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Semi-Parametric Estimation and Inference for
the Mean Outcome of the Single Time-Point

Intervention in a Causally Connected
Population

Oleg Sofrygin and Mark J. van der Laan

Abstract

We study the framework for semi-parametric estimation and statistical inference
for the sample average treatment-specific mean effects in observational settings
where data are collected on a single network of connected units (e.g., in the pres-
ence of interference or spillover). Despite recent advances, many of the current
statistical methods rely on estimation techniques that assume a particular para-
metric model for the outcome, even though some of the most important statistical
assumptions required by these models are most likely violated in the observational
network settings, often resulting in invalid and anti-conservative statistical infer-
ence. In this manuscript, we rely on the recent methodological advances for the
targeted maximum likelihood estimation (TMLE) of causal effects in a network
of causally connected units, to describe an estimation approach that permits for
more realistic classes of data-generative models and provides valid statistical in-
ference in the context of network-dependent data. The approach is applied to an
observational setting with a single time point stochastic intervention. We start
by assuming that the true observed data-generating distribution belongs to a large
class of semi-parametric statistical models. We then impose some restrictions on
the possible set of the data-generative distributions that may belong to our statis-
tical model. For example, we assume that the dependence among units can be
fully described by the known network, and that the dependence on other units
can be summarized via some known (but otherwise arbitrary) summary measures.
We show that under our modeling assumptions, our estimand is equivalent to an
estimand in a hypothetical iid data distribution, where the latter distribution is a



function of the observed network data-generating distribution. With this key in-
sight in mind, we show that the TMLE for our estimand in dependent network
data can be described as a certain iid data TMLE algorithm, also resulting in a
new simplified approach to conducting statistical inference. We demonstrate the
validity of our approach in a network simulation study. We also extend prior work
on dependent-data TMLE towards estimation of novel causal parameters, e.g., the
unit-specific direct treatment effects under interference and the effects of inter-
ventions that modify the initial network structure.



1 Introduction

1.1 Motivation

In this paper we are concerned with estimation and inference for the sample average treatment effect (Neyman,
1923) in an observational setting that involves members of a single connected network. Valid statistical inference in
such settings presents a number of significant challenges. For example, the frequently made assumption of indepen-
dence among units is generally violated when data is collected on a population of connected units, since the network
interactions will often cause the exposure of one unit to have an effect on the outcomes of other connected units.
In general, statistical methods for estimation and inference in observational network data are faced with three key
challenges that set such data apart from the classical statistical methods for independent observational data: (i)
the outcome for each unit can be a function of the treatment assignments of other units that are connected to the
unit through its network, an occurrence referred to as interference or spillover (Hudgens and Halloran, 2008; Sobel,
2006); (ii) the outcome of each unit can be a function of the baseline covariates of other units that are connected
to the unit through its network, sometimes referred to as network-correlated outcomes (Basse and Airoldi, 2015);
and (iii) the observed exposure allocation for each unit can be a function of the baseline covariates of other units.
As a result, the sample units are not independent, and, in fact, one only observes a single draw from the true data
generating distribution. Therefore, classical statistical methods that assume independence among the observed
outcomes will be often overly optimistic and invalid for quantifying the variability of estimators in such data. In
addition, many of the current estimation procedures for observational network data assume a particular class of
parametric or restrictive classes of semi-parametric models for the observed data-generating distribution, which
makes these methods highly susceptible to bias due to model misspecification (Christakis and Fowler, 2013, 2007).

Targeted maximum likelihood (or minimum loss-based) estimation (TMLE) (van der Laan and Rubin, 2006;
van der Laan and Rose, 2011) is a general framework for constructing asymptotically linear and efficient substitution
estimators, that belong to a much larger class of semi-parametric models, while providing asymptotically valid
statistical inference. Recently, the TMLE framework has been extended to estimation of treatment effects in
dependent observational data (van der Laan, 2014), where the dependence among units is described by the network
of connections formed by these units (e.g., social or geographical networks). Our aim will be to provide an accurate
reflection of the background knowledge available for a given scientific problem, while still being able to perform valid
statistical estimation. Thus, we start by assuming a realistic semi-parametric statistical model for the generating
distribution of observed network data, which places minimal restrictions on the set of such possible data-generating
distributions. The first objective of this paper is to apply the TMLE framework to estimation of causal effects in
single time-point observational network data. Our next objective is to verify the practical validity of our approach
with a simulation study. We demonstrate that consistent estimation and valid asymptotic inference of the sample
average treatment effects for a single time point stochastic interventions is possible in this larger class of semi-
parametric models, even in observational network data where the dependence between units is induced by the
known network structure.

1.2 Brief review of relevant literature

The literature on networks and causal inference in network data is rapidly evolving. However, the existing statis-
tical methods for performing estimation and inference for causal effects in networks are limited and the literature
on this subject has only recently started to develop (van der Laan, 2014; VanderWeele et al., 2014; Ogburn and
VanderWeele, 2014; VanderWeele and An, 2013; Tchetgen and VanderWeele, 2012). Our review is not intended
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to be exhaustive, instead, we focus on the key aspects and challenges of statistical estimation of treatment effects
in observational network data. Most of the recently proposed approaches can be categorized as relying on either
the assumption of randomized exposures across units (Rosenbaum, 2007; Aronow and Samii, 2013; Bowers et al.,
2013; Walker and Muchnik, 2014; Aral and Walker, 2011, 2014; Toulis and Kao, 2013; Liu and Hudgens, 2014;
Choi, 2014; Basse and Airoldi, 2015), or on parametric modeling of the outcome as a particular function of the
unit’s network. Some of the parametric approaches applied in the network settings include generalized linear models
(GLMs) and generalized estimating equations (GEEs) (Christakis and Fowler, 2013, 2007), methods which have
important limitations (Lyons, 2010; VanderWeele, 2011; VanderWeele et al., 2012; VanderWeele, 2013; Ogburn and
VanderWeele, 2014). For one, GLMs and similar modeling techniques require making strong, simplifying modeling
assumptions about the underlying data generating process. Hence, model misspecification for GEEs and GLMs
in the network data settings is a major cause of concern. Perhaps more importantly, performing valid statistical
inference with GLMs and other similar statistical techniques generally requires independence of the observational
units, an assumption that is unlikely to hold due to the very nature of the network data. It has also been previ-
ously described that application of such standard statistical procedures to dependent data will result in invalid and
generally anti-conservative statistical inference (Lyons, 2010; Ogburn and VanderWeele, 2014).

In addition, a few promising methodological approaches to estimation in network data have begun to emerge in
recent years. For example, Aronow and Samii (2013) proposed a Horvitz-Thompson estimator in a randomized study
settings, defined the so-called “network exposure model” and derived the finite sample estimator of the variance.
However, such methods are of limited utility in observational settings. Other proposed approaches for identification
and estimation of treatment effects in networks include stochastic actor-oriented models (Steglich et al., 2010), and a
linear Bayesian modeling approach that can accommodate for network uncertainty (Toulis and Kao, 2013). Another
recently proposed approach applied the semi-parametric framework of targeted maximum likelihood estimation to
the observation network data settings (van der Laan, 2014), yielding valid asymptotic inference, while allowing for a
much larger and realistic class of data-generative models. We apply the latter approach in the sections that follow.

1.3 Contributions and organization of this article

We start by describing the type of data that may arise in an observational study on a population of connected
units. Consider a study in which we observe a sample of N dependent units. For each unit we collect baseline
covariates, a binary exposure, and a one-dimensional outcome of interest. We denote the sample by the random
vector O = (W,A,Y) ∼ P0, where W = (Wi)

N
i=1 is a vector of baseline covariates across all units, A = (Ai)

N
i=1

is a vector of exposures, Y = (Yi)
N
i=1 is a vector of outcomes, and P0 belongs to a large semi-parametric model.

We assume each Wi has finite support, each Ai is binary, and Yi is either binary (e.g., indicating survival beyond a
specific time point, or the success of a particular intervention) or bounded (e.g., a count of the number of times an
event of interest has occurred during the follow-up period, or a continuous measure of a biomarker level at the end
of the study). For each unit i in the sample, we also collect the information on other units in {1, . . . , N}\{i} that are
connected to (or influence) i. These units are referred to as “i’s friends”, and this set is denoted by Fi ⊆ {1, . . . , N}.
It is assumed that Fi is recorded at baseline, along with other baseline covariates, and it is assumed fixed. Ad-
ditionally, we allow |Fi|, the number of friends for unit i, to vary in i, but assume that this number is bounded
by some known global constant K that doesn’t depend on N . The vector F = (Fi)

N
i=1 is then referred to as the

“network profile” of O. For example, in an experiment evaluating the effects of introducing a new service to an
online social network, for each unit, Fi could denote the set of all online friends of i, whose exposure status may
influence i’s outcome. Alternatively, in a study of the effects of early HIV treatment initiation, Fi could be the set
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of all sexual partners of unit i. We allow for the following types of between-unit dependencies: (i) the unit-level
exposures can depend on baseline data of itself and other units, and (ii) unit-level outcomes can depend on baseline
and exposure data of itself and other units. An important ingredient of our modeling approach is to assume that
the dependence of each unit i on other units is fully described by the network. Specifically, we assume that the
dependence of i’s treatment and outcome on other units is limited to the set of i’s friends. A second important
ingredient is the assumption that these dependencies can be accurately described with some known summary mea-
sures, which map the data collected on friends of each unit into a summary that has the same dimension for all units.

We now wish to estimate and perform valid inference for the sample-average of the unit-specific mean outcomes,
given as 1/N

∑N
i=1E [Eg∗ (E(Yi |A,W) |W)], where the N exposures are assigned according to some user-specified

stochastic intervention g∗. That is, g∗ is a fixed conditional density for drawing exposures A, given baseline co-
variates W. Under additional causal assumptions, this statistical quantity will be equal to the sample average of
the expected counterfactual outcomes, defined as the expected outcomes which would have been obtained if the
units in the sample had actually been treated according to the treatment regime specified by g∗ (van der Laan,
2014). We note that the definition of intervention g∗ is kept general, allowing for any static, dynamic, or stochastic
single time point interventions. We also note that the definition of the statistical parameter can be extended to
multiplicative or additive sample average treatment effects (Neyman, 1923; Balzer et al., 2015). Additionally, our
statistical parameter is defined with respect to a given network profile F and given sample size N , and thus should
be regarded as a type of a data-adaptive statistical parameter (van der Laan et al., 2013), since its true value is
allowed to change for different sample sizes and different network structures. Finally, we note that the statistical
parameter defined in this manner has a generally meaningful statistical interpretation, even when the required
causal assumptions do not hold, and our focus is only on the aspects of statistical estimation of such parameters in
the context of the semi-parametric modeling framework.

The main contributions of this article are as follows: We start by pointing out that our statistical parameter
can be represented in a novel way, in light of the fact that it depends on the joint distribution of the observed
data only via a mixture of the unit-specific distributions, and we will use P̄ to denote this mixture distribution.
In particular, we show that our dependent-data parameter can be represented as a mapping Ψ̄ from mixture P̄ ,
giving our parameter an alternative interpretation as a G-computation formula for the mean of the iid outcomes
generated from the post-intervention distribution under some fixed stochastic intervention ḡ∗, i.e., Ψ̄(P̄0) = EȲḡ∗ .
This mixture representation then also leads us to conclude that the estimation of Ψ̄(P̄0) should only be concerned
with estimation of the relevant factors of the mixture P̄ and we use this fact to provide a self-contained description
of the semi-parametric estimation framework in network-dependent data developed by van der Laan (2014). As
we will show, this new mixture representation implies that our statistical parameter can be estimated by simply
ignoring dependence among units and treating them as if they are independent and identically distributed (iid),
suggesting that a large class of iid-data estimators is applicable to estimation problems such as the one we describe
in this article. Based on this key insight, the dependent-data TMLE from van der Laan (2014) is then presented as
a typical iid-data TMLE. We also apply the new mapping Ψ̄ for performing statistical inference, presenting a new
robust asymptotic variance estimator which improves upon the previously proposed estimator from van der Laan
(2014) in that it remains conservative even under the outcome model misspecification and no longer requires the
assumption of complete independence among baseline covariates. We then conduct a simulation study to provide a
proof of concept for our framework and to assess the feasibility of unbiased estimation and inference in finite sample
observational network data. We also compare the performance of TMLE to other statistical procedures using a
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newly developed R package tmlenet (Sofrygin and van der Laan, 2015). Finally, our article generalizes the previ-
ously described dependent-data TMLE framework to allow estimation of novel causal parameters. In particular,
we describe the TMLE for estimating the treatment effect under arbitrary unit-specific stochastic interventions on
N groups of friends, which may be incompatible with the existence of a single multivariate stochastic intervention
on all N units of study, e.g., interventions that characterize the direct treatment effect under interference. We also
extend our framework to allow estimation of parameters defined by interventions that statically or stochastically
modify the initial network structure.

The rest of the article is organized as follows: We start by formally describing the observed network data,
defining the statistical model, and defining the statistical parameter of interest in Section 2. Next, in Section 3, we
describe an alternative representation of our statistical parameter as a mapping from some mixture distribution,
derived as a function of the actual observed data distribution. In Section 4, we describe the iid TMLE algorithm
for estimating the dependent-data sample-average treatment effects under single time-point stochastic intervention
g∗. We then proceed by proposing a new estimator of the asymptotic variance for this TMLE in Section 5. Next,
we describe a simulation study that examines the finite sample performance of the proposed TMLE, and that of the
new variance estimator, in Section 6. We then describe in Section 7 how our framework generalizes to estimation of
parameters indexed by arbitrary collections of stochastic interventions or by interventions on the network structure.
We conclude with a discussion of the relative merits and limitations of our proposed approach in Section 8.

1.4 A note on notation

Throughout this article we use the bold font capital letters, such as O, to denote random vectors that include
observations on all N units, and bold font small letters, such as o, to denote their corresponding fixed values.
For example, A will denote the vector of N exposures, i.e., A = (A1, . . . , AN ). We will also use the standard
font capital letters with a subscript to denote the unit-specific observations, i.e., Ai will denote the exposure for
the unit i. Finally, we will use the over-bar symbol to denote mixture distributions across all N units, as well as
their corresponding random variables. For example, P̄W will denote the mixture of N unit-specific distributions of
baseline covariatesWi, for i = 1, . . . , N , i.e., P̄W = 1/N

∑N
i=1 Pi,0, and W̄ will denote a random variable distributed

according to P̄W . The only exception to this rule will be Q̄, which will denote the conditional expectation of the
unit-specific outcome Yi, as well as the conditional expectation of the mixture-based outcome Ȳ , which happen to
be equal under our statistical model.

2 Statistical model and parameter

Suppose PN
0 is the true data generating distribution forN observed and connected units, withO = (W,A,Y) ∼ PN

0

denoting the random vector for these N units and Oi = (Wi, Ai, Yi), for i = 1, . . . , N . The network profile F is
assumed recorded at baseline, i.e., F ∈W. We also assume all Yi are bounded random variables. LetM denote a
statistical model containing PN

0 . Since O represents a network of dependent units, we observe only a single draw
from PN

0 , and as a result, are unable to estimate PN
0 from this single observation O. We now proceed by making a

series of statistical assumptions, which will allow us to learn the true distribution of O based on this single draw.
In particular, we introduce these assumptions by making restrictions on the set of possible distributions that belong
M. We will then define our statistical quantity of interest as a mapping Ψ fromM into the real line R.

Following van der Laan (2014), we make the following set of statistical assumptions for any PN
0 ∈M:
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A1. Conditional on F, each Wi depends on at most K other observations in W = (W1, . . . ,WN ), i.e., if (Wj : j ∈
Si) is the set of all observations dependent with Wi then maxi |Si| ≤ K and K must not depend on N ;

A2. A = (A1, . . . , AN ) are independent, conditional on W;

A3. Y1, . . . , YN are independent, conditional on (A,W).

These assumptions imply the following likelihood for PN ∈M:

pN (O) =

[
N∏
i=1

pYi|A,W(Yi |A,W)

][
N∏
i=1

pAi|W(Ai |W)

]
pW(W).

We also assume conditional independence implied from the known network structure:

A4. Assume that conditional distributions P (Yi | ·) only depend on (Aj ,Wj : j ∈ F ∗i ), for F ∗i = Fi ∪ {i}, and
similarly, P (Ai | ·) depend on (Wj : j ∈ F ∗i ).

We now introduce the dimension reducing assumptions for these conditional distributions. Specifically:

B1. Assume that each P (Ai | ·) is a function of some fixed-dimension summary measure ws
i ((Wj : j ∈ F ∗i )), and

each P (Yi |·) is a function of fixed-dimension summary measures asi ((Aj ,Wj) : j ∈ F ∗i ) and ws
i ((Wj : j ∈ F ∗i )).

We assume ws
i (·) and asi (·) are known functions that map into Euclidean set of constant (in i) dimension that

does not depend on N , where asi map into some common space As, and ws
i map into some common space

Ws.

Formally, these summary measures for i = 1, . . . , N are defined as:

W s
i = ws

i (W) = ws
i (Wj : j ∈ F ∗i ) ∈ Ws,

As
i = asi (A,W) = asi ((Aj ,Wj) : j ∈ F ∗i ) ∈ As,

where above we also introduced the shorthand notation W s
i and As

i , for ws
i (W) and asi (A,W), respectively. As an

example of such summary measures, an investigator conducting a social networks study might be willing to assume
that the outcomes Yi depend on (A,W) only through summary measures (asi (A), ws

i (W)), where asi (A) = (Ai, A
c
i )

and ws
i (W) = (Wi,W

c
i ) and Ac

i is some one dimensional summary of exposures of i’s friends and W c
i is some one

dimensional summary of baseline covariates of i’s friends, where Ac
i is the same function in i and W c

i is also the
same function in i. If one is unwilling to make such strong dimensionality reducing assumptions, one could instead
assume asi (A) = (Aj : j ∈ F ∗i ) and ws

i = (Wj : j ∈ F ∗i ), without assuming a particular functional form of asi and ws
i .

By filling the empty spots in asi (·) and ws
i (·) with missing values one would assure that all summaries (asi (·), ws

i (·))
are of constant dimension across i and that the information on the number of friends of i is also captured. In
summary, we allow As

i and W s
i to be arbitrary functions of the units’ network, as long as their dimension is fixed,

common-in-i, and doesn’t depend on N . Applying these summary measures to the observed data, we obtain the
following likelihood:

pN (O) =

[
N∏
i=1

p(Yi |As
i ,W

s
i )

][
N∏
i=1

p(Ai |W s
i )

]
p(W).

We are now ready to make the final set of restrictions onM. Specifically:

C1. Assume that all Yi are sampled from the same distribution QY with density given by qY (Yi |as, ws), conditional
on fixed values of the summary measures (As

i ,W
s
i ), for i = 1, . . . , N . Similarly, assume that all Ai are sampled
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from the same distribution given by density g(Ai|ws), conditional on some fixed value of the summary measures
W s

i = ws, for i = 1, . . . , N .

We also assume (without loss of generality) that the densities g and qY are well-defined with respect to some
dominating measure. Using the previous example of the summary measures, i.e., W s

i = (Wi,Wj : j ∈ Fi) and
As

i = (Ai, Aj : j ∈ Fi), this assumption implies that the units i and j will be subject to the same conditional distribu-
tions for drawing their treatment and outcome, if i and j have the same number of friends, same individual covariate
and treatment values, and the same values for the covariates and treatments of their friends. This implies that its
possible to learn the common-in-i densities QY and g from a single (but growing) draw O from PN

0 as N → ∞,
resulting in a well-defined statistical estimation problem. We denote the joint density of conditional network expo-
sures A given W by g(A |W), with above assumptions implying the factorization g(A |W) =

∏N
i=1 g(Ai |W s

i ).
We denote the joint distribution of W by QW(W), making no additional assumptions of independence between
W = (W1, . . . ,WN ) and we assume qW is a well-defined density for QW, with respect to some dominating measure.
This final set of assumptions defines our statistical modelM, whereM describes the set of all possible distributions
PN for the observed dependent data O.

We now introduce the notation P = PQ,G, for Q ≡ (QW, QY ) and we assume the distributions QW and QY are
unspecified beyond the above modeling conditions A1, A3, A4, B1 and C1. We also note that observed exposure
model for G may be a restricted to incorporate the real-world knowledge about the true conditional treatment
assignment, for example, when the common-in-i g(Ai|W s

i ) is known, such as in a randomized clinical trial. This
defines the statistical parametrization for the data-generating distribution of O in terms of the distributions Q and
G, and the corresponding statistical model is defined as M = {PQ,G : Q ∈ Q,G ∈ G}, where Q and G denote
the parameter spaces for Q and G, respectively. In particular, we denote Q0 as Q evaluated at PN

0 . Applying this
newly introduced notation results in the likelihood:

pN (O) =

[
N∏
i=1

qY (Yi |As
i ,W

s
i )

][
N∏
i=1

g(Ai |W s
i )

]
qW(W). (1)

We define an intervention of interest by replacing the conditional distribution G with a new user-supplied
intervention G∗ that has a density g∗ that we assume is well-defined. Namely, G∗ is a multivariate conditional
distribution that encodes how each intervened exposure, denoted as A∗i , is generated conditional on W. We note
that static or dynamic interventions on A correspond with degenerate choices of g∗ (e.g., Robins (1987a, 1997,
1999); Gill and Robins (2001); Yu and van der Laan (2003)), while non-degenerate choices of g∗ are often referred
to as stochastic interventions (e.g., Dawid et al. (2010); Robins and Richardson (2010); Muñoz and van der Laan
(2012); Zheng and van der Laan (2012); van der Laan (2014)). We assume that A and A∗ belong to the same
common space A and we make no further restrictions on G∗. We also define A∗si := asi (A

∗), where A∗si denotes
the random variable implied by the summary measure asi (·) mapping from an intervened exposure vector A∗, for
i = 1, . . . , N . Finally, we define the post-intervention distribution PQ,G∗ by replacing G in PQ,G with a new
user-supplied distribution G∗. We use O∗ = (Wi, A

∗
i , Y

∗
i )Ni=1 to denote the random variable generated under PQ,G∗

and its likelihood is given by:

pNQ,G∗(O
∗) =

[
N∏
i=1

qY (Y ∗i |A∗si ,W s
i )

]
g∗(A∗ |W)qW(W). (2)

The latter distribution PQ,G∗ is referred to as the G-computation formula for the post-intervention distribution of
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O under stochastic intervention G∗ (Robins, 1987b) and it is a parameter of PN .

Our target statistical quantity ψ0 is now defined as a function of this post-intervention distribution (2). Specif-
ically, it is given by:

ψ0 = Ψ(PN
0 ) = Eq0,g∗

[
1

N

N∑
i=1

Y ∗i

]
,

which is an expectation of the sample-average of N outcomes among dependent units i = 1, . . . , N , where the
expectation is evaluated with respect to the post-intervention distribution PQ,G∗ . We view Ψ(PN ) as a mapping
from the statistical modelM into R, and we note that ψ0 is defined conditionally on the observed network structure,
F and is also indexed by N . We also define Q̄(As

i ,W
s
i ) =

´
y
yqY (y|As

i ,W
s
i )dµ(y) as the conditional mean evaluated

under common-in-i distribution QY , and Q̄0 as Q̄ evaluated at PN
0 . Note that our dimension reduction assumptions

imply that EPN
0

[Yi |A,W] = Q̄0(As
i ,W

s
i ). We also note that our parameter ψ0 only depends on PN

0 through Q̄0

and QW,0, and with a slight abuse of notation we will interchangeably use Ψ(PN
0 ) and Ψ(Q̄0,QW,0). Thus, the

parameter ψ0 is indexed by N , F and G∗ and can be written as:

ψ0 =
1

N

N∑
i=1

ˆ
a,w

Q̄0(asi (a,w), ws
i (w))g∗(a |w)qW,0(w)dµ(a,w),

with respect to some dominating measure µ(a,w).

One might also be interested in a target quantity defined as a contrast of two stochastic interventions. For
example, one may define ΨG∗1 (PN

0 ) and ΨG∗2 (PN
0 ) as the above target parameter evaluated under stochastic inter-

ventions G∗1 and G∗2, respectively, then defining the target quantity as ΨG∗1 ,G
∗
2 (PN

0 ) = ΨG∗1 (PN
0 )−ΨG∗2 (PN

0 ). The
average treatment effect over N connected units is then a special case of ΨG∗1 ,G

∗
2 (PN

0 ) for interventions G∗1,G
∗
2

defined as g∗1(1N |w) = 1 and g∗2(0N |w) = 1, for any w ∈ W. We will focus on the estimation of the statistical
parameter ψ0 defined for one particular G∗, noting that all of our results naturally generalize to contrasts or any
other quantities that can be expressed as Euclidean-valued functions of a collection {ΨG∗(PN

0 ) : G∗ ∈ G∗}, for a
finite set of stochastic interventions G∗.

We note that by making additional untestable assumptions, one can interpret ψ0 as a causal quantity that
measures the sample-average of the expected counterfactual outcomes in a network of N connected units under
intervention G∗, as was previously shown in van der Laan (2014). However, these additional causal assumptions
put no further restrictions on the above described probability distribution PN

0 , so that our statistical model M
remains the same. Since M contains the true data distribution PN

0 , it follows that ψ0 will always have a pure
statistical interpretation as the feature Ψ(PN

0 ) of the data distribution PN
0 . For the estimation problem at hand,

the causal model plays no further role: even when one does not believe any of the untestable causal assumptions,
one might still argue that the statistical parameter ψ0 represents an effect measure of interest controlling for all
measured confounders. Finally, we note that the assumption A1 can be dropped entirely, by defining the target
parameter ψ0 conditionally on the observed baseline covariates W, as shown in van der Laan (2014).
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3 Target parameter as a mapping applied to a mixture model

The above defined target parameter Ψ(PN
0 ) can be represented as an alternative (and equal) mapping Ψ̄(P̄0),

where P̄0 is defined as a mixture of N unit-specific components of the joint data-generating distribution PN
0 . This

leads us to another way of thinking about the estimation of our target parameter, suggesting that the problem of
estimating ψ0 should only be concerned with estimating the relevant components of the mixture P̄0. We first apply
the summary measures W s

i = ws
i (W) and As

i = asi (A,W) to the observed data O, mapping it into a dataset of N
dependent summary observations, denoted Os = (Os

1, . . . , O
s
N ) and referred to as the “summary data”. We assume

each Os
i = (W s

i , A
s
i , Yi) is distributed according to P s

i,0, where P s
i,0 is implied by the joint distribution PN

0 of O
and the i-specific summary measures (ws

i (·), asi (·)). We assume that each P s
i,0 has a well-defined density psi,0 with

respect to some dominating measure. As before, the set of all possible distributions of O is given by the statistical
model M = {PQ,G : Q ∈ Q,G ∈ G}, and for a given PN ∈ M, we first define its implied mixture P̄ and its
relevant factors, and we then describe the new mapping Ψ̄(P̄ ) in Theorem 3.1. Our next goal is to present the
efficient influence curve (EIC) for this mapping Ψ̄(P̄0), which we do in two steps in Theorems 3.2 and 3.3.

3.1 Mapping ψ0 = Ψ̄(P̄0) for the mixture distribution P̄0.

Let Os be the sigma-algebra for the union of the unit-specific supports of Os
i , for i = 1, . . . , N . For a set A ∈ Os,

define the mixture distribution P̄ (A) as a finite mixture of N unit-specific summary distributions P s
i with constant

weight 1/N , i.e., P̄ := 1/N
∑N

i=1 P
s
i . Let Ōs denote the random variable drawn from such P̄ and we assume that

P̄ has a well-defined density p̄ := 1/N
∑
psi . Note that p̄ can be factorized as follows:

p̄(Ōs) = p̄(Ȳ , Ās, W̄ s)

= q̄Y (Ȳ | Ās, W̄ s)ḡ(Ās | W̄ s)q̄W (W̄ s),

and we now describe in detail the above factors of p̄.

First, let QW s
i
denote the marginal distribution of the i-specific baseline summary measure W s

i , with density
qW s

i
(W s

i ) defined as the marginal of the joint density psi (Yi, As
i ,W

s
i ). The distribution Q̄W can then be defined as

a finite mixture of these i-specific marginal distributions QW s
i
, and the density of Q̄W can be defined as follows:

q̄W (ws) :=
1

N

N∑
i=1

qW s
i
(ws).

We let W̄ s denote a random variable drawn from the mixture distribution Q̄W , noting that W̄ s belongs to the
same common space Ws as all ws

i (W), for i = 1, . . . , N . Similarly, we let Hi denote the i-specific joint distribution
of the summaries (As

i ,W
s
i ), with its density hi(A

s
i ,W

s
i ) implied by psi (Yi, A

s
i ,W

s
i ). We also let H∗i denote the

joint distribution of the summaries (A∗si ,W
s
i ), where A∗si is determined by the user-supplied stochastic intervention

G∗A∗|W and the i-specific summary measure asi , and we denote the density of H∗i as h∗i . We also assume that these
i-specific densities hi(as, ws) and h∗i (as, ws) are well-defined with respect to some common dominating measure
µa,w. We now define the mixture distribution H̄ as a finite mixture of i-specific Hi, with its corresponding mixture
density defined as h̄(as, ws) := 1/N

∑N
i=1 hi(a

s, ws), and we let (Ās, W̄ s) denote the random variables drawn jointly
from H̄. Next, we define an analogous mixture distribution H̄∗ as a finite mixture of i-specific distributions H∗i , with
its mixture density given by h̄∗(as, ws) := 1/N

∑N
i=1 h

∗
i (as, ws), and we let (Ā∗s, W̄ s) denote the random variables
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drawn jointly from H̄∗. Finally, we note that these mixture densities h̄ and h̄∗ can be factorized as follows:

h̄(as, ws) = ḡ(as|ws)q̄W (ws),

h̄∗(as, ws) = ḡ∗(as|ws)q̄W (ws),

where ḡ is a factor in the above factorization of the likelihood of Ōs, namely, ḡ is the density for the conditional
distribution of Ās given W̄ s, denoted as Ḡ; ḡ∗ is the density for the conditional distribution of Ā∗s given W̄ s,
denoted as Ḡ∗; and q̄W is the previously defined marginal density for the mixture Q̄W . In a similar manner one
can define the conditional distribution of Ȳ given (Ās, W̄ s), denoted as Q̄Y , with its density denoted as q̄Y , which
completes the description of the three factors of p̄(Ōs). We also define a statistical model M̄ as the space of all
possible distributions {Q̄Y , Ḡ, Q̄W } and we note that each P̄ ∈ M̄ is implied by some PN ∈M. We also note that
when (W,A) are discrete, one can obtain the following intuitive analytic expressions for the above defined densities
qW s

i
, hi and h∗i :

qW s
i
(ws) =

ˆ
w

I(ws
i (w) = ws)qW(w)dµw(w),

hi(a
s, ws) =

ˆ
a,w

I(asi (a,w) = as, ws
i (w) = ws)g(a|w)qW(w)dµa,w(a,w),

h∗i (as, ws) =

ˆ
a,w

I(asi (a,w) = as, ws
i (w) = ws)g∗(a|w)qW(w)dµa,w(a,w),

where µw and µa,w are some dominating measures. The new mapping ψ0 = Ψ̄(P̄0) for our target parameter is now
presented in the following theorem.

Theorem 3.1. Let PN ∈M and let P s
i denote the i-specific summary data distribution of Os

i = (W s
i , A

s
i , Yi). Let

P̄ ∈ M̄ be the above defined finite mixture of these N unit-specific distributions P s
i and M̄ is the above defined

mixture model. Let Ōs = (W̄ s, Ās, Ȳ ) ∼ P̄ denote one sample drawn from P̄ . The likelihood of Ōs is given by:

p̄(Ōs) = qY (Ȳ | Ās, W̄ s)ḡ(Ās | W̄ s)q̄W (W̄ s),

where ḡ and q̄W are the previously defined factors of p̄; qY is the density of QY ∈ M previously defined in Section
2, i.e., qY is the common-in-i conditional density of Yi given (As

i ,W
s
i ). Due to the modeling assumptions on M,

qY is also the conditional density of Ȳ given (Ās, W̄ s). It follows that Ψ(PN ) ≡ Ψ̄(P̄ ), where the new mapping
Ψ̄(P̄ ) is given by:

Ψ̄(Q̄, Q̄W , ḡ∗) = EQ̄W

[
Eḡ∗ [Q̄(Ā∗s, W̄ s) | W̄ s]

]
=

ˆ
ws∈Ws,as∈As

Q̄(as, ws)ḡ∗(as | ws)dQ̄W (ws)

=
1

N

N∑
i=1

EQWs
i

[
Eḡ∗ [Q̄(Ā∗s,W s

i ) |W s
i ]
]

=
1

N

N∑
i=1

ˆ
ws

i ,a
s

Q̄(as, ws
i )ḡ∗(as | ws

i )dQW s
i
(ws

i ),

and we let Q̄(as, ws) := EQY
[Ȳ | Ās = as, W̄ s = ws]. With the slight abuse of notation we interchangeably write
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Ψ̄(Q̄, Q̄W , ḡ∗) and Ψ̄(P̄ ), to emphasize the fact that Ψ̄ depends on P̄ only through Q̄, Q̄W and ḡ∗.

Proof. First, we show that that qY is indeed the conditional density of Ȳ , given (Ās, W̄ s) under P̄ . To see this,
note:

p̄(ws, as, ys) =
1

N

∑
i

psi (w
s, as, y)

=
1

N

∑
i

psi (y|ws, as)hi(w
s, as)

= qY (y|ws, as)
1

N

N∑
i=1

hi(w
s, as),

where by the assumptions in Section 2 we note that the distribution P (Yi|W s
i , A

s
i ) is given by a common distribution

QY with density qY , from which the above result follows as claimed. The equivalence Ψ(PN ) ≡ Ψ̄(P̄ ) then follows
directly by applying the definitions of ḡ∗, Q̄W and Q̄.

The above theorem implies that the estimator of ψ0 can be obtained from the estimators of Q̄0 and Q̄W,0.
It also gives us an alternative interpretation for our target parameter ψ0. Namely, the mapping Ψ̄(P̄0) happens
to be equal to the parameter given by the G-computation formula for the mean outcome EȲḡ∗0 , under stochastic
intervention ḡ∗0 and the observed data (W̄ s, Ās, Ȳ ) ∼ P̄0. That is, we take the above defined conditional den-
sity ḡ∗0 := h̄∗(G∗,QW,0)/q̄W (QW,0) as if this was a known user-supplied stochastic intervention on Ās given W̄ s,
treating ḡ∗0 as fixed we then evaluate EȲḡ∗0 by first replacing ḡ0(Ās|W̄ s) factor of p̄(Ōs) with ḡ∗0 , then taking the
expectation of Ȳ under such modified post-intervention distribution P̄ ∗. We also recognize that ḡ∗0 will be generally
unknown, since it depends on the true distribution of the data viaQW,0. Nonetheless, expressing the dependent-data
parameter as some function of the mixture P̄0 implies that the estimation of this parameter can be accomplished
by simply treating the observed dependent units as if they are independent and identically distributed (iid) (see
Lemma 4.1 from Section 4 for a specific case of estimating ḡ0 component of mixture p̄). Hence, whenever we are
concerned with estimating any parameter of P̄0, such as ψ0 given above, we can ignore the dependence among units
Os

i , i = 1, . . . , N , immediately providing us with an iid-analogue estimator for ψ0, and in our case we will undertake
the iid targeted maximum likelihood estimation (TMLE) approach, as described in Section 4. Among a class of
iid-analogue estimators for ψ0, we can choose an estimator which would be efficient for iid data, and in our case,
we will show that such an analogous efficient iid TMLE will also be semi-parametrically efficient in our dependent
data model.

3.2 The efficient influence curve

The efficient influence curve (EIC), frequently referred to as the efficient score or canonical gradient, is a key
ingredient in semi-parametric efficient estimation, because it defines the linear approximation of any efficient and
regular asymptotically linear estimator, and therefore provides an asymptotic bound for the variance of all regular
asymptotically linear estimators (Bickel, 1993). Furthermore, as discussed in Section 5 of van der Laan (2014), even
for dependent data problems such as ours, the EIC still characterizes the limiting normal distribution of the MLE,
thus establishing that if we want to construct an estimator that is asymptotically equivalent to the MLE, we need
to study the EIC of our target parameter. Due to local asymptotic normality of the log-likelihood, as was argued in
van der Vaart (1998), the normal limiting distribution implied by the MLE is still the optimal limit distribution in
the convolution theorem for efficient estimators. Our first result provides the EIC D̄N for a data-adaptive parameter
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Ψ̄N (Q̄0, Q̄W,0) := Ψ̄(Q̄0, Q̄W,0, ḡ
∗
N ) indexed by fixed ḡ∗ = ḡ∗N , where ḡ∗N is an estimator of the true density ḡ∗0 . We

will refer to D̄N as the iid-EIC, since it is a direct analogue of the iid-data EIC for the parameter EȲḡ∗ . We then
present the EIC D̄ for our actual parameter of interest Ψ̄(Q̄0, Q̄W,0, ḡ

∗
0), defined with respect to the true density ḡ∗0 .

The self-contained derivations for the iid-EIC D̄N and the EIC D̄ are provided in Appendices B and C. We note
that the derivation of the EIC D̄N for fixed ḡ∗ relies solely on the above representation of ψ0 as a mapping Ψ̄(P̄0)

for the mixture distribution P̄0 and the key Lemma 1 in technical report van der Laan (2012), which we also restate
in the Appendix B.

EIC for data-adaptive parameter indexed by fixed stochastic intervention ḡ∗N

We now replace ḡ∗0 by a fixed density ḡ∗, set equal to some data-dependent estimator ḡ∗N of ḡ∗0 , which is then treated
as fixed. This allows us to define the data-adaptive target parameter Ψ̄N (Q̄0, Q̄W,0), indexed by such fixed ḡ∗, as
EQ̄W,0

[
Eḡ∗=ḡ∗N

[Q̄0(Ās, W̄ s) | W̄ s]
]
. From iid results for parameters defined under fixed stochastic interventions,

such as those described in Muñoz and van der Laan (2012), it immediately follows that the efficient influence curve
for parameter Ψ̄N (P̄0) at P̄0 ∈ M̄ and Ōs ∼ P̄0 is given by:

D̄IID(P̄0)(Ōs) =
ḡ∗

ḡ0
(Ās | W̄ s)

[
Ȳ − Q̄0(Ās, W̄ s)

]
+
[
Eḡ∗=ḡ∗N

[Q̄0(Ās, W̄ s) | W̄ s]− Ψ̄N (Q̄0, Q̄W,0)
]
.

In other words, we have obtained an efficient influence curve for the mean outcome of Ȳ under stochastic intervention
ḡ∗, for one observation Ōs ∼ P̄0. We will thus refer to D̄IID(P̄0)(Ōs) as the iid-EIC, due to just described iid-
data interpretation of parameter Ψ̄N (P̄ ). However, we don’t get to observe Ōs, instead, our observed data is
Os = (Os

1, . . . , O
s
N ), where Os

i ∼ P s
i,0. Nonetheless, it follows that the EIC for the actual data-adaptive parameter

Ψ̄N (P̄0) at PN
0 ∈ M and the observed data model Os ∼ PN

0 is given by the sum of these iid-EICs, evaluated at i-
specific observations Os

i and scaled by 1/N , i.e, the EIC for parameter Ψ̄N (P̄0) is given by 1/N
∑N

i=1 D̄
IID(P̄0)(Os

i )

and we also present this EIC in the following theorem.

Theorem 3.2. Suppose our parameter of interest is defined by the mapping Ψ̄N (P̄ ), where P̄ ∈ M̄ and ḡ∗ is fixed.
The efficient influence curve D̄N (PN )(Os) for Ψ̄N (P̄ ), evaluated at PN ∈ M and one observation Os (consisting
of N dependent units) is given by

D̄N (PN )(Os) =
1

N

N∑
i=1

([
ḡ∗

ḡ
(As

i |W s
i )
(
Yi − Q̄(As

i ,W
s
i )
)]

+
[
Eḡ∗ [Q̄(As

i ,W
s
i ) |W s

i ]− Ψ̄N (Q̄, Q̄W )
])

=
1

N

N∑
i=1

(
D̄Yi

(Q̄, ḡ)(Os
i ) + D̄W s

i
(Q̄, Q̄W )(W s

i )
)
,

where

D̄W s
i
(Q̄, Q̄W )(W s

i ) = Eḡ∗ [Q̄(As
i ,W

s
i ) |W s

i ]− Ψ̄N (Q̄, Q̄W )

=

ˆ
as

Q̄(as,W s
i )ḡ∗(as|W s

i )− 1

N

N∑
i=1

ˆ
as,ws

Q̄(as, ws
i )ḡ∗(as|ws

i )QW s
i
(ws).

Proof. See Appendix B.
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EIC for parameter under true ḡ∗(g∗, QW,0).

We now consider our actual target parameter Ψ̄(P̄0) := Ψ̄(Q̄0, Q̄W,0, ḡ
∗
0), obtained by replacing fixed ḡ∗ := ḡ∗N

in ΨN (Q̄0, Q̄W,0) with true density ḡ∗0 := h̄(G∗,QW,0)/q̄W (QW,0). As a result, the EIC for the parameter
Ψ̄(Q̄0, Q̄W,0, ḡ

∗
0) will contain an additional contributing term Dḡ∗(PN

0 )(W) due to ΨN (Q̄0, Q̄W,0)−Ψ(Q̄0, Q̄W,0, ḡ
∗
0).

This additional contribution is derived in Appendix C and the final EIC for our actual parameter Ψ̄(P̄ ) is given
by D̄(PN )(O) = D̄N (PN

0 )(Os) + D̄ḡ∗(PN
0 )(W) and is provided in Theorem 3.3 below. We note that the resulting

EIC provided here is to same estimating function proposed in Section 11 of technical report van der Laan (2012)
for estimation of ψ0 in a model that does not assume independence of W = (W1, . . . ,WN ).

Theorem 3.3. Suppose our parameter is given by the mapping Ψ̄(P̄ ) defined in Section 3.1. The efficient influence
curve for Ψ̄(P̄ ) is given by:

D̄(PN )(O) =D̄N (PN )(Os) + D̄ḡ∗(PN )(W)

=
1

N

N∑
i=1

([
ḡ∗

ḡ
(As

i |W s
i )
(
Yi − Q̄(As

i ,W
s
i )
)]

+

[ˆ
as

Q̄(as,W s
i )ḡ∗(as|W s

i )− Ψ̄(Q̄, Q̄W )

])

+
1

N

N∑
i=1

[ˆ
as

Q̄(as,W s
i )g∗i (as|W)−

ˆ
as

Q̄(as,W s
i )ḡ∗(as|W s

i )

]
,

where
g∗i (as|W) =

ˆ
a

I(asi (a,W) = as)g∗(a|W)dµa(a),

Ψ̄(Q̄, Q̄W ) =
1

N

N∑
i=1

ˆ
as,ws

Q̄(as, ws
i )ḡ∗(as|ws

i )QW s
i
(ws),

and D̄(PN ) above can be further simplified as:

D̄(PN )(O) =
1

N

N∑
i=1

([
ḡ∗

ḡ
(As

i |W s
i )
(
Yi − Q̄(As

i ,W
s
i )
)]

+

[ˆ
as

Q̄(as,W s
i )g∗i (as|W)− Ψ̄(Q̄, Q̄W )

])

=
1

N

N∑
i=1

(
D̄Yi

(Q̄, ḡ)(Os
i ) + D̄g∗i

(Q̄, Q̄W )(W)
)
.

Proof. See Appendix C.

Suppose that ḡ∗/ḡ is uniformly bounded on a set that contains (W s
i , A

s
i ) with probability 1, for all i. Using

similar analysis to the one conducted in van der Laan (2014), we can show that D̄ above is a doubly robust
estimating function for parameter ψ0 = Ψ̄(P̄0), in the sense that,

P0D̄(Q̄, ḡ0, ψ0) = P0D̄(Q̄0, ḡ, ψ0) = P0D̄(Q̄0, ḡ0, ψ0) = 0,

where P0f =
´
f(o)dPN

0 (o) denotes the expectation of f under distribution PN
0 , and Q̄ = (Q̄, Q̄W ). This implies

that any estimator that solves this equation is going to be consistent if: (1) Q̄W,N is consistent for Q̄W,0 and (2) at
least one of the two estimators Q̄N or ḡN is consistent for Q̄0 or ḡ0.
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4 The Targeted Maximum Likelihood Estimation (TMLE)

We had found a new representation for our target parameter Ψ(PN
0 ) = Ψ̄(Q̄0, Q̄W,0), which shows that our pa-

rameter ψ0 depends on PN
0 only as a function of its mixture, P̄0, and in particular, its a function of Q̄Y and Q̄W .

Demonstrating that our parameter can be written as a mapping Ψ̄(Q̄, Q̄W ) is hence the first step in estimation
of ψ0. It implies that the estimation of ψ0 should now only be concerned with estimating the relevant factors of
P̄0 and we proceed by following the usual Targeted Maximum Likelihood Estimation (TMLE) template. For the
description of the TMLE framework in iid data with static interventions, we refer to van der Laan and Rubin (2006);
Gruber and van der Laan (2009); van der Laan and Rose (2011), and for the TMLE in iid data with stochastic
intervention, we refer to Muñoz and van der Laan (2012).

We note that our TMLE for estimating ψ0 will be described in terms of the iid estimators of the relevant
factors of P̄0, namely, the estimators Q̄N , ḡN , ḡ∗N and Q̄W,N of Q̄0, ḡ0, ḡ∗0 and Q̄W,0, respectively. Our next step
is then to create a targeted estimator Q̄∗N of Q̄0 by updating the initial estimator Q̄N , defining the TMLE ψ∗N as
the corresponding plug-in estimator for the mixture mapping Ψ̄(Q̄∗N , Q̄W,N ). We define the targeted update Q̄∗N
based on the loss function for Q̄0 and the least favorable fluctuation submodel through Q̄0 in terms of ḡ0 and ḡ∗0 .
The model update Q̄∗N is defined in a way so that its score generates the efficient influence curve D̄ presented in
Theorem 3.3. That is, the targeted estimator Q̄∗N updates Q̄N by: (1) using the estimated weights ḡ∗N/ḡN , (2)

using a parametric submodel {Q̄N (ε, ḡ∗N/ḡN )} through the initial estimator Q̄N = Q̄N (0, ḡ∗N/ḡN ) at ε = 0, where
{Q̄N (ε, ḡ∗N/ḡN )} is referred to as the least-favorable submodel, (3) fitting ε with the standard parametric MLE,
with εN denoting this fit, and finally, (4) defining the targeted (updated) estimator as Q̄∗N := Q̄N (εN , ḡ∗N/ḡN ). The
TMLE ψ∗N of ψ0 is then defined as the corresponding substitution estimator ψ∗N = Ψ̄(Q̄∗N , Q̄W,N ). We also note that
this TMLE is actually the usual iid TMLE algorithm for estimating the quantity EYḡ∗ under fixed (data-adaptive)
ḡ∗, treating observations Os

i , for i = 1, . . . , N as if they are iid. Finally, we note that the TMLE we present here is
a semi-parametrically efficient estimator for ψ0, since its algebraically equivalent to the TMLE presented in van der
Laan (2014), as we discuss in more detail in Appendix E. Thus, the TMLE ψ∗N solves the empirical score equation
given by the efficient influence curve D̄ from Theorem 3.3, implying that ψ∗N also inherits the double robustness
property of this efficient influence curve.

4.1 The estimator Q̄W,N for Q̄W,0

We define an estimator Q̄W,N of Q̄W,0 by first defining the empirical counterpart QW,N of QW,0 that puts mass one
on the observed W = (W1, . . . ,WN ), which then implies that the empirical distribution QW s

i ,N
of QW s

i ,0
will put

mass one on its corresponding observed W s
i = ws

i (W), for i = 1, . . . , N . Hence, for each ws ∈ Ws, the empirical
counterpart Q̄W,N (ws) of Q̄W,0(ws) may be defined as follows:

Q̄W,N (ws) :=
1

N

N∑
i=1

I(W s
i = ws).

4.2 The initial (non-targeted) estimator Q̄N of Q̄0

We assumed there is a common model Q̄0 across all i and Yi are conditionally independent given (As
i ,W

s
i ), for all

i. Consequently, the estimation of a common Q̄N can proceed by using the pooled summary data (W s
i , A

s
i , Yi),

i = 1, . . . , N , as if the sample is iid across i and one can rely on the usual parametric MLE or loss-based cross-
validation for estimating Q̄N , as described in van der Laan (2014). Given that Yi can be continuous or discrete for
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some known range Yi ∈ [a, b], for i = 1, . . . , N , the estimation of Q̄0 can be based on the following log-likelihood
loss,

L(Q̄)(Y |As,W s) = −
N∑
i=1

log
{
Q̄(As

i ,W
s
i )Yi(1− Q̄(As

i ,W
s
i ))1−Yi

}
,

or the squared error loss

L(Q̄)(Os) = −
N∑
i=1

(
Yi − Q̄(As

i ,W
s
i )
)2
.

Thus, fitting Q̄N for common Q̄0 = E[Yi | As
i ,W

s
i ] amounts to using the summary data structure (W s

i , A
s
i , Yi), for

i = 1, . . . , N . In other words, we use the entire sample of N observations for predicting Yi. For example, for binary
Yi, Q̄N can be estimated by fitting a single logistic regression model to all N observations, with Yi as the outcome,
(W s

i , A
s
i ) as predictors, and possibly adding the number of friends, |Fi|, as an additional covariate. After fitting

Q̄N , one generates a vector of unit-specific prediction values, (Q̄N (As
i ,W

s
i ))Ni=1, which are then used to build an

updated version Q̄∗N of Q̄N .

4.3 Estimating ḡ∗0 and ḡ0

We now describe a direct approach to estimation of ḡ0 that relies on Lemma 4.1 below. This lemma states that
a consistent estimator ḡN of ḡ0 can be obtained by taking a pooled sample (As

i ,W
s
i ), for i = 1, . . . , N , and using

the usual iid maximum likelihood-based estimation, as if we were fitting a common-in-i conditional density for As
i

given W s
i and treating (As

i ,W
s
i ) as independent observations. For example, if each component of As

i is binary,
and |As

i | = k for all i, the conditional distribution for ḡ0 could be factorized in terms of the product of k binary
conditional distributions. Each of these binary conditional distributions can be estimated with the usual logistic
regression methods. We also refer to Section 6 for a running example that describes in detail this direct estimation
approach. Suppose now that g0 is known, as will be the case in a randomized clinical trial (RCT). We note that
this aforementioned approach to estimating ḡ0 can be easily adopted to incorporate the knowledge of true g0. That
is, one could proceed by first simulating a very large number of observations (As

j ,W
s
j )Mj=1 from (g0,QW,N ), with

QW,N that puts mass one on the observed W, and then fitting the maximum likelihood-based estimator for ḡ0, as
if we were fitting a common model for As

i given W s
i , based on this very large sample that is treated as iid.

As discussed in the previous section, ḡ∗0 := h̄∗(G∗,QW,0)/q̄W (QW,0) will generally be unknown and hence will
also need to be estimated from the data, in particular, since ḡ∗0 depends on the true distribution of the data via
QW,0. Therefore, we propose estimating ḡ∗0 by using the same method as for for estimating ḡ0 in case when g0

is known. Namely, we propose replacing known g0 with known g∗ and then simulating a very large number of
observations (A∗sj ,W

s
j )Mj=1 from (g∗,QW,N ), then using the same maximum likelihood-based approach to obtain

an estimator ḡ∗N of ḡ∗0 , treating this simulated sample as if iid. Finally, even when g0 is unknown, such as in an
observational study on N connected units, one could obtain a better estimator of ḡ0 by utilizing the conditional
independence assumptions for observed exposures Ai, given W s

i , for i = 1, . . . , N . Similar to estimation of Q̄N , this
allows us to use loss-based cross-validation and machine learning methods to obtain a good approximation gN (a|ws)

for common-in-i density g0(a|ws), resulting in an estimator gN of the joint density g0. We can now repeat the
above described procedure for estimating ḡ0 when g0 is known, except using such data-adaptively estimated gN

instead of g0. In this manner, one can obtain sufficient approximations to true ḡ0 and ḡ∗0 , by fully utilizing the
actual model knowledge for g0 and the actual knowledge of g∗. Finally, we use these fits to evaluate ḡ∗N/ḡN at each
observed (As

i ,W
s
i ), yielding N predictions (ḡ∗N (As

i |W s
i )/ḡN (As

i |W s
i )), for i = 1, . . . , N, which will then be used as
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unit-level weights during the TMLE modeling update of the estimator Q̄N .

Lemma 4.1. (Lemma 2 in van der Laan (2014)). Let the density ḡ0 be defined as ḡ0(ās|w̄s) := h̄0(ās, w̄s)/q̄W,0(w̄s),
where q̄W,0 and h̄0 are as previously defined in Section 3.1. Let Hg be a set of functions that contain true ḡ0, then

ḡ0 = arg max
ḡ∈Hg

EPN
0

{
1

N

∑
i

log ḡ(As
i |W s

i )

}
.

A consistent estimator ḡN for ḡ0 can be obtained by plugging in the empirical counterpart of PN
0 above, resulting in

an estimator:

ḡN = arg max
ḡ∈Hg

{
1

N

N∑
i=1

log ḡ(As
i |W s

i )

}
.

That is, ḡN is the maximum likelihood estimator of ḡ0 that uses the pooled sample (As
i ,W

s
i ), for i = 1, . . . , N ,

treating the dependent N units as iid.

Proof. See Appendix A.

4.4 The TMLE algorithm ψ∗
N for N connected units

Having defined the estimators Q̄N , ḡN , ḡ∗N and Q̄W,N , the TMLE ψ∗N is obtained by first constructing the model
update Q̄∗N for Q̄N , as described in step 1. below, and then evaluating ψ∗N as a substitution estimator for the
mapping Ψ̄, as described in step 2. below.

1. Define the following parametric submodel for Q̄N : LogitQ̄N (ε) = ε + LogitQ̄N and define the following
weighted log-likelihood loss function:

Lw(Q̄N (ε))(Os) = −
N∑
i=1

log
{
Q̄N (ε)(As

i ,W
s
i )Yi(1− Q̄N (ε)(As

i ,W
s
i ))1−Yi

} ḡ∗N
ḡN

(As
i |W s

i ).

The model update Q̄∗N is defined as Q̄N (εN ) = Expit
(
LogitQ̄N + εN

)
, where εN minimizes the above loss,

i.e., εN = arg minε L
w(Q̄N (ε))(Os). That is, one can fit εN by simply running the intercept-only weighted

logistic regression using the pooled sample of N observations (W s
i , A

s
i , Yi), for i = 1, . . . , N , with outcome Yi,

intercept ε, using offsets LogitQ̄N (As
i ,W

s
i ), predicted weights ḡ∗N (As

i |W s
i )/ḡN (As

i |W s
i ) and no covariates. The

fitted intercept is the maximum likelihood fit εN for ε, yielding the model update Q̄∗N ,which can be evaluated
for any fixed (as, ws), by first computing the initial model prediction Q̄N (as, ws) and then evaluating the
update Q̄N (εN ).

2. The TMLE ψ∗N = Ψ̄N (Q̄∗N , Q̄W,N ) of ψ0 is defined as the following substitution estimator:

ψ∗N =
1

N

N∑
i=1

ˆ
as

Q̄∗N (as,W s
i )ḡ∗N,NPMLE(as |W s

i )dµ(as),

where ḡ∗N,NPMLE is a NPMLE substitution estimator for ḡ∗0 := h̄∗(G∗,QW,0)/q̄W (QW,0), obtained by plug-
ging in the user-defined G∗ and the empirical counterpart QW,N for QW,0 which puts mass one on observed
W = (W1, . . . ,WN ). Hence, the estimator ḡ∗N,NPMLE is defined as follows:

ḡ∗N,NPMLE(as|ws) =
1/N

∑
i hi(G

∗,QW,N )(as, ws)

1/N
∑

iQW s
i ,N

(ws)
,

15

Hosted by The Berkeley Electronic Press



for each (as, ws) ∈ (As,Ws). The above TMLE ψ∗N might require evaluation of ḡ∗N,NPMLE for every possible
as(a,W) in the support of A∗, and hence could be computationally challenging to implement in practice,
especially for non-degenerate g∗ and multivariate (asi : i = 1, . . . , N). However, we also note that the above
TMLE ψ∗N takes on the following algebraically equivalent form:

ψ∗N =
1

N

N∑
i=1

ˆ
a

Q̄∗N (asi (a,W), ws
i (W))g∗(a |W)dµ(a),

which does not require computing ḡ∗N,NPMLE . For non-degenerate g∗, the latter expression for ψ∗N can
be closely approximated by sampling from g∗ and performing Monte Carlo integration. That is, we pro-
pose evaluating ψ∗N by iterating the following procedure j = 1, . . . ,M times: (1) Sample N observations
A∗j = (A∗j,1, . . . , A

∗
j,N ) from g∗(a|W), conditionally on observed W = (W1, . . . ,WN ); (2) Apply the sum-

mary measure mappings, constructing the following summary dataset (A∗sj,i,W
s
i ), for i = 1, . . . , N , where each

A∗sj,i := asi (A
∗
j ,W); and (3) Evaluate the Monte Carlo approximation to ψ∗N for iteration j as:

ψ∗j,N =
1

N

N∑
i=1

Q̄∗N (As∗
j,i,W

s
i ).

The Monte Carlo estimate ψ̄∗N of ψ∗N is then obtained by averaging ψ∗j,N across j = 1, . . . ,M , whereM is chosen
large enough to guarantee a small approximation error to ψ∗N . Finally, we note that one could substantially
reduce the computation time of this algorithm by simply re-using the summary datasets (A∗sj,i,W

s
i ) that were

already constructed while performing direct estimation of ḡ∗0 from Section 4.3.

5 Asymptotic normality and inference for the TMLE

Having defined the TMLE ψ∗N = Ψ̄(Q̄∗N , Q̄W,N ) for our parameter Ψ̄(Q̄0, Q̄W,0), our goal now is to conduct infer-
ence. However, we start with an asymptotic analysis of the process (ψ∗N − Ψ̄N (Q̄0, Q̄W,0)), where Ψ̄N (Q̄0, Q̄W,0) is
a data-adaptive target parameter indexed by fixed ḡ∗N . We then show that our results can be easily extended to
allow inference for our original parameter of interest Ψ̄(Q̄0, Q̄W,0) defined with respect to true ḡ∗0 .

As described in Appendix D, TMLE Ψ̄(Q̄∗N , Q̄W,N ) is constructed to solve the following empirical score equation:

1

N

N∑
i=1

D̄N (Q̄∗N , Q̄W,N , ḡN )(Os
i ) = 0,

where D̄N (Q̄, ḡ) is the EIC for the data-adaptive parameter Ψ̄N (Q̄) := EȲḡ∗=ḡ∗N
(Theorem 3.2). Using the identity

for D̄N (Q̄, ḡ) shown in Appendix D, we have that:

Ψ̄N (Q̄)− Ψ̄N (Q̄0) = −P̄0D̄
N (Q̄, ḡ) + R̄2(Q̄, Q̄0, ḡ, ḡ0),

where we use the notation Q̄ = (Q̄, Q̄W ) and R̄2 is second order term provided in Appendix D. Since P̄0 is defined
as a mixture 1/N

∑
i P0,i, and combined with the fact that our TMLE solves the above efficient score equation, we

obtain:
Ψ̄N (Q̄∗N )− Ψ̄N (Q̄0) =

1

N

∑
i

[
D̄N (Q̄∗N , ḡN )(Os

i )− P0,iD̄
N (Q̄∗N , ḡN )

]
+ R̄2,N .
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By having fast enough rates for ḡN and Q̄∗N , one can show that R2,N = oP (N−1/2) and by the empirical process
and asymptotic equicontinuity analysis conducted in van der Laan (2014), using the same conditions as in Theorem
2 of van der Laan (2014), it follows that this empirical process applied to estimated D̄N is up to oP (N−1/2) equal
to the empirical process for the fixed limit, where we use D̄N

0 (Os
i ) to denote this limit and we have:

Ψ̄N (Q̄∗N )− Ψ̄N (Q̄0) =
1

N

∑
i

[
D̄N

0 (Os
i )− P0,iD̄

N
0

]
+ oP (N−1/2).

Finally, using the analogue analysis to the one conducted in van der Laan (2014), we can show that the above
process converges to a normal limiting distribution at

√
N rate, with its asymptotic variance given by the following

limit:
σ2

0,ḡ∗ = lim
N→∞

1

N

∑
i,j

R(i, j)E[D̄N
0 (Os

i )D̄N
0 (Os

j )],

for (i, j) ∈ {1, . . . , N}2 and R(i, j) = 1 when Fi ∩ Fj 6= ∅, and R(i, j) = 0 otherwise, and we always have that
R(i, i) = 1, for all i = 1, . . . , N . We also refer to Theorem 2 in van der Laan (2014) for the full list of assumptions
required for asymptotic normality of

√
N(Ψ̄N (Q̄∗N )− Ψ̄N (Q̄0)).

The above result provides us with inference for the parameter Ψ̄N (Q̄0) (i.e., the data-adaptive parameter indexed
by ḡ∗N ). We now perform the derivation which will also allow us to conduct inference for the parameter Ψ̄(Q̄0)

defined with respect to true ḡ∗0 . Specifically, by applying the same arguments as above, we can perform the following
asymptotic expansion:

Ψ̄N (Q̄∗N )− Ψ̄(Q̄0)

=Ψ̄N (Q̄∗N )− Ψ̄N (Q̄0) + Ψ̄N (Q̄0)− Ψ̄(Q̄0)

=
1

N

∑
i

[
D̄N

0 (Os
i )− P0,iD̄

N
0

]
+

1

N

∑
i

[
D̄ḡ∗

0,i(O
s
i )− P0,iD̄

ḡ∗

0,i

]
+ oP (N−1/2)

=
1

N

∑
i

[
D̄i,0 − P0,iD̄i,0

]
+ oP (N−1/2),

where the contribution Dḡ∗

0 = 1/N
∑

i D̄
ḡ∗

0,i above was defined in the EIC in Theorem 3.3. We also note that the
above expansion must hold for our TMLE Ψ̄(Q̄∗N , Q̄W,N ), since is solves the score equation given by:

1

N

N∑
i=1

D̄ḡ∗

i (Q̄N , ḡ
∗
NPMLE,N )(W) = 0.

By using the same set of arguments as before, we can now conclude that the above process will converge to a normal
limiting distribution, i.e.,: √

N(Ψ̄N (Q̄∗N )− Ψ̄(Q̄0))⇒d N(0, σ2
0),

with σ2
0 given by the following limit:

σ2
0 = lim

N→∞
1

N

∑
i,j

R(i, j)E[D̄0(Os
i )D̄0(Os

j )],

which includes additional terms D̄ḡ∗

i,0 and we assume R(i, j) = 1 when Fi ∩ Fj 6= ∅, and R(i, j) = 0 otherwise,
and we always have that R(i, i) = 1, for all i = 1, . . . , N . We also note that this TMLE Ψ̄N (Q̄∗N ) will achieve
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the semi-parametric efficiency bound if both Q̄N and ḡN are consistent for Q̄0 and ḡ0, under regularity conditions
stated in van der Laan (2014), meaning that such an estimator is locally efficient at PN

0 .

Having a consistent estimator of σ2
0 would yield asymptotically valid confidence intervals for ψ0. A reasonable

approach to estimating σ2
0 is to plug in the estimates Q̄N = (Q̄N , Q̄W,N ), ḡN , ḡ∗N and Ψ̄(Q̄∗N ), obtaining the plug-in

estimator D̄N for D̄0, and then evaluate the above expectations E[D̄N (Os
i )D̄N (Os

j )] with respect to their empirical
counterparts, resulting in an estimator σ2

N of σ2
0 . We thus arrive at the following estimator of σ2

0 :

σ2
N =

1

N

∑
i,j

R(i, j)
[
D̄N (Os

i )D̄N (Ōj)
]
,

where

D̄N (Os
i ) =D̄(Q̄N , ḡN , ḡ

∗
N , ψ

∗
N )(Os

i )

=
ḡ∗N
ḡN

(As
i |W s

i )
[
Yi − Q̄N (As

i ,W
s
i )
]

+
[
Ψi(Q̄N ,QW,N )− Ψ̄N (Q̄∗N )

]
,

for
Ψi(Q̄N ,QW,N ) =

ˆ
a

Q̄N (asi (a,W), ws
i (W))g∗(a |W)

and

Ψ̄N (Q̄∗N ) =
1

N

N∑
i=1

ˆ
a

Q̄∗N (asi (a,W), ws
i (W))g∗(a |W).

Given an estimator σ2
N , one can construct a 95% confidence interval (CI) ψ∗N ± 1.96σN/

√
N , which, under the

assumption of consistency of σ2
N for σ2, will have correct asymptotic coverage. We note that the this estimator

does not require assuming that W1, . . . ,WN are independent, beyond the modeling assumptions on QW,0 ∈ M
from Section 2. Furthermore, we know from the results in iid data that the such EIC-based confidence intervals
will generally provide correct coverage when Q̄N and ḡN are correctly specified, and will be conservative if only
ḡN is specified correctly. Thus, we would expect our estimator σ2

N to be also conservative when the model for Q̄0

is misspecified, analogous to the result from the iid data, and we also test the validity of this conjecture with a
simulation study.

6 Simulation study

We performed a network simulation study evaluating the finite sample bias and variance of the TMLE presented
in Section 4.4. We also evaluated the finite sample coverage of the confidence intervals described in Section 5.
In addition to TMLE, we also used the Inverse Probability Weighted (IPTW) estimator and the G-computation
substitution estimator, where both of these estimators are defined below. All estimation was performed in R

language (R Core Team, 2015) using a stand-alone package tmlenet (Sofrygin and van der Laan, 2015). The results
are reported for networks consisting of N = 500 and N = 1, 000 observations. The estimation was repeated by
sampling 10, 000 datasets. Due to computing time limitations, each unit in the network was allowed to be connected
to at most two other units (at most two friends in Fi, for each i = 1, . . . , N). However, we note that since the
same estimand would generally be obtained only once when using the actual observed data, one should be able to
employ the tmlenet R package for estimation in more realistic network datasets where observed units may have
much higher degrees of connectivity. The data generating distribution used in these simulations is described in
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more detail in Appendix F. Briefly, we first sampled N iid baseline covariates, W = (W1, . . . ,WN ). For each unit i,
we then generated Fi by first sampling its size, |Fi|, uniformly from {0, 1, 2}, followed by uniform sampling without
replacement of Fi from the population of N −1 units (all units, except i). The network-induced dependence among
units was then simulated in the following manner. Each treatment Ai was sampled as a Bernoulli random variable,
with its probability of success depending on the baseline covariate values of units in Fi∪{i}. Similarly, each outcome
Yi was sampled as a Bernoulli random variable, with its probability of success depending on the baseline covariate
values and treatments of units in Fi ∪ {i}. The probability of success for each Ai was defined as a logit-linear
function of the 2-dimensional summary (Wi,

∑
j Wj : j ∈ Fi), given as:

P0(Ai = 1 |W s
i ) = expit(α0 + α1Wi + α2

∑
j∈Fi

Wj).

Similarly, the probability of success for each Yi was defined as a logit-linear function of the 4-dimensional summary
(Wi,

∑
j Wj , Ai,

∑
j Aj : j ∈ Fi), given as:

Q̄0(As
i ,W

s
i ) = expit(β0 + β1Ai + β2

∑
j∈Fi

Aj + β
′

1Wi + β
′

2

∑
j∈Fi

Wj).

In contrast, the estimation of the common-in-i Q̄0 and the mixture density ḡ0 was based on non-parametrically
defined summary measures, i.e., we let W s

i = (|Fi|,Wi,Wj : j ∈ Fi) and As
i = (Ai, Aj : j ∈ Fi), such that, for all i,

|W s
i | = 4 and |As

i | = 3. Whenever unit i had fewer than 2 friends (|Fi| < 2), the remainders ofW s
i and As

i were filled
with zeros to ensure the same summary measure dimensionality across i. The common-in-i model Q̄N for Q̄0 was
then estimated by fitting a logistic regression model to a pooled sample of N units, using covariates (As

i ,W
s
i ). The

estimation of the conditional mixture density ḡ0(as |ws) proceeded as follows. First, for any (as, ws) ∈ (Ās × W̄s),
such that as ∈ {0, 1}3 and as = (as(1), as(2), as(3)), we factorized P (Ās = as | W̄ s = ws) as:

P (Ās = as | W̄ s = ws) = P (Ās(1) = as(1), Ās(2) = as(2), Ās(3) = as(3) | W̄ s = ws)

= P (Ās(1) = as(1) | W̄ s = ws)

×P (Ās(2) = as(2) | Ās(1) = as(1), W̄ s = ws)

×P (Ās(3) = as(3) | Ās(1) = as(1), Ās(2) = as(2), W̄ s = ws).

We then fit three separate logistic regression models, each estimating one of the factors in the above factoriza-
tion, as if we were fitting common-in-i models using an iid sample of N observations (As

i ,W
s
i ). That is, the first

factor P (Ās(1) = 1|W̄ s) was fit as if we were estimating a common-in-i model P (As
i (1) = 1|W s

i ) for N iid ob-
servations (Ai,W

s
i )Ni=1 (note that As

i (1) = Ai). Similarly, the second factor was fit as if we were estimating a
common-in-i model for P (As

i (2) = 1|Ai,W
s
i ), and so on. The resulting three fits were then combined in order

to obtain the estimate ḡN (as|ws) of ḡ0(as|ws). We estimated ḡ∗0 in a similar way, except that we first sampled a
large dataset of observations (A∗i ,Wi) from g∗ and QW,N , for i = 1, . . . ,mN , then constructed the summary data
W s

i = (Wi,Wj : j ∈ Fi), A∗si = (A∗i , A
∗
j : j ∈ Fi), and finally estimated ḡ∗N by factorizing P (Ā∗ = as | W̄ s = ws)

into three factors and fitting three logistic regressions to a pooled sample (A∗i ,Wi) of mN observations.

The stochastic intervention g∗(A|W) was defined as a common-in-i intervention g∗p on each Ai, which assigned
Ai = 1 with some constant probability p, i.e., P (A∗i = 1) = p. Our target parameter was then defined as the sample-
average of N outcomes under g∗p, where we use ψ0(g∗p) to denote the parameter’s true value. In our simulations we
then estimated a discrete dose response curve {ψ0(g∗p)} for p ∈ [0, 0.1, . . . , 0.9, 1]. We also truncated the observation-
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specific weights ḡ∗N (as | ws)/ḡN (as | ws) when their values exceeded 105. Finally, the confidence intervals for the
TMLE were constructed based on variance estimator σ2

N from Section 5. Lastly, we compared σ2
N with an alternative

asymptotic variance estimator σ̃2
N presented in van der Laan (2014), which requires the consistency of Q̄N and ḡN

and is given by:

σ̃2
N =

1

N

[
N∑
i=1

ḡ∗N
ḡN

(As
i ,W

s
i )(Yi − Q̄N (As

i ,W
s
i ))

]2

+
1

N

N∑
i1,i2=1

fW,i1fW,i2I(Fi1 ∩ Fi2 6= ∅),

for
fW,i =

ˆ
a

Q̄N (asi (a), ws
i (W ))g∗i (a|W )−

ˆ
w

[ˆ
a

Q̄N (asi (a), ws
i (W ))g∗i (a|w)

]
QW,N (w).

6.1 IPTW (Horvitz-Thompson) estimator

The IPTW estimator is based on the TMLE weights ḡ0/ḡ
∗
0 from Section 4.4 and is defined as the weighted average

of the observed outcomes Yi, weighted by ḡ∗N/ḡN :

ψIPTW,N =
1

N

N∑
i=1

Yi

[
ḡ∗N
ḡN

(As
i |W s

i )

]
,

where ḡN is an estimator of the conditional mixture ḡ0(G0,QW,0) defined in Section 3.1 and ḡ∗N is an estimator of
ḡ∗0(G∗,QW,0), also defined in Section 3.1. The estimators ḡN and ḡ∗N are described in general in Section 4 and are
also described above for the case of non-parametrically defined summary measures. We also conducted inference for
ψIPTW,N by relying on the same ideas described in Section 5. That is, we used the iid-data influence curve IC(P̄0)

of ψIPTW,N in a model that assumes ḡ∗0 and ḡ0 are known, characterizing the asymptotic variance of ψIPTW,N by
the following limit:

σ2
IPTW,0 = lim

N→∞
1

N

∑
i,j

R(i, j)EP0
[IC(P̄0)(Oi)IC(P̄0)(Oj)],

with R(i, j) = 1 when Fi ∩ Fj 6= ∅, and R(i, j) = 0 otherwise. Replacing the unknown components of P̄0 in IC(P̄0)

with corresponding estimates, we then obtained the following estimator σ2
IPTW,N of σ2

IPTW,0:

σ2
IPTW,N =

1

N

∑
i,j

[
R(i, j)(Yi

ḡ∗N
ḡN

(As
i |W s

i )− ψIPTW,N )(Yj
ḡ∗N
ḡN

(As
j |W s

j )− ψIPTW,N )

]
,

for IC(P̄0)(Os
i ) = Yi [ḡ∗0/ḡ0] (As

i |W s
i )− ψ0. We then constructed 95% CIs as ψIPTW,N ± 1.96σ2

IPTW,N/
√
N .

6.2 G-computation estimator

The G-computation substitution estimator ψGCOMP,N = Ψ(Q̄N ,QW,N ) for ψ0 is based on the un-targeted model
Q̄N for the common-in-i conditional expectation of Yi, as a function of the summary data (As

i ,W
s
i ). Given stochastic

intervention g∗, the G-computation estimator is obtained as:

ψGCOMP,N =
1

N

N∑
i=1

ˆ
a

Q̄N (asi (a,W),W s
i )g∗(a |W)

where QW,N is a NPMLE that puts mass 1 on observed vector W. Evaluation of this estimator is equivalent to
the Monte Carlo integration procedure described for the TMLE ψ∗N in Section 4.4, except that we use the initial
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estimator Q̄N for Q̄0 instead of its targeted version Q̄∗N . The asymptotic variance of ψGCOMP,N was not estimated
and no CIs were constructed.

6.3 Results

Our simulations compared three different model specification scenarios for Q̄0 and ḡ∗0/ḡ0: “(a) Q and ḡ∗/ḡ correct”
indicates that the models for both estimators, Q̄0 and ḡ∗0/ḡ0, were correctly specified; “(b) only ḡ∗/ḡ correct” in-
dicates that the model for the estimator of Q̄0 was misspecified, while the model for the estimator of ḡ∗0/ḡ0 was
specified correctly; finally, “(c) only Q correct” indicates that the model for the estimator of Q̄0 was specified
correctly, while the model for the estimator of ḡ∗0/ḡ0 was misspecified. Figures 1-3 present the simulation results
for finite sample bias and empirical variance. Bias was plotted as the estimate minus the true parameter value
(ψN (g∗p) − ψ0(g∗p)), with different stochastic interventions g∗p presented on the x-axis as “% Treated”. Overall, our
simulation results suggest that TMLE performs well in finite samples with dependent observations. We were able
to demonstrate the double robustness property of TMLE, with it being unbiased in each of the three considered
scenarios. Our results also indicate that the other two estimators are unbiased for scenario (a), but can perform
poorly in alternative scenarios (b) and (c). Overall, we found the IPTW estimator to be the most variable and also
most susceptible to near-positivity violations.

The coverage results are presented in Figures 4-6, where we plotted the 95% CI coverage for various asymptotic
variance estimators, along with the mean CI length. We first compared the TMLE coverage of our proposed vari-
ance estimator, σ2

N , from Section 5 to the TMLE coverage based on the iid variance estimate σ2
IID,N that made no

adjustments for correlated observations, i.e., σ2
IID,N is the EIC-based variance estimator that assumes data are iid.

Our results in Figure 4 indicate that σ2
IID,N tended to under-estimate the variance of TMLE, resulting in CIs that

were too narrow for both sample sizes. We expect the coverage issues for σ2
IID,N to become even more pronounced

when the between-unit dependence increases, as may be the case in more realistic network scenarios with units
having much higher degrees of connectivity.

In addition, the CIs for our dependent-data variance estimate σ2
N become conservative when Q̄N was misspecified.

The latter result was expected based on the predictions from the semi-parametric efficiency theory for iid data. In
Figure 5 we compared the coverage of IPTW with that of TMLE. Finally, we compared the TMLE coverage for our
dependent-data variance estimate σ2

N to the alternative asymptotic variance estimate σ̃2
N from van der Laan (2014).

The simulation results of this comparison in Figure 6 show nearly identical coverage under correctly specified Q̄N .
However, when Q̄N is misspecified, the two estimators behaved differently, with σ̃2

N showing slightly lower coverage
for some sections of the estimated dose response curve. We also note that near positivity violations will generally
increase the variability of our estimators. In particular, one would expect the near positivity violations to be more
pronounced closer to the tail-ends of the discrete dose response curve {ψ0(g∗p)}, namely, for values of p close to 0

or 1. Indeed, this is also demonstrated in our simulations, where we noted increasing variability of all estimators
closer to the edges of the estimated dose response curve, which also contributes to a small drop in coverage.
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(a) Q and ḡ∗/ḡ correct

Figure 1: Empirical distributions for TMLE, IPTW and G-COMP, centered at the truth and estimated over 10,000
simulated data sets of size 500 (top row) and size 1,000 (bottom row) for scenario (a) - correctly specified Q and
ḡ∗/ḡ. Colored ribbons mark the 2.5th to 97.5th percentile ranges of the estimands. The centered IPTW estimates
outside the range of ±1 were removed.
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Figure 2: Empirical distributions for TMLE, IPTW and G-COMP, centered at the truth and estimated over 10,000
simulated data sets of size 500 (top row) and size 1,000 (bottom row) for scenario (b) - only ḡ∗/ḡ correctly specified.
Colored ribbons mark the 2.5th to 97.5th percentile ranges of the estimands. The centered IPTW estimates outside
the range of ±1 were removed.
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Figure 3: Empirical distributions for TMLE, IPTW and G-COMP, centered at the truth and estimated over 10,000
simulated data sets of size 500 (top row) and size 1,000 (bottom row) for scenario (c) - only Q correctly specified.
The colored ribbons mark the 2.5th to 97.5th percentile ranges of the estimands. The centered IPTW estimates
outside the range of ±1 were removed.
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Figure 4: Comparing the 95% CI coverage (top row) and length (bottom row) for the TMLE using two alternative variance estimates: σ2
N -

variance estimate that correctly adjusts for the dependence between observations; σ2
IID,N - iid variance estimate that ignores the dependence between

observations. The estimates are obtained from 10,000 simulated data sets of size 500 (‘Sim N500’) and size 1,000 (‘Sim N1000’). Scenarios: (a) -
correctly specified Q and ḡ∗/ḡ; (b) - only ḡ∗/ḡ correctly specified; and (c) - only Q correctly specified.
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Figure 5: Comparing the 95% CI coverage (top row) and length (bottom row) for TMLE (variance estimate σ2
N ) and IPTW (variance estimate

σ2
IPTW,N ). The estimates are obtained from 10,000 simulated data sets of size 500 (‘Sim N500’) and size 1,000 (‘Sim N1000’). Scenarios: (a) - correctly

specified Q and ḡ∗/ḡ; (b) - only ḡ∗/ḡ correctly specified; and (c) - only Q correctly specified.
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Figure 6: Comparing the 95% CI coverage (top row) and length (bottom row) of the two TMLE variance estimates, σ2
N and σ̃2

N , both of which adjust
for the dependence between units, but the latter variance estimate assumes correctly specified Q̄N . The estimates are obtained from 10,000 simulated
data sets of size 500 (‘Sim N500’) and size 1,000 (‘Sim N1000’). Scenarios: (a) - correctly specified Q and ḡ∗/ḡ; (b) - only ḡ∗/ḡ correctly specified;
and (c) - only Q correctly specified.
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7 Intervening on groups of friends and intervening on the network struc-

ture

7.1 Estimation for an arbitrary collection of stochastic interventions

We now show that the estimation framework presented thus far can be easily adapted to the estimation of the
sample-average treatment effects for an arbitrary collection of i-specific stochastic interventions g∗Fi

, where each g∗Fi

may intervene on the treatments of i’s friends in addition to intervening on the treatment of i itself. A collection
of such interventions involving all units, {g∗Fi

: i = 1, . . . , N}, generally cannot be described by a single intervention
g∗ on A = (A1, . . . , AN ) given W = (W1, . . . ,WN ). For example, consider the problem of estimating the direct
average treatment effect in a network of N connected individuals, where we define each g∗Fi

by intervening on a
unit-specific treatment, Ai, setting it to a constant (zero or one), but leave unchanged the distribution of Aj for i’s
friends j ∈ Fi intact. That is, we assume the intervention for each Aj is stochastically sampled from its observed
distribution G0(Aj |W s

j ) or instead deterministically set to its observed value aj . This type of direct effect parameter
has been previously explored in spillover studies, for example, in the study of the effects of deworming among rural
Kenyan primary schools by Miguel and Kremer (2004) and in its replication study by Davey et al. (2015). We are
interested in estimation of the following target parameter,

ψ0 = Ψ(PN
0 ) =

1

N

N∑
i=1

Eq0,g∗Fi

[
Y

g∗Fi
i

]
,

defined as the average of expectations of Y
g∗Fi
i , where each outcome Y

g∗Fi
i is generated under the i-specific post-

intervention distribution that replaces the observed treatment allocation for i and j ∈ Fi with g∗Fi
as just described.

Clearly the collection of such i-specific interventions across all N units is incompatible with a single joint stochastic
intervention g∗ on A given W, since the intervention g∗Fj

for j 6= i and j ∈ Fi requires setting Aj to a constant one
or zero, while the intervention g∗Fi

requires that Aj is randomly sampled from g0 or is set to aj . Nonetheless, this
target parameter ψ0 remains well-defined with respect to a collection {g∗Fi

: i = 1, . . . , N}, and we may apply the
same arguments as in Section 3.1, noting that ψ0 can be equivalently written as:

ψ0 =
1

N

N∑
i=1

ˆ
a,w

Q̄0(asi (a,w), ws
i (w))g∗Fi

(a|w)qW,0(w)dµ(a,w)

=
1

N

N∑
i=1

ˆ
as,ws

Q̄0(as, ws)h∗i,0(as, ws)dµ(as, ws)

=

ˆ
as,ws

Q̄0(as, ws)h̄∗0(as, ws)dµ(as, ws),

where h∗i,0(g∗Fi
,qW,0) is the density determined by g∗Fi

(a|w), qW,0 and the i-specific summary measures asi (a,w), ws
i (w),

and h̄∗0 is a mixture of h∗i,0, defined as h̄∗0(as, ws) := 1/N
∑N

i=1 h
∗
i,0(as, ws). We also note that when (W,A) are

discrete, one obtains:

h∗i,0(as, ws) =

ˆ
a,w

I(asi (a,w) = as, ws
i (w) = ws)g∗Fi

(a|w)qW,0(w)dµa,w(a,w).

Thus, this new target parameter Ψ(PN
0 ) can still be represented by an equivalent mixture mapping Ψ̄(P̄0) from

Theorem 3.1 and hence, the efficient influence curve of this new Ψ(PN
0 ) is given by the same D̄ from Theorem
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3.3. In the above, we also assumed that such i-specific densities h∗i,0(as, ws) are well-defined with respect to some
common dominating measure µa,w, with h̄∗0 being factorized as h̄∗0(as, ws) = ḡ∗0(as|ws)q̄W,0(ws), which provides
the definition of ḡ∗0 . Hence, the TMLE framework from Section 4 can be directly applied to estimation of these
types of parameters, with the only modification that we now require that each i-specific summary A∗si is sampled
conditionally from its i-specific intervention g∗Fi

on A given W. In particular, we use Lemma 4.1 to obtain a
reasonable approximation for ḡ∗0 by modifying it’s direct estimator from Section 4.3 in the following manner: First,
obtain a large simulated dataset of i-specific summaries (A∗si ,W

s
i ), for i = 1, . . . , N , where each A∗si is derived by

sampling (Ag∗Fi ,W) from (g∗Fi
,QW,N ) and then applying the summary measure mapping asi (A

g∗Fi ,W). Next, fit an
estimator ḡ∗N of ḡ∗0 by treating the simulated sample (A∗si ,W

s
i ) as iid, applying the same maximum likelihood-based

approach as earlier. Similarly, the Monte Carlo evaluation step for the TMLE ψ∗N from Section 4.4 is modified to
take into account these i-specific interventions g∗Fi

. That is, instead of sampling (A∗,W) from g∗, each Monte Carlo

iteration j now consists of sampling A
g∗Fi
j = (A

g∗Fi
j,1 , . . . , A

g∗Fi

j,N ) from g∗Fi
(a|W), for each i = 1, . . . , N , conditional

on the observed W, with a resulting dataset of N summary observations (A∗sj,i,W
s
i ) constructed by applying the

i-specific mappings A∗sj,i := asi (A
g∗Fi
j ,W), for i = 1, . . . , N .

7.2 Estimation for interventions on the network structure F

Overview. Observed network data structure. We note that our framework can be also applied to estimation
of the effect of intervening on the network structure. Suppose that we observe at baseline some initial network
F0 = (F 0

1 , . . . , F
0
N ) for the community of N connected units and we are treating F0 as fixed. As before, we are

assuming that the maximum number of friends for each unit (i.e., the dimensionality of each F 0
i ) is bounded by

some constant K that doesn’t depend on N . We then collect data on N baseline covariates W = (W1, . . . ,WN ),
followed by a random draw of another network profile F = (F1, . . . , FN ) and the outcomes Y = (Y1, . . . , YN ),
where each Fi is now based on the initial network F 0

i . Thus, the observed data on N connected units is given by
O = (F0,W,F,Y) and we assume the exposure for each unit i is given by the set Fi. Since we are interested in
interventions which will modify the observed network profile F (e.g., adding or removing some friends in each Fi)
it is natural to allow Fi to be random, but driven by i’s own covariates and the covariates of i’s friends from F 0

i .
Thus, we assume that the i-specific conditional distribution GFi,0 for Fi given (F0,W) only depends on the initial
network offset F 0

i and the baseline covariates (Wi,Wj : j ∈ F 0
i ). Furthermore, we assume its conditional density

gFi,0(Fi | F0,W) is well-defined. We also assume that QY,0, the common-in-i conditional distribution of Yi given
W, depends only on (Wi,Wj : j ∈ Fi), i.e., units j from this newly drawn friend set Fi.

Network interventions and target parameter. We follow the framework outlined in Section 2 and define the
intervention on a network profile F as a user-supplied density g∗(F∗ |W) that replaces the observed conditional
density g0(F |W), where we also assumed that the initial network offset F0 is included in W. Alternatively, we
could also follow Section 7.1 and define our intervention as a collection of the user-supplied i-specific densities
{g∗Fi

: i = 1, . . . , N}, where each g∗Fi
(F ∗i |W) replaces the true i-specific density gFi,0(Fi |W). As noted in Section

7.1, a collection of such i-specific stochastic interventions generally cannot be described by a single multivariate
intervention g∗ on F = (F1, . . . , FN ) given W = (W1, . . . ,WN ) and may result in an incompatible network inter-
vention. Nonetheless, these are still well-defined interventions and we note that the target parameter indexed by
such i-specific interventions g∗Fi

(F ∗i |W) is still well-defined. We also note that the types of interventions we will
consider will generally use the current network sets Fi as inputs, to produce intervened network sets F ∗i . Therefore,
we are concerned here with stochastic interventions which depend on the current sets Fi. Even if the intervention
itself is a deterministic function of Fi (e.g., always remove the first friend), it is still stochastic by the nature of its
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dependence on Fi.

As a motivating example, consider an intervention defined for i = 1, . . . , N that removes certain friends j ∈ Fi

of each unit i when δ(Wj) ≥ r, where r is some pre-defined cutoff value and δ(Wj) is some user-defined function
mapping Wj in R (e.g., δ(Wj) characterizes the baseline “risk-profile” of j). This intervention defines the post-
intervention distribution that replaces QY,0(Wj : j ∈ Fi), i.e., the observed conditional distribution of Yi given W,
with a new distribution QY,0(Wj : j ∈ F ∗i ), where F ∗i is the intervened friend set such that the unit k ∈ F ∗i only
if k ∈ Fi and δ(Wk) < r. We now define our statistical parameter as the sample-average of the expected outcomes
under the i-specific post-intervention distributions that replace each observed network allocations gFi,0 with such
intervention densities g∗Fi

:

Ψ(PN
0 ) =

1

N

N∑
i=1

Eq0,g∗Fi

[
Y

g∗Fi
i

]
.

Statistical model and dimension reduction assumptions. We have described how the interventions on the
networks sets Fi fit within our previously outlined framework in Section 2, where Fi defines the exposure for each
unit i. Our next step is concerned with dimensionality reduction, where we define the appropriate summary mea-
sures (W s

i , A
s
i ), for i = 1, . . . , N , and then model conditional distribution of Yi as a fixed-dimensional function of

(Wi, A
s
i ). In order to be able to intervene on Fi we have to assume that the conditional distribution QY,0 depends

on all W through an N dimensional set (WjI(j ∈ Fi) : j = 1, . . . , N). That is, we have so far assumed that QY,0

is a function of (Wi,Wj : j ∈ Fi). Replacing Fi with the intervened friend set F ∗i implies that QY,0 becomes a
function of (Wi,Wj : j ∈ F ∗i ). In that sense, Yi depends on all W, except that for most j, we have I(j ∈ Fi) = 0

and hence Wj makes no real contribution to QY,0, unless j ∈ Fi. In summary, we change the dependence of Yi on
particular Wj in W by changing the composition of the set Fi and we only intervene on the way Yi may depend on
a particular Wj through indicators I(j ∈ Fi), for j = 1, . . . , N . This also implies that the conditional distribution
of the outcome Yi is now truly a function of the entire N dimensional set W = (W1, . . . ,WN ), making estimation
of QY,0 particularly challenging. Thus, we first need to make additional simplifying assumptions which would allow
us to estimate QY,0.

For convenience, we now assume that i ∈ F 0
i , i ∈ Fi and i ∈ F ∗i , for all i = 1, . . . , N (i.e., i is always connected

to itself). Assume that the i’s network draw Fi is always a finite dimensional augmentation of the initial network
offset F 0

i . That is, the set of possible realizations of Fi is restricted to be within some close proximity of F 0
i . We

note that the network profile F can be viewed as an N × N adjacency matrix of indicators and our assumptions
imply that rather then allowing F to be any possible realization of an N × N adjacency matrix, we restrict F to
finite-dimensional perturbations of matrix F0, allowing F to only change locally as a function of F0 and W. For
example, rather than allowing Fi to draw any new friend j ∈ {1, . . . , N}\i, one may assume that Fi is restricted to
drawing a new friend j only when j is in a set F 0+

i := ∪j∈{Fi∪i}F
0
j . In this case we are assuming that in the new

network realization Fi can only add friend j if i and j had at least one friend in common at baseline (i.e., there was
at most 2nd degree of connectivity between i and j). Such an assumption implies that Fi is no longer of dimension
N , but is rather of a fixed dimension that only depends on K. The set of possible network interventions on Fi,
namely, each intervened F ∗i , is now similarly restricted to realizations of the same finite-dimensional set F 0+

i .

Having defined Fi as a realization of the finite dimensional set F+
i , we define the unit’s exposure Ai, for

i = 1, . . . , N , as a finite-dimensional set of indicators (I(j ∈ Fi) : j ∈ F 0+
i ), namely, each Ai is a binary vector of

the common-in-i dimension K+, with each non-zero entry in Ai denotes which units in F 0+
i are actual friends of i.
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The i-specific network intervention A∗i can be defined by directly intervening on the indicators I(j ∈ Fi) in Ai. We
define the baseline summary measure W s

i := ws
i (W) as a finite dimensional set (Wj : j ∈ F 0+

i ), for i = 1, . . . , N .
Additionally, we define the exposure summary measure asi (Ai,W

s
i ) that depends on (Ai,W

s
i ) only as a function of

the set (WjI(j ∈ Fi) : j ∈ F 0+
i ), i.e.,

As
i := asi (Ai,W

s
i ) = asi (WjI(j ∈ Fi) : j ∈ F 0+

i ),

for i = 1, . . . , N , and we assume each asi (·) maps into Rd, for a common-in-i dimension d. Next, we model the condi-
tional probability of the outcome Yi as a common-in-i function QY,0 that depends on (A,W) only as a function of the
summary As

i , for i = 1, . . . , N . Note that the crucial assumption that asi (·) is a function of (WjI(j ∈ Fi) : j ∈ F 0+
i )

allows us to take full advantage of the dimensionality reduction due to asi (·) and still define the target parameters
which actually correspond to the effects of intervening on the observed network realization F. We may also assume
that Yi depends on some common-in-i summary w̃s(Wj : j ∈ F 0+

i ) = w̃s(W s
i ) that is unrelated to the new network

draw Fi, and hence would not be affected by an intervention F ∗i on Fi. Note that such modeling restrictions on Fi

now make it possible to estimate our parameter Ψ(PN
0 ).

With a slight abuse of notation, we use gFi,0(Ai|W) to denote the conditional density of Ai given W, and
similarly, we use g∗Fi

(A∗i |W) to denote the i-specific stochastic intervention on Ai, implied by F ∗i . We also
note that due to our modeling assumptions for the conditional distribution of Fi given (F0,W), we have that
gFi,0(Ai|W) = gFi,0(Ai|W s

i ) and g∗Fi
(Ai|W) = g∗Fi

(Ai|W s
i ), which also leads to the following representation of our

target parameter:

Ψ(PN
0 ) =

1

N

N∑
i=1

EQWs
i
,0

[
Eg∗Fi

[
Q̄0(asi (A

∗
i ,W

s
i ), w̃s(W s

i )) |W s
i

]]
=

1

N

N∑
i=1

ˆ
ai,ws

i

Q̄0(asi (ai, w
s
i ), w̃s(ws

i ))g∗Fi
(ai|ws

i )qW s
i ,0

(ws
i )dµ(ai, w

s
i )

=
1

N

N∑
i=1

ˆ
as,ws

Q̄0(as, w̃s(ws))h∗i,0(as, ws)dµ(a,ws)

=

ˆ
a,ws

Q̄0(as, w̃s(ws))h̄∗0(as, ws)dµ(as, ws)

=

ˆ
a,ws

Q̄0(as, w̃s(ws))ḡ∗0(as|ws)q̄W,0(ws)dµ(as, ws)

= Eq̄W,0

[
Eḡ∗0

[
Q̄0(Ās, w̃s(W̄ s)) | W̄ s

]]
.

This shows that the new target parameter Ψ(PN
0 ) can be represented by an equivalent mixture mapping Ψ̄(P̄0) from

Theorem 3.1. Consequently, the efficient influence curve of this new Ψ(PN
0 ) is given by the same D̄ from Theorem

3.3. It follows that the estimation procedure described in Section 4 remains unchanged when estimating this new
parameter Ψ(PN

0 ). As before, we also assume that the i-specific densities h̄∗0(as, ws) are well-defined with respect
to some common dominating measure, and that h̄∗0 can be factorized as h̄∗0(as, ws) = ḡ∗0(as|ws)q̄W (ws).

As we describe in an example below, given a particular context, one might assume that the summary measures
As

i are of lower dimensionality than the identity mapping (WjI(j ∈ Fi) : j ∈ F 0+
i ). For instance, one may be able

to define some low-dimensional summaries of (I(j ∈ Fi)Wj : j ∈ F 0+
i ), which incorporate various features of unit
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i’s network and the covariates of i’s friends. One then has to assume that the conditional outcome model QY,0

for each Yi depends only on such low-dimensional features. Furthermore, if aYi (·) and w̃s(·) depend only on some
subset of (Wj : j ∈ F 0+

i ), then W s
i can be also redefined as a summary of lower dimension that only includes the

subset of (Wj : j ∈ F 0+
i ) or the specific features of this subset. The direct estimation of the conditional mixtures

ḡ0 and ḡ∗0 is then performed conditional on this lower-dimensional summary W s
i .

Example. Suppose that we gather some initial data on a network of sexual partners (F0 = F 0
1 , . . . , F

0
N ) in a

community-based observational study of HIV risk factors. For each unit i, we measure the baseline covariates, Wi,
which may include baseline HIV infection status (Hi) along with various risk factors. We also assume that after
some period of time the network of sexual partners on each unit was measured again. This new network realization
for unit i is denoted as set Fi and it defines our exposure of interest. Suppose that several months later data was
collected on the binary outcome Yi which indicated whether subject i contracted HIV during the follow-up period.
Our scientific question of interest is to determine the expected incidence of HIV under a hypothetical intervention
on the network of sexual partners of each unit i. We note that our dimension reduction assumptions imply that
the set of possible realizations of i’s partners in a new network draw Fi is restricted to units who were already
connected to i at baseline through a common partner, the set we previously denoted as F 0+

i . The exposure Ai is
defined as a vector of indicators I(j ∈ Fi) based on the set of all possible partner realizations j ∈ F 0+

i . We now
assume that QY,0, the conditional probability of unit i contracting HIV, depends on i’s baseline covariates (Wi) and
the total number of i’s current partners (nFi :=

∑K+

j=1Ai(j)). We also assume that QY,0 depends on the covariates
of i’s current partners in Ai only as a function of a lower-dimensional summary measure. For example, we suppose
that the risk of contracting HIV for unit i also depends on the proportion of the total number of i’s partners
who had HIV at baseline (pHi := (1/nFi)

∑
j∈Fi

Hj), as well as the proportion of i’s partners with high-risk as
determined by δ(Wj) > r1, i.e, the summary pRi = (1/nFi)

∑
j∈Fi

I(δ(Wj) > r), where δ(·) maps the covariates
in Wj into a real line. We now suppose that the exposure summary is defined as As

i := (nFi, pHi, pRi), and the
baseline summary is defined as W s

i := (Wi, δ(Wj) : j ∈ F 0+
i ). We also consider individual interventions g∗Fi

on
Fi that replace the observed partners of i in Fi with another set of partners F ∗i . For example, we consider the
i-specific intervention g∗Fi

that decreases the total number of i’s partners by stochastically removing some j ∈ Fi,
where this probability of removing a partner j ∈ Fi can be a function of j’s baseline risk-profile δ(Wj). Such
an intervention g∗Fi

implies a new exposure set A∗i and an intervention-specific summary A∗si := (nF ∗i , pH
∗
i , pR

∗
i ),

where nF ∗i :=
∑K+

j=1A
∗
i (j), pH∗i := (1/nF ∗i )

∑
j∈F∗i Hj and pR∗i := (1/nF ∗i )

∑
j∈F∗i I(δ(Wj) > r). One can now

directly apply the TMLE framework from Section 4 to estimate the sample-average of the expected outcomes Yi
under such network interventions gF∗i , for i = 1, . . . , N . In particular, we first need to estimate the conditional
mixtures ḡ0(As

i |W s
i ) and ḡ∗0(A∗i |W s

i ) using the direct estimation approach, which then allows us to evaluate the
clever covariate based on N predictions [ḡ∗N/ḡN ] (As

i |W s
i ). We then proceed to fit a common-in-i initial model Q̄N

for the regression of Yi given (As
i ,Wi), followed by the TMLE update Q̄∗N for Q̄N .

8 Discussion

In this paper we describe a practical application of the TMLE framework towards the goal of estimation of the
sample-average treatment effects in network-dependent data. Our first objective was to assume a realistic semi-
parametric data generating model, which reflected the types of between-unit dependence one may encounter in
real-life observational network study, for example, when the study units are connected via a social or geographical
network. Our approach included a number of statistical assumptions, such as, the assumption of a certain condi-
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tional independence of outcomes and the assumption of fixed-dimension summary measures, which allowed us to
perform estimation and inference in sample size one problems. Having defined our semi-parametric statistical model
M, we also defined our target of estimation Ψ(PN ) as a mapping from the joint distribution PN on N connected
units, for PN ∈ M. We then showed in Section 3.1 that this target parameter depends on the joint distribution
of the data only as a function of the mixture distribution P̄ , where P̄ was given as a mixture of the unit-specific
components Pi of PN . While this gave us a novel iid interpretation for our target parameter, such mixture mapping
representation also implied that our estimation problem was reduced to the problem of estimating the relevant
factors of the mixture P̄ . We have argued that such dependent-data parameters can then be estimated by simply
ignoring the dependence between connected observations (e.g., Lemma 4.1), suggesting that an entire class of the
iid data estimators, such as the iid TMLE algorithm we described in this paper, may be applied for estimation in
dependent data models. That is, we presented the dependent-data TMLE from van der Laan (2014) as a typical
iid-data TMLE, with an unusual caveat that our iid-data stochastic intervention ḡ∗0 depends on the true distribu-
tion of the observed data. We also used the efficient influence curve (EIC) for our target parameter, to provide a
simple and consistent estimator of the true asymptotic variance of our TMLE. Our proposed variance estimator
took into account the known network structure, making adjustments for correlated outcomes of connected units.
We assessed the validity of our inferential framework with a finite sample network simulation study. In particular,
the finite sample performance of our proposed TMLE was compared to the parametric G-computation estimator
and the IPTW estimator. Lastly, we assessed the finite sample coverage of our estimated asymptotic confidence
intervals, e.g., comparing our dependent-data inference to one that ignores the dependence among units (i.e., using
the EIC-based variance estimator that treats units as iid). While our simulation results do not necessarily show
as low of a coverage as one would expect from the latter iid variance estimator, we nonetheless observed coverage
that was consistently below the expected 95%, and was not improved by increasing the sample size. Moreover, we
expect coverage for such iid variance estimators to become increasingly worse as one moves towards more realistic
network scenarios characterized by denser networks and higher levels of between-unit dependence. We leave this
topic to be explored in future simulation studies.

We extended the dependent-data TMLE framework first described in van der Laan (2014) towards the estima-
tion of a much larger class of parameters, such as the direct effect under interference. We have also shown that our
framework can be extended to define interventions on the network itself. In particular, in Section 7.2 we described
how one can estimate the post-intervention outcomes for interventions that statically or stochastically modify the
initial network structure F0. Furthermore, we no longer require complete independence of the baseline covariates
for conducting valid statistical inference for our TMLE. Finally, we believe our work provides an important proof
of concept, demonstrating that estimation and valid statistical inference for dependent data collected from a single
network are possible in this large class of semi-parametric models.

We note that the TMLE update Q̄∗N presented in this paper differs slightly from the one described in van der
Laan (2014) in terms of its suggested parametric submodel fluctuation, {Q̄N (ε) : ε}, with the latter TMLE update
being based on the following parametric submodel: LogitQ̄N (ε) = LogitQ̄N + εḡ∗0/ḡ0. Both of these fluctuations
result in TMLEs with equivalent asymptotic properties, as both updates solve the same empirical score equation.
However, the two may differ in their finite sample properties. In particular, the TMLE we present here may be less
sensitive to practical positivity violations, while providing similar bias reduction as the TMLE from van der Laan
(2014). We also note that the TMLE update presented here may be less computationally intensive, since it only
requires N evaluations of the clever covariate [ḡ∗N/ḡN ] (As

i |W s
i ), for i = 1, . . . , N . The TMLE algorithm proposed
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in van der Laan (2014) may require computing ḡ∗N/ḡN (asi |W s
i ) for every asi in the support of A∗si , for i = 1, . . . , N

(i.e., all asi such that g∗si (asi |W s
i ) > 0) due to its specific parametric submodel update.

We now note a few possible directions for future research. First, additional simulation studies should explore the
performance of our TMLE in more complex networks, such as, networks generated from the preferential attachment
model with power law node degree distribution (Barabási and Albert, 1999) or networks generated under the small
world model (Watts and Strogatz, 1998). Second, it would be of interest to study how our proposed framework
may be applied to estimate the change in the observed sample-average outcome when an intervention is applied
to another community with a different network structure and different distribution of baseline covariates, a notion
known as transportability (Pearl and Bareinboim, 2011; Bareinboim and Pearl, 2013; Pearl and Bareinboim, 2014).
Third, it is of scientific interest to explore how our estimation framework can be extended to real-world problems in
which data on only a subsample of the full network is available. Moreover, the network structure on the observed
units themselves is frequently not fully known, in which case it may be necessary to incorporate the uncertainty
introduced by inferring the network structure from the observed data (Goyal et al., 2014). Finally, future work
will investigate the estimation of causal parameters in longitudinal settings where the effect of a single time point
intervention can propagate over time through the network, as is typically the case when one describes contagion in
social networks (Eckles et al., 2014; Ugander et al., 2013).
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A Proof of Lemma 4.1

We first show that

ḡ0 = arg max
ḡ∈Hg

EP0

{
1

N

∑
i

log ḡ(As
i |W s

i )

}
a.e.

when ḡ0 ∈ Hg. To see this, note

EP0

{
1

N

∑
i

log ḡ(As
i |W s

i )

}
=

1

N

∑
i

ˆ
as,ws

log ḡ(as | ws)dPG0,QW,0
(As

i = as,W s
i = ws)

=

ˆ
as,ws

log ḡ(as | ws)h̄0(as, ws)

=

ˆ
as,ws

log ḡ(as | ws)ḡ0(as | ws)q̄W,0(ws)

= Eq̄W,0

[
Eḡ0

[
log ḡ(Ās | W̄ s) | W̄ s

]]
.

Consider now the KL divergence between ḡ0(as | ws)q̄W,0(ws) and ḡ(as | ws)q̄W,0(ws), for ḡ ∈ Hg,

DKL(ḡ0q̄W,0 || ḡq̄W,0) =− EP0
log

ḡ(Ās | W̄ s)q̄W,0(W̄ s)

ḡ0(Ās | W̄ s)q̄W,0(W̄ s)

=−
ˆ
as,ws

log [ḡ(as | ws)ḡ0(as | ws)q̄W,0(ws)]

+

ˆ
as,ws

log [ḡ0(as | ws)ḡ0(as | ws)q̄W,0(ws)] ,

where the second term does not depend on ḡ and we get,

arg max
ḡ∈Hg

EP0

{
1

N

∑
i

log ḡ(As
i |W s

i )

}
= arg min

ḡ∈Hg
DKL(ḡ0q̄W,0 || ḡq̄W,0) = ḡ0, a.e.

This demonstrates that

L(ḡ0, ḡ) = −EP0

{
1

N

∑
i

log ḡ(As
i |W s

i )

}
is a valid loss function that is uniquely minimized at true ḡ0, almost everywhere. We now replace the expectation
EP0 with its empirical counterpart, EPN

, where PN puts mass 1 on each observation (As
i ,W

s
i ) and define the

maximum likelihood estimator ḡN = arg maxHg

{
1/N

∑N
i=1 log ḡ(As

i |W s
i )
}
over a class of models Hg. The asymp-

totic consistency of such a maximum likelihood based estimator relies on each (As
i ,W

s
i ) only being dependent on

(As
j ,W

s
j ) for a finite (universal in N) number of j 6= i. In particular, for consistency we need the empirical process

conditions, such as, (1) Hg ∈ Donker Class; and (2) each observation (As
i ,W

s
i ) depends on a finite (not a function

of N) number of other observations j 6= i. These conditions allow us to prove convergence of the empirical mean
process to the true mean process uniformly in large parameter spaces for ḡ, using similar techniques to Appendix
of van der Laan (2014) that are based on the weak-convergence theory from van der Vaart (1998).
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B Deriving the efficient influence curve D̄N(P̄ ) for the data-adaptive

target parameter Ψ̄N(Q̄, Q̄W ) for fixed ḡ∗ = ḡ∗N

Similar to the EIC for stochastic interventions in Muñoz and van der Laan (2012), the EIC for the parameter Ψ̄(P̄ , ḡ∗)

in iid data model P̄ ∈ M̄, for fixed user-supplied stochastic intervention ḡ∗ and observation Ōs = (W̄ s, Ās, Ȳ ) ∼ P̄ ,
is given by:

D̄IID(P̄ )(Ōs) =
ḡ∗

ḡ
(Ās | W̄ s)

(
Ȳ − Q̄(Ās, W̄ s)

)
+
(
EqY ,ḡ∗ [Ȳ | W̄ s]− Ψ̄(P̄ )

)
,

where
EqY ,ḡ∗ [Ȳ | W̄ s] =

ˆ
as

Q̄(as,W s)ḡ∗(as|W s),

Ψ̄(P̄ ) =

ˆ
as,ws

Q̄(as, ws)ḡ∗(as|ws)q̄W (ws).

We now assume W̄ s, Ās and Ȳ are discrete, so that the NPMLE estimator ˆ̄Ψ(P̄n, ḡ
∗) of Ψ̄(P̄ , ḡ∗) is well defined.

One can then obtain the EIC D̄IID(P̄ ) above by writing a linear first-order approximation to ˆ̄Ψ(P̄n, ḡ
∗)− Ψ̄(P̄ , ḡ∗)

as:
ˆ̄Ψ(P̄n=1, ḡ

∗)− Ψ̄(P̄ , ḡ∗) = (Pn=1 − P0)D̄N (P̄ ) + op(1/
√
n).

We now note that in reality we don’t get to observe the iid copies of Ōs from P̄ , and instead, we only observe
one dependent data sample of summary data Os from PN of size N and we have shown that each PN ∈ M
implies a particular P̄ ∈ M̄, where P̄ is a mixture of the i-specific components of PN and Ψ̄(P̄ , ḡ∗) = Ψ(PN , ḡ∗).
Nonetheless, it will follow that the above iid-EIC D̄IID(P̄ )(Ōs) for Ψ̄(P̄ , ḡ∗) also yields the EIC D̄N (PN )(Os) for
the dependent data model parameter Ψ(PN , ḡ∗) in PN , evaluated at the observation Os ∼ PN :

D̄N (PN )(Os) =
1

N

N∑
i=1

(
ḡ∗

ḡ0
(As

i |W s
i )
[
Yi − Q̄(As

i ,W
s
i )
]

+
[
EqY ,ḡ∗ [Yi |W s

i ]−Ψ(PN )
])

,

where
EqY ,ḡ∗ [Yi |W s

i ] =

ˆ
as

Q̄(as,W s
i )ḡ∗(as|W s

i )dµ(as)

and

Ψ(PN ) =
1

N

∑
Ψi(Pi)

=
1

N

N∑
i=1

ˆ
as,ws

Q̄(as, ws)ḡ∗(as|ws)qW s
i
(ws)

=

ˆ
as,ws

Q̄(as, ws)ḡ∗(as|ws)q̄W (ws)

= Ψ̄(P̄ ),

for fixed ḡ∗. This result is a direct consequence of the Lemma B.1 below, which demonstrates that the EIC
of Ψ(PN

0 , ḡ∗) is just a sum of the iid-EIC for Ψ̄(P̄0, ḡ
∗), evaluated at individual summary observations Os

i =

(W s
i , A

s
i , Yi), for i = 1, . . . , N . To see this, we first note that the EIC is not affected by the choice of the model

for g, since Ψ(PN ) is only a function of the Q-factors of the likelihood PN (Os) and this likelihood factorizes as
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PN = Qg. Next, we consider an initial gradient

D(PN )(Os) =
N∑
i=1

[1/N ]Di(P
s
i )(Os

i )

obtained from the above representation Ψ(PN ) = [1/N ]
∑

Ψi(P
s
i ), where [1/N ]Di(P

s
i )(Os

i ) is the EIC for the
i-specific parameter Ψi(P

s
i ), for i = 1, . . . , N :

Di(P
s
i )(Os

i ) =
ḡ∗

gsi
(As

i |W s
i )
[
Yi − Q̄(As

i ,W
s
i )
]

+ [EqY ,ḡ∗(Yi|W s
i )−Ψi(P

s
i )] ,

and gsi (asi |ws
i ) above is the i-specific conditional density for As

i given W s
i . We then obtain the EIC D̄N (PN )(Os)

by projecting this initial gradient D(PN )(Os) onto the corresponding tangent spaces for factors QY,QW of PN =

QYgQW and using Lemma B.1 below. We also note that the function D̄(y|as, ws) defined in Lemma B.1 happens
to be equivalent to the component of the iid-EIC D̄IID(y|as, ws) given by [ḡ∗/ḡ] (as | ws)

(
y − Q̄(as, ws)

)
, since

E(Dj |Yj , As
j ,W

s
j )− E(Dj |As

j ,W
s
j ) =

ḡ∗

gsj
(As

j |W s
j )
[
Yj − Q̄(As

j ,W
s
j )
]

and

D̄(y | as, ws) =

∑N
j=1 g

s
j (as|ws)qW s

j
(ws)

{
E(Dj |Yj = y,As

j = as,W s
j = ws)− E(Dj |As

j = as,W s
j = ws)

}∑N
j=1 g

s
j (as|ws)qW s

j
(ws)

=

∑N
j=1 g

s
j (as|ws)qW s

j
(ws)

{
ḡ∗

gsj
(as|ws)

[
y − Q̄(as, ws)

]}
∑N

j=1 g
s
j (as|ws)qW s

j
(ws)

=
ḡ∗(as|ws)

[
y − Q̄(as, ws)

]
1

N

∑N
j=1 g

s
j (as|ws)qW s

j
(ws)

 1

N

N∑
j=1

qW s
j
(ws)


=
ḡ∗

ḡ
(as|ws)

[
y − Q̄(as, ws)

]
,

where we used the fact that q̄W (ws) := 1/N
∑N

j=1 qW s
j
(ws) and that the mixture 1/N

∑N
j=1 g

s
j (as|ws)qW s

j
(ws) has

to factorize as ḡ(as|ws)q̄W (ws).

Lemma B.1. (Lemma 1 in van der Laan (2012)) Let D ∈ L2
0(PN ) and let TQ be the tangent space of the QY

factor of the likelihood PN = QYgQW given as

TQ =

{
N∑

k=1

S(Yk |As
k,W

s
k ) :

ˆ
y

S(y|as, ws)qY (y|as, ws) = 0

}
,

for all bounded functions S(y|as, ws). The projection of D on this tangent space TQ is given by:

∏
(D | TQY

) =

N∑
k=1

[
D̄(Yk |As

k,W
s
k )
]
,
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where

D̄(y | as, ws) =

∑N
j=1 g

s
j (as|ws)qW s

j
(ws)

{
E(D|Yj = y,As

j = as,W s
j = ws)− E(D|As

j = as,W s
j = ws)

}∑N
j=1 g

s
j (as|ws)qW s

j
(ws)

and gsj (as|ws)qW s
j
(ws) is the joint density for the distribution of (As

j ,W
s
j ), and in discrete case we have:

gsj (as|ws)qW s
j
(ws) = Pg,QWs

j
(As

j = as,W s
j = ws).

Proof. See p.32 of van der Laan (2012).

C The additional contribution ΨN(Q̄, QW,0)−Ψ(Q̄, QW, ḡ
∗) to the EIC

We now find the additional term that will contribute to the EIC for our actual parameter ψ0 := Ψ(PN
0 ) for ḡ∗0

that depends on the true distribution of the data (i.e., ḡ(g∗, P̄W s,0)). We derive this EIC by assuming that we get
to observe n iid communities, each community consisting of a connected network of size N , where N is fixed and
the network profile, F, is fixed (i.e., F is held constant across all communities) and each community is a sample
drawn from PN

0 . We examine the asymptotics of estimating Ψ(PN
0 ) when n→∞, holding N fixed. As discussed in

van der Laan (2014) and the technical report van der Laan (2012) the NPMLE estimator for ψ0 when observing n
iid communities, each of size N , with N fixed and the number of communities, n, growing to ∞, will have the same
asymptotic variance as the NPMLE when observing only one dependent community of size N , that is n = 1, but
where the community size now, N , is growing to ∞. Hence, characterizing the semi-parametric efficiency bound
for estimators based on n → ∞ and fixed N is equivalent to characterizing the semi-parametric efficiency bound
for estimators with n = 1, but N → ∞. Equivalently, finding the efficient influence curve (EIC) D̄(PN

0 ) for the
estimator Ψ(PN

0 ) based on n iid communities with fixed N and evaluating it at one observation n = 1, yields the
EIC for estimators based on n = 1 by growing community size N . Thus, we find the additional contribution from
ḡ∗0 dependence on QW,0, i.e., the asymptotically linear representation of Ψ(Q̄0, ḡ

∗
n, QW,0)−Ψ(Q̄0, ḡ

∗
0 , QW,0), for ḡ∗n

a NPMLE for ḡ∗0 in n iid communities, is then given by Dḡ∗ below:

Dḡ∗ =
1

N

N∑
i=1

ˆ
as∈As

Q̄0(as, ws
i (W)) [g∗i (as|W)− ḡ∗0(as|ws

i (W))] ,

where
g∗i (as|W) =

ˆ
a

I(asi (a) = as)g∗(a|W),

and g∗ is the user-supplied stochastic intervention (without any additional assumption on the factorization of
g∗(a|w).

To show above, we first suppose that we observe n iid copies of O = (W,A,Y) ∼ PN
0 and we index different

copies ofO withOk = (Wk,Ak,Yk), for k = 1, . . . , n. We assume thatW ∈ W andA ∈ A are discrete multivariate
random variables. Define ḡ∗0 := ḡ(g∗, QW,0) as

ḡg∗,QW,0
(as | ws) =

h̄g∗,QW,0
(as, ws)

h̄QW,0
(ws)
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where

h̄g∗,QW,0
(as, ws) =

1

N

N∑
i=1

∑
a,w

(I(asi (a) = as, ws
i (w) = ws)g∗(a|w)QW,0(w))

and

h̄QW,0
(ws) =

1

N

N∑
i=1

∑
w

(I(ws
i (w) = ws)QW,0(w))

and we assume the inside sums for h̄g∗,QW,0
are over all w ∈ W and a ∈ A, and the inside sum for h̄QW,0

is over
all w ∈ W. We also assume that g∗ is a known stochastic intervention on the network exposure A and we make
no additional assumptions on g∗, beyond the fact that it is a well defined conditional multivariate density with
g∗(a|w) being known for any a ∈ A given any w ∈ W.

Define QW,n as the estimator of QW,0 that puts mass 1/n on each observed Wk, i.e., QW,n(w) is defined as:

QW,n(w) := Pnfw =
1

n

n∑
k=1

fw(Ok),

for fw(O) = I(W = w) and we use Pf to denote
´
fdP , thus, P0fw = QW,0(w).

Now define ḡ∗n := h̄g∗,QW,n
/h̄QW,n

as a substitution estimator of ḡ∗0 obtained by replacing QW,0 with QW,n in
the definition of ḡ∗0 above, where

h̄g∗,QW,n
(as, ws) =

1

N

N∑
i=1

∑
a,w

(I(asi (a) = as, ws
i (w) = ws)g∗(a|w)Pnfw)

= Pn

[
h̄g∗,fw(as, ws)

]
and

h̄QW,n
(ws) =

1

N

N∑
i=1

∑
w∈W

(I(ws
i (w) = ws)Pnfw) .

= Pn

[
h̄fw(ws)

]
,

and we have that P0

[
h̄g∗,fw

]
(as, ws) = h̄g∗,QW,0

(as, ws) and P0

[
h̄fw

]
(ws) = h̄QW,0

(ws). We also note that since
fw = I(W = w), the integrals/sums over w above simplify to

h̄g∗,fw(as|ws) =
1

N

N∑
i=1

∑
a

(I(asi (a) = as, ws
i (W) = ws)g∗(a|W))

and

h̄fw(ws) =
1

N

N∑
i=1

(I(ws
i (W) = ws)) .

We find the additional contribution to the EIC for Ψ(PN
0 ) due to ḡ∗(g∗, QW,0) by finding the first order linear

approximation to Ψ(Q̄0, ḡ
∗
n, QW,0) − Ψ(Q̄0, ḡ

∗
0 , QW,0), using the same techniques discussed in van der Laan and

Rose (2011).
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First find the influence curve IC
′

ḡ∗ for ḡ∗n by directly linearizing ḡ∗n − ḡ∗0 :

ḡ∗n − ḡ∗0 =
Pnh̄g∗,fw
Pnh̄fw

− P0h̄g∗,fw
P0h̄fw

=
1

P0h̄fw

(
Pnh̄g∗,fw − P0h̄g∗,fw

)
−
(
Pnh̄g∗,fw

)(Pnh̄fw − P0h̄fw
Pnh̄fwP0h̄fw

)
=

1

P0h̄fw
(Pn − P0) h̄g∗,fw −

(
P0h̄g∗,fw

) (Pn − P0) h̄fw(
P0h̄fw

)2 + op
(
1/
√
n
)

=
1

h̄QW,0

(Pn − P0) h̄g∗,fw − h̄g∗,QW,0

(Pn − P0) h̄fw(
h̄QW,0

)2 + op
(
1/
√
n
)

=
1

h̄QW,0

[
(Pn − P0) h̄g∗,fw −

h̄g∗,QW,0

h̄QW,0

(Pn − P0) h̄fw

]
+ op

(
1/
√
n
)

= (Pn − P0)

[
1

h̄QW,0

(
h̄g∗,fw − ḡg∗,QW,0

h̄fw
)]

+ op
(
1/
√
n
)

= (Pn − P0)
[
IC
′

ḡ∗

]
+ op

(
1/
√
n
)
.

We also note that Ψ(Q̄0, ḡ
∗
0 , QW,0) is linear in ḡ∗, hence, plugging the above linear expression for ḡ∗n− ḡ∗0 we get:

Ψ(Q̄0, ḡ
∗
n, QW,0)−Ψ(Q̄0, ḡ

∗
0 , QW,0)

=
∑
as,ws

Q̄0(as, ws)h̄QW,0
(ws) [ḡ∗n(as|ws)− ḡ∗0(as|ws)]

= (Pn − P0)

[∑
as,ws

Q̄0(as, ws)h̄QW,0
(ws)IC

′

ḡ∗(a
s, ws)

]
+ op

(
1/
√
n
)

= (Pn − P0)

[∑
as,ws

Q̄0(as, ws)
[
h̄g∗,fw(as|ws)− ḡg∗,QW,0

(as|ws)h̄fw(ws)
]]

+ op
(
1/
√
n
)

= (Pn − P0)Dḡ∗ + op
(
1/
√
n
)
.

Finally, we note that the sums/integrals over ws, as and a above simplify to:∑
as,ws

Q̄0(as, ws)h̄g∗,fw(as|ws)

=
1

N

N∑
i=1

∑
a,as

∑
,ws

(
Q̄0(as, ws)I(asi (a) = as, ws

i (W) = ws)g∗(a|W)
)

=
1

N

N∑
i=1

∑
as

(
Q̄0(as, ws

i (W))

[∑
a

I(asi (a) = as)g∗(a|W)

])

=
1

N

N∑
i=1

∑
as

(
Q̄0(as, ws

i (W))g∗i (as |W
)
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and ∑
as,ws

(
Q̄0(as, ws)ḡ∗0(as|ws)h̄fw(ws)

)
=

1

N

N∑
i=1

∑
as,ws

(
Q̄0(as, ws)ḡg∗,QW,0

(as|ws)I(ws
i (W) = ws)

)
=

1

N

N∑
i=1

∑
as

(
Q̄0(as, ws

i (W))ḡg∗,QW,0
(as|ws

i (W))
)
.

Thus, the additional contribution to the EIC for Ψ(PN
0 ) is:

Dḡ∗ =

(
dΦ(P0)

dP0f
: f

)
(Pn=1 − P0)

=
1

N

N∑
i=1

[ˆ
as∈As

Q̄0(as, ws
i (W))g∗i (as|W)−

ˆ
as∈As

Q̄0(as, ws
i (W))ḡ∗0(as|ws

i (W))

]
,

=
1

N

N∑
i=1

ˆ
as∈As

Q̄0(as, ws
i (W)) [g∗i (as|W)− ḡ∗0(as|ws

i (W))] ,

where
g∗si (as|W) =

ˆ
a

I(asi (a) = as)g∗(a|W)dµa(a).

D Dependent data TMLE as an empirical process when ḡ∗ is fixed.

The target parameter ψ0 depends on Q̄0, Q̄W,0 and ḡ∗0 , where we use notation ψ0 := Ψ̄(Q̄0, Q̄W,0, ḡ
∗
0) to denote this

fact. We also note that the target parameter can be written as:

Ψ̄(P̄0) =

ˆ
as,ws

Q̄0(as, ws)h̄∗0(as, ws)dµ(as, ws)

=

ˆ
as,ws

Q̄0(as, ws)ḡ∗0(as|ws)dQ̄W,0(ws)

=

ˆ
as,ws

Q̄0(as, ws)ḡ∗0(as|ws)

[
1

N

N∑
i=1

dQW s
i ,0

(ws)

]

=
1

N

N∑
i=1

ˆ
as,ws

Q̄0(as, ws)ḡ∗0(as|ws)dQW s
i ,0

(ws),

where QW s
i ,0

is the marginal distribution of the i-specific baseline summary measures W s
i := ws

i (W) implied by
the true data-generating distribution PN

0 ; and ḡ∗0 := h̄∗0(as, ws)/dQ̄W,0 depends on the user-defined stochastic
intervention g(A∗|W) and PN

0 through Q̄W,0. We now replace ḡ∗0 with fixed ḡ∗ = ḡ∗N , where ḡ∗N is an estimator of
ḡ∗0 and it is treated as fixed. We define a data-adaptive target parameter Ψ̄N (Q̄0, Q̄W,0) := Ψ(Q̄0, Q̄W,0, ḡ

∗) that is
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indexed by ḡ∗ = ḡ∗N . The TMLE ψ∗N for such parameter Ψ̄N (Q̄0, Q̄W,0) is a substitution estimator given by:

ψ∗N : = Ψ̄N (Q̄∗N , Q̄W,N ).

=

ˆ
as,ws

Q̄∗N (as, ws)ḡ∗(as|ws)dQ̄W,N (ws)

=
1

N

N∑
i=1

ˆ
as

Q̄∗N (as,W s
i )ḡ∗(as|W s

i ).

We now perform the typical TMLE analysis, writing as an empirical process the following difference:

Ψ̄N (Q̄∗N , Q̄W,N )− Ψ̄N (Q̄0, Q̄W,0).

First, we note that, by construction, TMLE has to solve the following empirical score equation:

1

N

N∑
i=1

D̄Yi(Q̄
∗
N , ḡN )(Os

i ) = 0,

for
D̄Yi

(Q̄, ḡ)(Os
i ) =

ḡ∗(As
i |W s

i )

ḡ(As
i |W s

i )
(Yi − Q̄(As

i ,W
s
i )).

In addition, this TMLE will also solve the following score equation:

1

N

N∑
i=1

D̄W s
i
(Q̄∗N , Q̄W,N )(Os

i ) = 0,

for
D̄W s

i
(Q̄, Q̄W )(Os

i ) =

ˆ
as

Q̄(as,W s
i )ḡ∗(as|W s

i )−
ˆ
as,ws

Q̄(as, ws)ḡ∗(as|ws)dQ̄W (ws),

since the mixture distribution Q̄W,0 for N observations (W s
1 , . . . ,W

s
N ) is estimated with empirical Q̄W,N that put

mass 1/N on each W s
i , implying that the empirical mean of D̄W s

i
above will be exactly 0. Thus, it follows that this

TMLE solves the empirical score equation given by the iid-EIC D̄N from Theorem 3.2:

1

N

N∑
i=1

D̄N (Q̄∗N , Q̄W,N , ḡN )(Os
i ) = 0.

We now analyze the following empirical mean:

1

N

N∑
i=1

P0,iD̄
N (Q̄∗N , Q̄W,N , ḡN ) =

1

N

N∑
i=1

[
P0,iD̄Yi

(Q̄∗N , ḡN ) + P0,iD̄W s
i
(Q̄∗N , Q̄W,N )

]
.

45

Hosted by The Berkeley Electronic Press



For the first term above, we get:

1

N

N∑
i=1

P0,iD̄Yi
(Q̄∗N , ḡN )

=
1

N

N∑
i=1

P0,i

[
ḡ∗

ḡN
(As

i |W s
i )(Q̄0 − Q̄∗N )(As

i ,W
s
i )

]

=
1

N

N∑
i=1

ˆ
as,ws

ḡ∗

ḡN
(as|ws)(Q̄0 − Q̄∗N )(as, ws)g0,i(a

s|ws)dQW s
i ,0

(ws)

=

ˆ
as,ws

ḡ∗

ḡN
(as|ws)(Q̄0 − Q̄∗N )(as, ws)ḡ0(as|ws)dQ̄W,0(ws)

=

ˆ
as,ws

ḡ∗(as|ws)(Q̄0 − Q̄∗N )(as, ws)dQ̄W,0(ws)

+

ˆ
as,ws

(
ḡ∗

ḡN
− ḡ∗

ḡ0

)
(as|ws)(Q̄0 − Q̄∗N )(as, ws)ḡ0(as|ws)dQ̄W,0(ws)

=Ψ̄N (Q̄0, Q̄W,0)− Ψ̄N (Q̄∗N , Q̄W,0) +R2,N (Q̄∗N , Q̄0, ḡN , ḡ0),

where we use R2,N to denote the second-order integral term. We also have that:

1

N

N∑
i=1

P0,iD̄W s
i
(Q̄∗N , Q̄W,N )

=

[
1

N

N∑
i=1

P0,i

ˆ
as

Q̄∗N (as,W s
i )ḡ∗(as|W s

i )

]
−
ˆ
as,ws

Q̄∗N (as, ws)ḡ∗(as|ws)dQ̄W,N (ws)

=
1

N

N∑
i=1

ˆ
as,ws

i

Q̄∗N (as, ws
i )ḡ∗(as|ws

i )dQW s
i ,0

(ws
i )− 1

N

N∑
i=1

ˆ
as

Q̄∗N (as,W s
i )ḡ∗(as|W s

i )

=

ˆ
as,ws

Q̄∗N (as, ws)ḡ∗(as|ws)

[
1

N

N∑
i=1

dQW s
i ,0

(ws)

]
− 1

N

N∑
i=1

ˆ
as

Q̄∗N (as,W s
i )ḡ∗(as|W s

i )

=

ˆ
as,ws

Q̄∗N (as, ws)ḡ∗(as|ws)dQ̄W,0(ws)− 1

N

N∑
i=1

ˆ
as

Q̄∗N (as,W s
i )ḡ∗(as|W s

i )

=Ψ̄N (Q̄∗N , Q̄W,0)− Ψ̄N (Q̄∗N , Q̄W,N ).

Combining the above results together we now obtain:

Ψ̄N (Q̄∗N , Q̄W,N )− Ψ̄N (Q̄0, Q̄W,0)

=−
[
Ψ(Q̄0, Q̄W,0)−Ψ(Q̄∗N , Q̄W,0) + Ψ(Q̄∗N , Q̄W,0)−Ψ(Q̄∗N , Q̄W,N ) +R2,N

]
+R2,N

=− 1

N

N∑
i=1

[
P0,iD̄Yi

(Q̄∗N , ḡN ) + P0,iD̄W s
i
(Q̄∗N , Q̄W,N )

]
+R2,N

=
1

N

N∑
i=1

[(
D̄W s

i
+ D̄Yi

)
(Q̄∗N , ḡN , Q̄W,N )(Os

i )− P0,i

(
D̄W s

i
+ D̄Yi

)
(Q̄∗N , ḡN , Q̄W,N )

]
+R2,N

=
1

N

N∑
i=1

[
D̄N (Q̄∗N , Q̄W,N , ḡN )(Os

i )− P0,iD̄
N (Q̄∗N , Q̄W,N , ḡN )

]
+R2,N .
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Thus, we succeeded in writing the TMLE as an empirical process for the iid-EIC and the data-adaptive parameter
Ψ̄N (Q̄0, Q̄W,0). By making the same assumptions stated in Theorem 2 of van der Laan (2014), namely assuming
the second order term R2,N above is oP (1/

√
N), assuming Donsker class conditions for Q̄∗N , ḡN and (D∗W s

i
+

D∗Yi
)(Q̄∗N , ḡN , P̄N,W s) and by assuming that D∗W s

i
+ D∗Yi

for each i depends only on the finite number of other
observations j 6= i, one can prove (e.g., see Appendix invan der Laan (2014)) that the above empirical process
will converge to normal limiting distribution at the usual

√
N rate, with its asymptotic variance characterized by

the limit variance of its corresponding iid influence curve (where the influence curve above is given as the sum of
i-specific influence curve DYi

+DW s
i
).

E Equivalence of the TMLE from van der Laan (2014) and the iid TMLE

We now show that the dependent data TMLE ψ∗N from Section 4.4 is, in fact, algorithmically equivalent to the
dependent data TMLE presented in van der Laan (2014).

Theorem E.1. Assume that we observe one draw O = (W,A,Y) ∼ PN
0 of N connected units, with PN

0 ∈
M and M subject to modeling assumptions in Section 2. In particular, there are known summary measures
(ai(A,W), ws

i (W)) that imply the summary data Os
i = (W s

i , A
s
i , Yi) ∼ Pi,0, for i = 1, . . . , N . We assume

that the conditional mixture densities ḡ∗0 and ḡ0 are as described before. Define the iid TMLE algorithm ψ∗N =

Ψ̄N (Q̄∗N , Q̄W,N ) for estimating ψ0 from Section 4.4 as a substitution estimator for the mixture mapping Ψ̄ from
Section 3.1. It follows that the this iid TMLE ψ∗N is identical to the dependent data TMLE presented in van der
Laan (2014). That is, the two algorithms produce identical results when applied to the same observed data.

Proof. The result follows easily by direct comparison of the empirical score equations solved by the two TMLEs.
We now outline how each estimation step of the two TMLEs makes them equivalent.

1. As already described, the initial fit for Q̄0 is estimated using the maximum likelihood, by pooling across
all observations (W s

i , A
s
i , Yi), i = 1, . . . , N and treating them as if iid, in the same manner as one would estimate

Q̄0(Ās, W̄ s) = E(Ȳ | Ās, W̄ s).

2. As described above in Lemma 4.1 and as presented in van der Laan (2014), ḡ0(as|ws) =
[
1/N

∑
i PG0,QW,0

(As
i = as , W s

i = ws)
]
/
[
1/N

∑
i PQW,0

(W s
i = ws)

]
can be estimated by using the iid maximum likelihood approach that fits a common conditional density to pooled
samples (W s

i , A
s
i ) and treating them as if iid.

3. Constructing the model update Q̄∗N for Q̄N is identical for both TMLEs. Namely the parametric submodel
through Q̄N is fit by running a weighted logistic regression with weights ḡ∗N (W s

i , A
s
i )/ḡN (W s

i , A
s
i ), i = 1, . . . , N

with no covariates and an intercept, using the outcomes Yi, i = 1, . . . , N . Thus both TMLEs are solving the same
empirical score equation.

4. The TMLE ψ∗N from Section 4.4 is the following plug-in estimator:

ψ∗N =
1

N

N∑
i=1

ˆ
as

Q̄∗N (as,W s
i )ḡ∗N,NPMLE(as |W s

i )dµ(as),

where ḡ∗N,NPMLE is a NPMLE substitution estimator for ḡ∗0 obtained by plugging in the user-defined G∗ and the
empirical counterpart QW,N for QW,0. It also follows from Theorem 3.1 that this TMLE ψ∗N is algebraically
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equivalent to the following substitution estimator:

ψ∗N =
1

N

N∑
i=1

ˆ
a

Q̄∗N (asi (a,W), ws
i (W))g∗(a |W)dµ(a),

which is precisely the TMLE substitution estimator presented in van der Laan (2014).

F Simulation Study. Data generating distribution

We implemented a simulation with observed data consisting of N dependent units O = (F,W,A,Y), where
F = (F1, . . . , FN ) is a vector of friends for each unit, W = (W1, . . . ,WN ) is a vector of baseline covariates,
A = (A1, . . . , AN ) is a vector of binary treatments and Y = (Y1, . . . , YN ) is a vector of binary outcomes. The data
for each unit i = 1, . . . , N is generated as,

Wi ∼ Ber (0.35)

|Fi| ∼ U (0, 1, 2)

Fi | |Fi| ∼ Sample|Fi| ({1, . . . , N} \i)
Ai |W, Fi ∼ Ber (g0 (Wi, (Wj : j ∈ Fi)))

Yi | A,W, Fi ∼ Ber
(
Q̄0 (Ai,Wi, (Aj ,Wj : j ∈ Fi))

)
,

where Fi ∈ {1, . . . , n} is a set of of unit indices of size |Fi| randomly sampled without replacement, Ai is generated
conditionally on the entire vector of baseline covariates W and Yi is generated conditionally on W and all treatment
assignments A.

We generate A with g0 that depends on unit and unit’s friends’ baseline covariates,

ḡ0 (Wi, (Wj : j ∈ Fi)) = expit

−1.2 + 1.5Wi +
∑
j∈Fi

0.6Wj

 ,

with Q̄0 defined as

Q̄0 (Ai,Wi, (Aj ,Wj : j ∈ Fi)) = expit

−2.5 + 1.5Wi + 0.5Ai +
∑
j∈Fi

1.5Wj +
∑
j∈Fi

1.5Aj

 .
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Notation index

• O = (W,A,Y): the observed data on N units

• W = (W1, . . . ,WN ): the observed baseline covariates on N dependent units

• F = (F1, . . . , FN ): the observed network on N units (“network profile”)

• A = (A1, . . . , AN ): the observed exposures on N dependent units

• A∗ = (A∗1, . . . , A
∗): intervened exposures sampled under conditional distribution G∗, given W

• Y = (Y1, . . . , YN ): the observed outcomes on N connected units

• W s
i = ws

i (W), As
i = asi (A,W): fixed-dimension summary measures, dimensionality is the same across all i.

• Os = (Ws,As,Y): observed summary data, where Ws = (W s
1 , . . . ,W

s
N ) , As = (As

1, . . . , A
s
N ), for i =

1, . . . , N

• O∗s = (Ws,A∗s,Y∗): summary data sampled from post-intervention distribution under stochastic interven-
tion g∗, with A∗s = (A∗s1 , . . . , A

∗s
N ) and Y∗ = (Y ∗1 , . . . , Y

∗
N )

• PN
0 : true joint distribution of the observed data O

• pN0 : true joint density of the observed data O

• QW,0: true joint distribution of N observed baseline covariates W

• qW,0: true joint density of N observed baseline covariates W

• G0(A |W): joint conditional distribution for the observed exposures A, given baseline covariates W

• g0(A |W): joint conditional density for the observed exposures A, given baseline covariates W

• G0(Ai |W s
i ): common-in-i conditional distribution for the observed exposure Ai, given the i-specific summary

measure of the baseline covariates

• g0(Ai | W s
i ): common-in-i conditional density for the observed exposure Ai, given the i-specific summary

measure of the baseline covariates

• G∗(A∗ |W): user-specified distribution of the intervened network exposure vector A∗ = (A∗1, . . . , A
∗
N ), con-

ditional on baseline covariates W = (W1, . . . ,WN )

• g∗(A∗ |W): density for the user-specified stochastic intervention of the intervened exposure vector A∗ =

(A∗1, . . . , A
∗
N ), conditional on all baseline covariates W = (W1, . . . ,WN )

• Q̄0(as, ws): conditional expectation of the outcome, defined as EPN
0

[Yi |As
i = as,W s

i = ws], assumed common
across i when conditioned on the same fixed summary measure values as, ws

• H̄i,0(As
i ,W

s
i ): i-specific summary measure distribution for (As

i ,W
s
i )

• hi,0(As
i ,W

s
i ): i-specific density for the distribution H̄i,0(As

i ,W
s
i )

• H∗i,0(As
i ,W

s
i ): i-specific summary measure distribution for (A∗si ,W

s
i )
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• h∗i,0(A∗si ,W
s
i ): i-specific density for the distribution H̄∗i,0(A∗si ,W

s
i )

• h̄0(Ās, W̄ s): mixture density 1/N
∑

i hi,0 determined by g0 and QW,0, with (Ās, W̄ s) being a random variable
sampled from h̄0

• h̄∗0(Ā∗s, W̄ s): mixture density 1/N
∑

i h
∗
i,0 determined by g∗ and QW,0, with (Ā∗s, W̄ s) being a random

variable sampled from h̄∗0

• ḡ0(Ās | W̄ s): the conditional mixture density implied by factorization h̄0(Ās, W̄ s) = ḡ0(Ās | W̄ s)Q̄W s,0(W̄ s)

• ḡ∗0(Ā∗s |W̄ s): the conditional mixture density implied by factorization h̄∗(Ā∗s, W̄ s) = ḡ∗0(Ā∗s |W̄ s)Q̄W s,0(W̄ s).
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