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A Generally Efficient Targeted Minimum Loss
Based Estimator

Mark J. van der Laan

Abstract

Suppose we observe n independent and identically distributed observations of a
finite dimensional bounded random variable. This article is concerned with the
construction of an efficient targeted minimum loss-based estimator (TMLE) of a
pathwise differentiable target parameter based on a realistic statistical model.

The canonical gradient of the target parameter at a particular data distribution will
depend on the data distribution through an infinite dimensional nuisance param-
eter which can be defined as the minimizer of the expectation of a loss function
(e.g., log-likelihood loss). For many models and target parameters the nuisance
parameter can be split up in two components, one required for evaluation of the
target parameter and one real nuisance parameter. The only smoothness condition
we will enforce on the statistical model is that these nuisance parameters are mul-
tivariate real valued cadlag functions and have a finite supremum and variation
norm.

We propose a general one-step targeted minimum loss-based estimator (TMLE)
based on an initial estimator of the nuisance parameters defined by a loss-based
super-learner that uses cross-validation to combine a library of candidate estima-
tors. We enforce this library to contain minimum loss based estimators minimiz-
ing the empirical risk over the parameter space under the additional constraint that
the variation norm is bounded by a set constant, across a set of constants for which
the maximal constant converges to infinity with sample size. We show that this
super-learner is not only asymptotically equivalent with the best performing algo-
rithm in the library, but also that it always converges to the true nuisance parameter
values at a rate faster than $n{-1/4}$. This minimal rate applies to each dimension
of the data and even to nonparametric statistical models. We also demonstrate that



the implementation of these constant-specific minimum loss-based estimators can
be carried out by minimizing the empirical risk over linear combinations of basis
functions under the constraint that the sum of the absolute value of the coefficients
is smaller than the constant (e.g., Lasso regression), making our proposed estima-
tors practically feasible.

Based on this rate of the super-learner of the nuisance parameter, we can establish
that this one-step TMLE is asymptotically efficient at any data generating distri-
bution in the model, under very weak structural conditions on the target parameter
mapping and model. We demonstrate our general theorems by constructing such
a one-step TMLE of the average causal effect in a nonparametric model, and pre-
senting the corresponding efficiency theorem.



1 Introduction

We consider the general statistical estimation problem defined by a statistical
model for the data distribution, a Euclidean valued target parameter mapping
defined on the statistical model, and observing n independent and identically
distributed draws from the data distribution. Our goal is to construct a gen-
erally efficient substitution estimator of the target parameter. For realistic
statistical models this requires a highly data adaptive estimator. The current
wisdom is that due to the curse of dimensionality this will typically require
assuming very strong smoothness assumptions (e.g., Robins and Ritov (1997)).

There are two general methods for constructing an asymptotically efficient
estimator. Firstly, the one-step estimator is defined by adding to an initial
plug-in estimator of the target parameter an empirical mean of an estimator
of the efficient influence curve at this same initial estimator (Bickel et al.,
1993). In the special case that the efficient influence curve can be represented
as an estimating function, one can represent this methodology as an estimating
equation methodology, as has been developed for censored and causal infer-
ence models in the literature (van der Laan and Robins, 2003; Robins and
Rotnitzky, 1992). Secondly, the TMLE defines a least favorable parametric
submodel through an initial estimator of the relevant parts (nuisance parame-
ters) of the data distribution, and updates the initial estimator with the MLE
over this least favorable parametric submodel. The TMLE of the target pa-
rameter is now the resulting plug-in estimator (van der Laan and Rubin, 2006;
van der Laan, 2008; van der Laan and Rose, 2011). In this article we focus on
the TMLE since it is a more robust estimator by respecting the global con-
straints of the statistical model, which becomes evident when comparing the
two estimators in simulations for which the information is low for the target
parameter (e.g., even resulting in one-step estimators of probabilities that are
outside the (0,1) range) (e.g., (Porter et al., 2011; Sekhon et al., 2012; Gru-
ber and van der Laan, 2010)). Nonetheless, the results in this article have
immediate analogues for the one-step estimator.

To make the TMLE highly data adaptive and thereby efficient for large
statistical models we have recommended to estimate the relevant parts of the
data distribution with a super-learner based on a large library of candidate
estimators (van der Laan and Dudoit, 2003; van der Vaart et al., 2006; van der
Laan et al., 2006, 2007; Polley et al., 2012). Due to the oracle inequality for
the cross-validation selector, the super-learner will be asymptotically equiv-
alent with the oracle selected estimator even when the number of candidate
estimators in the library grows polynomial in sample size. In this article we
develop a specific super learner which adapts to the underlying variation norm
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of the relevant nuisance parameters of the data distribution. We show that
this super learner is guaranteed to converge to its true counterparts at a rate
faster than the critical rate n='/4, even when the model only assumes that the
true nuisance parameters have a finite variation norm.

Based on this fundamental result, we can then prove a general theorem for
asymptotic efficiency of the TMLE for arbitrary statistical models. We will
also use a so called cross-validated TMLE in order to further minimize the
conditions for asymptotic efficiency (Zheng and van der Laan, 2011; van der
Laan and Rose, 2011). By also including a large variety of other estimators
in the library of the super-learner the TMLE will also have excellent prac-
tical performance for finite samples relative to competing estimators (Polley
et al., 2012). Beyond establishing these fundamental theoretical general re-
sults, we will also discuss the practical implementation of such a super-learner
and TMLE.

1.1 Organization of the article

In Section 2 we define the general estimation problem in terms of a pathwise
differentiable statistical target parameter and statistical model, and define all
the key characteristics of the estimation problem that will play a role in the
definition of the estimator and our analysis. To address the estimation problem
we will have to define the canonical gradient of the pathwise derivative, and
the nuisance parameters this canonical gradient depends upon. These nuisance
parameters will have to be estimated as part of the TMLE. We will introduce
loss functions and loss-based dissimilarities for these nuisance parameters and
define the bounded variation norm assumption on the true nuisance parameter
values. The analysis of the super-learner of these nuisance parameters and
the corresponding one-step TMLE will involve controlling various universal
bounds on the statistical model. For that purpose we will define these model
bounds. Since we will allow that some of these bounds are infinite, we will
also define a sequence of bounded statistical submodels that grows to the
complete statistical model, and the corresponding bounds that converge to
the actual (possibly infinite) model bounds as the sample size converges to
infinity. The minimal rate (i.e., worst case rate) of convergence of our super-
learner estimators of the nuisance parameter are driven by entropies for the
relevant parameter spaces, and we also need to control the entropy of the
corresponding plug-in estimator of the canonical gradient. We will define these
entropy bounds and the corresponding worst case rates of convergence for the
super-learners. These worst-case rates will always (even for nonparametric
models) be faster than the critical rate n='/4,
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In Section 3 we define and analyze our first super-learner of the nuisance
parameters. This first super-learner incorporates candidate estimators that
minimize the empirical risk of the loss functions over all parameters in the
parameter space that have a variation norm smaller than a M < oo, across a
set of such M values. Therefore, Section 3 will start out with analyzing these
M -specific minimum loss-based estimators, and then proceeds with analyzing
the corresponding super-learner based on the oracle inequality of the cross-
validation selector. In Section 4 we analyze our second super-learner that is
similar to the first super-learner except that its candidate M-specific minimum
loss-based estimators minimize over finite epsilon-nets of the parameter space
and selects both M and the resolution € with cross-validation. Due to previous
results for such cross-validated epsilon-net estimators we obtain a finite sample
inequality for the resulting super-learner and slightly more optimal worst-case
rates of convergence.

In Section 5 we define the one-step TMLE and discuss the local least favor-
able submodel that is used to update the super-learner estimator and establish
results that show, under regularity conditions, that the one-step TMLE already
guarantees that the empirical mean of the canonical gradient at the TMLE
equals zero up till an asymptotically negligible remainder. Subsequently, in
Section 5 we present a formal theorem establishing asymptotic efficiency of
the one-step TMLE under specified conditions. In Section 6 we define the
one-step cross-validated TMLE and present a formal theorem establishing its
asymptotic efficiency. The advantage of the cross-validated TMLE is that it
is asymptotically efficient under even weaker conditions than required for effi-
ciency of the one-step TMLE, and, in particular, it allows the model bounds
for the sieve to grow to infinity at a faster rate with sample size than for the
TMLE.

In Section 7 we discuss the practical implementation of the M-specific
minimum loss-based estimator that minimizes the empirical risk over all pa-
rameters in the parameter space that have variation norm smaller than M. We
show that this MLE can be approximated by minimizing over linear combina-
tions of basis functions under the constraint that the sum of the absolute value
of the coefficients is bounded by M. In particular, we demonstrate that for
nonparametric models these estimators can be implemented with Lasso type
regression algorithms. In Section 8 we apply our theorems to the estimation of
the average causal effect of a single time point binary treatment. We conclude
with a discussion in Section 9. Our appendix is split up in various sections
establishing the required empirical process results, and proofs of the various
lemmas the efficiency of the one-step TMLE and CV-TMLE rely upon.
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1.2 General idea

In order to follow the logic of this article it might help to understand the main
idea behind the proposed one-step TMLE. The TMLE relies on an initial
estimator of the key nuisance parameters that are required to evaluate the
efficient influence curve of the target parameter. It is well known that the
asymptotic efficiency of the TMLE mostly relies on a second order remainder
being op(n~!/2). Therefore, one wants to construct an initial estimator of the
nuisance parameters that converges w.r.t. a suitable dissimilarity at a rate
faster than n=1/4.

The most important observation is that a minimum loss-based estimator
minimizing the empirical risk over all candidate nuisance parameter values
that have a variation norm smaller than M < oo converges at a rate faster
than n~Y* to its M-specific true counterpart. By using a recent empirical
process result by (van der Vaart and Wellner, 2011) we can establish the precise
minimax rate of convergence in terms of the entropy of the model space. So,
by selecting M larger than the unknown variation norm of the true nuisance
parameter value, we obtain an initial estimator that converges at a faster rate
than n~/4

The second important observation is that if we define a collection of such
M-specific estimators for a set of M-values for which the maximum value con-
verges to infinity as sample size converges to infinitiy, and use cross-validation
to data adaptively select M, then the resulting cross-validated selected esti-
mator will be asymptotically equivalent with the oracle choice. This follows
from a previously established oracle inequality for the cross-validation selector,
as long as the supremum norm bound on the loss-function at the candidate
estimators does not grow too fast to infinity as a function of sample size. As a
consequence, our statistical model does not need to assume a universal bound
on the variation norm of the nuisance parameters, but it only needs to assume
that each nuisance parameter value has a finite variation norm. In this man-
ner, we can construct super-learners that have a worst case rate faster than
the critical rate n= /4. We obtain a super-learner that also in finite samples
outperforms any competing algorithm by simply including these competing
algorithms in the library of the super-learner beyond all these M-specific min-
imum loss-based estimators.

The typical TMLE involves iteratively updating this initial estimator through
a parametric local least favorable submodel through the initial estimator/current
estimator, so that the efficient score /influence curve equation is solved exactly.
For the analysis of the TMLE it is very helpful if this TMLE algorithm con-
verges in a single or finite number of steps. In many problems this TMLE
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updating algorithm converges in one step, and we developed a so called uni-
versal least favorable submodel that guarantees this convergence in one step
(van der Laan and Gruber, 2015). However, we want our theory to apply
to general local least favorable submodels, which can be easier to implement
than a universal least favorable model. In order to deal with this challenge, we
observe that if the initial estimators of the nuisance parameters converge at a
rate faster than n~/%, then in great generality we can show that the one-step
TMLE (thus only updating the super-learner once) already solves the efficient
score equation up till a remainder of size op(n~/2). This is important, since
this makes it relatively straightforward to establish the minimal rate of con-
vergence of the TMLE update of the super-learner, and typically this minimal
rate will not be worse than the rate of the super-learner itself. In this man-
ner, we establish that also the TMLE update of the super-learner achieves the
desired minimal rate faster than n=/%.

Given the understood behavior of the super-learners and their TMLE up-
date, we can now carry out the general proof for asymptotic efficiency of the
TMLE as presented in various of our previous articles on TMLE. Some extra
care is needed in our proof since we allow that our true statistical model is
unbounded. We allow such an unbounded statistical model by approximat-
ing it by a sequence of bounded submodels that grow slowly enough (w.r.t.
sample size) to the true statistical model, and by enforcing our super-learners
to respect that sequence of models. Finally, by using the CV-TMLE we can
further reduce the conditions for asymptotic efficiency.

2 Formulation of the estimation problem, and
definitions

Let O1,...,0, be n independent and identically distributed copies of a d-
dimensional random variable O with probability distribution Fy that is known
to be an element of a statistical model M. Let ¥ : M — IR be a one-
dimensional target parameter, so that 1y = W(F) is the estimand of interest
we aim to learn from the n observations oq,...,0,. We assume that ¥ is
pathwise differentiable at any P € M with canonical gradient D*(P): for a
specified class of one-dimensional submodels {P, : € € (—0,d)} C M through
P at e =0 and score S = 4 log dPE/dPL:O, we have

Lyp)| = pPpP)S = / D*(P)(0)S(0)dP(0).

de ¥ o
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Here we used the notation Pf = [ f(0)dP(o) for the expectation operator
under P. The closure of the linear span of all scores generated by this class
of one-dimensional submodels in the Hilbert space L3(P) (endowed with the
inner product (f,g)p = Pfg) is called the tangent space at P and will be
denoted with T(P) C L2(P). For a f € L*(P), we denote its norm with
| f llp= v/ Pf?% The canonical gradient at P is the unique gradient at P that
is also an element of the tangent space T'(P).

Let P, be the empirical probability distribution of O, ..., O,. We view an
estimator W : M,, = R as a mapping from the nonparametric model M,,,
to the real line so that it is well defined for any realization of the empirical
distribution P,. We recall from efficiency theory that an estimator \if(Pn) of
g is asymptotically efficient at Fy if and only if \i/(Pn) is asymptotically linear
at Py with influence curve equal to the canonical gradient D*(F):

U(P,) = W(Py) = (P, — P))D*(Ry) + op(1/v/n).

Therefore the canonical gradient is also called the efficient influence curve.
Our goal in this article is to construct a substitution estimator (i.e., a TMLE)
that is asymptotically efficient under minimal conditions.

Relevant nuisance parameters (),G and their loss functions: Let
Q(P) be a nuisance parameter of P so that U(P) = U(Q(P)) for some ¥y,
so that ¥(P) only depends on P through Q(P). Let Q = Q(M) = {Q(P) :
P € M} be the parameter space of this parameter @ : M — Q. Sup-
pose that Q(P) = (Q,;(P) : j = 1,...,ky + 1) has k; + 1-components, and
Q; : M — Q; are variation independent parameters j = 1,...,k; + 1. Let
Q; = Qj(M) be the parameter space of ;. Thus, the parameter space
of ) is a cartesian product Q = Hf:{l Q;. In addition, suppose that for
j=1,... ki +1, Q;(Fy) = argming,co, P L;(Q;) for specified loss functions
(0,Q;) = L;j(Q;)(0). Let Q = (Q1,...,Qx ) represent parameters that re-
quire data adaptive estimation trading off variance and bias (e.g., densities),
while Q,+1 represents an easy to estimate parameter for which we have an
empirical estimator leﬂ available with negligible bias. The parameter Q(F)
will be estimated with our proposed loss-based super-learner. We define cor-
I'QSpOIldil'lg loss-based dissimilarities lej (Qja Qj()) = POLIj(Qj) — P(]Llj (Qjo),
j=1,... ki, while diog,+1(Qx,+1, Qr,+10) represents a norm (e.g., supremum
norm) or dissimilarity for which we know that diop,+1(Qr,11(Ppn); Qri10) =
Op(rgr,+1(n)) for a known rate of convergence g, +1(n). It could be that
d1ok,+1(Qky 415, Qi 10) = PoLiky+1(Qry+1) — PoLak +1(Qki410), but that is not
necessarily the case. Let

d10(Q, Qo) = (doj(Q5,Qjo) 7 =1,..., k1 +1)

6
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be the collection of these k;+1 dissimilarities. We use the notation dio(Q, Qo) =
(d10j(Q4,Qj0) 1 5 =1,...,k;) for the loss-based dissimilarities for Q.

Suppose that D*(P) only depends on P through Q(P) and an additional
nuisance parameter G(P). Let G = (Gy,...,Gk,41) be a collection of ky + 1-
variation independent parameters of G for some integer ko + 1 > 1. Thus
the parameter space of GG is a cartesian product G = Hf:{l G;, where G; is
the parameter space of G : M — G;. Let Gjo = argmingeg; PoL2;(G))
for a loss function (O, G;) — Ls;(G;)(0), and let dy;o(G;, Gjo) = PoLe;(Gj) —
PyL4;(Gjo) be the corresponding loss-based dissimilarity, j = 1,..., ks+1. Let
Gi,+1 Tepresents an easy to estimate parameter for which we have a well be-
haved and understood estimator G k,+1 available. We define corresponding loss-
based dissimilarities dgoj(Gj, Gj()) = PoLQj(Gj) - POLQj(GjO), j = 1, ceey ]CQ,
while daogy+1(Gryt1, Giyr10) represents a norm or dissimilarity for which we
know that d20k2+1(ék2+1(Pn),GkQHO) = Op(rgry,+1(n)) for a known rate of
convergence rgr,+1(n). As above, let dyo(G,Go) = (daoj(Gj,Gjo) = j =
1,...,ks + 1) be the collection of these loss-based dissimilarities, and let
d20(G7 Go) = (dgoj(G]‘, GjO) : ] = ]_, ceey k?g), where G = (Gl, ceey GkQ)

We also define

do((Q, G), (Qo, Go)) = (d10j, (Qj, Qj10), d20j, (G Gjr0) : G, Jo)

as the collection of k; + ko + 2 loss based dissimilarities. We will also use the
short-hand notation do(P, Py) for do((Q, G), (Qo, Go))-

We define L;(Q) = (L1;(Q;) : j =1,..., k1 + 1) as the vector of ky + 1-loss
functions for Q = (Q1, ..., Qk,+1), and similarly we define Ly(G) = (L, (Gj) :

j=1...,k +1). We will also use the notation L,(Q) = (L1(Q;) : j =

L,..., k1) and Ly(G) = (L9j(Gy) : j = 1,...,ky). We will assume that
L1(Q) is a convex loss function in the sense that for each j = 1,... k
PoLy; (O o axQix) < ZZ;I apPyLy1j(Qjr) when >, oy, = 1 and miny ay, > 0.
Similarly, we assume Lo(G) is a convex loss function. Our results for the
TMLE generalize to non convex loss functions, but the convexity of the loss
functions allows a nicer representation for the super-learner oracle inequality,
and in most applications a natural convex loss function is available.

We will abuse notation by also denoting ¥(P) and D*(P) with ¥((Q) and
D*(Q, G), respectively. A special case is that D*(P) = D*(Q(P)) does not
depend on an additional nuisance parameter G.

First order expansion of pathwise differentiable target parameter:

We define the second order remainder Ry(P, Py) as follows:

U(P)—V(F) = (P— P)D"(P)+ Ro(P, Fy),
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or equivalently,
Ry (P, By) =V (P) — V(Fy) + By D*(P).

We will also denote Ry(P, Py) with Rao(Q, G, Qo, Gp) to indicate that it in-
volves differences between ) and @)y and G and Gg, beyond possibly some
additional dependence on Fy. In our experience, this remainder Ry(P, ) can
be represented as a sum of terms of the type [(Hi(P) — Hy(Py))(H2(P) —
Hy(Ry)) f(P, Py)dPy(0) for some functionals Hy, Hy and f, where, typically,
H,(P) and Hy(P) represent functions of Q(P) or G(P). In certain classes
of problems we have that Ry(P, Py) only involves cross-terms of the type
J(H1(Q)— H1(Qo))(H2(G) — Ha(Go)) f (P, Py)d Py, so that Rao(Q, G, Qo, Go) =
0 if either @ = Qg or G = Gy. In these cases, we say that the efficient influence
curve is double robust w.r.t. misspecification of )y and Gy:

B D™ (P) = WU (FRy) = W(P) if G(P) = G(Py) or Q(P) = Q(Fy).

Given this latter double robustness property of the canonical gradient (i.e, of
the target parameter), if P solves PyD*(P) = 0, and either G(P) = Gy or
Q(P) = Qo, then W(P) = W(F,). This allows for the construction of si called
double robust estimators of vy that will be consistent if either the estimator
of @)y is consistent or the estimator of G is consistent.

Support of data distribution: The support of P € M is defined as a set
Op C R%so that P(Op) = 1. It is assumed that for each P € M, Op C [0, 7p]
for some finite 7p € R%,. We define 7 = suppc s 7p, so that [0,7p] C [0, 7]
for all P € M, where 7 = oo is allowed, in which case [0,7] = R%,. That is,
[0, 7] is an upper bound of all the supports, and the model M states that the
support of the data structure O is known to be contained in [0, 7].

Cadlag functions on [0, 7], supremum norm and variation norm:
Suppose 7 is finite, and, in fact, if 7 is not finite, then we will apply the
definitions below to a 7 = 7,, that is finite and converges to 7. Let DI[0, 7] be
the Banach space of d-variate real valued cadlag functions (Neuhaus, 1971).
For a f € D[0,7], let || f |loo= sup,epo, | f(z) | be the supremum norm. For
a f € D[0, 7], we define the variation norm of f (Gill et al., 1995) as

TIEFOIEE / | F(dzey0s) | -
) (05,7s]

sc{1,...,

For a subset s C {1,...,d}, 2z, =(x;:j € 5), x_s=(x; : j € s), and the )
in the above definition of the variation norm is over all subsets of {1,...,d}.
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If || f |lo< oo, then we can, in fact, represent f as follows (Gill et al., 1995):

x) = f(0 dug, 0_g),
F(2) = £(0) + Zd}/(mzs]f( )

sc{1,...,

where f(dus,0_4) is the measure generated by the cadlag function us —
f(us,0_5). For a M € R, let

Foar ={f € D[0,7]:|| [ o< M}

denote the set of cadlag functions f : [0, 7] — IR with variation norm bounded
by M.

Cartesian product of cadlag function space, and its component-
wise operations: Let D*[0, 7] be the product Banach space of k-dimensional
(f1,..., fx) where each f; € D[0,7], j = 1,...,k. If f € D*[0,7], then we
define || f [|oo= (|| fj llo: 7 = 1,...,k) as a vector whose j-th component
equals the supremum norm of the j-th component f; of f. Similarly we define
a variation norm of f € D*[0, 7] as a vector

Ff = g =1, k)

of variation norms, If f € DF[0,7], then || f |lp= (| fi llr: 7 = 1,...,k)
is a vector whose components are the L?*(Py)-norms of the components of f.
Generally speaking, in this paper any operation on a function f € D*[0, 7],
such as taking a norm || f ||p, an expectation Pyf, operations on a pair
of functions f,g € D*[0,7], such as f/g, f * g, max(f,g) or an inequality
f < g, is carried out component wise: for example, max(f, g) = (max(f;, g;) :
j = 1, N k?) and iIlfQEQ PoLl(Q) = (ianjer POLlj(Qj) : j = 1, ey kl + 1)
In a similar manner, for an M € RE, let F,» = H?:prv,Mj denote the
cartesian product. This general notation allows us to present results with
minimal notation, avoiding the need to continuously having to enumerate all
the components.

Our results will hold for general models and pathwise differentiable target
parameters, as long as the statistical model satisfies the following key smooth-
ness assumption:

Key Smoothness Assumption: For each P € M, Q= Q(}D) € DM0, 7],
G = G(P) e D"[0,7), D'(P) — D'(Q,G) € DIo.7l, Ly(Q) € D™[0,7],

D
Ly(G) € D*2[0, 7], and Q, G, D*(P), L1(Q), L2(G) have a finite supremum and

variation norm.
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Definition of bounds on the statistical model: The properties of
the super-learner and TMLE rely on bounds on the model. Our estimators
will also allow for unbounded models by using a sieve of models for which its
finite bounds approximate the actual model bound as sample size converges
to infinity. These bounds will be defined now:

r = (M) = sup 7(P)
PeM

My = Mig(M)= sup || Li(Q) — Li(Qo) |l

Q’QOGQ
| L1(Q) — L1(Qo) || p,
M. = M = _
20 = MaoM)= s ) S o)

Mg = MaM)= sup || Ly(G) — La(Go) |l

G,Goeg
| Lo(G) — Ly(Go) |,
Msg = Myg(M)= su _
w6 = MoalM) = sp (@, G J05
Mp- = Mp-(M) = sup [ D*(P) ||
PeM

Note that Mg, Myg € ]R>0 and Mg, My € ]R>0 are defined as vectors of con-
stants, a constant for each component of @ and G, respectively. The bounds
Mg, Myg guarantee excellent properties of the cross-validation selector based
on the loss-function L;(Q). A bound on Myg shows that the loss-based dis-
similarity do1(Q, Qo) behaves as a square of a difference between Q and Q.
Similarly, the bounds Mg, My control the behavior of the cross-validation
selector based on the loss function Lo(G).

We also define the following universal variation norm bounds on the model

M:

Mg, = sup || Q(P) |l
PeM

Mg, = sup [|G(P) |l
PeM

Mp-, = sup || D*(P) |l
PeM

My @w = sup | L1(Q) |l
PeM

Mpyaw = sup || La(G) [w
PeM

Again, Mg, € ]R>0, My, @ € IR S0 and Mg, € ]R>O, M, e)w € IR?O are vec-
tors of constants, one for each component of Q, L;(Q), G, Ly(G), respectively.

10
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Bounded and Unbounded Models: We will call the model M bounded
if it is a model for which 7 < oo (i.e., universally bounded support), Mg,
Mg, Mg, Mag, Mp-, Mg, Mg, Mp«., My, (Q)» and My, are finite. In
words, in essence, a bounded model is a model for which the supremum norm
and variation norm of Q(P), G(P), L1(Q), Ls(G) and D*(Q, G) are uniformly
(over the model) bounded. Any model that is not bounded will be called an
unbounded model.

Sequence of bounded submodels approximating the unbounded
model: For an unbounded model M, our initial estimators (Q,,, G,,) of (Qo, Go)
are defined in terms of a sequence of bounded submodels M,, C M that are
increasing in n and approximate the actual model M as n converges to infin-
ity. As a consequence, this sequence of models satisfies that for any Py, € M,
there exists an Ny = N (), so that for n > Ny Py € M,,. The counterparts
of the above defined universal bounds on M applied to M,, are denoted with
Tn, MlQ,n; MQQ,n; MlG,ny MQG’,n; MD*,n; MQ,v,n7 MG,'L),ny MD*,v,n> MLl(Q),U,n and
MLQ(G’),v,n‘

Let Q, = Q(M,,) and G,, = G(M,,) be the parameter spaces of @) and G
under model M,,, and let Q,, = Q(M,,) and G,, = G(M,,) be the parameter
spaces of @ and G. We define the following true parameters corresponding
with this model M,,:

Q(m = arg min POLI(Q)
QREQn

Gon = arg min PyLy(G).
GeGn

We will assume that M,, is chosen so that Qg,+1(Pon) = Qk+1(Fo) and
Gryt1(Pon) = Gryp1(Py), where Py, = argmaxpen, P log g—g). That is, our
sieve is not affecting the estimation of the easy nuisance parameters Qg, 10
and Gy,+10. Note that for n > Ny, we have Qy,, = Qo and G, = Gj.

In this paper our initial estimators of @ and G, are always enforced to
be in the parameter spaces of this sequence of models M,,, but if the model
M is already bounded, then one can set M, = M for all n. However, even
for bounded models M, the utilization of a sequence of submodels M,, with
stronger universal bounds than M could result in finite sample improvements
(e.g., if the universal bounds on M are very large relative to sample size and
the dimension of the data).

Cross-validation: Our initial estimators rely on cross-validation. For
that purpose, B,, € {0,1}" will denote a random cross-validation scheme that
randomly splits the sample {Oy,...,0,} in a training sample {O; : B, (i) = 0}
and validation sample {O; : B,(i) = 1}. Let ¢, = Y ., By(i)/n denote
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the proportion of observations in the validation sample, and we assume that
q < q, < 0.5 for some g > 0. We also assume that this random vector B,, has
only V' possible realizations for a V' < co. In addition, P, 5 , P} 5 will denote
the empirical probability distributions of the validation andAtrammg sample,
respectively. Thus, the cross-validated risk of an estimator Q : M, — Q,, of
Qo is defined as Eg, Py 5 L1(Q(P) ).

Entropy bounds for Super Learner II: For M, € R* and M, € R*,
we define

Qn,Ml = Qn N fv,Ml
gn,Mg = gn N JT:v,Mgu

the sub-parameter spaces of @, G under model M,, obtained by only including
the functions for which all its components have variation norm bounded by
the corresponding constants in the vectors M, My. By our Key Assumption
we have that if n > Ny, My >|| Qo ||, and My >|| Gy ||,, then Qo € O, s, and
Go € G- Let supy log N(eMy, Q, a1y, L2(A)) and supy log N(eMo, Gy, L2(A))
be the k; and ks-dimensional universal log covering numbers as a function of

€ (0,1) for Q,a, and G,ap,, respectively. We remind the reader that a
covering number N (e, F, L?(A)) is defined as the number of balls of size ¢
w.r.t. L*(A)-norm that are needed to cover the set F of functions embedded
in L*(A).

The minimal rate of our second super learner II of Qq, Gy relies on the

following entropy bounds. Let oy € RF and a, € R be vectors satisfying:
for some C' < oo (allowed to depend on M, Ms, but not on €)

suplogO'5 N (e, QnyMl,LQ(A)) < Ce(1m)
A

suplog0‘5N(e,QH,MZ,LZ(A)) < (e (-e2),
A

Entropy bounds for Super Learner I: The minimal rate of our first
super learner 1 of Qg, Gy relies on the following entropy bounds «f, a; which
are essentially the same as o, 9. Let af € ]Rk and oj € ]R>0 be such that
for some C' < o0

suplog”®(N (e, Li(Q}: 1), L*(A)) < Ce el
A

suplog® (N (e, Lo(Gy, ). LA(A) < Ce 009,
A

where L (Q; ) = {L1(Q) : Q € Qu}, La(Gas,) = {L2(G) 1 G € G}y, },
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and

_Z,Ml = {Q € Qn H LI(Q) ||v< Ml}
o, = G € G|l Lo(G) o< Mo}

By Corollary 2.6.12 in van der Vaart, Wellner (1996), we have that the
universal covering number of F, s is bounded as follows:

sup log®? N(e, Fours LQ(A)) < C’e_(l_a(d)),
A

where a(d) = 1/(d +1). Let d; € N be the vector of integers indicating
the dimension of the domain of Q = (Qy,...,Qs,), and similarly, let dy €
]R’;"’0 be the vector of integers indicating the dimension of the domain of G =
(G1,...,Gy,). Thus, we have that max(ay, o) > a(dy) and max(aq, of) >
O[(dg).

Minimal rate for Super learner II: Let C(m;,my) = my +m3. The
minimal rates rg 1.4, (n) € R* and TGk (D) € R*2 of our super-learner II of
Qo and Gy w.r.t. the loss-based dissimilarities do;(Q, Qo) and dgx(G, Gy) are
given by:

rou(n) = O (n T C(Mign, Mag.) ™)
ek (n) = O<n_ﬁC(M1G,naM2G,n)ﬁ>.

We already defined rgx,+1(n) and rgx,41(n) as the rates of the estimators
Qi1 Grgr1 Of the easy parameters Qp, 10, Grp10. This defines ro(n) €
RM* and rg(n) € R¥2H,

Minimal rate for Super Learner I: The minimal rates 7y 1.4, (n) €
R* and TGMLE 1k (1) € R*2 of our super-learner I of Q, and G, w.r.t. the
loss-based dissimilarities do; (@, Qo) and doa(G, Gy) are given by:

—(0.54+a* /4
TQMLE 1k, (1) n (05Fei/4)

reMLE LR (n) = n” Ot/
Let ro MLEk+1 = TQki+1 a0d TG MLE ky+1 = TG.ke+1 D€ the rates of the simple
estimators leﬂ and @k2+1 of Qk,+10 and Gi,110, respectively. This defines
TQMLE € Rkl+l and re,MLE € ]RkQJrl,
Guaranteed minimal rate faster than n='/*: Since oy, a’, ay,a} are
all larger than «(dy), a(dy), a(dy), a(dy), respectively, it follows that all four
rates are faster than n~'/* if the model M, grows at a slow enough rate
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to M. Note also that for most sequence of models M,,, the minimal rates
ro(n),rq(n) for super-learner II are slightly better than the minimal rates
ro.mLe(n), ra.mpe(n) for super-learner 1.

Entropy bound for estimated efficient influence curve: Let a* €
IR~ be chosen so that for F,, = {D*(Q,G) : Q € Q,,G € G,}/Mp~, , with
envelope F,, < Mp« ,/Mp=,, we have

1
sup /Iog(1 1 N (e [ o T e 220000 = O (122 )-

By the same argument as above, we have a* > 1/(d 4+ 1), where d is the
dimension of O.

Entropy bound for controlling TMLE update: Suppose that a; €
RY) is chosen so that for Fi,, = {L:1(Q) : Q € Q,}/Mr,(Qn With envelope
Fi, < MlQ,n/MLl(Q)U,n we have

sup /Iog(1+ N(e | Fin T Fis DO = O (25 ).

el—on

Reduction to a single entropy bound for each nuisance parameter:
Due to the very minor differences (if any) between a1, af, é;, there is typically
no loss to select all three equal to the an upper bound for all three so that
oy = af = ay. Similarly, one would select oy and o} equal to each other.
Therefore, when reading this article, the reader can just replace (aq,af, &)
and (ay, ab) by a single a; € R* and ay € R¥2, respectively.

3 Super Learner I

3.1 An MLE restricting the variation norm

Our goal is to construct an estimator é) : My — 9, of Qp = Q(Ry) =
argmingeg PoL1(Q) so that doi(Qn, Qo) = op(n~'/%). The following Lemma
defines such an estimator.

Lemma 1 For a given vector M € RE, of constants, let Qo C{Qe
Li(Q) |l,< M} C Four be all functions in the parameter space Q,, for Qo for
which the variation norm of its loss is smaller than M < oco. (In this definition
one can also incorporate some extra M -constraints, as long as Q;’M:m =0Q,.)
If M > max(Mg., M1, (g)0), then Qf \y = Qn. Let QF* € Qp 5/ be so that
BT (@ E infgegx PoLy(Q). Assume that for a fived M < oo,

M
. I L1 (Q) — La(Q6n") I
Mg v = lim sup  sup =
oo gedr,,  1h0(Q, Qo)

< oQ.
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Consider an estimator QM for which

Pula(@y) = inf  PLi(@Q) + 7,
n,M

where r, = op(1/+/n). Then
0 < doi(Qn', Qon") < —(Po — PO{L1(Q7') — Li(Qoy )} + 7, (1)

and o
dOl (Q'r]‘zjv QS{L*) = OP(T%,MLE(TL)) + .

Proof: In this proof we suppress the * in the notation. We have

0 < dou(@', Qo) = Po{L1(Qy) — Li(Qpy)}

= (P = P{L:(Q0) = Ln(@pa)} + Pu{La(Qn') — L1(Q0a)}

< —(Po— P){L1(@Qn) — Li(Qon)} + 7,
which proves (1). Since Ly(Q}') — L1(Q{;) falls in a Py-Donsker class F, u,
it follows that the right-hand side is Op(1/y/n), and thus do (Q)', Qpr) =
Op(n=/?). Since My gy < 00, this also implies that || Ly (QM)—Li(Q}) ||%,=
Op(1/y/n). By empirical process theory we have that /n(P, — Py)f, —p 0
if f, falls in a Py-Donsker class with probability tending to 1, and Pyf2 —, 0
as n — oo. Applying this to f, = Li(QM) — Ll(Qé\fl) shows that (P, —

Po)(L1(QM) — L(Q)) = 0p(1/+/n), which proves dgl(QnM,_QSQ = op(1/4/n).
We now apply Lemma 9 with F,, = {L1(Q)— L1 (Q}) : Q € Quu}, o = af,
envelope bound M, = M and ro(n) = n='/%, which proves that

| V(P = Ro) fu |= Op(n™/").

This proves doi (QM, QM) = Op(n= 0>/ O

3.2 Super-Learning: A cross-validated MLE tuning the
variation norm of the fit.

1

Defining the library of candidate estimators: For an M € ]R’;O, let
Q*M . — Q;M C Fyum be the above MLE satisfying dm(Qn,M =

Qu(Pn), Qby*) = Op(r3 1y, (1)) Let Ky, be an ordered collection My <
My < ... < Mk, ,, of ki-dimensional constants, and consider the correspond-

ing collection of K, candidate estimators Q,; with M € K;,,,. We assume
that this index set Ky, , is increasing in n and that limsup, ,, Mg, ,, =
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max(Mg.,, M1, (0)»). Note that for all M € Ky, with M >| Li(Qo) [, we
have that do, (Qu(P,), Qo) = Op(r%’MLE(n)). In addition, let Q; : Moy —
Qn, j € Kina be an additional collection of K, , estimators of ()y. For
example, these candidate estimators could include a variety of parametric
model as well as machine learning based estimators. This defines an index
set Kin = Kino UKy nq representing a collection of Ky, = K0 + Kipa
candidate estimators {Qy : k € K1, }.
Super Learner I: We define the cross-validation selector as the index

in

that minimizes the cross-validated risk Fp, PnLl(ng(PS’ ,)) over all choices k
of candidate estimators. Our proposed super-learner is defined by

~

Qn =Q(P) = Ep, Qn,, (P)5,). (2)

The following lemma proves that the super-learner é(Pn) converges to Q
at least at the rate rg ppp(n): dot(Q(P,), Qo) = Op(rg.ape(n)). This lemma
also shows that the super-learner is either asymptotically equivalent with the
oracle selected candidate estimator, or achieves the parametric rate 1/n of a
correctly specified parametric model.

Lemma 2 Let A\; be chosen so that r%’MLE(n) = O(n~™). We have

n

_ log K1,
do1(Qn, Qon) = Op(n™™) + Op (C(MlQ,nvMQQ,nad) ikl ) ; (3)

where C(My, M,0) = 2(1 + 6)*(2M,/3 + M3/5). In addition, we have, for
any 6 > 0,

A

do1(Qn, Qon) < (1+20)Ep, kIéllé? do1(Qk(P) 5,), Qon)

log Kln
" .

+OP (C<M1Q,n7 M2Q,n7 5)

If for a fized 6 > 0, C(Mig.n, Mag.n, ) log K1, /n divided by Ep, miny, dOl(ék‘(PT?,Bn)a Qon)
is op(1), then

A

dOl (Q(PAn)a QOn)
Ep, miny dOl(Qk(Prg,Bn)a Qon)

—1= Op(l).
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If for a fired 6 > 0, Ep, ming dOl(ék(Pan)v Qon) = Op(C(Mig.n, Mag ., 6)log K1, /1),
then

d01 (é(Pn)v QOn) = OP (C(Mln’ M2”’ 5) 1Og Kln) .

n

The proof of this lemma is a simple corollary of the finite sample ora-
cle inequality for cross-validation (van der Laan and Dudoit, 2003; van der
Vaart et al., 2006; van der Laan et al., 2006), also presented in Lemma 8. It
uses the convexity of the loss function to bring the Ep_ inside the loss-based
dissimilarity.

Super-Learner I of C_?O:A Similarly, we can define such a super-learner of
Go. For an M € ]R’;QO, let Gy : My, — Q;M C Fy.um be the MLE of the

previous subsection for which doo(Gpnr = Gu(P), GoL) = Op(rg 1, 0(1))-
Let K2, be an ordered collection of ky-dimensional constants, and consider

the corresponding collection of candidate estimators G v with M € Ky, .. We
assume the index set Ky, is increasing in n and that limsup,,,. Mk, , , =
max(Me,y, M1,c)0). Note that for all M € Koy, with M >|| Ly(Go) [y, we

have that doo(G(P,),Go) = Op(n™2). In addition, let Gj : M,y — G,
J € K2, be an additional collection of K, , estimators of G. This defines

a collection of Ky, = Ky ,, + Ks,, candidate estimators {ék k€ Ko} of
Go.

We define the cross-validation selector as the index
kan = Ko(Py) = arg min Ep, PoLy(Gi(PL g, )
€lXan n

that minimizes the cross-validated risk Ep, PnLg(ék(PS’ B,)) over all choices k
of candidate estimators. Our proposed super-learner of GG is defined by

Gn = G(P,) = Ep, Gy, (P2 ). (4)

The same Lemma 2 applies to this estimator é(Pn) of Gy.

Lemma 3 Let Ay be chosen so that 1%, ,(n) = O(n=*2). We have

s G(P). o) = Or7) + O (Mg Mo ) B2 ) (3
In addition, we have, for any § > 0,
doa(Go, Gon) < (1+20)Ep, min don (Gr(PY ), Gon)
log KQn) |

+O0p (C(Mlc,n, Msc ,0)
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for a constant C(My, My, 0) = 2(1 + 6)*(2M1/3 + M3 /6). If for a fized § > 0,
C (Mg, Mo, 6)10g Koy /1 divided by E, miny, doy(Gr(PY g ), Gon) is op(1),
then

A

do2(G(P,), Gon)
EBn mink d02(ék<P7?7Bn)a GOn)

— 1 = Op(l).

If for a fized 0 > 0, Ep, miny dog(ék(Pg7Bn), Gon) = Op(C(MiG.n, Mo, 6) log Ko, /),

then
19) (C(MlG,na M2G,n> 5) log Kln)
P .

n

dgg(é(Pn), GOn) —

4 Super Learner 11

For an M € R* we define Qn M= Qnﬂ]-"u M, but one could impose additional
M-constraints as long as they disappear as M — oco. Accordingly, we define

_é\:{j = arg min PoLl(Q).
QEQTL,]WI

If n > Ny and M, >H QO ||v7 then Qé\{; = Qo. B

e-nets: For an M € R, let Q. C Qua be an enet (ie., a finite
subset) of Q, s in the sense that there exists a QS?M € 9, me so that
\/d01(Q(])\,4n,€,Qé\,4n) < €. Suppose that for a fixed M, uniformly in n and

uniformly over @ € Q, s, the loss-based dissimilarity doi(Q,Qp%)) is not
a stronger norm than the L?(F)-norm:

0.5/ NM
O(M) = lim sup sup dOl (Q’ QOn)

- < o0. (6)
n—00 Q€Q, M ” Q - Q(J)\fz ||P0

This allows us to conclude the following. Suppose that N,, y/(€) = sup, N (€, Qnar, L2(A))
as a function in € is given. Then it follows that there exists a finite subset Qn M.e
of @, of size N, a(€) so that w.r.t. all L?(A)-norms, the distance between
an element in Qn, » and the finite set Qn, M, is smaller than e. Then, by as-
sumption (6), we know that this finite subset Qn e of Qn v also approximates

Qéfn within dissimilarity € w.r.t. do;:

sup _ min do1(Q, QM) < C(M)e.
POEM QeQn,]W,e

This proves that we can guarantee the desired e-approximation of Q) with a
finite net of size bounded by N, as(€), and in the following it is assumed that
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indeed the size of an M, is bounded by N, y(€). By definition of «;, we have
sup, v/1og Ny, () = O(e=1=21)) " and we know that oy < a(dy) = 1/(dy +1).

Candidate estimators: Let

Qn,M,e = arg _min PnL1<Q> (7)
QEQn M,e

be the e-MLE. Let Ky,, x &, be the cartesian product of a finite set Ky,
of constants M and a finite set &, of e-values. Let K, , be the size of Ky, ,,
and F, is the size of &,. We assume that F, = n? for some p > 0, which
allows us to approximate the minimum over all e-values by a minimum over
&, without affecting the theoretical performance of the estimator. Let M, , =
maxyek,,., M be the largest M value in Ky, ,. It is assumed that M, , equals
or exceeds the upper bound Mg, , ,, of the variation norm of a Q € Q,. For each

(M, €) € K1y xEpy, this MLE (7) is a candidate estimator Qs : My, — Qs
In addition, let Qj My — Q,., j € Jn, be an additional set of candidate
estimators of Qq,. Let K1, = Kino % &, UJ, be the index set of the resulting
total set of candidate estimators, and let K;,, = K1,,,+ J,, be the total number
of candidate estimators. This defines now our library of candidate estimators

Qus k € K.
Super-Learner II: Let £, € K1,, be the cross-validation selector of k:

k1, = arg min Ep, P, 5, Li(Qk(P) 5,)).

€Lin

The super-learner is now defined as:

Q(P,) = Ep,Qu, (P2y.). 8)

For example, if 7, is empty, then ky,, = (M,, €,) is the cross-validation selector
of (M, e):

(Mm En) = arg (M 51611131 EBnpé,BnLl (QTL,M,E(PS,B”))>

and the above super-learner is given by

We will refer to this latter estimator as the crossﬁ—validated e-net MLE.
5 The following lemma proves that the latter Q. : M,,, = Q,, converges to
Qo w.r.t. dp; at the minimax rate rg(n):
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Lemma 4 We have the following finite sample inequality: for each 6 > 0, we
have

Eodor(Ep, Qnyen(Prg,), Qon) <

(14 29) min {(1 +26) min  do(Q, Qon) + 2C(Mig.n, Magn, ) 1+ log Ny s (e€) }
M,e QEQn M,e ng
1+ log K1p o
nq '
Let Mo, be the smallest M € Ky, that is larger than || Qo |.. Assume an
e-net Qe whose size Ny, a(€) is bounded by log™® N, ar(e) = O(e"(1721),
whose existence is shown above. The above implies now

Eodo1 (Ep,Qn,n e (PS,B,L), Qon) <

(1 + 20) min {(1 + 25)62 +2C (Mg n, Mag n,0)

+2C(M1Q,n; MQQ,m 5)

1+ log Ny, (¢) }

ng
1+ log Ky, 0
+2C (M1g n, Magn, (5)#.
ng
By definition of rg(n), in particular, if
1+ log K1, 0
C(Mrgu, Mo, §)—— = = O(ry(n),

then N -
Eodo1(Qe(Pr), Qo) = OO"%(”))

Under the same condition, we also have

Eodo1 (Q(Fn), Qo) = O(Té(”»
Analogue to above, we can also present the super-learner G of Go:
G(P,) = Ep,Gr,(Pyp,)- (9)
Of course, we can present the same result for this super-learner and the cross-
validated e-net MLE G. of Gj.

Lemma 5 We have the following finite sample inequality: for each 6 > 0, we
have

Eodoa(Ep,Gn iy en (P;;Bn), Gon) <

= A 1+log N,
(1 + 26) min {(1 +28) _min  do(G,Gon) + 2C (Mg, Mg, 0) + log No i (€) }
Me GEGn, M, e ng

1+ log Koy, 4

+2C<M1G’,n7 M2G7n7 5)
ngq
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Let My, be the smallest M € Koy, that is larger than | Go ||o and assume that
Gnme 15 an e-net whose size Ny, pr(€) is bounded by log®? Npowu(e) < Ce (1-a2),
The above implies:

A

Eodo2(EB,Gnm,en (PS,B,L ), Gon) <

(1 + 26) min {(1 +20)€* + 20 (MG .n, Mo, 6)

nq
1+ log Koy o

ngq

1+ log Ny sy, (€) }

+20<M1G,n7 MQG,n: 5)

By the definition of rg(n), in particular, if

1+ log Koy B

C(MlG,na M2G,na 5) ng

then

A

Eodos(Ge(Pr), Go) = O(Té(”))

Under the same condition, we also have

E0d02(é(Pn), Go) = O(rg(n)).

5 One-step TMLE

5.1 The one-step TMLE

We consider a one-step TMLE defined by an initial estimator @,, = Q(P,) €
Q,., G(P,) € G, of Qo, Gy, and a finite dimensional least favorable submodel
{Qne : €} C Q, of Q, through @, at € = 0. Specifically, it is assumed that
the linear span of the components of its score

i[_/1 (Qn,e)

de e=0
w.r.t. sum loss L;(Q) = ijl L1;(Q;) contains the efficient influence curve
D*(Qn, Gy) at (Qn, Gr). B

Let €, = argmin, P, L;( 276) be the MLE, and we define the one-step
TMLE of Qg as Q. = Q,.,. One could iterate this process of updating to con-
struct a final update Qf = QX for K large enough that solves P, D*(Q%, G,,) =
0 exactly or numerically. In various examples this iterative TMLE converges
in one step in which case QF = Q).

21

Hosted by The Berkeley Electronic Press



In this article, we study the one-step TMLE QF = Q!, and our results
also apply to the K-th step QX for a fixed integer K > 1 (where K does not
depend on the data or on P,). The one-step TMLE of v is defined by the
plug-in estimator ¢ = W(Q%).

We assume that

PoD*(Q;,, Gn) = op(1/v/n). (10)
That is, it is assumed that the one-step TMLE already solves the efficient influ-
ence curve equation up till an asymptotically negligible approximation error.
In (van der Laan and Gruber, 2015) it is shown that one can always construct
a so called universal least favorable submodel with a one dimensional € so that
LI(Q0,) = D*(Q°.,Gy) at each ¢, so that indeed P,D*(Q%_ ,G,) =0 (ex-
actly). In addition, as formalized by Lemma 16 in the Appendix, for our choice
of initial estimators @,,, G, of Qg, G a one-step TMLE will satisfy (10) for one
dimensional local least favorable submodels under weak regularity conditions.

We can establish an asymptotic efficiency theorem for our one-step TMLE
for any finite dimensional local least favorable submodel, including a universal
least favorable submodel. However, our theorem is developed for a local least
favorable submodel of the type Q. = (Q1,y,-- -, Qk1+176k1+1). By using such
a submodel we have Q7, = Qjnc,(;) and €,(j) = argmin, P, L1;(Qjn.). Thus
in this case each @;, is updated with its own €,(j), j = 1,...,k1 + 1. The
advantage of such a least favorable submodel is that the one-step update of
an is not affected by the statistical behavior of the other estimators Q;,,
l # j: e.g., if one uses a single €, the MLE ¢, is very much driven by the worst
performing estimator Q;,. By using such a submodel the rate of convergence
of the initial estimator @, is fully preserved by the TMLE-update step for
bounded models, and still well controlled for unbounded models.

A general approach for constructing such a least favorable submodel is the
following. Let D7 (P) be the efficient influence curve at a P for the parameter
U, p: M — R defined by V,;(P) = V(Q_;(P),Q;(P1)) that sets all the other
components of (); with [ # j equal to its true value under P, j =1,...,k; + 1.
Then, it follows immediately from the definition of pathwise derivative that

k1+1

D'(P)=>_ D;(P)

so that, D*(P) is an element of the linear span of {D}(P) : j =1,... k1 +1}.
Let {an,e(j) : E(])} - an be so that

d
L1 (Qjn.e(s))

= D*(Qn,Gy), G=1,... k +1.
dE(j) j(Q ) J 1+

€(7)=0
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That is, {Qjn.(j) : €(j)} is a local least favorable submodel at (Q,, Gy,) for the
parameter U, o : M — R, j=1,...,k + 1. Now, define {Q, . : €} C Q, by
Qne = (Qnjej) 7 =1,..., k1 +1). Then, we have

d |
TLUQu| = (D(QuGa) i =1 k1),
e=0

so that the submodel is indeed a local least favorable submodel.

The only key ingredient of this type of submodel we rely upon is that
the MLE ¢, € R*™ is now defined by ¢,(j) = arg ming ;) P L1j(Qjn.e(j))
Jj =1,...,k + 1, so that indeed the update for @);, is not affected by the
other estimators @Q;,, | # j. Since Qk1+1(Pn) is typically an MLE of Qg, 10,
we would typically have €,(k; + 1) = 0. Lemma 17 provides a sufficient set
of minor conditions under which this one-step TMLE will satisfy (10). We
will not assume these conditions in our general efficiency theorem below, since
there are many examples in which this TMLE solves the efficient influence
curve equation exactly without any need to verify these conditions, as in our
example.

5.2 Efficiency of the one-step TMLE

If we use super-learner II, then choose A; and A so that r§(n) = O(n™™)
and r4(n) = O(n=*2). Our initial super-learner II satisfies that do;(Q,, Qo) =
Op(r3(n)) and dor(Ga, Go) = Op(r2(n), where rq(n) — (rg(n), ra+1(n)
and r¢(n) = (rg(n), reg,+1(n)). If we use super-learner I, then we choose A\

and A, so that 13,y p(n) = O(n™™) and 7 31 5(n) = O(n™*2). Our initial
super-learner I satisfies that dy;(Q,, Qo) = Op(réyMLE(n)) and do1 (G, Go) =
Op(r¢ prpp(n)), where again ro are(n) = (16 ure(n), rQr+1(n)) and rg vre(n) =
(re(n), ra ().

Let Aj(1: k1) = 0.5+ aq/4 and Aj(k1 + 1) = A(ky + 1). Our update Q)
conservatively satisfies do;(Q%, Qo) = Op(n~*1) (Lemma 13 and Corollary 1).
For bounded models we could have set A} = A\; (Lemma 14). We assumed that
leﬂ is not updated by the one-step TMLE, or that its update is not affecting
its initial rate. Let 72(n) = (n=,74(n)) € RM™2*2 5o that do(P:, Py) =
Op(r*(n)).

Let rps, be such that || D*(Q5, G,) — D*(Qo, Go) ||p,= Op(rp*n), where
this rate will be based on knowing do(P7, Py) = Op(r*(n)), and bounds of
the model M,, that are enforced on our super-learners. Finally, we define the
following sequences of constants that control how fast we can let grow M,
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converge to a possibly unbounded model M:

Cin = 10 i Mp S+t AMES ™" Mpe,y (11)
1 _ 1424
C2n = ME‘E(“TQO? MQQé n‘]\lec:L1 +n 01/2M + 0‘1 Mfglr(bl o M2QQJ7FLQOQ'(12>

Theorem 1 Consider the super-learners Q(P,) and G( ) defined by (2) and

(4), respectively, or by (8) and (9), respectively. This defines the initial estima-

tors Q(P,) = (Q(Pa), Qe +1(P) and G(P,) = (G(P,), Grgr(Pn)). Consider

also the above defined corresponding one-step TMLE )y, ., of Qo, and resulting

one-step TMLE ¥ (Q%) of ¥(Qy). Let r*(n) be the above defined vector of rates

so that under the assumptions of this theorem we have do( Py, Py) = Op(r?(n)).
Assume that

PDQG) = opln™) 13)
wex(Wian Mig,) 08 Fin gy (14)
max(MlGn,]\;f . ) 1og Ky, — O(n) (15)
n~ M0y, = 0(1) (16)

(18)

Roo((Q%, Gn), (Qo, Go)) = op(n'/?),

where we can use that dy(Pr, Py) = Op(r?*(n)).
Then, V(Q%) is asymptotically efficient:

W(Qr) = ¥(Qo) = (P, — Py) D*(Qo, Go) + 0p(n™"?).

Proof: Consider the case that our initial estimators are based on Super
Learner II. Combining P, D*(Q%, G,) = op(1/y/n) (13) with U(Q*) —V(Qy) =
—PQD*(Q:;, Gn) -+ RQO(QZ, Gn, Q(), G()) yields the identity:

U(Qr) = U(Qo) = (P — Po)D*(Qy, Gn) + Raoo(Qy,, Gy Qo, Go) + 0p(1/v/n).

Under assumptions (14) and (15), by Lemmas 4 and 5, we have do((Qy, Gy), (Qo, Go)) =
Op(r(n),r¢(n)). Under the additional assumption (16), Corollary 1 shows

that this implies do1 (Q7, Qo) = Op(n=1). Thus, do(Pr, Py) = Op(n=21,n*2) =
Op(r*(n)). Using this, by assumption (18), we have Roo(P, Py) = 0p( —05),

It remains to analyze the empirical process term (P, — Fy)D*(Q%,G,). We

have

(Pu=PR0)D*(Qy,, G) = (Po—Po){D*(Qy,, Gn) —D*(Qo, Go) }+(Pr—Fo) D*(Qo, Go)-
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We apply Lemma 11 to the first term on the right-hand side, which proves
that the expectation of the absolute value of this first term is bounded by
Op(C1,,/n%®), which is thus op(n~'/?) under assumption (17). This proves
U(Q*) =W (Qo) = (Py—Py)D*(Qo, Go)+op(n~"?), and thereby the asymptotic
efficiency of the one-step TMLE. The proof is the same for the case that our
initial estimators are based on Super Learner I, but now we should apply Lem-

mas 2 and ?7? to obtain do((Qn, Gr), (Qo, Go)) = Op(romre(n), re.mre(n)).
O

6 Efficiency of the one-step CV-TMLE

Cross-validated TMLE (CV-TMLE) robustifies the bias-reduction of the TMLE-
step by selecting € based on the cross-validated risk (Zheng and van der Laan,
2011; van der Laan and Rose, 2011).

6.1 The CV-TMLE

For a given Q,G, let {Q. : ¢} C Q, C Q be the same k; + 1-dimensional
submodel through @ at ¢ = 0 such that the linear span of %Ll(Qe) at € =0

includes D*(Q, G), as presented in the previous section. Let Q My — 9,
and G : M, = G, be our initial estimators. Given a cross-validation scheme
B, € {0,1}", let Qn B, = Q(P};Bn) € 9, be the super-learner applied to the
training sample Pvg B, Let

. 1 7
€n = arg min Ep, P, g, L1(QnB,.c),

where the submodel {Q, 5, : €} is the submodel through @, 5, at ¢ = 0.
This submodel uses G(Py ) as an estimator of Go. Let Q) 5 = Qn.B,.c, be
the B,-specific targeted fit of ()g. The one-step CV-TMLE of 1) is defined as

?/J:L = EBn‘I’(QZ,Bn)-

As with the TMLE in the previous section, we only assume that Ep, Pé 5, D (Q 5 ,Gnp,) =

n,Bp?
op(n~/?). By Lemma 17 in the Appendix this will hold in great generality for
local least favorable submodels, if do((Q,, Gr), (Qo, Go)) = op(n=%%).

6.2 Efficiency of the one-step CV-TMLE

Let A; and Ay be defined as above, so that do1 (Q(P,), Qo) = Op(n~>1) and
doo(G(P,),Go) = Op(n=>2). Let rp-, be a rate such that for each B, ||
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D*(@Q;, 5, Gn,B,) — D*(Qo, Go) |lpy= 0p(rp= ), where one should use that we
already know that do,(Q;, g, , Qo) = Op(n=™) and dy(Gp, Go) = Op(n=2).

Theorem 2 Consider the super-learners Q(P,) and G(P,) defined by (2) and
(4), respectively, or by (8) and (9), respectively. Consider the above defined
corresponding one-step CV-TMLE ) = Ep V(Qn. B, ..) of Y(Qo).

Assume
EBnP’Vi,BnD*(Qn,Bnﬁn? Gn7Bn) = OP(n_O5) <19)
Mion, M2 log K1,
max(Mign, Mig,) 108 K _ o)
n
M M2, )log Ko,
ma’x( 1G> QGn) 0g o _ O(n_)\2> (21)
n
| D*(Q, ,,GnB,) — D*(Qo,Go) lp, = o0p(rpen) for arp-n = 0(1)(22)
Ep, Rao((@}, 5, Gn.5,), (Qo,Go)) = op(n'/?), (23)

where for the latter two assumptions (22) and (23) one can use that for each
of the V realizations of By, do(Q} p,, Qo) = Op(n™) and doy(Gn,5,,Go) =

Op(n=2).
Then, ¥} = Ep, V(Qn B, .c,) is asymptotically efficient:

U —1ho = (P — Po) D*(Qo, Go) + op(n~'/?).
Proof: By assumptions (20) and (21), we have
do((Q(P) ), G(P) ), (Qo. Go)) = Op(rgy(n), 1 (n)) = Op(n™,n ).

Lemma 15 proves that under these same assumptions (20), (21), we also have,
for each B, doi(Qn.B,.c,s Qon) = Op(n=?1). This proves that for each B,,
do((Q; 5, Gn,B,), (Qo, Go)) = Op(n~*1,n=*?). Suppose n > Ny so that Qo, =

Qo and Gy, = Go. By the identity V(Q, 5, ) —¥(Qo) = —FD*(Q}, 5, Gn.B,) +
RQO((Q;,Bn n Bn) (QO? GO))? we have

EBnlI](Qn Bn) (QO) - _EBnPOD* (Q:(L,Bn’ Gnan)—i_EBnRQO((Q:,,Bn n Bn) (QO) GO))
Combining this with (19) yields the following identity:

w; 1 ‘I’(Qo) 5 EBn(Pnl,Bn - PO)D*(Q:B 7Gn Bn)
+Ep, Roo((Q 5, Gn,,), (Qo, Go)) + op(n'7?).
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By assumption (23) we have that EBnR2O((Q;,Bn7 GnB,), (Qo, Go)) = op(n=09).
Thus, we have shown

W(@n) — ¥(Qo) = EBH(Pé,Bn - R)D*(Qr, 5,,GnB,) + op(n™"?).
We now note

Ep, (P, 5, — Po)D*(Q}, ., Gn.B,) = Eg, (P, 5, — Po)D*(Qo, Go)
+Eg, (P, 5, — PO{D*(Q}; 5, Gn.B,) — D*(Qo,Go)}
= (P, — Ry)D*(Qo, Go) + Eg, (P, 5, — P){D*(Q}: , Gn,B,) — D*(Qo, Go)}.

Thus, it remains to prove that Eg, (P, 5 —Fo){D*(Q;, 5, , Gn,B,)—D*(Qo, Go)} =
op(n=%). For this we apply Lemma 12 with f,. = D*(Q(P23 ), Gunp,) —
D*(Qo, Gy), conditional on P 5, and F, = {fnc : €}. By assumption (22),
there exists a rate rp«, = o(1) so that || f... llp= Op(rp,), where this
rate will be determined based upon do(P; 5 , Fy) = Op(r*(n)) with r*(n) =
O((n=1,n=22).

Note also that the envelope of F, satisfies || F), ||p,< Mp+,. Since € is
p-dimensional for some integer p, the entropy of JF,, satisfies supy N(e || F, ||
, Fn, L*(Q)) < €7P. Application of Lemma 12 proves now that, if 7p«,, = o(1),
then, given P} 5 |

(P;,Bn - PO)fn,en = OP(n_O'B)'

This proves also that Ep, (P, 5 — Fo)fne, = op(n™"?). This completes the
proof. O

7 Implementing an MLE over a class of func-
tions with variation norm bounded by a spe-
cific constant.

Our super-learner I relies on an estimator defined by minimizing P, L, ((Q)) over
all Q € Q,, for which the variation norm of L;(Q) is bounded by some M < oo
for an ordered set of M-vectors. If for a fixed n, there exists a M, , € R* so
that for all Q € Q,, || L1(Q) [[v< My || Q ||, then we can achieve this as well
by defining the MLE of Q — P,Li(Q) over all Q € Q with || Q ||,< M, for
a series of M-vectors. Therefore we rephrase our goal as to compute a Q,, i
so that PnLl(anM) = mingeg, P.L1(Q) +7,, where r, is a controlled small
number. In this section, we address a concrete strategy for implementation of
this MLE.
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7.1 Approximating a function with variation norm M
by a linear combination of indicator basis functions
with L'-norm of the coefficient vector equal to M.

Any cadlag function f € D[0, 7] with finite variation norm can be represented

as follows:
f@) =0+ S / F(dus,0_,).
0

sC{1,...,p} s s]
For each subset s of size | s |, consider a partitioning of (0, 7] in | s |-
dimensional cubes with width h,,. Let’s denote these cubes with Ry, (7, s),
where j is the index of the j-th cube and j runs over O(1/ hlrfJ) cubes. Let
Rh,,(s) be the index set, so that we can write (0,, 7] = Ujer, (s)Fh,,(J,5)
By definition of an integral, we have f(z) = limy, o fm(x), where

Z Z (bhm,j ma,]7

SC{I’ ,P} jGRhm( )

B i = f(Rn,(j,s)) is the measure f assigns to the cube Ry, (j,s), and
o, (@) = I(my,,(j,s) < x,) is the indicator that the midpoint my,,(j, s)
of the cube Ry, (7, s) is smaller or equal than z;. By the dominated conver-
gence theorem, it also follows that || f,,(f) — f |[a— O for any L?*(A)-norm.
Moreover, the variation norm of f is approximated by the sum of the absolute
value of all the coefficients ;.

If = im > > B
" sC{1,p} JER,, (5)

Thus, we conclude that given a function f € F, p, we can approximate it
with a finite linear combination f,,(f) of basis functions ¢j,  for which the
L'-norm of its coefficient vector {ﬁflm,] J, 8} approximates the variation norm

of f.

7.2 An approximation of the MLE over functions of
bounded variation using L;-penalization.

Let’s define

Fiw=9 2 2 @B )| Bl M
$,J

$C{1,....p} JERpm (5)
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as the collection of all these finite linear combinations of this collection of basis
functions under the constraint that its L'-norm is bounded by M. Consider
the case that the parameter space Qj is nonparametric, so that the MLE over
Qj,n, M; of Qjo would correspond with minimizing over F, 5;,. Note that this
does not imply that the model M is nonparametric: for example, the data
distribution could be parameterized in terms of unspecified functions @); of
dimension d;(j), j = 1,...,k; + 1, and unspecified functions G, of dimension
do(7), 7 =1,... ka+ 1.

The next lemma proves that we can approximate such an MLE over F, y;
for a loss function L,; by an MLE over o, Dy selecting m large enough.

Lemma 6 Let M € Rsq be given. Consider fo € Fynu C DI0,7] so that
for a loss function (O, f) — L(f)(O), we have PyL(fy) = minger, ,, PoL(f).
Assume that if f.,, € F,m converges pointwise to a f € F,p on [0,7], then
L(fm) converges pointwise to L(f) on support of Py, including the support
of the empirical distribution P,. Let fo,, € F"y be such that FoL(fom) =
minfe;:fM PoL(f). We have Py(L(fo,m) — L(fo)) — 0 as hy,, — 0.

Consider now an f, € Fynr so that P,L(f,) = minser, ,, P,L(f), and let
fom € Fly be such that PyL( fom) = mingezm Py L(f). We have Po(L(fpm)—
L(f.) — 0 as h,, — 0.

Proof: We want to show that Py(L(fo.m)—L(fo)) — 0. By the approximation
presented in the previous section, since f, € F, u, we can find a sequence
fom € Fily so that f,, — fo as hy, — 0, pointwise and in L*(Pp) norm. By
assumption and the dominated convergence theorem, this implies Py L(f;,,,) —
PyL(fy) also converges to zero as hy,, — 0. But, since fy,,, minimizes PyL(f)
over all f € F", we have

0 < BoL(fom) — PoL(fo) < PoL(f5,,) — PoL(fo) — 0,

which proves that PoL(fo.m) — PoL(fo) — 0, as hy, — 0.

We now want to show that P,(L(f.m) — L(f.)) — 0 as h,, — 0. Since
Jn € Fum, we can find a sequence f, € F, so that ) — f, as hy, — 0,
pointwise and in L?*(P,)-norm.

Then, by assumption and the dominated convergence theorem, P, L(f; ,,)—
P,L(f,) also converges to zero as h,, — 0. But, since f,, ,, minimizes P, L(f)
over all f € F";, we have

which proves that P, L(fnm) — PoL(f,) — 0, as hy,, = 0. O
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7.3 An approximation of the MLE over the subspace
Q,.m by an MLE over a constrained linear model

For notational convenience, consider the case that @, = Q. Above we defined
a mapping from a function f € F, j into a linear combination f,,(f) €

of basis functions for which the norm of the coefficient vector approximates
the variation norm of f. The following lemma proves in general that we
can compute the MLE over Qy = 9N ]-"I“M with the MLE over Qm =
{Qm(Q) : Q € Qur}, which is a collection of these linear combinations of the
basis functions for which the L'-norm of the coefficient vector is bounded by
M. Note that Q1 is typically not a submodel of Q, but it is obtained by
replacing each element @ in Q,; with its approximation Q,,(Q).

Lemma 7 Assume that the loss function Li(Q) satisfies the pointwise conti-
nuity condition of the previous lemma. B B
For an M € R¥, let Qy = QN Fypr = {Q(P) : P € M, Q(P) € Fyn} be

all functions in the parameter space for Qo that have a variation norm smaller
than M < co. Let Q7 = {Qn(Q) : Q € Qu}, where Q,(Q) is defined above
as the finite dimensional linear combination of the basis functions {¢j, s s}
with, coefficient vector {8} (Q) : j, s}.

Consider a Qo € Qur s0 that PyLy(Qoar) = mingeg,, PoL1(Q), and let
Qi € Qny be such that PyLy(Qfy,) = mingegn FoL1(Q). Then, Po(Ly(Qf'r)—
Li(Qonr)) — 0 as hy, — 0.

Similarly, consider a Qnr € Qur s0 that Py Ly Q) = mingeo,, P L1(Q),
and let Q7 € Qfy be such that PyLi(Qy,) = mingegm b, L1(Q). Then,

n(Ll(Q?,M Li(Qna)) — 0 as hy, — 0.

Proof: We want to show that Py(L1(Qg,) — (QO wm)) — 0. By the approx-
imation presented in the previous section, since Qo € F,ar, we can find a
sequence QO v € F so that QO v — Qo as hy,, — 0, pointwise and in
L?(P,) norm. By assumptlon and the dominated convergence theorem, this
implies Py L1 (Qg'y) — PoL1(Qo ) also converges to zero as h,,, — 0. But, since
Qo y Minimizes POLl(Q) over all Q € Q7 we have

0 < PoLi(Qg'ar) — PoLa(Qonr) < PoLa(Q05y) — PoL1(Qoar) — 0,
which proves that PoLl(ng’M) — POLl_(QO,M) — 0, as hy,, — 0.
We now want to show that P, (L1 (Q} ) = L1(Qnar)) — 0 as h — 0. Since

Quar € Fur, we can find a sequence Qf;\} € F,"y so that Q — Qn.r as
R, — 0, pointwise and in L?(P,)-norm.
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Then, by assumption and the dominated convergence theorem, P, L (Q:AZ)—

P,L1(Qn.r) also converges to zero as h,, — 0. But, since Q') minimizes
P,Li(Q) over all Q € Qy,, we have

O S PnLl( _nm7M) - PnLl(Qn,M) S PnLl(Qnm,}\Z) - PnLl(Qn,M) — 07
which proves that PnLl(QﬁM) — PoLi(Qnar) — 0, as by, — 0. O

7.4 What to do with too many basis functions?

If the dimension d;(j) is large, then for h,, small the linear approximations
above are expressed in terms of too many basis functions to store in memory
and to computationally handle. In the final subsection of the next section, we
suggest that one might want to randomly sample the indicator basis functions
I(- > z) by sampling the "midpoint” z from the data itself (i.e.., include the
observed values), and variations of the data till the resulting MLE (or TMLE)
is not changing anymore by more than a statistically negligible margin. We
refer to this subsection for a more detailed discussion.

8 Example: Treatment specific mean

Let O = (W, A,Y) ~ P, be a random variable consisting of a d-dimensional
vector of baseline covariates W, binary treatment A € {0,1} and binary out-
come Y € {0,1}. We observe n i.i.d. copies Oy,...,0, of O ~ Py. Let G(P)
be the conditional probability distribution of A, given W, and let @Q;(P) be
the conditional distribution of Y, given A, W, under P. Let Q(P) be the
marginal cumulative probability distribution of W, and @ = (Q1,Q2). Let the
statistical model be of the foorm M = {P : G(P) € G,Q(P) € Q}, where G
is a possibly restricted set, and Q is nonparametric. The only key assump-
tion we will enforce on Q and G is that for each P € M, Q.(P)(a, W) =
Ep(Y | A = a,W) and G(P)(W) = Ep(A | W) is a Cadlag function in
W on a set [0,7p] C R?, and that the variation norm of Q(P) and G(P) is
bounded. Let g(P)(a | W) = P(A = a|WW) be the conditional probability
density. Suppose that G only depends on W through a subset of covariates
of dimension dy < d. Our target parameter ¥ : M — IR is defined by
U(P) = [{Q:1(1,w) — Q1(0,w)}dQ2(w) = ¥;(Q1,Q2). For notational conve-
nience, we will use ¥ for both mappings W and ¥;. The efficient influence
curve D*(P) = D*(Q, G) at P is given by:

D*(Q,G)(0) = %(Y CQuUATY) + Qi (L) — Qu(0.W) — T(Q).
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We have that U(P) — U(F,) = (P — Py)D*(Q,G) + Rao((Q, G), (Qo, Go)),
where the second order remainder Ryy() is defined as follows:

Roo(P, Py) = Ra1(P, FPy) — Raoo(P, Fo)
Rooa(P,Py) — / glalw) = 90@ ) 5 0 w) = O, w))dPy(w)

g(a | w)
a € {0,1}.

We define the following two log-likelihood loss functions for @, and G,
respectively:

L1(Q1) = - {Ylog Ql(Aa W)+ (1-Y)log(l - Ql(Av W))}

Ly(G) = —{AlogG(W)+ (1—A)log(1—G(W))}.

We also define the corresponding two loss-based dissimilarities do; 1 (Ql, Qlo) =
Po{L1(Q1) — L1(Q10) } and doa(G, Go) = Po{ La(G) — La(Go)}. Here Q repre-
sents the easy to estimate parameter which we will estimate with the empirical
cumulative probability distribution Q)o,, of W1, ..., W,,. We know from empiri-
cal process theory that the supremum norm of the difference of the cumulative
distribution functions @, and Q9 converges to zero at rate 1/y/n. Therefore,
we define d01,2(Q2> QQO) :H Q2 — Q2 Hoo

Let the submodel M (4, C') C M be defined by the extra restriction that
Q1 > 0, min(g(0 | W), g(1 | W)) >0, || Q1 |lv< C and || G |l,< C. Given a
sequence (d,,C,)) for which 4, — 0 and C,, — oo as n — oo, we can define
a sequence of models M,, = M(d,,C,,) which grows from below to M as
n — 00.

Let Q, = Q1. X Qa,, G, be the corresponding parameter spaces for ) =
(Q1,Q-) and G, and specifically, Q1, = {Q1 :|| Q1 |[s< Cy, Q1 > §,}, while
Qon = Qa. We have the following sieve model bounds for Mg ,,, Mag n, Micn, Macn
(van der Laan et al., 2004) and for the supremum and variation norm of
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Q,G, Li(Q), Ly(G):

Mign = O(logdy)
M2Q,n = O<1/5 )
Mg, = O(logd,)
Mg, = O(1/6,)
Mp«, = O(1/4,)
MQv,n = O(On)
Mgyn = O(Cy)
Mp,@un = O(Cn6,")
Mp,cpn = O(Cy ;1)

5
:

I
S
Q
Qq

Regarding the variation norm bounds, it is easy to see that the variation norm
of log f for an f > §,, is bounded by || f ||, /dn, and the variation norm of
| @1/g ||, involves an integral with 1/¢% which explains the §,2 factor.

Since the parameter space Q;,, consists of the cadlag functions with bounded
variation norms, without any further restrictions beyond the global bounds
dn, Cpn, we can select the entropy quantities for Q; as follows: oy = o] =
& = a(d) = 1/(d + 1), where d is the dimension of W. Similarly, if G,
consists of all cadlag functions of dimension ds, without further meaningful
restrictions beyond 9,,, C,,, then we can select the entropy quantities for G, as
ay = o = aldy) = 1/(d2 + 1). If the model G enforces more meaningful re-
strictions than that A only depends on W through a subset of W of dimension
dy, then ay = ab can be replaced by a sharper upper bound ay than «a(dy).
The entropy bound & for the parameter space of D*(Q, G) can be set equal to
ald)=1/(d+1).

Let Q1, € Q1, be a super-learner I of Q1 of the type presented in (2). Sim-
ilarly, let G,, € G,, be such a super-learner I of G as presented in (4) . Suppose
that max(Miqgn, M3, ,,) log Kin/n = O(n ) and max (Mg, M3 ) log Kan/n =
O(n= M%) where A(d) = 0.5+ a(d)/4 = 0.5+ 0.25(d+1)"'. Then, by Lemma
2 and Lemma 3, we have dOl,l(an;QlO) = Op(TL_A(d)) and dog(én,éo) =
Op( —Aldz) ), while dOl,Q(QQn;QQO) :H an — QQO ”oo: Op(ﬂil/z). Similar re-
sults apply to our Super Learner II, but we focus here on Super Learner I.

Plugging in the above bounds for M,q ,, Mg n, M1G.n, Mag n, it follows that
it suffices to select d,, so that 5! = O(n%>~054) (max(log K1, log Ky,))%?).
(Improvements can be obtained by selecting a separate 1, for truncating
@1 and 09, for truncating G.) Let K, = max(Kj,, Ks,) and suppose that
log K,, = O(n%®=2@/2)_ Then, it follows that this bound for 6, is larger than
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n*d/8 5o that this constraint on d,, is dominated by our later constraint given
below 6,1 = o(n*(@/%).

8.1 Omne-step TMLE

Consider the submodel:
Logitéln,el = LOgthln —+ Engn,

where H, (A, W) = (2A — 1)/g.(A | W). Let €1, = argmin,, P,L1(Q1ne,),
and Q%, = Qine,. The TMLE of ¥(Qy) is given by ¥(Q%), where QF =
(Q%,,, Q2n). The second step TMLE would result in €, = 0 so that it follows
that P,D*(Q%,G,) = 0. We will now verify the other conditions of Theorem
1.

Preservation of rate of convergence of TMLE update: By Lemma
13 and its corresponding corollary 1, if Cy,n~%1/4 = o(1), then we also have

do1,1 (@}, @r0) = Op(n ), where
02” Mlojll(t;;; nMQOéQl anlQ (:zl + n_al/2M 1(+§a1 Mfglrgl al)M_2+2a1 .

The rate at which C5,, can converge to infinity is dominated by the first term
Canq on the right-hand side. We have

CZna -0 (C«a d)+a(d)? 5 2a(d)—a(d)? (lOg(S )l a(d) ) )
So the condition is that
/4004 d)+a(d)? 5 2a(d)—a(d)? (lOg(S )1 a(d)? 0(1)
Using that we will enforce 0, = o(n®®/8)  this condition will hold if
Cvgz(d)Jron(d)n—oc(d)/4+0<2(a’)/4+oc‘"’(d)/8(10g n)l—az(d) = o(1).

Rate of convergence rp-, of estimated efficient influence curve:
We also note that

| D*(@5 G) = D*(Q0, Go) IS 535 Il 9o = go I, +1 %m0l
1 U(Q) Qo) |
Let Q?(W) = Ql(l»W) - Q1(0, W). Then,

T(Qr) — U(Qo) = Q2 Q% — Q20Q

= (Q2n — on)@m + an( - 10) _

=Op(n™%) + (Q2n — QQO)( 50) + Qa0(QY 2%0)

= Op(n™2) + (Qan — Q20)(Q} Qm) + OP(dm 1(Q1m Q10))-
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In order to bound the second empirical process term we apply Lemma 9 to
the term nO 5(Qon — Q20)(Q0, — Q4 /Cy with 7o(n) = n=Y/4/C,, < n~/* (since
| Q% — Q% |lp= Op(n St /2) = op(n~Y*)) and M,, = 1/C,, and a = a(d).
This yield the following bound:

(Qan — Q) (@ — Q) = Op(n~ 05+ /@) _ O (Do)
Thus, we have shown

| D*(Q;, Gn) — D*(Q0, Go) |y, = Op (nMDCXD 1611 Q1 — Quo || »,)
+0p (5,° | g0 — 90 |l ;)

We have do11(Q%,,, Q10) = Op(n™@) and doy(G,, Go) = Op(n~>92)). These
rates first need to be translated in terms of L?(P,)-norms in order to utilize the
above bound. In van der Vaart (1998, page 62) it is shown that for two densities

p.po, we have || \/p—/po |5, < — [ log(p/po)dPy. By noting that /z —/zg =
0.5(&(, )% (x — x¢) for some &(x, xp) € (min(z,xg), max(x,zy)), and that
max(1/Qun, 1/Gr) < 1/6,, it follows that || Q. — Q1o ||p,= Op(n = @/25-05)
and || G, — Go ||p,= Op(n=4)§5-0-3) S0 we obtain the following bound:

|| D*<QnaGn) . D*(Qo,GO) ||P0 _ OP( —-(d) Ca(d +6—1.5 =A(d)/2 +5;2n_’\(d2)/2)
— OP( —A(d) Ca(d +§ n- d)/Q)

where we used conservative bounding by not utilizing that dy could be sig-
nificantly smaller than d. By assuming that C, < n%5@/*d) (a3 condi-
tion dominated by our other constraints), it follows that the latter term is
Op(6;2n~ND/2) g0 that we can define rp-,, = §,2n /2,

We have the following upper bound for Chn (11):

Cin =0 (T’D(*dl 5a(@1  2a(d-2 52a(d)- 4071”70.5)7

n,l
where rp- 1 = max(n~'/* rp- ). Define

Cyiiz po@d/4ga(d)—1 4 p—af d)/252a(d)—4cn
i — 5;(1+a(d))n*a(d)/4 a?(d)/8 +6 2a(d 7a(d)/47a2(d)/4c,n.

Then C1,, = o(max(Cl,a, Cinp)). We need Cp,, = o(1). The first term of Cyp
and the first term of Cj,, are both o(n~*4/8) by using that 5! = o(n™®/8).
Thus, our condition is that

C. (nfa(d)/Qéia(d)f4 4 6;2a(d)nfa(d)/4fa2(d)/4) = o(1).
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Analysis of second order remainder Ry (P, F): Consider the second
order term Ry, (P, Py) for a € {0,1}. By the Cauchy-Schwarz inequality
obtain the following bound

Rooo(PEPy) < 6.0 1 gn— g0 Imll @5 — Quo |l
_ OP(5;27L_)\(d)>,

where we used that the L2(Py) norms of g,,—go and Q%, —Q1o are Op(65;, > n=ND/2),
as shown above. Thus, we need that 6;2n % = o(n™%%), and thus 6;' =
o(no(@/8),

We have verified all conditions of Theorem 1 for the one-step TMLE. Ap-
plication of Theorem 1 yields the following result.

Theorem 3 Consider the one-step TMLE V(Q7,,, Q2n) of V(Fy) = YV (Q10, Q20)
based on Super Learner I defined above, where the super-learner I of Q1o and
Gy is enforced to be contained in interval (6,,1 — 8,) and its variation norm
is enforced to be smaller than C,,. Let a(d) = 1/(d+ 1), A(d) = 0.5 + «(d) /4,
P1n(8n, C) = max(n 4, n=XOCR® 4 52 2D/2),

Assume that log K,, = O(no"r’*a(d)/Q), and that 6,1, C,, are converging slowly
enough to oo so that the following holds:

51 = o(no(@/s)
Cg(d)+a2(d)nfa(d)/4+a2(d)/4+a3(d)/8(log n)ka?(d) = o(1)

c, <n—a(d)/25%a(d)*4 i 5;2a(d)n—a(d)/4—a2(d)/4> = o(1).

Then v} is a reqular asymptotically linear estimator with influence curve equal
to the efficient influence curve D*(Fy), and is thus asymptotically efficient.

The condition 6, = o(n®®/%) makes clear that for large dimensions d, we
only allow ¢,, to converge to zero at a very slow rate. The second condition
is for most d implied by the first condition, and the third condition requires
C, = O(n™9/2), Given that a(d) = 1/(d + 1), we can conclude that both
671 < nD/ and C,, < n*@/2 can only converge to infinity at a very slow rate
when the dimension d is large.

8.2 One step CV-TMLE

For a given cross-validation scheme B,, € {0,1}", let Q,, g, and G, g, be the
super-learner I (2) and (4) applied to the training sample Pg B, respectively.
Let €, = argmin,, Ep, P} 3 L1(Q1n,,.c,), and Q}, 5 = Q1n,B,e,- The CV-
TMLE of ¥(Qy) is given by EBn\IJ(Q;Bn), where Q) 5 = (QTH,B»,NQQ"%BH)'
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Just as the TMLE, the CV-TMLE iterative updating algorithm converges in
one-step so that we have Ep P, 5 D*(Q} 5 ,Gnp,) = 0.

Above we showed that if 6,1 = O(n®>~%X4)(max(log K1, log K2,))~"%),
then the two super-learners Q1. 5, , Gn, B, of Q10 and G, based on the training
sample PY p converge at the rate n~ M) 1.t the loss-based dissimilarities do1 1
and dpy. In addition, by Lemma 15, under these same conditions, the TMLE
update @7, 5, converges at this same rate. We will assume that log K, =
O(n%°=*@/2) 5o that this constraint on 6! is dominated by our constraint
51 = o(n*@/®) below.

Above, we also showed that for each of the V' splits B,,, we have

| D@7 3, Gn) = D*(Q0,Go) I = Op(n™ IO + 6720~ M0/2)

= OP(TD*,n)'

We need that 7p-,, = 0(1) and thus that C,, = o(n%%/(@+0-25) — (5 0-5(d+1)+0.25)
and 6,2 = o(n*¥/2). For all d > 1, the latter condition 0,1 = o(nM9/*) will be
dominated by the condition 4, ' = 0( (d)/8) below. Note that C,, can grow to
infinity very fast, so that for all practical purposes there is no constraint on C,,.
In fact, by using a slightly different definition ¢, = Ep, V(Q7, g, , QQ( . Bn))
it follows that there is no constraint on C),, since this constraint only appears
as part of having to bound ¥} — vy above.

Above, we also showed that if 6,1 = o(n®®/®), then Ry(P}y ,FPy) =

op(n~/?). Application of Theorem 2 yields the following result.

Theorem 4 Consider the one-step CV-TMLE 1, = Ep ¥ (Q; g ) of ¥(Qo)
based on Super Learner I defined above, where the super-learner I of Q1o and
G 1is enforced to be contained in interval (0n, 1 — 0,,) and its variation norm
is enforced to be smaller than C,,. Let a(d) = 1/(d+ 1), A(d) = 0.5 + a(d) /4,
and K, = max(Ky,, Ka,).

Assume that log K,, = O(n®>=*D/2) " and that 6", C,, are converging slowly
enough to oo so that the following holds:

5ol = O(na(d)/8)
C, = o(n0'5(d+1)+0‘25).

Then ¥} is a reqular asymptotically linear estimator with influence curve equal
to the efficient influence curveD*(Py), and is thus asymptotically efficient.

Thus, again, just as with the one-step TMLE, for large dimension d, 9,, is only
allowed to converge to infinity at a very slow rate. Contrary to the condition
on (), in the previous theorem for the one-step TMLE, the condition on C),
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can be ignored for all practical purposes. The fact that the CV-TMLE allows
C, to be unbounded demonstrates the important gain of CV-TMLE relative
to the TMLE.

8.3 Practical implementation of MLE over functions with
bounded variation norm smaller than M

Consider a logistic linear regression model in which Logit@, is approximated
by >, 8;®; in {®; : j} where &;(W) = I(W > w;) for values w;, j =
1,...,J,, that correspond with midpoints chosen of cubes in a fine partitioning
of [0, 7] € R and its sections [0%, 7°] for all subsets s C {1,...,d}. Let Q¥ be
the MLE over this linear logistic regression model under the constraint that
>_; | B; [< M. In the previous section we showed that for a fine enough
partitioning this approximates the MLE over all functions Q; for which its
logit has a variation norm smaller than M < oco. By including these M-
specific MLEs in the library of the super-learner for a range of M-values, the
resulting super-learner satisfies the conditions of the above two theorems (i.e.,
it is the type of super-learner defined by (2)). However, suppose that the
dimension of d is reasonably large. Then the number of basis functions is too
large to store into memory. In practice, we suggest the following practical
approximation. For simplicity, let’s consider the case that the true regression
Qo(w) = 0 for any w for which one or more of its components equals zero. In
that case, we can ignore the partitioning of [0, 75] for s C {1,...,d}. Firstly,
we select the n basis functions corresponding with w; € {Wi,..., W, }. In
that manner, we are already guaranteed that for large M the MLE is able
to perfectly fit the data. In addition, we could select another O(n) basis
functions by taking a random sample of points in [0, 7]. We suggest to keep
adding such randomly sampled basis functions till the resulting MLE is not
changing anymore w.r.t L?(P,)-norm by more than 1/y/n. Our hope would be
that this approximation procedure of the actual desired MLE will very quickly
converge and will not require more than O(n) basis functions. Regarding
selecting a random sampling procedure, one might decide to sample from the
uniform distribution on the cartesian product over [ = 1,...,d, of the sets
{VIgEBA: "l NS

9 Discussion

In this article we established that a one-step TMLE or one-step CV-TMLE,
using a super learner with a library that includes Li-penalized MLEs that
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minimize the empirical risk over high dimensional linear combinations of indi-
cator basis functions under a series of Ll-constraints, will be asymptotically
efficient. This was shown to hold under remarkable weak conditions and for
an arbitrary dimension of the data structure O.

This remarkable fact is heavily driven by the fact that this super-learner
will always converge at a rate faster than n=/* w.r.t. the loss-based dissimi-
larity. This holds for every dimension of the data and any underlying smooth-
ness of the true nuisance parameter values, as long as these true nuisance
parameter values have a finite variation norm. Since the second order remain-
der Ry(P, Py) of the first order expansion for the TMLE can be bounded
in terms of these loss-based dissimilarities between the super-learner and its
true counterpart, this rate of convergence is fast enough to make the second
order remainder asymptotically negligible. As a consequence, the first order
empirical mean of the canonical gradient/efficient influence curve drives the
asymptotics of the TMLE.

In order to prove our theorems it was also important to establish that
a one-step TMLE already approximately solves the efficient influence curve
equation, under very general reasonable conditions. In this article we focussed
on a one-step TMLE that updates each nuisance parameter with its own one-
dimensional MLE update step. This choice of local least favorable submodel
guarantees that the one-step TMLE update of the super-learner of the nui-
sance parameters is not driven by the nuisance parameter component that is
hardest to estimate, which might have finite sample advantages. Nonetheless,
our asymptotic efficiency results naturally extend to any local least favorable
submodel.

The fact that a one-step TMLE already solves the efficient influence curve
equation is particularly important in problems in which the TMLE update step
is very demanding due to a high complexity of the efficient influence curve.
In addition, a one-step TMLE has a more predictable robust behavior than a
limit of an iterative algorithm. We could have focussed on the universal least
favorable submodels so that the TMLE is always a one-step TMLE, but in
various problems local least favorable submodels are easier to fit and can thus
have practical advantages.

Even though we did not implement this new super-learner yet, we discussed
practical tools for this implementation by relating it to minimizing the empiri-
cal risk over L;-constrained linear model. In a future article we will implement
this one-step TMLE and CV-TMLE in order to practically demonstrate these
theoretical results and to provide a powerful TMLE for data analyses.

In this article we assumed independent and identically distributed obser-
vations. Nonetheless, this type of super learner and the resulting asymptotic
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efficiency of the one-step TMLE will be generalizable to a variety of dependent
data structures such as data generated by a statistical graph that assumes suf-
ficient conditional independencies so that the desired central limit theorems
can still be established (van der Laan, 2008; Chambaz and van der Laan,
2011a,b; van der Laan et al., 2013; van der Laan, 2012).

This article focused on variation independent nuisance parameters. How-
ever, there are key examples in which representing W(P) in terms of recursively
defined nuisance parameters has key advantages. For example, the longitudi-
nal one-step TMLE of causal effects of multiple time point interventions in
(Gruber and van der Laan, 2012; Petersen et al., 2013) relies on a sequential
regression representation of the target parameter (Bang and Robins, 2005). In
this case, the next regression is defined as the regression of the previous regres-
sion on a shrinking history, across a number of regressions, one for each time
point at which an intervention takes place. In this case, a super-learner of nui-
sance parameter (), is based on a loss function Ly g, ,, (Qx) that depends on
a next nuisance parameter Q.1 (representing the outcome for the regression
defining Qy), k = 1,...,k; + 1.. One would now start with obtaining the de-
sired result for the super-learner of Qx, 1 whose loss function does not depend
on other nuisance parameters. For the second super-learner of )y, based on
candidate estimators le,j, jg=1,...,J, we would use as cross-validated risk
EBnPﬁ,BnLLkl,leH(ngBn)(ka’)‘ In other words, one estimates the nuisance

parameter of the loss-function based on the training sample. In (van der Laan
and Dudoit, 2003; van der Laan and Petersen, 2012; Diaz and van der Laan,
2013, In press) we establish oracle inequalities for the cross-validation selec-
tor based on loss-functions indexed by an unknown nuisance parameter, which
now also rely on a remainder concerning the rate at which leH(Pn) converges
to Qk,+1,0- In this manner, one can establish that the super-learner of )y, o
will converge at the same or better rate than the super-learner of Qy,4+10. This
process can be iterated to establish convergence of all the super-learners at the
same or better rate than the initial super-learner of Qx,+1,0. Our asymptotic
efficiency results for the one-step TMLE and one-step CV-TMLE can now
be generalized to one-step TMLE and CV-TMLE that rely on sequential tar-
geted learning. The disadvantage of sequential learning is that the behavior of
previous super-learners affects the behavior of the next super-learners in the
sequence, but the practical implementation of a sequential super-learner can
be significantly easier.

Our general theorems and specifically the theorems for our example demon-
strate that the model bound on the variance of the efficient influence curve
heavily affects the stability of the TMLE, and that we can only let this bound
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converge to infinity at a slow rate when the dimension of the data is large.
Therefore, knowing this bound instead of enforcing it in a data adaptive man-
ner is crucial for good behavior of these efficient estimators. This is also evident
from the well known finite sample behavior of various efficient estimators in
causal inference and censored data models that almost always rely on using
truncation of the treatment and/or censoring mechanism. If one uses highly
data adaptive estimators, even when the censoring or treatment mechanism is
bounded away from zero, the estimators of these nuisance parameters could
easily get very close to zero, so that truncation is crucial. Careful data adap-
tive selection of this truncation level is therefore an important component in
the definition of these efficient estimators.

Alternatively, one can define target parameters in such a way that their
variance of the efficient influence curve is uniformly bounded over the model
(e.g., van der Laan and Petersen (2007)). For example, in our example we could
have defined the target parameter EYy, — EYy,, where dy(W) = I(G,(W) >
§) and do(W) = 1 — I((1 — G,(W) > §), where G, is the super-learner of
Go = Eo(A | W) and § > 0 is a user supplied constant. In this case, the
static interventions have been replaced by realistic dynamic interventions that
approximate the static interventions but are guaranteed to only carry out
the intervention when there is enough support in the data. Due to the fact
that such parameters have a guaranteed amount of support in the data, the
variance of the efficient influence curve is uniformly bounded over the model:
i.e. Mp+ < 00.
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Appendix

A Oracle inequality for the cross-validation se-
lector.

Lemma 2 is a simple corollary of the following finite sample oracle inequality
for cross-validation (van der Laan and Dudoit, 2003), combined with exploiting
the convexity of the loss function allowing us to bring the Ep, inside the loss-
based dissimilarity.
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Lemma 8 For any 6 > 0, there exists a constant C(Mign, Magn,d) =2(1 +
0)*(2Mign/3 + M3, ,,/0) such that

EO{EBnd()l(ékln(Pfr?,Bn)vQU)} < (1+20)Eo{Ep, m,jnd01(@k(Pg,Bn),Qo)}

log K1,
20 (M, Mag , 6) 2211
+2C (Mign, Mag, )an

Similarly, for any § > 0,
Ep,do(Qr,, (P25, Qo) < (1+26)Ep, min dor (Qu(P5,), Qo)} + Ru,

where ER,, < 2C (Mg n, Mag.n,9) log Kip

nBy

If log K1, /n divided by Ep, ming, doy (Qr(PY p,), Qo)} converges to zero in
probability, then we also have
Ep, do1(Qk, (P 5, . Qo)
Eg, miny, doi (Qk(PY 5, , Qo)

—p L.

Similarly, if log K1,/n divided by EoEp, miny dm(ék(Pg,Bn)a Qo)} converges
to zero, then we also have
EoEp, do(Qr, (P 5, Qo)
EyEp, ming doy (Qk(PY 5, , Qo)

— 1.

B Empirical process results

A theorem in (van der Vaart and Wellner, 2011) establishes the following result
for a Donsker class F,, with envelope F,: If Pf? < §2PF?, then

J(0, Fn, L)
E < L*) (1 - F
[ Go < 7.5 2) (14 =2l Y ) 5,

where

5

5
oL O ol gl = sup/ (log(l + N(e || F, HPO,.FH,LQ(A)))O' de
A Jo

is the entropy integral from 0 to §. A simple corollary of this theorem is the
following lemma.
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Lemma 9 Consider F,, with || F, || p,< M, andsup, \/log(1+ N(e || F,, |y Fn, L2(A))) <
1/€'=*. Then,

B s [ Gulf) 1< {ro(n) /M) M, + {ro(n) /M, )220 05,
f€fn»“f||P0 <T‘0(TL)

If ro(n) < n=Y4, one should select ro(n) = n=* in the above right hand side,
giving the bound:

E sup | Gn(f) | {n_O'%/Mn}aMn + {Mn}z_zan_a/Q'
fefn7||f||PO<r0(n)

The following lemma is proved by first applying the above lemma to (P, —
Py) fn with ro(n) = 1 to obtain an initial rate ro(n), and then applying the
above lemma again with this initial rate r(n).

Lemma 10 Consider the following setting:

dO(Qm QO) S (Pn - Po)fn
fn € ]:m || Fn ||Po§ Mn

supy /10g(1 + N(e | By 7, Fo L2(A))) < 1/l
|| fn ||P0§ M2n{d0( :“Qo)}of).

Then
dO(an QO) S n71/2n7Q/2C(M'rL7 M2n7 Oé),

where
C(M,, My, ) = My(n)* M (n)' = 4+ M(n)2*0=) My(n)20-0p=/2,

Lemma 11 Let f, = D*(Q}, G,)—D*(Qo, Go). Assume || fn |lp,= Op(rp+n)-
Assume

sup v/log(1+ N (e | Fin [n, Fin, LA(@))) = O( 7)),

where Fi, = {D*(P) : P € M, }/Mp-,. We can always select « = 1/(d + 1)
where d is the dimension of O.
Let rpe g = max(n~Y4 rp-,.). Then,

EO ’ \/E(Pn_PO)fn |§ (TD*,n,l/MD*,n)a MD*,H+<TD*,H,1/MD*,n)2a_2 77/70.5]\4'D*'U,n-
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Proof: Let F,, = {D*(P): P € M.} C{f:l| f o< Mpryn, || f lloc< Mp= 1},
and note that its envelope F), satisfies || F}, ||p, < Mp~,. Note that f, € F,.
Let Fi, = Fn/Mpsyn, and note that (P, — Py)fn = Mpeyn(Pn — Fo) fin
where fi1, = fo/Mpeysn € Fin. We have || Fi, ||p,< Mp+,/Mp+y, and,
by assumption, sup, \/log(1 + N(€ || Fin |7, Fin, L2(A))) = O(e~1=9). We
can now apply Lemma 9 with F,, = Fi,,, M,, = Mp-,,/Mpeyn, a, ro(n) =
TD* n/Mp+yn. Application of Lemma 9 yields

EOGn(fln) < (TD*,TL:l/MD*m)a MD*,H/MD*v,n + (TD*,n,l/MD*,n)Qa_2 TL_O'5,

The desired bound for Ey | G,(f,) | is the right-hand side multiplied with
Mpryn. O

The following lemma is needed in the analysis of the CV-TMLE, where
fn,e = D*(Qn,Bn,ea Gn,Bn) - D*(Q07 GO)

Lemma 12 Let f,., € F, = {fnc : €} where € varies over a bounded set in
R? and f,. is a non-random function (i.e., not based on data Oy,...,0,).
Suppose that || fue, ||p= 0p(rp-n) for a rate rp-, satisfying rp-,logrp.,, —
0, and rp ,n"® — co. Suppose that the envelope F,, of F, satisfies || F, || p,<
Mp« . We have supy N(e || F,, ||, Fu, L*(A)) = O(e7?). Then,

Ey | Gu(fne,) =0 (TD*m(l + log 7"51771)) )
Thus, if rpsn, = o(1), then Gy (fne,) = op(1).

Proof: For notational convenience, let’s denote f, ., with f,. We apply the
Theorem in van der Vaart, Wellner providing us with

J(0n, Fr)

Fy ’ Gn(fn) |§ J((Sn,fn) (1 + 57%”0_5 || F, ||Po> H F, ||P07 (24)
where we can select 9,, = rp-,. Using the bound €7 on the uniform covering
number, it follows that J(,, F,) = —p°° fod"(log €)%3de. We can conserva-
tively bound (log €)%® by log ¢, and use that fO(S” log ede = 6,, — dlog 6, = (1 +
log(d,71)). This shows that J(8, F,) < 6,(1+logd, ). If J(6,, F) = O(62n%?),
then the leading term in (24) is given by J(d,, Fy) || Fn ||p,- Using the above
bound for J(4,, F,), it follows that this holds if 6,(1 +1logd ') = O(62n°?), or
equivalently, 4, (1 +logd, ') = O(6,n°?). By assumption we have §,n’% — co
and 4, logd ! — 0, so that this always holds. This results in the following
bound:

Ey | Gu(fa) |= O(rp-n(1 4 logrpt ),
which equals the stated bound. O
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C Constraining the variation norm of the data
distribution does not affect the canonical
gradient of the model

In the above formulation of the one-step TMLE, we assumed that both Q(P,,)
and its update @) are elements of Q,. By construction this holds for our
initial estimator Q(Pn) The update will naturally be an element of Q,, by our
assumption that the least favorable submodel {Q, . : €} C Q, is a submodel
of Q,. However, one might wonder why a least favorable submodel through
@, with score equal to the efficient influence curve at (Q,,G,) in the actual
model M would also be a submodel of M,,? The key to the answer is that the
universal bound assumptions enforced by M, are not affecting the tangent
space at a P € M,,: i.e. the tangent space at P in model M is identical to the
tangent space at P in the model M,,. This means that the efficient influence
at a P € M,, for the model M,, is the same as the efficient influence curve at
this P for the model M. This strongly suggests that a naturally selected least
favorable submodel for model M through a ) € M,, will also be a submodel
of M,, for a small enough range of € values. Therefore, we expect this to be a
non-issue, as also demonstrated in our example.

The fact that supremum norm and L?(P) bounds do not change the tan-
gent space at a P € M,, is easily understood, but one might wonder if a strict
bound on the variation norm could restrict the class of possible submodels
through P enough so that the closure of the linear span of its scores is a strict
subset of the tangent space at P under model M. To obtain some insight in
this we consider a particular example.

Let O be a univariate random variable and let M be a nonparametric model
dominated by the Lebesgue measure p that assumes that all densities are
differentiable. The tangent space T'(P) at P € M for this model is saturated
and thus equals LZ(P). For a P € M, let p = dP/du be its density and let p/
be its derivative Let M,, be the submodel that enforces that C' = supp¢ . ||
P ||lo< 00. Let T,,(P) be the tangent space at P € M, for model M,,.
Suppose that P has compact support O(P) C R. Consider a submodel {p, =
(1+eS)p: e € (—0,0)} for some § > 0 with score S € L2(P) at a P € M,,
so that || p’ [[.c< C' < 00, where the supremum is over the support O(P). We
have p. = (14 €S")p’. This will satisfy || p. ||ee< C if

C— 17 ll
0 [ P llos

We can select 0 > 0 equal to an arbitrarily small number larger than 0. This

15" [loo<

48

http://biostats.bepress.com/ucbbiostat/paper343



shows that any S € L3(P) for which its derivative S’ has a bounded supremum
norm is an element of the tangent space 7,(P). However, any function in
L3(P) can be arbitrarily well approximated in L2(P) by functions that have a
uniformly bounded derivative (where this bound can be arbitrarily large). This
proves that T,,(P) = L(P) and thus that putting bounds on the derivative do
not affect the tangent space of the model.

Consider now a submodel M,, of M that enforces C' = suppcpy, || P [|o<
oo. As above, let’s consider again the submodel {p. = (1 +€S)p: e € (—6,0)}
for some § > 0 with score S € L2(P) at a P € M,,, so that we know || p ||,< C.
Let O(P) be a compact subset of IR. We have

T /@ ECEIEY /@ RCIECIRERIEIE

Since || p ||o< C, we can further conservatively bound the right-hand side by
P lle +€C(I S o + 1 S lloo). Thus, if || S [lo< (C= || p [l)/(2C9), then
{pe : € € (=9,0)} € M,,. We can select § > 0 arbitrarily small. This proves
that any S € Lg(P) for which || S ||,< oo is a score of a parametric submodel
of M,,. The closure of the linear span of this set in L3(P) equals L3(P) again,
so that T,,(P) = T(P) = Li(P).

Based on these two examples, it follows that indeed additional universal
variation norm bounds on the model M are truly global constraints which
do thus not affect the tangent space and accordingly the efficient influence
curve of a pathwise differentiable target parameter. As a consequence, at any
P € M, a least favorable submodel of M,, through P for model M,, will also
be a least favorable submodel through P for model M.

D Preservation of the desired rate for the one-
step TMLE

In this article we constructed an initial super-learner @ of Q satisfying do; (é(Pn), Qo) =
Op(n=1) where \; € ]Rilo. For example, if we select Super Learner I then)\,
can be chosen so that ré(n) = O(n~"). However, our one-step TMLE relies

on its targeted version QF = Q,.,, so that we still need to establish a rate
for this targeted version, where we can use that we already have a rate for
Q,,. We assume that Qk1+1(Pn) is not updated by the TMLE-update step, by
already being an MLE type estimator. Due to the fact that our model M is
allowed to be unbounded, so that the global bounds on M,, can converge to
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infinity, we might worsen the rate of the initial estimator Q,. Thus the preser-
vation of the desired rate n~'/* might require controlling the rate at which the
bounds of M,, converge to the corresponding infinite bounds for M. This is
formalized by the following lemma. We remind the reader that our submodel
is such that €,(j) = argminjy P,L1;(Qjn.c(;)), OF, in our short-hand notation
€, = argmin, P, L1(Qn,)-

Lemma 13 Suppose do1(Qn, Qon) = Op(n™) for a A\, € REY with Ay >
0.5. Suppose also that oy € ]Rilo is chosen so that for Fi, = {L1(Q) : Q €
On} /ML, (0 with envelope Fi, < Mign/Mp, Q) we have

Sup \/log(l + N(€ H Fln HPO?‘Fl’I’M LQ(A))) = O(Ei(lial)).
A

Let d; € ]N];l0 be the vector of integers indicating the dimensions of the domains
of the components of Q = (Q1,...,Qx,). In a nonparametric model M,, we
have that this holds for on = 1/(dy + 1), so that we will always have oy >
1/(dy +1). Let e, € R™ be defined by €,(j) = argming;) P, L1j(Qjne,)s j =
1,.... k1, and let QF = Qn.,. Then,

Eodo1 (Qf, Qon) < n_l/Qn_al/zc(MLl(Q)v,naM2Q,n>M1Q,naa1)+O(n_)\1)a

where

C(MLl(Q)v,na M2Q,m M1Q,m 041) =

My, (@ {MQQ,nMLl(Q)v,n}O‘l{]\241Q,n/ML1(Q)U,n} . )
+Mr, (Q)um {{MIQ,n/MLl(Q)v,n} 0‘1(1_0‘1){MzQ,nMLl(Q)v,n}_ (=a)p=a/ }

2
1-aj

Proof: We have that PnLl(Qn,En) = min, PnLl(Qn,E). This yields the follow-
ing inequality:

0 < do(Q},Qon) = PoL1(Qne,) — PoL1(Qon)
= PRyLi(Qne,) — BoL1(Qn) + PoL1(Qn) — PoL1(Qon)
= PyLi(Qne,) — PoL1(Qy) + dor(Qn, Qon)
= Po{L1(Qne,) = L1(Qn)} + Op(n™™)
= _(Pn il P(l){Ll(Qn,en) - Ll (Qn>} + Pn{Ll(Qn,6n> - Ll (Qn)} + OP(ni/\)
< —(Py— P){L1(Qne,) — L1(Qn)} + Op(n™).

We have that the variation norm and supremum norm of L;(Q}) — L1(Q,) are

bounded by My, (Q)un and Mg, respectively. Let F;, = {L1(Q) — L1(Q) :

50

http://biostats.bepress.com/ucbbiostat/paper343



Q € Q,,¢} and note that it is a subset of F© = {f € DM[0,7] :|| f |[.,<
Mr ©yom: || f llse< Mign}. We also note that the envelope F,, of F,, satisfies
| F |lp, < Mign. Then, the right-hand side of the above inequality can be rep-
resented as (P, — Py)fn + Op(n=?) for an f, € F,. Let Fy, = Fu/ ML, (0)on;
and let [}, be its envelope. We have || Fi,, |[p,< Mign/Mr,(Qwn- By as-
sumption we have sup, \/log(1 + N(e || Fi, || py, Fin, L2(A)) = O(e-(721)).
We have F,, C F,F, and the latter set has a covering number bounded by
the choice a(d) = 1/(d + 1) so that we know that a; < 1/(d + 1). Define

iy (Qr, Qon) = dor (Qs, Qon)/MLl(Q)M. We have
dgl (Q;kw QOn) S (Pn - Po)fm + Op(ni/\l/MLl(Q)v’n),

where fi, € Fin, | Fin < Mign/Mr,(@un- We also want to bound |
fin ||p, in terms of df, (Q%, Qo). For this purpose we note

I L1(Q) — LiQn) lp, < || La(@5) — Li(Qon) llr + || L1(Qn) — L1(Qon) |7,
< Magu{dor(Q%, Qon)}’® + Op(n~/?)
= M2Q,HML1(Q)U7n{d6Ll(Q;u Q(Jn)}&5 + OP(ni)qp)'

So we have the following setting for the analysis of d¥, (Q%, Qo):

dy 7;: QOn) < (P, — Ro)fin + OP(niAl/MLl(Q)vJJ

fin € Fuin, || Fin < M1Q,n/ML1(Q)v,n

supg \/1og(1 + N(e || Fun ||py, Fin, L2(Q))) = O(e 7))
| fin 1oy < Mg nMr,y(@pun{diy (@5, Qon) 1.

We now apply Lemma 10 with dy = dfj;, @, = _fl, Qo = Qon, fn = fin,
«Fn = «Flna a = aq, Mn = MlQ,n/MLl(Q)v,n and M2n = MZQ,nMLl(Q)U,n- This
proves

) 9 O M v,M M ny M ns o
doy (Qrn, Qon) < n~1/2p—o/2 ( L1(@)v, 2Q, 1Q, 1)_
M@)o

Thus,

do1 (Q}, Qon) < n_1/2n_a1/2O(ML1(Q)u,m Msg n, Migm, a1).

This completes the proof. O

An immediate corollary of this lemma is given below. Note that the rate
n~* guaranteed by this corollary is the same as the rate rg yrg(n). Thus, if
one uses Super-Learner I, then the conditions stated guarantee that the rate
of the initial estimator is preserved, even though the model is allowed to be
unbounded.

51

Hosted by The Berkeley Electronic Press



Corollary 1 Consider the super-learner Q(P,) defined in (2) or (8).
Suppose do1(Qn, Qon) = Op(n™1) for a \; € ]R’;l0 with A\ > 0.5. We can
set Ay so that n™*" = O(rg(n)) or n™* = O(rgure(n)).
Suppose also that oy € ]R’;lO is chosen so that for Fi, = {L1(Q) : Q €
Qn}/MLl(Q)un with envelope Fi, < Mign/Mr,(Qyvn we have

sup \/log(1+ N{e | Fin [, Fin, L2(A))) = O(e~07).
A

Let dy € ]N';lO be the vector of integers indicating the dimension of the domain
of @ = (Q1,...,Qx). In a nonparametric model M,, we have that this holds
for oy = 1/(dy + 1), so that we will always have oy > 1/(dy + 1).

Let X = 0.5+ /4. Assume that

max (Mg, M3 ,) log K1y,

n
max(Mg,,, M22Gn) log K5,

n
n_a1/4C(ML1(Q)v,n7M2Q,mMIQ,mal) = O(1).

Then, dOl((Q;a Qg) == Op(TL_)‘T).

Suppose that the model M is bounded and we select M,, = M. Then we
can not only show that we preserve a rate n=*1, as in the previous corollary,
but we can now guarantee preservation of the rate of the initial estimator Q,.
This result is stated in the following lemma.

Lemma 14 Assume the model M is bounded. Assume doy(Qn, Qo) = Op(n=>1)
and dy(G,,Go) = Op(n=2). For a )\ € ]R’;l(;rl and Ny € ]R]§0+1, we define
A= (A1, \g) € REet2,

Let S(Q,G,e) = %LI(QE). Note, S(Q,G,e) = (S;(Q,G,e(y)) : j =
1,...,ki+1). Lete, = argmin, P,L1(Qn.). Assume it solves P,S(Qy, Gy, €,) =
0. Assume the following analytic properties of the least favorable submodel:

° dOl(Qn,eanO) — 0, dOl(Qn»QO) — 0 and dOQ(Gn,Go) — 0 zmply that
€, — 0;

e Along a sequence (Qn, Gn) with do((Qu, Gn), (Q0, Go)) = O(n™), we

have

d
d POS(QH’ Gna EOn)(En - EOn)
€on

+o(| €, — €on |);

PO{S(Qm Gnen) v S(Qm Gn? 60”)} =
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o For a sequence €, — 0 and (Qn,Gy) with dy((Qn,Gr), (Qo, Go)) =
O(n™), we have %POS(QW G, €n) converges to co = — %POS(QO, G, E)LZO >
0 with cog > 0;

e For some d > 0, SUD||<s,PeM | S(Q,G,e€) [|y< 0.

o Ifdy((Qn,G,), (Qo,Go)) = O(n™) and €, — 0, then Po{S(Qn, Gy, €n) —
S(Q07 G07 En} - O(ni/\/2);

o If e, = O(n™M/%) and do1(Qn, Qo) = O(n™™), then do1(Qne, Qo) =
O(n=).

Then,
€n = OP(H_’\lﬂ) and doy(Qn.c,., Qo) = Op(n=1).

Proof: Define €y, = argmin, PyL,(Qy.), which solves PyS(Qpn, G, €0n) = 0.
We also define ¢; = 0 which solves PyS(Qo, Go, €9) = 0. It follows, analogue
to the proof of previous Lemma 13, that doi(Qn.,, Qon) = 0p(1). By the first
assumption, do1(Qne,, Qon) = op(l) implies €, = op(1), which also implies
€on = op(1). Thus, we have ¢, = op(1) and €y, = op(1). Given that we know
that €, = op(1), we want to prove that €, = Op(n~*/?). We will prove this
by proving €, — €, = Op(n™"%) and €y, = Op(n=*1/2). Note

Po{S(Qn, Gn,en) — S(QnGn,,€on)} = — (P — Po)S(Qn, G, €5).

We assumed differentiability in € uniformly in the sequence Q,, with do; (@, Qo) =
Op(n=1) in the sense that:

d
= d POS(QH> Gna 60n)<€n_60n>+0(| €n—€on |)
€on

PO{S(Qn7 Gn7 €n>_S(Qn7 Gn; 60n)}

We also assumed that —ﬁPOS(Qn, G, €on) cOnverges to cg = —d%)POS(QO, Go, €9) >
0. Then, it follows that

€n — €on = Cal(Pn - PO)S(Qna Gnaen) + 0(| €n — €on |)

By assumption, supgeg geg,<s | S(@; G €) |l,< € < oo, so that it follows
that €, — e, = Op(n~1/?).

Consider now the equations PyS(Qn, G, €0n) = PoS(Qo, Go,€0) = 0. We
have

PO{S(Qm Go, EOn) e S(Qo; G, 60)} = _PO{S(Qm G, EOn) - S(Qo; G, €0n)}-
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Thus,

€on — €0 = CEIPO{S(Qm G, €on) — S(Qo, Go, €0n) } + 0(] €0n — €0 |).

We assumed that P(){S(Qn, Gn, €0n)—S<Q0, Go, eOn} = Op(n_/\l/z) if d01 (Qn, Qo) =
Op(n™) and ¢, = op(1). This proves that ey, — ¢ = Op(n /%) + of]
€on — €0 |), and thus ey, = Op(n~"1/2), which proves the first statement of
the lemma. By the final assumption, we have that the latter, combined with

do1(Qn, Qo) = Op(n~™1) implies doy (Qn.c,., Qo) = Op(n™). O

E Preservation of the rate of initial estimator
for the one-step CV-TMLE

Consider the submodel {Q. : €} of the type presented in main article and pre-

vious section. The following lemma is an immediate consequence of the oracle

inequality of the cross-validation selector for the loss function L;;, applied to

the set of candidate estimators P, — Qjn.c(j) = Qje()(Pn) indexed by €(j), for

each j=1,.... ki +1.

Lemma 15 Lete, = argmine Eg, P, p L1(Qn,B,.c), and &, = arg min, EBnPoLl(QE(Pan)).
Assume do1(Q(P2 ), Qon) = Op(n~?1). We have

Ep,doi(Qe, (P 5. ), Qon) < (1+20) min Ep,do(Q(P) 5,), Qon)
+C(M1Q,na MQQ,nv 5) log Kln
nq

By convexity of the loss function L1(Q), this implies

dOl(‘E'BnQEn(PT?,Bn)? Qon) < (1+26) mein EBndOI(Qe<Pr(L),Bn>’ Qon)
+C(M1Q,n, MQQ,n; 5) log K1,
ng

We have
min Bp, dor (Qe(Py ,), Qon) < B, do1(Q(Fy p,) Qun) = Op(n™™).
Thus, if C(Mig.n, Mag.n,d)log Ki,,/(ng) = O(n™?1), then
dor (B, Qn.B, s Qon) = Op(n~™).

It also follows that for each B, dgl(Qen(ngBn), Qon) = Op(n=1).
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F General bounding of second order remain-
der Rs().

Recall the expansion ¥(Q*)—¥(Qy) = (P,—Py)D*(Q%, G,)+Rao(QF, Qo, Gr, Go)
for the TMLE Q7. For asymptotic efficiency, we need that Ry ((Q}, Gr), (Qo, Go)) =
op(n~Y/2). Therefore, given dy( P, Py), we want to bound Ray(P*, Py) in terms
of do(Pr, Py). Typically, our loss functions are log-likelihood or squared er-
ror loss functions in which case dy1;(Q;, Qjo) equals or is equivalent with

| Q; — Qjo |3, and similarly, doy;(Gj, Gjo) equals or is equivalent with

| Gj — Go; |lp,: here we use that the log likelihood based dissimilarity is
equivalent with the square of the L?*(Py)-norm if the log-likelihood loss is uni-
formly bounded on the model (our M; < oo). In all our applications, by using
Cauchy-Schwarz inequality [ fgdPy <|| f ||r || 9 ||, we have been able to nat-
urally bound Ry ((Q}, Gr), (Qo, Go)) in terms of L?(Py)-norms of @7, — Qjo
with j € {1,..., k1 +1}, and L*(Fp)-norms of G;,—Gjo with j € {1,..., ko+1}.
Plugging in the rates op(n~'/4) for each of these L?(P,) norms, then proves
that Re((Q%,Gh), (Qo, Go)) = op(1/+4/n). So one is typically able to bound
Ry() as follows:

k14+1k1+1
Ry((Q,Gn), (Qo,Go)) < D conlin. it) Il @ — Qivo Il @ — Qo Il
Ji=1 j1
ko+1 ka+1
+D 0D canlinn 32) | Gian = Giso Imll Gign — Gigo Il
=1
k141 ko+1

+ Z Z CQGn(j17j2) H Q;m - leo HPOH szn - ngO ||P07

Jj1=1 j2=1

for certain matrices con(), can(), coan() of coefficients. In other words, the
second order term Ry() will be a sum of second order integral terms where
each integral has a second order integrand, either a square difference or a
cross-product of one difference with another difference, among the ki 4 ko + 2
possible differences Q7 , — @j0, Gjn — Gjo.  Of course, typically not all
(k1 + ko + 2)? possible second order terms will appear in Ry. Each of these
second order integrals can be bounded with Cauchy-Schwarz inequality in
terms of a corresponding product of the norms of the two differences, resulting
in the above type of bound. Since the second order integrands will typically
also involve other functions depending on Fy and (Q}, G,), these bounds will
also involve bounds on these functions (e.g. supremum norm), resulting in

coefficients that depend on n.
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For bounded models, these coefficients will be uniformly bounded by fixed
constants, while for sequence of models M,, converging to an unbounded model
M, we will have that Ry((Q%, Gr), (Qon, Gon)) is bounded as above but with
coefficient matrices that are upper bounded by constants depending on the
bounds of model M,,. In the latter case, we will have that Ry ((QF, G,), (Qon, Gon))
is bounded by some constant Mpg,,, times the above second order polynomial
sum in L?(Py)-norms, where Mpg,,, will now possibly converge to infinity. That
is, we obtain a bound of the form Mg, fr,(do(P}, Py,)), and by letting Mg,,
converge slowly enough to infinity, this will still be op(n="/2).

G A single updating step in TMLE suffices
for approximately solving the efficient in-
fluence curve equation

The following lemma proves that for a local least favorable submodel with a
1-dimensional € and n~'/**-consistent initial estimators, the one-step TMLE
already solves P, D*(Qn.e,, Gn) = op(n~'/?) under some regularity conditions.

Lemma 16 ¥ : M — R is a pathwise differentiable parameter at P with
canonical gradient D*(P), and assume V(P) = W(Q(P)) and D*(P) = D*(Q(P),G(P))
for parameters Q@ : M — Q ={Q(P): Pe M} and G: M — G = {G(P) :
P e M}. Let Ry() be defined by V(P) — ¥ (Py) = (P — Py)D*(P)+ Ry2(P, Py),
and let Ry(P, Py) = Rao((Q, G), (Qo, Go)). Suppose Qy = arg ming PyL(Q) for
some loss function L(Q) and that, for any Q € Q and G € G, {Q. : €} C Qisa
one dimensional parametric submodel through ) with %L(Qe) o = D*(Q,G).
Let (Qn,Gy) be an initial estimator of (Qo, Go), and consider the one-step
TMLE V(Qn.e,) with €, = argmin, P, L(Qy.c).

Let fn(e) = PnD*(Qn,eaGn) and gn<€) = %PnL(Qn,E)' Let ﬂl(e) - %fn(e)
and g,,(€) = £g,(€). Let g = 0.

Assume

o fulen) = fu(0)+ f1(0)en+ Op(€7) and gu(en) = gn(0)+g,(0)en +Op(€r);

W P

o {%D*(Qn,ena Gn) — %L(Qn,en)}/no'25 falls in a Py-Donsker class with
probability tending to 1;
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P{d (Qua Go) = D" Qo Go) | = Opl 1Y) (25)

dGQ }
A 1Qu) ~ L@} = Onla™ ) (20
i €0

R L(Qu) = ~RD" (R)D" ()} (27)

IfL(Q(P)) = — 10gPQ(p),,,(p) for some density parameterization (Q,n) —
PGy, then (27) holds;

d deg R20<<Q0 €09 GO) (Qg, GO)) =0
Then, PnD*(Qn,en, Gn) = Op(l/\/ﬁ).

Proof of Lemma: Firstly, by the fact that @, . has score D*(Q),,G)) at
e = 0, it follows that f,(0) = ¢,(0). We also know that g,(e,) = 0, and we
want to show that f,(e,) = op(n~'/?). Let ¢y = 0. By the second order Tailor
expansion assumption for f,, g, at € = 0, we have

fulen) = fulen) = gn(en)
= fa(0) = 9a(0) + €n(f, — 9)(0) + O(er)

= d P,D* @ —P,L O(é?
- {d€0 (Qn €0 ) d 2 (Qn 60)} + (€n>'

: 2
By assumption, €

to show

= op(n~'/?), so that O(¢?) = op(n~1/%). Thus, it remains

d d?

P,—D* —P,—L = —Ly,
dﬁo (Qn,eoaGn) nde(g) (Qn,eo) OP(n )

By our Donsker class assumption, we have

(Pa = P D" @ Go) = 3G 1 = Opln7)

Thus, it remains to show

d d?

b | * o i — —-1/4
dEO POD (Qn,em Gn) PO degL(Qn,m) OP(n )
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By assumptions (25), we have that the left-hand side of last expression equals

d . d? -

—PyD*(Qoeo Go) — Po=5L(Qo,e,) + Op(n 1/4),

deg deg

so that it remains to show that the first term equals zero. By —PyD*(P) =
U(P) — V(Fy) — Ry(P, Py), it follows that

iPOD*(QO,EW GO) = _iqj(Qo,Q)) + iR?((QQEo’ GO)’ (Q07 GO))

d&o d60 dEO
By assumption we have %RQ((QO,EO, Go), (Qo, Go)) = 0. By definition of the
pathwise derivative at P, we have that the derivative U(Qo.) = V() at
e = 0 equals PyD*(Py){D*(P,)}". Thus, we have shown
P (Qusas Go) = =AD" (B (R))

Thus, it remains to show (27), which thus holds by assumption. Suppose that
L(Q(P)) = —log po(p)p) for some density parameterization (Q,n) — pg.-
Then L(Qoe) = —10gpgg.m- Since {pgy.ne : €} is a correctly specified
parametric model, we have that the second derivative of —Fylogpg,.,, at
e = 0 equals its information matrix (i.e., covariance matrix of its score)
PO% log pQO,eWO{% 108 P0y . 0} at € = 0. However, the latter equals
—PyD*(Py){D*(Py)}", which proves (27). This completes the proof of f,(e,) =
op(n~Y?). O

In the main article we have not proposed a 1-dimensional local least favor-
able submodel as in Lemma 16, even though our results are straightforwardly
generalized to that case. Instead we proposed a ki + 1-dimensional least fa-
vorable submodel that uses a 1-dimensional €(j) for updating @;, for each
j=1,...,k1 + 1. We will now prove the desired lemma for such a submodel
by application of the above lemma across all j.

Lemma 17 LetV : M — R be pathwise differentiable with canonical gradient
D*(P) = D*(Q,G) and let U(P) = W(Q(P)) for Q(P) = (Q1(P), .. ., Q+1(P))-
For a given @, we define Vg ; : M — R by Vg ;(P) = Y(Q_;,Q;(P)), j =
1,...,ki+1. Let D"fQ’j(P) = D*fQ,j(Qj(P), Q_;(P),G(P)) be the efficient influ-
ence curve of Vg ; at P, and define Ry g (P, Py) = Ra0,;((Q(P),G(P)), (Qo, Go))
by \I/Q’j(P)—\I/Q’j<P0) = (P—Po)D*Q’j(P)—FRQ,Q’j(P, P()), ] = 1, o ey ]f1+1 Here
Q= (Qu:l#j,lef{l,. .. kyn+1}). We have D*(P) = Y515 Dy ) 5 (P).

Let @, € Q,,G, € G, be a given initial estimator. Let {Qjn.(;) : €(j)} C

Q,n be a submodel through Q;,, at €(j) = 0 and satisfying %(j)[/l,j(@jn,e(j)) o) =
e(j)=0
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Dy, i(Qn;Gr), 5 =1,.... k1 + 1. Let {Qnc : €} C Q, be defined by Q. =
(Qjne) :J=1,...,ki+1). Let e, = argmin, P, L (Qn.), where P Ly (Qnc) =
(P Ll](an,e ) j—l,,k1+1>

Suppose that by application of the previous lemma to Wq, ; : M — R, sub-
model {Q ;) : €(J)}, loss function L1;(Q;), €n(j) = argmingjy PoL1j(Qjn.c(s))
and one-step TMLE Q ., (j), we establish its conclusion P, n DG, i (Qjnen(i) @—jns Gn) =
op(n~1/?). For completeness Lemma 18 explicitly states these j specific con-

ditions of the previous lemma, which are sufficient for this conclusion.
We wish to establish that P,D*(Qy..,., Gyn) = op(n~Y?), where

k1+1

D*(Qn,en) Gn) = Z PanQn,emj(an,en(j)a Q—jn,enu Gn)
j=1

For each j =1,...,k + 1, assume

1. Let fnj = D, j(Q7; Q—jn; Gn)—D5, (@5, Q% 5., Gn), and assume (P, —
PO)fnj = 0p<n_1/2).
We can achieve this by applying Lemma 9: Assume supgeo. ceg, |
DZ),]’(Q7G) va MD*,v,n- Let JT]n = {DZ)J(Q;G) Q€ 9,G €
Gn}/Mp- o with envelope bounded (up till constant) by Fj, = Mp+ /Mp+ n,
and let o (which can always be chosen to be smaller than 1/(d + 1))
be such that supy \/log(1 + N(e | Fj, |, Fjn, L2(A)) < Ke® ™" for some
K < oo. Let roj(n) be such that || fr; ||p,< 10j(n) with probability tend-
ing to 1. Define rg;(n) = max(ro;(n),n"/4). Then, by Lemma 9, we
have

E ’ \/_(P PO fn] ‘< {TOJ /MD*UTL} MD*vn+{r0] /MD*vn}2a -2 _0'5.

Assume Mp+ .., converges slowly enough to infinity so that the right-hand
side is o(1). Then, (P, — Py) fu; = op(n~1/%);

2. R2,Qn,j(((Q;‘n7 Qijn)7 Gn)v (QOv GO))_RQ,Qmj(((Q;m Q—jn)v Gn)v (QOv GO)) =
OP(n—l/Q)’.

8. Let foj1 = Dg, (Qr,Gn) — DZ);J(QZ’ G,), and assume (P, — Py) fnj1 =

op(n=/?). As above, we can achieve this by applying Lemma 9;
4- RzaQZJ((Qq*w Gn)a (QOa GO)) - RQ,QnJ((QZ, Gn), (Qo, GO)) = Op(n_1/2);
5. Woy (@)~ Vos.0(Qp0) — {Wa,s(@n) — Va,, (@)} = op(n12).
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Then, P,D*(Qn.c,, Gn) = op(n=1/2).

Lemma 18 Let fnj(e(])) = PnD*Qn,j(an,e(j)a Q—ijn> and gnj( (])) de(])P ng (ane ]))
Let fr;(e(5)) = Gy fai(€(d)) and g,;(e(5)) = zG9mi(€(d))- Let o(j) = 0.
Assume

1. Assume that f,j(€,(j)) =
9nj(0) + g5,;(0)en(j) + Op

2. &(j) = op(n~1/2);

n

J. {#(]')Dan,j(an,en(j)’Q—jnG ) den (J) Ll](Q]n en(7) >}/n0 20 falls in a Fy-
Donsker class with probability tendmg to 1;

Fng(0) 4175 (0)€n(5)+O0p(en(4)?) and gnj(en()) =
(en(4));

/.
%mpo{Da"’j(Qj"‘”(”’Q‘j”’G”)_Dan,j(QjoveomQ—ijo)} = Op(n~'/%
5. .,
e 0(j)? 2 L1i(Qjocoti)) = —PoDgy, ;(Po){Dg, ;(Po)} - (28)

[lej(Qj( )) = - 10gij(p),n(p) for some density parameterization (Qj777) -
PQ; ., then (28) holds;
0. #(J’)RZQOJ((Q]'O,EO(]‘)J Q—j07 G0)7 (QO; GO)) =0
Th@n; PnD*Qn,j(an,Gn(j)J Q—jn7 Gn) — OP(]./\/E)

Proof: This is an immediate application of Lemma 16. O

Proof of Lemma 17: Consider a 1-dimensional submodel {P, : ¢} C M with
score S. We have

de \I](P> = %\D(QE)

- . g@llea - 7Qk1+1e)

ZZ]H Q- Qjo)-
By pathwise differentiability of U at P the left-hand side equals PD*(P)S,
while, by pathwise differentiability of ¥q ; at P, each j-specific term on the
right-hand side equals PDy, ;(P)S. This proves that

ki+1 ki+1
P)S=Y_ PDy,(P)S=P {Z Daj(P)} S
j=1 j=1
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Since this holds for each S € T'(P) and Dy, ;(P) € T(P) for all j, this implies
D*(P) = Zk1+1 Dp, ;(P). This proves the first statement of the lemma. This
shows also that P, D*(Q%, G,) = ZkIH PoDg. (@, Gn), so it suffices to prove

that P,Dg. ;(Qr,, Gn) = op(n ~1/2) for each j. In the lemma we assumed that

we already established P,Dg, (Q5,, Q—jn, Grn) = op(n~1/?), by application of
Lemma 18.

Firstly, we want to prove that P,{Dg) (Q7,, Q—jn, Gn) =D, (@5, Q% 4, Gn)} =

op(n~'/?), which then shows that P, D} (Q5,Gn) = op(n~'/?). This term

can be represented as P, f,,. We can write P, f, = (P, — Py) fn + FPofn. By our

first assumption, we have (P, — Fp) f, = op(1). So we now have to consider

PU{D* (Q;km Q- —jns n) * (Q;m Qijfﬂ Gn)}

= ‘I’an(Q]n) Vq,.(Qjo) + T @i (@5, Q7). ), (Qo, Go))

_\I]Qn J(Q]n) + \Ian J(QJO) RQin:J(((Q;n7 ijn% Gn): (QOu GO))

= Rz, (@] Q7 j) Gn), (Qo, Go)) — Raq, i (R, Q-jn), Gn), (Qo, Go))-

By assumption 2., the latter is op(n~'/?). This proves now that P,Dj, (Q5,Gy) =
op(n=1?).

We now want to prove that P,{Dp, (@5, Gn)—Dp. ;(Qr, Gn)} = op(n™'/?),
so that we can conclude P, Dg. ;(Qr, G, n) = op(n=?). Let f, = {D}, (Qn,Gn)—
Dg. ;(Qr,Gn)}, so that this term can be represented as P,f,. We have
P,f, = (Pn—Po)fn+ngn. By assumption 3., we have (P, —Pp) f, = op(n="/?).
We now have to consider

Po{ Dy, (@7, Gn) — Doy, (@7, Gn)}
= Vo, (@] ) V. (QJ0)+R2Q (@, Gh), (Qo, Go))
\IanvJ(an)—f_\IijJ(QJO) RQ,QnJ((Qv n)a(QO:GO))~

By assumption 4., we have Ry q: ;() — Ro0, ;() = op(n™'/?). By assumption
5, the "second order W-difference” is op(n="/?) as well. O

61

Hosted by The Berkeley Electronic Press



	text.pdf.1450115111.titlepage.pdf.P3o_T
	tmp.1450115111.pdf.4vfWf

