∗1n, Q10) = OP (n−λ(d)), where

C2n = M
α̃1+α̃2

1

L1(Q)v,nM
α̃1
2Q,nM

1−α̃2
1

1Q,n + n−α̃1/2M
−1+2α̃2

1

L1(Q)v,nM
2α̃1(1−α̃1)
1Q,n M−2+2α̃1

2Q,n .

The rate at which C2n can converge to infinity is dominated by the first term
C2n,a on the right-hand side. We have

C2n,a = O
(
Cα(d)+α(d)2

n δ−2α(d)−α(d)2

n (log δn)1−α(d)2
)
.

So the condition is that

n−α(d)/4Cα(d)+α(d)2

n δ−2α(d)−α(d)2

n (log δn)1−α(d)2 = o(1).

Using that we will enforce δ−1
n = o(nα(d)/8), this condition will hold if

Cα(d)+α2(d)
n n−α(d)/4+α2(d)/4+α3(d)/8(log n)1−α2(d) = o(1).

Rate of convergence rD∗,n of estimated efficient influence curve:
We also note that

‖ D∗(Q∗n, Gn)−D∗(Q0, G0) ‖P0≤ 1

δ
3/2
n

‖ gn − g0 ‖P0 +
‖Q̄∗1n−Q̄10‖P0

δn

+ | Ψ(Q∗n)−Ψ(Q0) | .

Let Q̄b
1(W ) = Q̄1(1,W )− Q̄1(0,W ). Then,

Ψ(Q∗n)−Ψ(Q0) = Q2nQ̄
b∗
1n −Q20Q̄

b
10

= (Q2n −Q20)Q̄b
10 +Q2n(Q̄b∗

1n − Q̄b
10)

= OP (n−1/2) + (Q2n −Q20)(Q̄b∗
1n − Q̄b

10) +Q20(Q̄b∗
1n − Q̄b

10)
= OP (n−1/2) + (Q2n −Q20)(Q̄b∗

1n − Q̄b
10) +OP (d0.5

01,1(Q̄∗1n, Q̄10)).
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In order to bound the second empirical process term we apply Lemma 9 to
the term n0.5(Q2n−Q20)(Q̄b

1n− Q̄b
10)/Cn with r0(n) = n−1/4/Cn ≤ n−1/4 (since

‖ Q̄b
1n − Q̄b

10 ‖P0= OP (n−λ(d)/2) = oP (n−1/4)) and Mn = 1/Cn and α = α(d).
This yield the following bound:

(Q2n −Q20)(Q̄b∗
1n − Q̄b

10) = OP (n−(0.5+α(d)/4Cα(d)
n ) = OP (n−λ(d)Cα(d)

n ).

Thus, we have shown

‖ D∗(Q∗n, Gn)−D∗(Q0, G0) ‖P0 = OP

(
n−λ(d)Cα(d)

n + δ−1
n ‖ Q̄∗1n − Q̄10 ‖P0

)
+OP

(
δ−3/2
n ‖ gn − g0 ‖P0

)
We have d01,1(Q̄∗1n, Q̄10) = OP (n−λ(d)) and d02(Ḡn, Ḡ0) = OP (n−λ(d2)). These
rates first need to be translated in terms of L2(P0)-norms in order to utilize the
above bound. In van der Vaart (1998, page 62) it is shown that for two densities
p, p0, we have ‖ √p−√p0 ‖2

P0
≤ −

∫
log(p/p0)dP0. By noting that

√
x−√x0 =

0.5(ξ(x, x0))−0.5(x− x0) for some ξ(x, x0) ∈ (min(x, x0),max(x, x0)), and that
max(1/Q̄1n, 1/Ḡn) ≤ 1/δn, it follows that ‖ Q̄1n − Q̄10 ‖P0= OP (n−λ(d)/2δ−0.5

n )
and ‖ Ḡn − Ḡ0 ‖P0= OP (n−λ(d2)δ−0.5

n ). So we obtain the following bound:

‖ D∗(Qn, Gn)−D∗(Q0, G0) ‖P0 = OP (n−λ(d)Cα(d)
n + δ−1.5

n n−λ(d)/2 + δ−2
n n−λ(d2)/2)

= OP (n−λ(d)Cα(d)
n + δ−2

n n−λ(d)/2),

where we used conservative bounding by not utilizing that d2 could be sig-
nificantly smaller than d. By assuming that Cn < n0.5λ(d)/α(d) (a condi-
tion dominated by our other constraints), it follows that the latter term is
OP (δ−2

n n−λ(d)/2) so that we can define rD∗,n = δ−2
n n−λ(d)/2.

We have the following upper bound for C1n (11):

C1n = o
(
r
α(d)
D∗,n,1δ

α(d)−1
n + r

2α(d)−2
D∗,n,1 δ

2α(d)−4
n Cnn

−0.5
)
,

where rD∗,n,1 = max(n−1/4, rD∗,n). Define

C1na = n−α(d)/4δα(d)−1 + n−α(d)/2δ2α(d)−4
n Cn

C1nb = δ−(1+α(d))
n n−α(d)/4−α2(d)/8 + δ−2α(d)

n n−α(d)/4−α2(d)/4Cn.

Then C1n = o(max(C1na, C1nb)). We need C1n = o(1). The first term of C1nb

and the first term of C1na are both o(n−α(d)/8) by using that δ−1
n = o(nα(d)/8).

Thus, our condition is that

Cn

(
n−α(d)/2δ2α(d)−4

n + δ−2α(d)
n n−α(d)/4−α2(d)/4

)
= o(1).
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Analysis of second order remainder R20(P ∗n , P0): Consider the second
order term R20,a(P

∗
n , P0) for a ∈ {0, 1}. By the Cauchy-Schwarz inequality

obtain the following bound

R20,a(P
∗
n , P0) ≤ δ−1

n ‖ gn − g0 ‖P0‖ Q̄∗1n − Q̄10 ‖P0

= OP (δ−2
n n−λ(d)),

where we used that the L2(P0) norms of gn−g0 and Q̄∗1n−Q̄10 areOP (δ−0.5
n n−λ(d)/2),

as shown above. Thus, we need that δ−2
n n−λ(d) = o(n−0.5), and thus δ−1

n =
o(nα(d)/8).

We have verified all conditions of Theorem 1 for the one-step TMLE. Ap-
plication of Theorem 1 yields the following result.

Theorem 3 Consider the one-step TMLE Ψ(Q∗1n, Q2n) of Ψ(P0) = Ψ(Q10, Q20)
based on Super Learner I defined above, where the super-learner I of Q̄10 and
Ḡ0 is enforced to be contained in interval (δn, 1 − δn) and its variation norm
is enforced to be smaller than Cn. Let α(d) = 1/(d+ 1), λ(d) = 0.5 + α(d)/4,

r1n(δn, Cn) = max(n−1/4, n−λ(d)C
α(d)
n + δ−2

n n−λ(d)/2).
Assume that logKn = O(n0.5−α(d)/2), and that δ−1

n , Cn are converging slowly
enough to ∞ so that the following holds:

δ−1
n = o(nα(d)/8)

C
α(d)+α2(d)
n n−α(d)/4+α2(d)/4+α3(d)/8(log n)1−α2(d) = o(1)

Cn

(
n−α(d)/2δ

2α(d)−4
n + δ

−2α(d)
n n−α(d)/4−α2(d)/4

)
= o(1).

Then ψ∗n is a regular asymptotically linear estimator with influence curve equal
to the efficient influence curve D∗(P0), and is thus asymptotically efficient.

The condition δ−1
n = o(nα(d)/8) makes clear that for large dimensions d, we

only allow δn to converge to zero at a very slow rate. The second condition
is for most d implied by the first condition, and the third condition requires
Cn = O(nα(d)/2). Given that α(d) = 1/(d + 1), we can conclude that both
δ−1
n < nα(d)/8 and Cn < nα(d)/2 can only converge to infinity at a very slow rate

when the dimension d is large.

8.2 One step CV-TMLE

For a given cross-validation scheme Bn ∈ {0, 1}n, let Qn,Bn and Gn,Bn be the
super-learner I (2) and (4) applied to the training sample P 0

n,Bn
, respectively.

Let ε1n = arg minε1 EBnP
1
n,Bn

L1(Q̄1n,Bn,ε1), and Q̄∗1n,Bn = Q̄1n,Bn,ε1n . The CV-
TMLE of Ψ(Q0) is given by EBnΨ(Q∗n,Bn), where Q∗n,Bn = (Q̄∗1n,Bn , Q2n,Bn).
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Just as the TMLE, the CV-TMLE iterative updating algorithm converges in
one-step so that we have EBnP

1
n,Bn

D∗(Q∗n,Bn , Gn,Bn) = 0.

Above we showed that if δ−1
n = O(n0.5−0.5λ(d)(max(logK1n, logK2n))−0.5),

then the two super-learners Q1n,Bn , Gn,Bn of Q̄10 and Ḡ0 based on the training
sample P 0

n,Bn
converge at the rate n−λ(d) w.r.t the loss-based dissimilarities d01,1

and d02. In addition, by Lemma 15, under these same conditions, the TMLE
update Q∗1n,Bn converges at this same rate. We will assume that logKn =

O(n0.5−α(d)/2) so that this constraint on δ−1
n is dominated by our constraint

δ−1
n = o(nα(d)/8) below.

Above, we also showed that for each of the V splits Bn, we have

‖ D∗(Q∗n,Bn , Gn)−D∗(Q0, G0) ‖P0 = OP (n−λ(d)Cα(d)
n + δ−2

n n−λ(d)/2)

≡ OP (rD∗,n).

We need that rD∗,n = o(1) and thus that Cn = o(n0.5/α(d)+0.25) = o(n0.5(d+1)+0.25)
and δ−2

n = o(nλ(d)/2). For all d ≥ 1, the latter condition δ−1
n = o(nλ(d)/4) will be

dominated by the condition δ−1
n = o(n−α(d)/8) below. Note that Cn can grow to

infinity very fast, so that for all practical purposes there is no constraint on Cn.
In fact, by using a slightly different definition ψ∗n = EBnΨ(Q∗1n,Bn , Q̂2(P 1

n,Bn
))

it follows that there is no constraint on Cn, since this constraint only appears
as part of having to bound ψ∗n − ψ0 above.

Above, we also showed that if δ−1
n = o(nα(d)/8), then R2(P ∗n,Bn , P0) =

oP (n−1/2). Application of Theorem 2 yields the following result.

Theorem 4 Consider the one-step CV-TMLE ψ∗n = EBnΨ(Q∗n,Bn) of Ψ(Q0)
based on Super Learner I defined above, where the super-learner I of Q̄10 and
Ḡ0 is enforced to be contained in interval (δn, 1 − δn) and its variation norm
is enforced to be smaller than Cn. Let α(d) = 1/(d+ 1), λ(d) = 0.5 + α(d)/4,
and Kn = max(K1n, K2n).

Assume that logKn = O(n0.5−α(d)/2), and that δ−1
n , Cn are converging slowly

enough to ∞ so that the following holds:

δ−1
n = o(nα(d)/8)
Cn = o(n0.5(d+1)+0.25).

Then ψ∗n is a regular asymptotically linear estimator with influence curve equal
to the efficient influence curveD∗(P0), and is thus asymptotically efficient.

Thus, again, just as with the one-step TMLE, for large dimension d, δn is only
allowed to converge to infinity at a very slow rate. Contrary to the condition
on Cn in the previous theorem for the one-step TMLE, the condition on Cn
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can be ignored for all practical purposes. The fact that the CV-TMLE allows
Cn to be unbounded demonstrates the important gain of CV-TMLE relative
to the TMLE.

8.3 Practical implementation of MLE over functions with
bounded variation norm smaller than M

Consider a logistic linear regression model in which LogitQ̄1 is approximated
by
∑

j βjΦj in {Φj : j} where Φj(W ) = I(W ≥ wj) for values wj, j =
1, . . . , Jn, that correspond with midpoints chosen of cubes in a fine partitioning
of [0, τ ] ⊂ IRd and its sections [0s, τ s] for all subsets s ⊂ {1, . . . , d}. Let Q̄M

1n be
the MLE over this linear logistic regression model under the constraint that∑

j | βj |< M . In the previous section we showed that for a fine enough

partitioning this approximates the MLE over all functions Q̄1 for which its
logit has a variation norm smaller than M < ∞. By including these M -
specific MLEs in the library of the super-learner for a range of M -values, the
resulting super-learner satisfies the conditions of the above two theorems (i.e.,
it is the type of super-learner defined by (2)). However, suppose that the
dimension of d is reasonably large. Then the number of basis functions is too
large to store into memory. In practice, we suggest the following practical
approximation. For simplicity, let’s consider the case that the true regression
Q̄0(w) = 0 for any w for which one or more of its components equals zero. In
that case, we can ignore the partitioning of [0s, τs] for s ⊂ {1, . . . , d}. Firstly,
we select the n basis functions corresponding with wj ∈ {W1, . . . ,Wn}. In
that manner, we are already guaranteed that for large M the MLE is able
to perfectly fit the data. In addition, we could select another O(n) basis
functions by taking a random sample of points in [0, τ ]. We suggest to keep
adding such randomly sampled basis functions till the resulting MLE is not
changing anymore w.r.t L2(Pn)-norm by more than 1/

√
n. Our hope would be

that this approximation procedure of the actual desired MLE will very quickly
converge and will not require more than O(n) basis functions. Regarding
selecting a random sampling procedure, one might decide to sample from the
uniform distribution on the cartesian product over l = 1, . . . , d, of the sets
{Wi(l) : i = 1, . . . , n}.

9 Discussion

In this article we established that a one-step TMLE or one-step CV-TMLE,
using a super learner with a library that includes L1-penalized MLEs that
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minimize the empirical risk over high dimensional linear combinations of indi-
cator basis functions under a series of L1-constraints, will be asymptotically
efficient. This was shown to hold under remarkable weak conditions and for
an arbitrary dimension of the data structure O.

This remarkable fact is heavily driven by the fact that this super-learner
will always converge at a rate faster than n−1/4 w.r.t. the loss-based dissimi-
larity. This holds for every dimension of the data and any underlying smooth-
ness of the true nuisance parameter values, as long as these true nuisance
parameter values have a finite variation norm. Since the second order remain-
der R2(P ∗n , P0) of the first order expansion for the TMLE can be bounded
in terms of these loss-based dissimilarities between the super-learner and its
true counterpart, this rate of convergence is fast enough to make the second
order remainder asymptotically negligible. As a consequence, the first order
empirical mean of the canonical gradient/efficient influence curve drives the
asymptotics of the TMLE.

In order to prove our theorems it was also important to establish that
a one-step TMLE already approximately solves the efficient influence curve
equation, under very general reasonable conditions. In this article we focussed
on a one-step TMLE that updates each nuisance parameter with its own one-
dimensional MLE update step. This choice of local least favorable submodel
guarantees that the one-step TMLE update of the super-learner of the nui-
sance parameters is not driven by the nuisance parameter component that is
hardest to estimate, which might have finite sample advantages. Nonetheless,
our asymptotic efficiency results naturally extend to any local least favorable
submodel.

The fact that a one-step TMLE already solves the efficient influence curve
equation is particularly important in problems in which the TMLE update step
is very demanding due to a high complexity of the efficient influence curve.
In addition, a one-step TMLE has a more predictable robust behavior than a
limit of an iterative algorithm. We could have focussed on the universal least
favorable submodels so that the TMLE is always a one-step TMLE, but in
various problems local least favorable submodels are easier to fit and can thus
have practical advantages.

Even though we did not implement this new super-learner yet, we discussed
practical tools for this implementation by relating it to minimizing the empiri-
cal risk over L1-constrained linear model. In a future article we will implement
this one-step TMLE and CV-TMLE in order to practically demonstrate these
theoretical results and to provide a powerful TMLE for data analyses.

In this article we assumed independent and identically distributed obser-
vations. Nonetheless, this type of super learner and the resulting asymptotic
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efficiency of the one-step TMLE will be generalizable to a variety of dependent
data structures such as data generated by a statistical graph that assumes suf-
ficient conditional independencies so that the desired central limit theorems
can still be established (van der Laan, 2008; Chambaz and van der Laan,
2011a,b; van der Laan et al., 2013; van der Laan, 2012).

This article focused on variation independent nuisance parameters. How-
ever, there are key examples in which representing Ψ(P ) in terms of recursively
defined nuisance parameters has key advantages. For example, the longitudi-
nal one-step TMLE of causal effects of multiple time point interventions in
(Gruber and van der Laan, 2012; Petersen et al., 2013) relies on a sequential
regression representation of the target parameter (Bang and Robins, 2005). In
this case, the next regression is defined as the regression of the previous regres-
sion on a shrinking history, across a number of regressions, one for each time
point at which an intervention takes place. In this case, a super-learner of nui-
sance parameter Qk is based on a loss function L1,k,Qk+1

(Qk) that depends on
a next nuisance parameter Qk+1 (representing the outcome for the regression
defining Qk), k = 1, . . . , k1 + 1.. One would now start with obtaining the de-
sired result for the super-learner of Qk1+1 whose loss function does not depend
on other nuisance parameters. For the second super-learner of Qk1 based on
candidate estimators Q̂k1,j, j = 1, . . . , J , we would use as cross-validated risk

EBnP
1
n,Bn

L1,k1,Q̂k1+1(P 0
n,Bn

)(Q̂k1,j). In other words, one estimates the nuisance

parameter of the loss-function based on the training sample. In (van der Laan
and Dudoit, 2003; van der Laan and Petersen, 2012; Dı́az and van der Laan,
2013, In press) we establish oracle inequalities for the cross-validation selec-
tor based on loss-functions indexed by an unknown nuisance parameter, which
now also rely on a remainder concerning the rate at which Q̂k1+1(Pn) converges
to Qk1+1,0. In this manner, one can establish that the super-learner of Qk1,0

will converge at the same or better rate than the super-learner of Qk1+1,0. This
process can be iterated to establish convergence of all the super-learners at the
same or better rate than the initial super-learner of Qk1+1,0. Our asymptotic
efficiency results for the one-step TMLE and one-step CV-TMLE can now
be generalized to one-step TMLE and CV-TMLE that rely on sequential tar-
geted learning. The disadvantage of sequential learning is that the behavior of
previous super-learners affects the behavior of the next super-learners in the
sequence, but the practical implementation of a sequential super-learner can
be significantly easier.

Our general theorems and specifically the theorems for our example demon-
strate that the model bound on the variance of the efficient influence curve
heavily affects the stability of the TMLE, and that we can only let this bound
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converge to infinity at a slow rate when the dimension of the data is large.
Therefore, knowing this bound instead of enforcing it in a data adaptive man-
ner is crucial for good behavior of these efficient estimators. This is also evident
from the well known finite sample behavior of various efficient estimators in
causal inference and censored data models that almost always rely on using
truncation of the treatment and/or censoring mechanism. If one uses highly
data adaptive estimators, even when the censoring or treatment mechanism is
bounded away from zero, the estimators of these nuisance parameters could
easily get very close to zero, so that truncation is crucial. Careful data adap-
tive selection of this truncation level is therefore an important component in
the definition of these efficient estimators.

Alternatively, one can define target parameters in such a way that their
variance of the efficient influence curve is uniformly bounded over the model
(e.g., van der Laan and Petersen (2007)). For example, in our example we could
have defined the target parameter EYd1 − EYd0 , where d1(W ) = I(Ḡn(W ) >
δ) and d0(W ) = 1 − I((1 − Ḡn(W ) > δ), where Ḡn is the super-learner of
Ḡ0 = E0(A | W ) and δ > 0 is a user supplied constant. In this case, the
static interventions have been replaced by realistic dynamic interventions that
approximate the static interventions but are guaranteed to only carry out
the intervention when there is enough support in the data. Due to the fact
that such parameters have a guaranteed amount of support in the data, the
variance of the efficient influence curve is uniformly bounded over the model:
i.e. MD∗ <∞.
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Appendix

A Oracle inequality for the cross-validation se-

lector.

Lemma 2 is a simple corollary of the following finite sample oracle inequality
for cross-validation (van der Laan and Dudoit, 2003), combined with exploiting
the convexity of the loss function allowing us to bring the EBn inside the loss-
based dissimilarity.
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Lemma 8 For any δ > 0, there exists a constant C(M1Q,n,M2Q,n, δ) = 2(1 +
δ)2(2M1Q,n/3 +M2

2Q,n/δ) such that

E0{EBnd01( ˆ̄Qk1n(P 0
n,Bn), Q̄0)} ≤ (1 + 2δ)E0{EBn min

k
d01( ˆ̄Qk(P

0
n,Bn), Q̄0)}

+2C(M1Q,n,M2Q,n, δ)
logK1n

nB̄n

.

Similarly, for any δ > 0,

EBnd01( ˆ̄Qk1n(P 0
n,Bn , Q̄0) ≤ (1 + 2δ)EBn min

k
d01( ˆ̄Qk(P

0
n,Bn), Q̄0)}+Rn,

where ERn ≤ 2C(M1Q,n,M2Q,n, δ)
logK1n

nB̄n
.

If logK1n/n divided by EBn mink d01( ˆ̄Qk(P
0
n,Bn

), Q̄0)} converges to zero in
probability, then we also have

EBnd01( ˆ̄Qkn(P 0
n,Bn

, Q̄0)

EBn mink d01( ˆ̄Qk(P 0
n,Bn

, Q̄0)
→p 1.

Similarly, if logK1n/n divided by E0EBn mink d01( ˆ̄Qk(P
0
n,Bn

), Q̄0)} converges
to zero, then we also have

E0EBnd01( ˆ̄Qkn(P 0
n,Bn

, Q̄0)

E0EBn mink d01( ˆ̄Qk(P 0
n,Bn

, Q̄0)
→ 1.

B Empirical process results

A theorem in (van der Vaart and Wellner, 2011) establishes the following result
for a Donsker class Fn with envelope Fn: If Pf 2 ≤ δ2PF 2, then

E ‖ Gn ‖Fn≤ J(δ,Fn, L2)

(
1 +

J(δ,Fn, L2)

δ2
√
n ‖ Fn ‖P0

)
‖ Fn ‖P0 ,

where

J(δ,Fn, L2) = sup
Λ

∫ δ

0

(
log(1 +N(ε ‖ Fn ‖P0 ,Fn, L2(Λ))

)0.5
dε

is the entropy integral from 0 to δ. A simple corollary of this theorem is the
following lemma.
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Lemma 9 Consider Fn with ‖ Fn ‖P0< Mn and supΛ

√
log(1 +N(ε ‖ Fn ‖P0 ,Fn, L2(Λ))) <

1/ε1−α. Then,

E sup
f∈Fn,‖f‖P0<r0(n)

| Gn(f) |≤ {r0(n)/Mn}αMn + {r0(n)/Mn}2α−2n−0.5.

If r0(n) < n−1/4, one should select r0(n) = n−1/4 in the above right hand side,
giving the bound:

E sup
f∈Fn,‖f‖P0<r0(n)

| Gn(f) |≤ {n−0.25/Mn}αMn + {Mn}2−2αn−α/2.

The following lemma is proved by first applying the above lemma to (Pn−
P0)fn with r0(n) = 1 to obtain an initial rate r0(n), and then applying the
above lemma again with this initial rate r0(n).

Lemma 10 Consider the following setting:

d0(Qn, Q0) ≤ (Pn − P0)fn
fn ∈ Fn, ‖ Fn ‖P0≤Mn

supΛ

√
log(1 +N(ε ‖ Fn ‖P0 ,Fn, L2(Λ))) < 1/ε1−α

‖ fn ‖P0≤M2n{d0(Q∗n, Q0)}0.5.

Then
d0(Qn, Q0) ≤ n−1/2n−α/2C(Mn,M2n, α),

where

C(Mn,M2n, α) = M2(n)αM(n)1−α2

+M(n)2α(1−α)M2(n)−2(1−α)n−α/2.

Lemma 11 Let fn = D∗(Q∗n, Gn)−D∗(Q0, G0). Assume ‖ fn ‖P0= OP (rD∗,n).
Assume

sup
Λ

√
log(1 +N(ε ‖ F1n ‖P0 ,F1n, L2(Q))) = O(ε−(1−α)),

where F1n = {D∗(P ) : P ∈ Mn}/MD∗,v. We can always select α = 1/(d + 1)
where d is the dimension of O.

Let rD∗,n,1 = max(n−1/4, rD∗,n). Then,

E0 |
√
n(Pn−P0)fn |≤ (rD∗,n,1/MD∗,n)αMD∗,n+(rD∗,n,1/MD∗,n)2α−2 n−0.5MD∗v,n.
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Proof: Let Fn = {D∗(P ) : P ∈Mn} ⊂ {f :‖ f ‖v≤MD∗v,n, ‖ f ‖∞< MD∗,n},
and note that its envelope Fn satisfies ‖ Fn ‖P0≤ MD∗,n. Note that fn ∈ Fn.
Let F1n = Fn/MD∗v,n, and note that (Pn − P0)fn = MD∗v,n(Pn − P0)f1n

where f1n = fn/MD∗v,n ∈ F1n. We have ‖ F1n ‖P0≤ MD∗,n/MD∗v,n and,

by assumption, supΛ

√
log(1 +N(ε ‖ F1n ‖P0 ,F1n, L2(Λ))) = O(ε−(1−α)). We

can now apply Lemma 9 with Fn = F1n, Mn = MD∗,n/MD∗v,n, α, r0(n) =
rD∗,n/MD∗v,n. Application of Lemma 9 yields

E0Gn(f1n) ≤ (rD∗,n,1/MD∗,n)αMD∗,n/MD∗v,n + (rD∗,n,1/MD∗,n)2α−2 n−0.5.

The desired bound for E0 | Gn(fn) | is the right-hand side multiplied with
MD∗v,n. 2

The following lemma is needed in the analysis of the CV-TMLE, where
fn,ε = D∗(Qn,Bn,ε, Gn,Bn)−D∗(Q0, G0).

Lemma 12 Let fn,εn ∈ Fn = {fn,ε : ε} where ε varies over a bounded set in
IRp and fn,ε is a non-random function (i.e., not based on data O1, . . . , On).
Suppose that ‖ fn,εn ‖P0= oP (rD∗,n) for a rate rD∗,n satisfying rD∗,n log r−1

D∗,n →
0, and rD∗,nn

0.5 →∞. Suppose that the envelope Fn of Fn satisfies ‖ Fn ‖P0≤
MD∗,n. We have supΛ N(ε ‖ Fn ‖,Fn, L2(Λ)) = O(ε−p). Then,

E0 | Gn(fn,εn) |= O
(
rD∗,n(1 + log r−1

D∗,n)
)
.

Thus, if rD∗,n = o(1), then Gn(fn,εn) = oP (1).

Proof: For notational convenience, let’s denote fn,εn with fn. We apply the
Theorem in van der Vaart, Wellner providing us with

E0 | Gn(fn) |≤ J(δn,Fn)

(
1 +

J(δn,Fn)

δ2
nn

0.5 ‖ Fn ‖P0

)
‖ Fn ‖P0 , (24)

where we can select δn = rD∗,n. Using the bound ε−p on the uniform covering

number, it follows that J(δn,Fn) = −p0.5
∫ δn

0
(log ε)0.5dε. We can conserva-

tively bound (log ε)0.5 by log ε, and use that
∫ δn

0
log εdε = δn− δ log δn = δ(1 +

log(δ−1
n )). This shows that J(δ,Fn) ≤ δn(1+log δ−1

n ). If J(δn,Fn) = O(δ2
nn

0.5),
then the leading term in (24) is given by J(δn,Fn) ‖ Fn ‖P0 . Using the above
bound for J(δn,Fn), it follows that this holds if δn(1+ log δ−1

n ) = O(δ2
nn

0.5), or
equivalently, δn(1 + log δ−1

n ) = O(δnn
0.5). By assumption we have δnn

0.5 →∞
and δn log δ−1

n → 0, so that this always holds. This results in the following
bound:

E0 | Gn(fn) |= O(rD∗,n(1 + log r−1
D∗,n)),

which equals the stated bound. 2
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C Constraining the variation norm of the data

distribution does not affect the canonical

gradient of the model

In the above formulation of the one-step TMLE, we assumed that both Q̂(Pn)
and its update Q∗n are elements of Qn. By construction this holds for our
initial estimator Q̂(Pn). The update will naturally be an element of Qn by our
assumption that the least favorable submodel {Qn,ε : ε} ⊂ Qn is a submodel
of Qn. However, one might wonder why a least favorable submodel through
Qn with score equal to the efficient influence curve at (Qn, Gn) in the actual
modelM would also be a submodel ofMn? The key to the answer is that the
universal bound assumptions enforced by Mn are not affecting the tangent
space at a P ∈Mn: i.e. the tangent space at P in modelM is identical to the
tangent space at P in the model Mn. This means that the efficient influence
at a P ∈Mn for the modelMn is the same as the efficient influence curve at
this P for the modelM. This strongly suggests that a naturally selected least
favorable submodel for model M through a Q ∈ Mn will also be a submodel
ofMn for a small enough range of ε values. Therefore, we expect this to be a
non-issue, as also demonstrated in our example.

The fact that supremum norm and L2(P0) bounds do not change the tan-
gent space at a P ∈Mn is easily understood, but one might wonder if a strict
bound on the variation norm could restrict the class of possible submodels
through P enough so that the closure of the linear span of its scores is a strict
subset of the tangent space at P under model M. To obtain some insight in
this we consider a particular example.

Let O be a univariate random variable and letM be a nonparametric model
dominated by the Lebesgue measure µ that assumes that all densities are
differentiable. The tangent space T (P ) at P ∈ M for this model is saturated
and thus equals L2

0(P ). For a P ∈M, let p = dP/dµ be its density and let p′

be its derivative Let Mn be the submodel that enforces that C = supP∈Mn
‖

p′ ‖∞< ∞. Let Tn(P ) be the tangent space at P ∈ Mn for model Mn.
Suppose that P has compact support O(P ) ⊂ IR. Consider a submodel {pε =
(1 + εS)p : ε ∈ (−δ, δ)} for some δ > 0 with score S ∈ L2

0(P ) at a P ∈ Mn

so that ‖ p′ ‖∞< C <∞, where the supremum is over the support O(P ). We
have p′ε = (1 + εS ′)p′. This will satisfy ‖ p′ε ‖∞< C if

‖ S ′ ‖∞<
C− ‖ p′ ‖∞
δ ‖ p′ ‖∞

.

We can select δ > 0 equal to an arbitrarily small number larger than 0. This
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shows that any S ∈ L2
0(P ) for which its derivative S ′ has a bounded supremum

norm is an element of the tangent space Tn(P ). However, any function in
L2

0(P ) can be arbitrarily well approximated in L2
0(P ) by functions that have a

uniformly bounded derivative (where this bound can be arbitrarily large). This
proves that Tn(P ) = L2

0(P ) and thus that putting bounds on the derivative do
not affect the tangent space of the model.

Consider now a submodel Mn of M that enforces C = supP∈Mn
‖ p ‖v<

∞. As above, let’s consider again the submodel {pε = (1 + εS)p : ε ∈ (−δ, δ)}
for some δ > 0 with score S ∈ L2

0(P ) at a P ∈Mn, so that we know ‖ p ‖v< C.
Let O(P ) be a compact subset of IR. We have

‖ pε ‖v≤
∫
O(P )

| p(dx) | +ε
∫
O(P )

p(x) | S(dx) | + | S(x)p(dx) | .

Since ‖ p ‖∞≤ C, we can further conservatively bound the right-hand side by
‖ p ‖v +εC(‖ S ‖v + ‖ S ‖∞). Thus, if ‖ S ‖v< (C− ‖ p ‖v)/(2Cδ), then
{pε : ε ∈ (−δ, δ)} ⊂ Mn. We can select δ > 0 arbitrarily small. This proves
that any S ∈ L2

0(P ) for which ‖ S ‖v<∞ is a score of a parametric submodel
ofMn. The closure of the linear span of this set in L2

0(P ) equals L2
0(P ) again,

so that Tn(P ) = T (P ) = L2
0(P ).

Based on these two examples, it follows that indeed additional universal
variation norm bounds on the model M are truly global constraints which
do thus not affect the tangent space and accordingly the efficient influence
curve of a pathwise differentiable target parameter. As a consequence, at any
P ∈Mn, a least favorable submodel ofMn through P for modelMn will also
be a least favorable submodel through P for model M.

D Preservation of the desired rate for the one-

step TMLE

In this article we constructed an initial super-learner ˆ̄Q of Q̄0 satisfying d01( ˆ̄Q(Pn), Q̄0) =
OP (n−λ1) where λ1 ∈ IRk1

>0. For example, if we select Super Learner II thenλ1

can be chosen so that r2
Q̄

(n) = O(n−λ1). However, our one-step TMLE relies

on its targeted version Q̄∗n = Q̄n,εn , so that we still need to establish a rate
for this targeted version, where we can use that we already have a rate for
Q̄n. We assume that Q̂k1+1(Pn) is not updated by the TMLE-update step, by
already being an MLE type estimator. Due to the fact that our model M is
allowed to be unbounded, so that the global bounds on Mn can converge to
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infinity, we might worsen the rate of the initial estimator Q̄n. Thus the preser-
vation of the desired rate n−1/4 might require controlling the rate at which the
bounds of Mn converge to the corresponding infinite bounds for M. This is
formalized by the following lemma. We remind the reader that our submodel
is such that εn(j) = arg minε(j) PnL1j(Qjn,ε(j)), or, in our short-hand notation
εn = arg minε PnL1(Qn,εn).

Lemma 13 Suppose d01(Q̄n, Q̄0n) = OP (n−λ1) for a λ1 ∈ IRk1
>0 with λ1 >

0.5. Suppose also that α1 ∈ IRk1
>0 is chosen so that for F1n = {L1(Q̄) : Q̄ ∈

Q̄n}/ML1(Q)v,n with envelope F1n < M1Q,n/ML1(Q)v,n we have

sup
Λ

√
log(1 +N(ε ‖ F1n ‖P0 ,F1n, L2(Λ))) = O(ε−(1−α1)).

Let d1 ∈ INk1
>0 be the vector of integers indicating the dimensions of the domains

of the components of Q̄ = (Q̄1, . . . , Q̄k1). In a nonparametric model Mn we
have that this holds for α1 = 1/(d1 + 1), so that we will always have α1 ≥
1/(d1 + 1). Let εn ∈ IRk1 be defined by εn(j) = arg minε(j) PnL1j(Q̄jn,εj), j =
1, . . . , k1, and let Q̄∗n = Q̄n,εn. Then,

E0d01(Q̄∗n, Q̄0n) ≤ n−1/2n−α1/2C(ML1(Q)v,n,M2Q,n,M1Q,n, α1) +O(n−λ1),

where

C(ML1(Q)v,n,M2Q,n,M1Q,n, α1) =

ML1(Q)v,n

{
M2Q,nML1(Q)v,n}α1{M1Q,n/ML1(Q)v,n

}1−α2
1

+ML1(Q)v,n

{
{M1Q,n/ML1(Q)v,n}2α1(1−α1){M2Q,nML1(Q)v,n}−2(1−α1)n−α1/2

}
.

Proof: We have that PnL1(Q̄n,εn) = minε PnL1(Q̄n,ε). This yields the follow-
ing inequality:

0 ≤ d01(Q̄∗n, Q̄0n) = P0L1(Q̄n,εn)− P0L1(Q̄0n)

= P0L1(Q̄n,εn)− P0L1(Q̄n) + P0L1(Q̄n)− P0L1(Q̄0n)

= P0L1(Q̄n,εn)− P0L1(Q̄n) + d01(Q̄n, Q̄0n)

= P0{L1(Q̄n,εn)− L1(Q̄n)}+OP (n−λ1)

= −(Pn − P0){L1(Q̄n,εn)− L1(Q̄n)}+ Pn{L1(Q̄n,εn)− L1(Q̄n)}+OP (n−λ)

≤ −(Pn − P0){L1(Q̄n,εn)− L1(Q̄n)}+OP (n−λ).

We have that the variation norm and supremum norm of L1(Q̄∗n)−L1(Q̄n) are
bounded by ML1(Q)v,n and M1Q,n, respectively. Let Fn = {L1(Q̄ε) − L1(Q̄) :
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Q̄ ∈ Q̄n, ε} and note that it is a subset of F+
n = {f ∈ Dk1 [0, τ ] :‖ f ‖v≤

ML1(Q)v,n, ‖ f ‖∞< M1Q,n}. We also note that the envelope Fn of Fn satisfies
‖ Fn ‖P0≤M1Q,n. Then, the right-hand side of the above inequality can be rep-
resented as (Pn − P0)fn + OP (n−λ) for an fn ∈ Fn. Let F1n = Fn/ML1(Q)v,n,
and let F1n be its envelope. We have ‖ F1n ‖P0≤ M1Q,n/ML1(Q)v,n. By as-

sumption we have supΛ

√
log(1 +N(ε ‖ F1n ‖P0 ,F1n, L2(Λ)) = O(ε−(1−α1)).

We have Fn ⊂ F+
n , and the latter set has a covering number bounded by

the choice α(d) = 1/(d + 1) so that we know that α1 ≤ 1/(d + 1). Define
dn01(Q̄∗n, Q̄0n) = d01(Q̄∗n, Q̄0n)/ML1(Q)v,n. We have

dn01(Q̄∗n, Q̄0n) ≤ (Pn − P0)f1n +OP (n−λ1/ML1(Q)v,n),

where f1n ∈ F1n, ‖ F1n ‖P0≤ M1Q,n/ML1(Q)v,n. We also want to bound ‖
f1n ‖P0 in terms of dn01(Q̄∗n, Q̄0). For this purpose we note

‖ L1(Q̄∗n)− L1Q̄n) ‖P0 ≤ ‖ L1(Q̄∗n)− L1(Q̄0n) ‖P0 + ‖ L1(Q̄n)− L1(Q̄0n) ‖P0

≤ M2Q,n{d01(Q̄∗n, Q̄0n)}0.5 +OP (n−λ1/2)

= M2Q,nML1(Q)v,n{dn01(Q̄∗n, Q̄0n)}0.5 +OP (n−λ1/2).

So we have the following setting for the analysis of dn01(Q̄∗n, Q̄0):

dn01(Q̄∗n, Q̄0n) ≤ (Pn − P0)f1n +OP (n−λ1/ML1(Q)v,n)
f1n ∈ F1n, ‖ F1n ‖< M1Q,n/ML1(Q)v,n

supQ
√

log(1 +N(ε ‖ F1n ‖P0 ,F1n, L2(Q))) = O(ε−(1−α1))
‖ f1n ‖P0≤M2Q,nML1(Q)v,n{dn01(Q̄∗n, Q̄0n)}0.5.

We now apply Lemma 10 with d0 = dn01, Qn = Q̄∗n, Q0 = Q̄0n, fn = f1n,
Fn = F1n, α = α1, Mn = M1Q,n/ML1(Q)v,n and M2n = M2Q,nML1(Q)v,n. This
proves

dn01(Q̄∗n, Q̄0n) ≤ n−1/2n−α1/2
C(ML1(Q)v,n,M2Q,n,M1Q,n, α1)

ML1(Q)v,n

.

Thus,

d01(Q̄∗n, Q̄0n) ≤ n−1/2n−α1/2C(ML1(Q)v,n,M2Q,n,M1Q,n, α1).

This completes the proof. 2

An immediate corollary of this lemma is given below. Note that the rate
n−λ

∗
1 guaranteed by this corollary is the same as the rate rQ,MLE(n). Thus, if

one uses Super-Learner I, then the conditions stated guarantee that the rate
of the initial estimator is preserved, even though the model is allowed to be
unbounded.
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Corollary 1 Consider the super-learner ˆ̄Q(Pn) defined in (2) or (8).
Suppose d01(Q̄n, Q̄0n) = OP (n−λ1) for a λ1 ∈ IRk1

>0 with λ1 > 0.5. We can
set λ1 so that n−λ1 = O(r2

Q(n)) or n−λ1 = O(rQ,MLE(n)).

Suppose also that α1 ∈ IRk1
>0 is chosen so that for F1n = {L1(Q̄) : Q̄ ∈

Q̄n}/ML1(Q)v,n with envelope F1n < M1Q,n/ML1(Q)v,n we have

sup
Λ

√
log(1 +N(ε ‖ F1n ‖P0 ,F1n, L2(Λ))) = O(ε−(1−α1)).

Let d1 ∈ INk1
>0 be the vector of integers indicating the dimension of the domain

of Q̄ = (Q̄1, . . . , Q̄k1). In a nonparametric model Mn we have that this holds
for α1 = 1/(d1 + 1), so that we will always have α1 ≥ 1/(d1 + 1).

Let λ∗1 = 0.5 + α1/4. Assume that

max(M1Q,n,M
2
2Q,n) logK1n

n
= O(n−λ1)

max(M1Gn ,M
2
2Gn

) logK2n

n
= O(n−λ2)

n−α1/4C(ML1(Q)v,n,M2Q,n,M1Q,n, α1) = O(1).

Then, d01((Q̄∗n, Q̄0) = OP (n−λ
∗
1).

Suppose that the model M is bounded and we select Mn =M. Then we
can not only show that we preserve a rate n−λ

∗
1 , as in the previous corollary,

but we can now guarantee preservation of the rate of the initial estimator Q̄n.
This result is stated in the following lemma.

Lemma 14 Assume the modelM is bounded. Assume d01(Qn, Q0) = OP (n−λ1)
and d02(Gn, G0) = OP (n−λ2). For a λ1 ∈ IRk1+1

>0 and λ2 ∈ IRk2+1
>0 , we define

λ = (λ1, λ2) ∈ IRk1+k2+2
>0 .

Let S(Q,G, ε) = d
dε
L1(Qε). Note, S(Q,G, ε) = (Sj(Q,G, ε(j)) : j =

1, . . . , k1+1). Let εn = arg minε PnL1(Qn,ε). Assume it solves PnS(Qn, Gn, εn) =
0. Assume the following analytic properties of the least favorable submodel:

• d01(Qn,εn , Q0) → 0, d01(Qn, Q0) → 0 and d02(Gn, G0) → 0 imply that
εn → 0;

• Along a sequence (Qn, Gn) with d0((Qn, Gn), (Q0, G0)) = O(n−λ), we
have

P0{S(Qn, Gnεn)− S(Qn, Gn, ε0n)} =
d

dε0n
P0S(Qn, Gn, ε0n)(εn − ε0n)

+o(| εn − ε0n |);
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• For a sequence εn → 0 and (Qn, Gn) with d0((Qn, Gn), (Q0, G0)) =
O(n−λ), we have d

dεn
P0S(Qn, Gn, εn) converges to c0 = − d

dε
P0S(Q0, G0, ε)

∣∣
ε=0

>
0 with c0 > 0;

• For some δ > 0, sup|ε|<δ,P∈M ‖ S(Q,G, ε) ‖v<∞.

• If d0((Qn, Gn), (Q0, G0)) = O(n−λ) and εn → 0, then P0{S(Qn, Gn, εn)−
S(Q0, G0, εn} = O(n−λ/2);

• If εn = O(n−λ1/2) and d01(Qn, Q0) = O(n−λ1), then d01(Qn,εn , Q0) =
O(n−λ1).

Then,
εn = OP (n−λ1/2) and d01(Qn,εn , Q0) = OP (n−λ1).

Proof: Define ε0n = arg minε P0L1(Qn,ε), which solves P0S(Qn, Gn, ε0n) = 0.
We also define ε0 = 0 which solves P0S(Q0, G0, ε0) = 0. It follows, analogue
to the proof of previous Lemma 13, that d01(Qn,εn , Q0n) = oP (1). By the first
assumption, d01(Qn,εn , Q0n) = oP (1) implies εn = oP (1), which also implies
ε0n = oP (1). Thus, we have εn = oP (1) and ε0n = oP (1). Given that we know
that εn = oP (1), we want to prove that εn = OP (n−λ1/2). We will prove this
by proving εn − ε0n = OP (n−0.5) and ε0n = OP (n−λ1/2). Note

P0{S(Qn, Gn, εn)− S(QnGn, , ε0n)} = −(Pn − P0)S(Qn, Gn, εn).

We assumed differentiability in ε uniformly in the sequenceQn with d01(Qn, Q0) =
OP (n−λ1) in the sense that:

P0{S(Qn, Gn, εn)−S(Qn, Gn, ε0n)} =
d

dε0n
P0S(Qn, Gn, ε0n)(εn−ε0n)+o(| εn−ε0n |).

We also assumed that− d
dε0n

P0S(Qn, Gn, ε0n) converges to c0 = − d
dε0
P0S(Q0, G0, ε0) >

0. Then, it follows that

εn − ε0n = c−1
0 (Pn − P0)S(Qn, Gn, εn) + o(| εn − ε0n |).

By assumption, supQ∈Q,G∈G,|ε|<δ ‖ S(Q,G, ε) ‖v< C < ∞, so that it follows

that εn − ε0n = OP (n−1/2).
Consider now the equations P0S(Qn, Gn, ε0n) = P0S(Q0, G0, ε0) = 0. We

have

P0{S(Q0, G0, ε0n)− S(Q0, G0, ε0)} = −P0{S(Qn, Gn, ε0n)− S(Q0, G0, ε0n)}.
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Thus,

ε0n − ε0 = c−1
0 P0{S(Qn, Gn, ε0n)− S(Q0, G0, ε0n)}+ o(| ε0n − ε0 |).

We assumed that P0{S(Qn, Gn, ε0n)−S(Q0, G0, ε0n} = OP (n−λ1/2) if d01(Qn, Q0) =
OP (n−λ1) and ε0n = oP (1). This proves that ε0n − ε0 = OP (n−λ1/2) + o(|
ε0n − ε0 |), and thus ε0n = OP (n−λ1/2), which proves the first statement of
the lemma. By the final assumption, we have that the latter, combined with
d01(Qn, Q0) = OP (n−λ1) implies d01(Qn,εn , Q0) = OP (n−λ1). 2

E Preservation of the rate of initial estimator

for the one-step CV-TMLE

Consider the submodel {Qε : ε} of the type presented in main article and pre-
vious section. The following lemma is an immediate consequence of the oracle
inequality of the cross-validation selector for the loss function L1j, applied to

the set of candidate estimators Pn → Qjn,ε(j) = Q̂j,ε(j)(Pn) indexed by ε(j), for
each j = 1, . . . , k1 + 1.

Lemma 15 Let εn = arg minεEBnP
1
n,Bn

L1(Qn,Bn,ε), and ε̃n = arg minεEBnP0L1(Q̂ε(P
0
n,Bn

)).

Assume d01(Q̂(P 0
n,Bn

), Q0n) = OP (n−λ1). We have

EBnd01(Q̂εn(P 0
n,Bn), Q0n) ≤ (1 + 2δ) min

ε
EBnd01(Q̂ε(P

0
n,Bn), Q0n)

+
C(M1Q,n,M2Q,n, δ) logK1n

nq
.

By convexity of the loss function L1(Q), this implies

d01(EBnQ̂εn(P 0
n,Bn), Q0n) ≤ (1 + 2δ) min

ε
EBnd01(Q̂ε(P

0
n,Bn), Q0n)

+
C(M1Q,n,M2Q,n, δ) logK1n

nq
.

We have

min
ε
EBnd01(Q̂ε(P

0
n,Bn), Q0n) ≤ EBnd01(Q̂(P 0

n,Bn), Q0n) = OP (n−λ1).

Thus, if C(M1Q,n,M2Q,n, δ) logK1n/(nq) = O(n−λ1), then

d01(EBnQn,Bn,εn , Q0n) = OP (n−λ1).

It also follows that for each Bn, d01(Q̂εn(P 0
n,Bn

), Q0n) = OP (n−λ1).
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F General bounding of second order remain-

der R2().

Recall the expansion Ψ(Q∗n)−Ψ(Q0) = (Pn−P0)D∗(Q∗n, Gn)+R20(Q∗n, Q0, Gn, G0)
for the TMLEQ∗n. For asymptotic efficiency, we need thatR20((Q∗n, Gn), (Q0, G0)) =
oP (n−1/2). Therefore, given d0(P ∗n , P0), we want to bound R20(P ∗n , P0) in terms
of d0(P ∗n , P0). Typically, our loss functions are log-likelihood or squared er-
ror loss functions in which case d01j(Qj, Qj0) equals or is equivalent with
‖ Qj − Qj0 ‖2

P0
, and similarly, d02j(Gj, Gj0) equals or is equivalent with

‖ Gj − G0j ‖P0 : here we use that the log likelihood based dissimilarity is
equivalent with the square of the L2(P0)-norm if the log-likelihood loss is uni-
formly bounded on the model (our M1 <∞). In all our applications, by using
Cauchy-Schwarz inequality

∫
fgdP0 ≤‖ f ‖P0‖ g ‖P0 , we have been able to nat-

urally bound R20((Q∗n, Gn), (Q0, G0)) in terms of L2(P0)-norms of Q∗jn − Qj0

with j ∈ {1, . . . , k1+1}, and L2(P0)-norms of Gjn−Gj0 with j ∈ {1, . . . , k2+1}.
Plugging in the rates oP (n−1/4) for each of these L2(P0) norms, then proves
that R2((Q∗n, Gn), (Q0, G0)) = oP (1/

√
n). So one is typically able to bound

R2() as follows:

R2((Q∗n, Gn), (Q0, G0)) ≤
k1+1∑
j1=1

k1+1∑
j′1

cQn(j1, j
′
1) ‖ Q∗j1n −Qj10 ‖P0‖ Q∗j′1n −Qj′10 ‖P0

+

k2+1∑
j2=1

k2+1∑
j′2

cGn(j2, j
′
2) ‖ Gj2n −Gj20 ‖P0‖ Gj′2n

−Gj′20 ‖P0

+

k1+1∑
j1=1

k2+1∑
j2=1

cQGn(j1, j2) ‖ Q∗j1n −Qj10 ‖P0‖ Gj2n −Gj20 ‖P0 ,

for certain matrices cQn(), cGn(), cQGn() of coefficients. In other words, the
second order term R2() will be a sum of second order integral terms where
each integral has a second order integrand, either a square difference or a
cross-product of one difference with another difference, among the k1 + k2 + 2
possible differences Q∗j1n − Qj10, Gj2n − Gj20. Of course, typically not all
(k1 + k2 + 2)2 possible second order terms will appear in R2. Each of these
second order integrals can be bounded with Cauchy-Schwarz inequality in
terms of a corresponding product of the norms of the two differences, resulting
in the above type of bound. Since the second order integrands will typically
also involve other functions depending on P0 and (Q∗n, Gn), these bounds will
also involve bounds on these functions (e.g. supremum norm), resulting in
coefficients that depend on n.
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For bounded models, these coefficients will be uniformly bounded by fixed
constants, while for sequence of modelsMn converging to an unbounded model
M, we will have that R2((Q∗n, Gn), (Q0n, G0n)) is bounded as above but with
coefficient matrices that are upper bounded by constants depending on the
bounds of modelMn. In the latter case, we will have thatR2((Q∗n, Gn), (Q0n, G0n))
is bounded by some constant MR2n times the above second order polynomial
sum in L2(P0)-norms, where MR2n will now possibly converge to infinity. That
is, we obtain a bound of the form MR2nfR2(d0(P ∗n , P0n)), and by letting MR2n

converge slowly enough to infinity, this will still be oP (n−1/2).

G A single updating step in TMLE suffices

for approximately solving the efficient in-

fluence curve equation

The following lemma proves that for a local least favorable submodel with a
1-dimensional ε and n−1/4+-consistent initial estimators, the one-step TMLE
already solves PnD

∗(Qn,εn , Gn) = oP (n−1/2) under some regularity conditions.

Lemma 16 Ψ : M → IR is a pathwise differentiable parameter at P with
canonical gradient D∗(P ), and assume Ψ(P ) = Ψ(Q(P )) and D∗(P ) = D∗(Q(P ), G(P ))
for parameters Q : M→ Q = {Q(P ) : P ∈ M} and G : M→ G = {G(P ) :
P ∈M}. Let R2() be defined by Ψ(P )−Ψ(P0) = (P −P0)D∗(P ) +R2(P, P0),
and let R2(P, P0) = R20((Q,G), (Q0, G0)). Suppose Q0 = arg minQ P0L(Q) for
some loss function L(Q) and that, for any Q ∈ Q and G ∈ G, {Qε : ε} ⊂ Q is a
one dimensional parametric submodel through Q with d

dε
L(Qε)

∣∣
ε=0

= D∗(Q,G).
Let (Qn, Gn) be an initial estimator of (Q0, G0), and consider the one-step
TMLE Ψ(Qn,εn) with εn = arg minε PnL(Qn,ε).

Let fn(ε) = PnD
∗(Qn,ε, Gn) and gn(ε) = d

dε
PnL(Qn,ε). Let f ′n(ε) = d

dε
fn(ε)

and g′n(ε) = d
dε
gn(ε). Let ε0 = 0.

Assume

• fn(εn) = fn(0)+f ′n(0)εn+OP (ε2n) and gn(εn) = gn(0)+g′n(0)εn+OP (ε2n);

• ε2n = oP (n−1/2);

• { d
dεn
D∗(Qn,εn , Gn) − d2

dε2n
L(Qn,εn)}/n0.25 falls in a P0-Donsker class with

probability tending to 1;
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•

P0

{
d

dε0
D∗(Qn,ε0 , Gn)− d

dε0
D∗(Q0,ε0 , , G0)

}
= OP (n−1/4) (25)

P0

{
d2

dε20
L(Qn,ε0)−

d2

dε20
L(Q0,ε0)

}
= OP (n−1/4); (26)

•
P0

d2

dε20
L(Q0,ε0) = −P0D

∗(P0){D∗(P0)}>. (27)

If L(Q(P )) = − log pQ(P ),η(P ) for some density parameterization (Q, η)→
pQ,η, then (27) holds;

• d
dε0
R20((Q0,ε0 , G0), (Q0, G0)) = 0.

Then, PnD
∗(Qn,εn , Gn) = oP (1/

√
n).

Proof of Lemma: Firstly, by the fact that Qn,ε has score D∗(Qn, Gn) at
ε = 0, it follows that fn(0) = gn(0). We also know that gn(εn) = 0, and we
want to show that fn(εn) = oP (n−1/2). Let ε0 = 0. By the second order Tailor
expansion assumption for fn, gn at ε = 0, we have

fn(εn) = fn(εn)− gn(εn)

= fn(0)− gn(0) + εn(f ′n − g′n)(0) +O(ε2n)

= εn

{
d

dε0
PnD

∗(Qn,ε0 , Gn)− d2

dε20
PnL(Qn,ε0)

}
+O(ε2n).

By assumption, ε2n = oP (n−1/2), so that O(ε2n) = oP (n−1/2). Thus, it remains
to show

Pn
d

dε0
D∗(Qn,ε0 , Gn)− Pn

d2

dε20
L(Qn,ε0) = OP (n−1/4).

By our Donsker class assumption, we have

(Pn − P0)

{
d

dε0
D∗(Qn,ε0 , Gn)− d2

dε20
L(Qn,ε0)

}
/n1/4 = OP (n−1/2).

Thus, it remains to show

d

dε0
P0D

∗(Qn,ε0 , Gn)− P0
d2

dε20
L(Qn,ε0) = OP (n−1/4).
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By assumptions (25), we have that the left-hand side of last expression equals

d

dε0
P0D

∗(Q0,ε0 , G0)− P0
d2

dε20
L(Q0,ε0) +OP (n−1/4),

so that it remains to show that the first term equals zero. By −P0D
∗(P ) =

Ψ(P )−Ψ(P0)−R2(P, P0), it follows that

d

dε0
P0D

∗(Q0,ε0 , G0) = − d

dε0
Ψ(Q0,ε0) +

d

dε0
R2((Q0,ε0 , G0), (Q0, G0)).

By assumption we have d
dε0
R2((Q0,ε0 , G0), (Q0, G0)) = 0. By definition of the

pathwise derivative at P0, we have that the derivative Ψ(Q0,ε) = Ψ(P0,ε) at
ε = 0 equals P0D

∗(P0){D∗(P0)}>. Thus, we have shown

d

dε0
P0D

∗(Q0,ε0 , G0) = −P0D
∗(P0){D∗(P0)}>.

Thus, it remains to show (27), which thus holds by assumption. Suppose that
L(Q(P )) = − log pQ(P ),η(P ) for some density parameterization (Q, η) → pQ,η.
Then L(Q0,ε) = − log pQ0,ε,η0 . Since {pQ0,ε,η0 : ε} is a correctly specified
parametric model, we have that the second derivative of −P0 log pQ0,ε,η0 at
ε = 0 equals its information matrix (i.e., covariance matrix of its score)
P0

d
dε

log pQ0,ε,η0{ ddε log pQ0,ε,η0}> at ε = 0. However, the latter equals
−P0D

∗(P0){D∗(P0)}>, which proves (27). This completes the proof of fn(εn) =
oP (n−1/2). 2

In the main article we have not proposed a 1-dimensional local least favor-
able submodel as in Lemma 16, even though our results are straightforwardly
generalized to that case. Instead we proposed a k1 + 1-dimensional least fa-
vorable submodel that uses a 1-dimensional ε(j) for updating Qjn for each
j = 1, . . . , k1 + 1. We will now prove the desired lemma for such a submodel
by application of the above lemma across all j.

Lemma 17 Let Ψ :M→ IR be pathwise differentiable with canonical gradient
D∗(P ) = D∗(Q,G) and let Ψ(P ) = Ψ(Q(P )) for Q(P ) = (Q1(P ), . . . , Qk1+1(P )).
For a given Q, we define ΨQ,j : M → IR by ΨQ,j(P ) = Ψ(Q−j, Qj(P )), j =
1, . . . , k1 + 1. Let D∗Q,j(P ) = D∗Q,j(Qj(P ), Q−j(P ), G(P )) be the efficient influ-
ence curve of ΨQ,j at P , and define R2,Q,j(P, P0) = R2,Q,j((Q(P ), G(P )), (Q0, G0))
by ΨQ,j(P )−ΨQ,j(P0) = (P−P0)D∗Q,j(P )+R2,Q,j(P, P0), j = 1, . . . , k1+1. Here

Q−j = (Ql : l 6= j, l ∈ {1, . . . , k1 + 1}). We have D∗(P ) =
∑k1+1

j=1 D∗Q(P ),j(P ).

Let Qn ∈ Qn, Gn ∈ Gn be a given initial estimator. Let {Qjn,ε(j) : ε(j)} ⊂
Qjn be a submodel through Qjn at ε(j) = 0 and satisfying d

dε(j)
L1,j(Qjn,ε(j))

∣∣∣
ε(j)=0

=
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D∗Qn,j(Qn, Gn), j = 1, . . . , k1 + 1. Let {Qn,ε : ε} ⊂ Qn be defined by Qn,ε =
(Qjn,ε(j) : j = 1, . . . , k1+1). Let εn = arg minε PnL1(Qn,ε), where PnL1(Qn,ε) =
(PnL1j(Qjn,ε(j)) : j = 1, . . . , k1 + 1).

Suppose that by application of the previous lemma to ΨQn,j :M→ IR, sub-
model {Qjn,ε(j) : ε(j)}, loss function L1j(Qj), εn(j) = arg minε(j) PnL1j(Qjn,ε(j)),
and one-step TMLE Qjn,εn(j), we establish its conclusion PnD

∗
Qn,j

(Qjn,εn(j), Q−jn, Gn) =

oP (n−1/2). For completeness, Lemma 18 explicitly states these j specific con-
ditions of the previous lemma, which are sufficient for this conclusion.

We wish to establish that PnD
∗(Qn,εn , Gn) = oP (n−1/2), where

PnD
∗(Qn,εn , Gn) =

k1+1∑
j=1

PnD
∗
Qn,εn ,j

(Qjn,εn(j), Q−jn,εn , Gn).

For each j = 1, . . . , k1 + 1, assume

1. Let fnj = D∗Qn,j(Q
∗
jn, Q−jn, Gn)−D∗Qn,j(Q

∗
jn, Q

∗
−jn, Gn), and assume (Pn−

P0)fnj = oP (n−1/2).

We can achieve this by applying Lemma 9: Assume supQ∈Qn,G∈Gn ‖
D∗Q,j(Q,G) ‖v≤ MD∗,v,n. Let Fjn = {D∗Q,j(Q,G) : Q ∈ Qn, G ∈
Gn}/MD∗,v,n with envelope bounded (up till constant) by Fjn = MD∗,n/MD∗,v,n,
and let α∗j (which can always be chosen to be smaller than 1/(d + 1))

be such that supΛ

√
log(1 +N(ε | Fjn |,Fjn, L2(Λ)) < Kεα

∗
j−1 for some

K <∞. Let r0j(n) be such that ‖ fnj ‖P0< r0j(n) with probability tend-
ing to 1. Define r∗0j(n) = max(r0j(n), n−1/4). Then, by Lemma 9, we
have

E |
√
n(Pn−P0)fnj |≤

{
r∗0j(n)/MD∗,v,n

}α∗j MD∗,v,n+
{
r∗0j(n)/MD∗,v,n

}2α∗j−2
n−0.5.

Assume MD∗,v,n converges slowly enough to infinity so that the right-hand
side is o(1). Then, (Pn − P0)fnj = oP (n−1/2);

2. R2,Qn,j(((Q
∗
jn, Q

∗
−jn), Gn), (Q0, G0))−R2,Qn,j(((Q

∗
jn, Q−jn), Gn), (Q0, G0)) =

oP (n−1/2);

3. Let fnj,1 = D∗Qn,j(Q
∗
n, Gn)−D∗Q∗n,j(Q

∗
n, Gn), and assume (Pn−P0)fnj,1 =

oP (n−1/2). As above, we can achieve this by applying Lemma 9;

4. R2,Q∗n,j((Q
∗
n, Gn), (Q0, G0))−R2,Qn,j((Q

∗
n, Gn), (Q0, G0)) = oP (n−1/2);

5. ΨQ∗n,j(Q
∗
jn)−ΨQ∗n,j(Qj0)−

{
ΨQn,j(Q

∗
jn)−ΨQn,j(Qj0)

}
= oP (n−1/2).
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Then, PnD
∗(Qn,εn , Gn) = oP (n−1/2).

Lemma 18 Let fnj(ε(j)) = PnD
∗
Qn,j

(Qjn,ε(j), Q−jn, Gn) and gnj(ε(j)) = d
dε(j)

PnL1j(Qjn,ε(j)).

Let f ′nj(ε(j)) = d
dε(j)

fnj(ε(j)) and g′nj(ε(j)) = d
dε(j)

gnj(ε(j)). Let ε0(j) = 0.
Assume

1. Assume that fnj(εn(j)) = fnj(0)+f ′nj(0)εn(j)+OP (εn(j)2) and gnj(εn(j)) =
gnj(0) + g′nj(0)εn(j) +OP (ε2n(j));

2. ε2n(j) = oP (n−1/2);

3. { d
dεn(j)

D∗Qn,j(Qjn,εn(j), Q−jnGn)− d2

dεn(j)2
L1j(Qjn,εn(j))}/n0.25 falls in a P0-

Donsker class with probability tending to 1;

4.

d

dε0(j)
P0

{
D∗Qn,j(Qjn,ε0(j), Q−jn, Gn)−D∗Qn,j(Qj0,ε0(j), Q−j0, G0)

}
= OP (n−1/4)

d2

dε0(j)2
P0

{
L1j(Qjn,ε0(j))− L1j(Qj0,ε0(j))

}
= OP (n−1/4);

5.

P0
d2

dε0(j)2
L1j(Qj0,ε0(j)) = −P0D

∗
Q0,j

(P0){D∗Q0,j
(P0)}>. (28)

If L1j(Qj(P )) = − log pQj(P ),η(P ) for some density parameterization (Qj, η)→
pQj ,η, then (28) holds;

6. d
dε0(j)

R2,Q0,j((Qj0,ε0(j), Q−j0, G0), (Q0, G0)) = 0.

Then, PnD
∗
Qn,j

(Qjn,εn(j), Q−jn, Gn) = oP (1/
√
n).

Proof: This is an immediate application of Lemma 16. 2

Proof of Lemma 17: Consider a 1-dimensional submodel {Pε : ε} ⊂ M with
score S. We have

d
dε

Ψ(Pε) = d
dε

Ψ(Qε)
= d

dε
Ψ(Q1ε, . . . , Qk1+1ε)

=
∑k1+1

j=1
d
dε

Ψ(Q−j, Qjε).

By pathwise differentiability of Ψ at P the left-hand side equals PD∗(P )S,
while, by pathwise differentiability of ΨQ,j at P , each j-specific term on the
right-hand side equals PD∗Q,j(P )S. This proves that

PD∗(P )S =

k1+1∑
j=1

PD∗Q,j(P )S = P

{
k1+1∑
j=1

D∗Q,j(P )

}
S.
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Since this holds for each S ∈ T (P ) and D∗Q,j(P ) ∈ T (P ) for all j, this implies

D∗(P ) =
∑k1+1

j=1 D∗Q,j(P ). This proves the first statement of the lemma. This

shows also that PnD
∗(Q∗n, Gn) =

∑k1+1
j=1 PnD

∗
Q∗n,j

(Q∗n, Gn), so it suffices to prove

that PnD
∗
Q∗n,j

(Q∗n, Gn) = oP (n−1/2) for each j. In the lemma we assumed that

we already established PnD
∗
Qn,j

(Q∗jn, Q−jn, Gn) = oP (n−1/2), by application of
Lemma 18.

Firstly, we want to prove that Pn{D∗Qn,j(Q
∗
jn, Q−jn, Gn)−D∗Qn,j(Q

∗
jn, Q

∗
−jn, Gn)} =

oP (n−1/2), which then shows that PnD
∗
Qn,j

(Q∗n, Gn) = oP (n−1/2). This term
can be represented as Pnfn. We can write Pnfn = (Pn−P0)fn +P0fn. By our
first assumption, we have (Pn − P0)fn = oP (1). So we now have to consider

P0{D∗Qn,j(Q
∗
jn, Q−jn, Gn)−D∗Qn,j(Q

∗
jn, Q

∗
−jn, Gn)}

= ΨQn,j(Q
∗
jn)−ΨQn,j(Qj0) +R2,Qn,j(((Q

∗
jn, Q

∗
−jn), Gn), (Q0, G0))

−ΨQn,j(Q
∗
jn) + ΨQn,j(Qj0)−R2,Qn,j(((Q

∗
jn, Q−jn), Gn), (Q0, G0))

= R2,Qn,j(((Q
∗
jn, Q

∗
−jn), Gn), (Q0, G0))−R2,Qn,j(((Q

∗
jn, Q−jn), Gn), (Q0, G0)).

By assumption 2., the latter is oP (n−1/2).This proves now that PnD
∗
Qn,j

(Q∗n, Gn) =

oP (n−1/2).
We now want to prove that Pn{D∗Qn,j(Q

∗
n, Gn)−D∗Q∗n,j(Q

∗
n, Gn)} = oP (n−1/2),

so that we can conclude PnD
∗
Q∗n,j

(Q∗n, Gn) = oP (n−1/2). Let fn = {D∗Qn,j(Q
∗
n, Gn)−

D∗Q∗n,j(Q
∗
n, Gn)}, so that this term can be represented as Pnfn. We have

Pnfn = (Pn−P0)fn+P0fn. By assumption 3., we have (Pn−P0)fn = oP (n−1/2).
We now have to consider

P0{D∗Qn,j(Q
∗
n, Gn)−D∗Q∗n,j(Q

∗
n, Gn)}

= ΨQ∗n,j(Q
∗
jn)−ΨQ∗n,j(Qj0) +R2,Q∗n,j((Q

∗
n, Gn), (Q0, G0))

−ΨQn,j(Q
∗
jn) + ΨQn,j(Qj0)−R2,Qn,j((Q

∗
n, Gn), (Q0, G0)).

By assumption 4., we have R2,Q∗n,j() − R2,Qn,j() = oP (n−1/2). By assumption
5, the ”second order Ψ-difference” is oP (n−1/2) as well. 2
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