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One-Step Targeted Minimum Loss-based
Estimation Based on Universal Least

Favorable One-Dimensional Submodels

Mark J. van der Laan and Susan Gruber

Abstract

Consider a study in which one observes n independent and identically distributed
random variables whose probability distribution is known to be an element of a
particular statistical model, and one is concerned with estimation of a particular
real valued pathwise differentiable target parameter of this data probability distri-
bution. The targeted maximum likelihood estimator (TMLE) is an asymptotically
efficient substitution estimator obtained by constructing a so called least favorable
parametric submodel through an initial estimator with score, at zero fluctuation of
the initial estimator, that spans the efficient influence curve, and iteratively max-
imizing the corresponding parametric likelihood till no more updates occur, at
which point the updated initial estimator solves the so called efficient influence
curve equation. In this article we construct a one-dimensional universal least fa-
vorable submodel for which the TMLE only takes one step, and thereby requires
minimal extra data fitting to achieve its goal of solving the efficient influence curve
equation. We generalize these to universal least favorable submodels through the
relevant part of the data distribution as required for targeted minimum loss-based
estimation. Finally, remarkably, given a multidimensional target parameter, we
develop a universal canonical one-dimensional submodel such that the one-step
TMLE, only maximizing the log-likelihood over a univariate parameter, solves
the multivariate efficient influence curve equation. This allows us to construct
a one-step TMLE based on a one-dimensional parametric submodel through the
initial estimator, that solves any multivariate desired set of estimating equations.



1 Introduction

Targeted learning (van der Laan and Rubin, 2006; van der Laan, 2008; van der
Laan and Rose, 2011) is a subfield of statistics concerned with the development
of asymptotically efficient substitution estimators of specific target parameters of
the data distribution, across possible data distributions within a realistic statistical
model. By necessity any such procedure will have to integrate the state of the art in
data adaptive estimation, but will also have to target such data adaptive estimators
of relevant parts of the data distribution so that they are minimally biased for the
target parameter.

Efficiency (Bickel et al., 1993) and empirical process theory (van der Vaart and
Wellner, 1996) for general statistical models provide the foundation for the con-
struction of such targeted machine learning algorithms. The canonical gradient of
the pathwise derivative of the target parameter mapping defines an asymptotically
efficient estimator with respect to the assumed statistical model as an estimator
that is asymptotically linear with influence curve equal to the canonical gradient,
which is the reason that the canonical gradient is also called the efficient influence
curve. The construction of an efficient estimator of a pathwise differentiable target
parameter will thereby naturally involve the utilization of this canonical gradient.
The one-step estimator (e.g., (Bickel et al., 1993)) is such a general method that
adds to an initial estimator of the target parameter the empirical mean of the es-
timated efficient influence curve. Estimating equation methodology (van der Laan
and Robins, 2003; Robins and Rotnitzky, 1992) represents a related methodology
that assumes that the efficient influence curve can be represented as an estimating
function in the target parameter and a nuisance parameter, and defines the estima-
tor as the solution of the resulting estimating equation. These procedures do not
result in substitution estimators and thereby can lack finite sample robustness.

The targeted maximum likelihood estimator (TMLE) is a two-stage estimator
obtained by constructing a parametric submodel through an initial estimator of the
data distribution with score, at zero fluctuation of the initial estimator, that spans
the efficient influence curve, and iteratively maximizing the corresponding paramet-
ric likelihood till no more updates occur. At that point the updated initial estimator
solves the so called efficient influence curve equation (van der Laan and Rubin, 2006).
The TMLE of the target parameter is now the corresponding plug-in estimator. The
fact that the targeted estimator of the data distribution solves the efficient influ-
ence curve equation provides the basis for establishing the asymptotic efficiency of
the TMLE under regularity conditions, beyond the crucial condition that the initial
estimator is within a neighborhood (e.g., n−1/4) of the true data distribution. To
minimize the degree of violation of this crucial rate-of-convergence condition on the
initial estimator as much as possible, we have proposed to construct such an initial
estimator with the ensemble super-learner template fully utilizing the power and
generality of cross-validation(van der Laan and Dudoit, 2003; van der Vaart et al.,
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2006; van der Laan et al., 2006, 2007; Polley et al., 2012), while integrating the state
of the art in machine learning. This super-learner has been proven to be optimal in
the sense that it performs asymptotically as well as the best weighted combination
of candidate estimators in its library of candidate estimators.

The parametric submodel through the initial estimator with a score that spans
the efficient influence curve that is used in the TMLE procedure is called least favor-
able because it is the parametric submodel that maximizes the asymptotic variance
of the submodel-specific maximum likelihood estimator of the target parameter un-
der sampling from the initial estimator. In this article, we point out that this
least favorable parametric submodel can also be interpreted as the submodel that
maximizes the absolute infinitesimal change in target parameter (relative to initial
estimator) divided by the information-norm of the infinitesimal change in probabil-
ity distribution (relative to initial estimator). This provides a nice intuition about
the targeted maximum likelihood step in TMLE as a fitting procedure that locally
maximizes the change in target parameter per unit amount of fitting as measured
by unit of information. However, it also shows that this choice of submodel is tai-
lored to be optimal locally around the initial estimator, so that its ability to indeed
provide maximal change in the target parameter per unit of information relies on
the initial estimator being close enough to the true probability distribution.

This motivates us in this article to define and construct a one-dimensional uni-
versal least favorable submodel whose score equals the efficient influence curve at
each of its parameter values, not just at 0. We show that such a universal least
favorable submodel makes the targeted maximum likelihood estimator perform the
desired job in one step, with minimal additional fitting of the data. As a conse-
quence, it maximally preserves the statistical performance of the initial estimator,
while achieving its desired targeted bias reduction. In particular, this universal least
favorable submodel avoids the need for iterative targeted maximum likelihood esti-
mation, and thereby possible overfitting in finite samples. It also provides the basis
to various generalizations as needed for targeted minimum loss-based estimation
of a possibly multivariate target parameter. Examples in the current literature in
which the TMLE converged in one step happened to already use a universal least
favorable submodel.

2 Statistical formulation of the goal and result of this
article

Let O1, . . . , On be n independent and identically distributed copies of a random
variable O ∼ P0 with probability distribution P0 that is known to be an element
of a set M of possible probability distributions. We refer to M as the statistical
model for the true data distribution P0. Let Ψ : M → IRd be a d-dimensional
target parameter mapping, so that ψ0 = Ψ(P0) represents the target parameter or
estimand of interest that best approximates the answer to the question of interest.
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We assume that Ψ is pathwise differentiable at each P ∈M with canonical gradient
D∗(P ). That is, for each path {Pε,h : ε} through P at ε = 0 and score Sh, indexed
by h in some index set H, we have

d

dε
Ψ(Pε,h)

∣∣∣∣
ε=0

= PD∗(P )Sh,

where Pf =
∫
f(o)dP (o) denotes the expectation operator w.r.t. P . D∗(P ) is the

unique gradient that is also an element of the so called tangent space T (P ), defined
as the closure of the linear span of all scores {Sh : h ∈ H} in the Hilbert space
L2
0(P ) of functions of O with mean zero under P , endowed with the inner-product
〈S1, S2〉 = PS1S2.

An estimator of ψ0 is a mapping Ψ̂ that maps the empirical probability distribu-
tion Pn of O1, . . . , On into the parameter space Ψ(M) ⊂ IRd, and the corresponding
estimate of ψ0 is given by ψn = Ψ̂(Pn). An estimator Ψ̂(Pn) is asymptotically ef-
ficient at P0 if and only if it is asymptotically linear with influence curve equal to
the canonical gradient D∗(P0):

Ψ̂(Pn)−Ψ(P0) = (Pn − P0)D
∗(P0) + oP (1/

√
n).

Such an estimator satisfies (by CLT)
√
n(ψn−ψ0)⇒d N(0,Σ0 = P0{D∗(P0)D

∗(P0)
>}),

so that statistical inference can be based on the estimator of its influence curve
D∗(P0). The canonical gradient D∗(P0) of Ψ :M→ IRd is also called the efficient
influence curve.

A targeted maximum likelihood estimator (TMLE) is defined as follows. One
first constructs an initial estimator P 0

n ∈ M of P0. In addition, one defines a
local least favorable parametric submodel {P 0,lfm

n,δ : δ} through P 0
n at δ = 0 with

d-dimensional parameter δ and with score d
dδ log dP 0,lfm

n,δ /dP 0
n

∣∣∣
δ=0

= D∗(P 0
n).

This is used to define the corresponding maximum likelihood estimator δ0 =
arg maxPn log dP 0,lfm

n,δ /dP 0
n . The one-step TMLE of P0 is now defined as P 1

n =

P 0,lfm
n,δ0

. This process is iterated by defining P k+1
n = P k,lfm

n,δk
, k = 1, 2, . . ., till a k = K

for which δK ≈ 0. The TMLE of P0 is then defined by the final update P ∗n = PK,lfm
n,δK

,

which solves PnD
∗(P ∗n) ≈ 0. The TMLE of ψ0 is the corresponding plug-in estimator

Ψ(P ∗n). Here ≈ 0 can be replaced by oP (1/
√
n): for example, one might iterate till

‖ PnD∗(PKn ) ‖≤ 1/n, where one could use the Euclidean norm. Below, we will
ignore the numerical approximation error and just write PnD

∗(P ∗n) = 0.
The asymptotic efficiency of the TMLE, under regularity conditions, is estab-

lished as follows. First, define the second order term R2(P, P0) by the equation
Ψ(P ) − Ψ(P0) = (P − P0)D

∗(P ) + R2(P, P0). Due to D∗(P ) being a canonical
gradient, R2(P, P0) will be a second order difference between P and P0. Applying
this identity to P = P ∗n , and using that PnD

∗(P ∗n) = 0, results in the identity:

Ψ(P ∗n)−Ψ(P0) = (Pn − P0)D
∗(P ∗n) +R2(P

∗
n , P0).
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Assuming R2(P
∗
n , P0) = oP (1/

√
n), D∗(P ∗n) falls with probability tending to one

in a P0-Donsker class, and P0{D∗(P ∗n) − D∗(P0)}2 → 0 in probability as n → ∞,
implies now the asymptotic efficiency of the substitution estimator Ψ(P ∗n). The
latter is a very weak consistency condition, so that the really crucial condition is
R2(P

∗
n , P0) = oP (n−1/2). To make the latter hold, it is crucial that one uses super-

learning incorporating highly adaptive estimators. The Donsker class condition will
hold if P ∗n is not an overfit so that its variation norm is controlled, utilizing that the
class of functions with bounded variation norm is a Donsker class (van der Vaart
and Wellner, 1996).

TMLE has been generalized to targeted minimum loss-based estimation (still de-
noted with TMLE) in which one utilizes that Ψ(P ) can be represented as Ψ1(Q(P ))
for some function Ψ1, where Q(P ) = arg minQ PL(Q) can be defined as a minimizer
of the risk of a loss-function L(Q)(O). One notes that D∗(P ) = D∗1(Q(P ), G(P )) for
some nuisance parameter G. Given an initial estimator (Q0

n, G
0
n), one now defines a

local least favorable submodel Q0,lfm
n,δ so that d

dδL(Q0,lfm
n,δ )

∣∣∣
δ=0

spans D∗(Q0
n, G

0
n), and

one updates Qkn by computing δk = arg minδ PnL(Qk,lfmn,δ ) and setting Qk+1
n = Qk,lfm

n,δk
,

resulting in a TMLE (Q∗n, G
0
n) solving PnD

∗(Q∗n, G
0
n) = 0, and corresponding TMLE

Ψ1(Q
∗
n) of ψ0. To obtain a TMLE that solves additional score equations that serve a

certain purpose, one could use δ of higher dimension than the target parameter, and
also simultaneously update Gkn with a submodel through Gkn, and iterate updates of
Gkn simultaneously with the updates of Qkn, resulting in a TMLE (Q∗n, G

∗
n).

In general, TMLE presents an iterative algorithm, utilizing a local parametric
submodel with loss-function specific score equal to a user supplied D(), that maps
an initial estimator P 0

n ∈ M, or an initial estimator (Q0
n, G

0
n) of (Q0, G0), into

an updated P ∗n , or (Q∗n, G
∗
n), with improved empirical fit w.r.t. the loss-function

of P0 or (Q0, G0), so that PnD(P ∗n) = 0, or PnD(Q∗n, G
∗
n) = 0. Due to this gen-

erality, its statistical applications are diverse and widespread, going beyond the
construction of an efficient estimator of a pathwise differentiable target parameter
for arbitrary semi-parametric models and pathwise differentiable target parameter
mappings: collaborative targeted maximum likelihood estimation (CTMLE) for tar-
geted estimation of the nuisance parameter in the canonical gradient (van der Laan
and Rose, 2011; van der Laan and Gruber, 2010; Gruber and van der Laan, 2012;
Stitelman and van der Laan, 2010; Gruber and van der Laan, 2010); cross-validated
TMLE (CV-TMLE) to robustify the bias-reduction of the TMLE-step (Zheng and
van der Laan, 2011; van der Laan and Rose, 2011); guaranteed improvement w.r.t.
a user supplied asymptotically linear estimator (Gruber and van der Laan, 2012;
Lendle et al., 2013); targeted initial estimator through empirical efficiency maxi-
mization (Rubin and van der Laan, 2008; van der Laan and Rose, 2011); double
robust inference by targeting censoring/treatment mechanism (van der Laan, 2012);
CV-TMLE to estimate data adaptive target parameters such as the risk of a can-
didate estimator and thereby develop a super-learner that uses CV-TMLE instead
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of the normal cross-validated empirical risk (van der Laan and Petersen, 2012; Dı́az
and van der Laan, 2013, In press); higher-order TMLE in order to replace in the
above proof R2() by a higher order term (Carone et al., 2014; Diaz et al., 2015).

Even though the TMLE framework has been shown to be flexible enough to
handle any of the challenges we have encountered, in many cases the proposed TMLE
is iterative and uses a local parametric submodel through the initial estimator that
has more, and possibly many more, than d (fluctuation) parameters. This can result
in small sample issues regarding convergence of the TMLE algorithm or causes finite
sample instability of the estimator. It also contrasts the principle goal of TMLE as
being a procedure that updates the initial estimator with minimal extra data fitting
into a new efficient estimator. By using an over-parameterized local submodel or by
using an iterative algorithm these TMLE use more fitting of the data than should
be needed to achieve the desired goal.

Goal of article: The goal set out in this article is to construct a parametric
submodel {P 0

n,ε : ε} through an initial P 0
n ∈ M so that the above TMLE algorithm

only takes one step, and the dimension of ε is smaller than or equal to d. The
construction of this parametric submodel, a so called universal least favorable sub-
model, will be philosophically grounded by being in a sense the shortest path (with
distance measured by information/data fitting needed) towards its goal (solving the
desired score equation). We will first consider the case d = 1 and construct a one-
dimensional parametric submodel satisfying this key property so that the TMLE is
a one-step TMLE. We will generalize it to targeted minimum loss-based estimation,
with all its variations in choice of loss function, and demonstrate it with various ex-
amples. Finally, we consider the general case d > 1, and construct a one-dimensional
parametric submodel through P 0

n for which the one-step TMLE solves each of the
d desired score equations. Apparently, this one-dimensional path provides a “short-
est” path towards its d-dimensional goal. We will show that this result extends to
an infinite dimensional target parameter.

3 Intuition of TMLE: local and universal least favorable
submodels

Let’s consider one-dimensional target parameters (i.e., d = 1). A least favorable
model at P is a model S∗ = {Pε,h∗ : ε}, dominated by P , for which Pε=0,h∗ = P , and
that maximizes the submodel specific Cramer-Rao lower bound for the asymptotic
variance of a regular asymptotically linear estimator of Ψ(Pε=0) for submodel {Pε,h :
ε} defined by

CR(h | P ) ≡
(
d
dεΨ(Pε,h)

∣∣
ε=0

)2
−P d2

dε2
log

dPε,h
dP

∣∣∣
ε=0

.

It maximizes CR(h | P ) over all such parametric submodels {Pε,h : ε} with h varying
over some index set whose closure of the linear span generated the full tangent space
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T (P ) ⊂ L2
0(P ) of the model at P . Given the pathwise differentiability with canonical

gradient D∗(P ), denoting the score of {Pε,h : ε} at ε = 0 with Sh, it follows that
this criterion for a submodel can be represented as follows:

CR(h | P ) =
(PD∗(P )Sh)2

PS2
h

,

By the Cauchy-Schwarz inequality, it follows that this is maximized over all scores
in the tangent space T (P ) by S = D∗(P ). Thus, a least favorable model can also be
defined as any parametric model through P that has a score at P equal to D∗(P ).

By using a second order Taylor expansion of ε→ P log dPε,h/dP at ε = 0 and that
this equals the information PS2

h, it follows that, under some smoothness assumptions
on the submodels, the criterion can also be represented as

CR(h | P ) = lim
ε→0

(Ψ(Pε,h)−Ψ(P ))2

−2P log dPε,h/dP
.

This shows that CR(h | P ) equals the square change in the target parameter divided
by the change in log-likelihood at P at an infinitesimal ε. Therefore, we will say
that the path {Pε,h∗ : ε} that maximizes CR(h | P ) follows at ε = 0 (i.e., locally) a
path of maximal change in target parameter per unit of information. To stress that
the desired optimality property only applies locally, we will refer to such a submodel
as a locally (i.e., at ε = 0) least favorable submodel.

This latter representation of the criterion is intuitively appealing, since a sensible
goal of a submodel {Pε : ε} through P is that a small fluctuation of P yields a
maximal change in target parameter, making the MLE εn = arg maxε Pn log dPε/dP
(as used in TMLE) for this parametric model locally all about fitting the target
parameter, not wasting data for anything else.

The intuition of TMLE has always been to minimally increase the empirical
fit of the initial estimator while achieving the desired bias reduction for the target
parameter, measured by solving PnD

∗(P ∗n) with a good estimator P ∗n of P0 (so not
worse than P 0

n). However, if P 0
n is far away from P0, the MLE ε0n will be far from

local. Even though it moves in the right direction at ε ≈ 0, there is no guarantee that
it follows a path of maximal change in target parameter per change in distribution
once ε moves farther away from zero. In the end that means that the targeted
maximum likelihood estimator might not have followed such a targeted path after
all, and it might have taken various iterations to finally end up with a local εKn ≈ 0
at which point the algorithm stops. The distribution P 0

n might have changed much
more than needed to obtain the bias reduction in the target parameter. That is,
the desired bias reduction came at an unnecessary cost of data fitting so that Ψ(P ∗n)
will have larger finite sample variance than needed. Based on this insight, we would
like to construct a TMLE that is based on a path that at each ε (not just at ε = 0)
follows a path of maximal change in target parameter per unit of information. We
will refer to such a path as a universal least favorable submodel.
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Definition 1 Suppose that, given a P ∈ M, U lfm(P ) = {Pε : ε ∈ (−a, a)} ⊂ M
is a parametric submodel dominated by P , such that Pε=0 = P and for each ε ∈
(−a, a) ⊂ IR, we have

d

dε
log

dPε
dP

= D∗(Pε). (1)

Then, we say that U lfm(P ) is a universal least favorable submodel through P .

That is, this least favorable model is not only least favorable at ε = 0, it is a least
favorable model at each Pε ∈ U lfm(P ). This article proposes such universal least
favorable submodels and corresponding targeted maximum likelihood and targeted
minimum loss-based estimators. A very nice by-product of these universal least fa-
vorable submodels is that the TMLE always “converges” in one step. This reflects
the above intuition of a universal least favorable submodel as a shortest path sub-
model in the sense that it achieves the desired bias reduction at minimal increase
in empirical log-likelihood.

4 A universal least favorable submodel for targeted max-
imum likelihood estimation

4.1 The TMLE based on a universal least favorable submodel takes
only one step

Let P 0
n be an initial estimator of P0. Suppose that, given a P ∈M, we can construct

a universal least favorable parametric model U lfm(P ) = {Pε : ε ∈ (−a, a)} ⊂ M. If
we use this as parametric submodel in the TMLE, then the TMLE converges in one
step. That is, let

ε0n = arg max
ε
Pn log

dP 0
n,ε

dP 0
n

.

One can replace the maximum ε0n by the local maximum closest to ε = 0, which is
what we recommend in case the selected universal least favorable submodel allows
for multiple local maxima. Let P 1

n = P 0
n,ε0n

. Since ε0n is a local maximum it solves

its score equation, given by PnD
∗(P 1

n) = 0. That is, it achieves the goal of solving
the desired efficient influence curve equation in one step. Further iteration will not
yield further updates: the next MLE

ε1n = arg max
ε
Pn log

dP 1
n,ε

dP 1
n

= 0.

Therefore, the TMLE of ψ0 = Ψ(P0) is given by the one-step TMLE ψ∗n = Ψ(P 1
n).

In addition, we strongly suspect that a TMLE using such a least favorable model
will often perform better in finite samples, certainly in situations in which the TMLE
requires an iterative algorithm. In addition, it is philosophically superior by always
following a path along ε in which the rate of square change in the parameter by unit
of information is maximized at each ε-value.
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4.2 An analytic formula for a universal least favorable submodel

This motivates us to consider if such a universal least favorable model exists and
can be constructed. The answer is, yes, as our constructions below demonstrate.

In the following we use pε for the density of Pε w.r.t. P , so that p = 1, but we
will still use p (in case, one wants to use the formulas for densities w.r.t. another
dominating measure). For ε ≥ 0, we recursively define

pε = p exp

(∫ ε

0
D∗(Px)dx

)
, (2)

and, for ε < 0, we recursively define

pε = p exp

(
−
∫ 0

ε
D∗(Px)dx

)
.

Theorem 1 Consider the definition of {Pε : ε ∈ (−a, a)} above. We have that
{Pε : ε ∈ (−a, a)} is a set of probability distributions dominated by P , Pε=0 = P ,
and, for each ε ∈ (−a, a), we have

d

dε
log

dPε
dP

= D∗(Pε).

Proof: It follows trivially that for each ε, d
dε log pε = D∗(Pε). It remains to verify

that pε satisfies
∫
pε(o)dP (o) = 1 (obviously, pε ≥ 0). Define C(ε, P ) ≡

∫
pεdP .

Consider the probability density pε,1 = C(ε, P )−1pε. We have that its score at ε is
given by:

S(ε, P ) =
1

C(ε, P )

d

dε
C(ε, P ) +D∗(Pε).

We know that PεS(ε, P ) = 0. Since PεD
∗(Pε) = 0, this implies that d

dεC(ε, P ) = 0.
Thus, C(ε, P ) = C(0, P ) = 1. This completes the proof. 2

Note that this recursive relation (2) allows one to recursively solve for pε+dε,
given {px : x ∈ [0, ε]}, in the sense that (e.g.) for ε > 0,

pε+dε
pε

= exp(D∗(Pε)dε) = (1 + dεD∗(Pε)).

This differential equation is equivalent with stating that d
dε log pε = D∗(Pε). This

implies a practical construction that starts with px0=0 = p and recursively solves for

pxj = pxj−1(1 + (xj − xj−1)D∗(Pxj−1)), j = 1, . . . , N

for an arbitrary fine grid 0 = x0 < x1 < . . . < xN = a. Similarly, one determines
recursively

p−xj = p−xj−1(1− (xj − xj−1)D∗(P−xj−1)), j = 1, . . . , N .
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If the modelM is nonparametric, then this practical construction is a submodel
of M, but if the model is restricted the practical construction above might select
probability distributions Pxj that are not an element ofM, even though it has score
at xj equal to D∗(Pxj ) in the tangent space at Pxj of the modelM. Nonetheless, this
practical construction of this least favorable model can be used for any modelM, as
long as one can extend the target parameter Ψ to be well defined on the probability
distributions in this discrete approximation of the theoretical least favorable model.
The TMLE will still only require one step and be asymptotically efficient for the
actual model M under regularity conditions. In addition, in the next subsection
Theorem 2 proves that under mild regularity conditions, quite surprisingly, the
theoretical formula (2) for this universal least favorable model, defined as a limit
of the above practical construction when the partitioning gets finer and finer, is
an actual submodel of M. Another way of viewing this result is that by selecting
the partitioning fine enough in the above practical construction {pxj , p−xj : j =
0, . . . , N} this submodel will be arbitrarily close to the model M. Below we will
also provide an alternative to the above practical construction that does preserve
the submodel property while it still approximates the theoretical formula (2).

4.3 A universal least favorable submodel in terms of a local least
favorable submodel

An alternative representation of the above analytic formula (2) is given by a product
integral representation. Let dε > 0. For ε ≥ 0, we define

pε+dε = p
∏

x∈(0,ε]

(1 +D∗(Px)dx),

and for ε < 0, we define

pε−dε = p
∏

x∈[ε,0)

(1−D∗(Px)dx).

In other words, px+dx = px(1+D∗(Px)dx), or, another way of thinking about this is
that px+dx is obtained by constructing a least favorable model through Px with score
D∗(Px) at Px, and evaluate it at parameter value dx, slightly away from zero. This
suggests the following generalization of the universal least favorable model whose
practical analogue will now still be an actual submodel of M.

Let 0 = x0 < x1 < . . . ≤ xN = a be an equally spaced fine grid for the interval
[0, a]. Let h = xj − xj−1 be the width of the partition elements. We will provide
a construction for Pxj , j = 0, . . . , N . This construction is expressed in terms of a
mapping P → {P lfm

δ : δ ∈ (−a, a)} ⊂ M that maps any P ∈ M into a local least
favorable submodel ofM through P at δ = 0 and with score D∗(P ) at δ = 0, where
a is some positive number. For any estimation problem defined byM and Ψ one is
typically able to construct such a local least favorable submodel, so that this is hardly
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an assumption. Let Px=0 = P . Let px1 = plfmx0,h, and, in general, let pxj+1 = plfmxj ,h,
j = 1, 2, . . . , N − 1. Similarly, let −a = −xN < −xN−1 < . . . < −x1 < x0 = 0 be
the corresponding grid for [−a, 0], and we define p−xj+1 = plfm−xj ,−h, j = 1, . . . , N −1.
In this manner, we have defined Pxj , P−xj , j = 0, . . . , N , and, by construction, each
of these are probability distributions in the modelM. The choice N defines an end
value a, but one does not need to a priori select N . One only needs to select a small
dx = xj−xj−1, and continue until the first local MLE is reached. This construction
is all we need when using the universal least favorable submodel in practice, such
as in the TMLE.

This practical construction implies a theoretical formulation by letting N con-
verge to infinity (i.e., let the width of the partitioning converge to zero). That is,
an analytic way of representing this universal least favorable submodel, given the
local least favorable model parameterization (ε, P ) → plfmε , is given by: for ε > 0
and dε > 0, we have

pε+dε = plfmε,dε.

This allows for the recursive solving for pε starting at pε=0 = p, and since plfmε,h ∈M,
its practical approximation will never leave the model M.

Utilizing that the least favorable model h→ plfmε,h is continuously twice differen-
tiable with a score D∗(Pε) at h = 0, we obtain a second order Taylor expansion

plfmε,dε = pε +
d

dh
plfmε,h

∣∣∣∣
h=0

dε+O((dε)2) = pε(1 + dεD∗(Pε)) +O((dε)2),

so that we obtain
pε+dε = pε(1 + dεD∗(Pε)) +O((dε)2).

This implies:

pε = p exp

(∫ ε

0
D∗(Px)dx

)
.

Thus, we obtained the exact same representation (2) as above. This proves that,
under mild regularity conditions, this analytic representation (2) is a submodel of
M after all, but, when using its practical implementation and approximation, one
should use an actual local least favorable submodel in order to guarantee that one
stays in the model. We formalize this result in the following theorem.

Theorem 2 Let O be a maximal support so that the support of a P ∈M is a subset
of O. Suppose there exists a mapping P → {P lfm

δ : δ ∈ (−a, a)} ⊂ M that maps any
P ∈M into a local least favorable submodel ofM through P at δ = 0 and with score
D∗(P ) at δ = 0, where a is some positive number independent of P . In addition,
assume the following type of second order Taylor expansion:

plfmε,dε = pε +
d

dh
plfmε,h

∣∣∣∣
h=0

dε+R2(pε, dε),
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where
sup
ε

sup
o∈O
| R2(pε, dε)(o) |= O((dε)2).

We also assume that supε supo∈O | D∗(Pε)pε | (o) <∞.
Then, the universal least favorable {pε : ε} defined by (2) is an actual submodel

of M. Its definition corresponds with pε+dε = plfmε,dε whose corresponding practical
approximation will still be a submodel.

We refer to the Appendix for an application of the universal least favorable
submodel and a corresponding one-step TMLE for high dimensional parametric
models.

5 Universal least favorable model for targeted mini-
mum loss-based estimation

5.1 A universal least favorable submodel w.r.t. specific loss-function

Let’s now generalize this construction of a universal least favorable w.r.t. log-
likelihood loss to general loss-functions so that the resulting universal least favorable
submodels can be used in the more general targeted minimum loss based estima-
tion methodology. We now assume that Ψ(P ) = Ψ1(Q(P )) for some parameter
Q :M→ Q(M) defined on the model and real valued function Ψ1. Here Q(M) =
{Q(P ) : P ∈ M} denotes the parameter space of this parameter Q. Let L(Q)(O)
be a loss-function for Q(P ) in the sense that Q(P ) = arg minQ∈Q(M) PL(Q). With
slight abuse of notation, let D∗(P ) = D∗(Q(P ), G(P )) be the canonical gradient
of Ψ at P , where G : M → G(M) is some nuisance parameter. We consider the
case that the efficient influence curve is in the tangent space of Q, so that a least
favorable submodel does not need to fluctuate G: otherwise, just include G in the
definition of Q. Given, (Q,G), let {Qlfm

ε : ε ∈ (−a, a)} ⊂ Q(M) be a local least
favorable model w.r.t. loss function L(Q) at ε = 0 so that

d

dε
L(Qlfm

ε )

∣∣∣∣
ε=0

= D∗(Q,G).

The dependence of this submodel on G is suppressed in this notation.
Let 0 = x0 < x1 < . . . < xN = a be an equally spaced fine grid for the interval

[0, a]. Let h = xj − xj−1 be the width of the partition elements. We present
a construction for Qxj , j = 0, . . . , N . Let Qx=0 = Q. Let Qx1 = Qlfm

x0,h
, and,

in general, let Qxj+1 = Qlfm
xj ,h

, j = 1, 2, . . . , N − 1. Similarly, let −a = −xN <

−xN−1 < . . . < −x1 < x0 = 0 be the corresponding grid for [−a, 0], and we define
Q−xj+1 = Qlfm

−xj ,−h, j = 1, . . . , N − 1. In this manner, we have defined Qxj , Q−xj ,
j = 0, . . . , N , and, by construction, each of these are an element of the parameter
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space Q(M). This construction is all we need when using this submodel in practice,
such as in the TMLE.

An analytic way of representing this loss-function specific universal least favor-
able submodel for ε ≥ 0 (and similarly for ε < 0) is given by: for ε > 0, dε > 0,

Qε+dε = Qlfm
ε,dε, (3)

allowing for the recursive solving for Qε starting at Qε=0 = Q, and since Qlfm
ε,h ∈

Q(M), its practical approximation never leaves the parameter space Q(M) for Q.
Let’s now derive a corresponding integral equation. Assume that for some

L̇(Q)(O), we have
d

dh
L(Qlfm

ε,h )

∣∣∣∣
h=0

= L̇(Qε)
d

dh
Qlfm
ε,h

∣∣∣∣
h=0

.

Then, by the local property of a least favorable submodel,

d

dh
Qlfm
ε,h

∣∣∣∣
h=0

=
D∗(Qε, G)

L̇(Qε)
.

Utilizing that the local least favorable model h→ Qlfm
ε,h is twice continuously differ-

entiable with derivative D∗(Qε, G)/L̇(Qε) at h = 0, we obtain the following second
order Taylor expansion:

Qlfm
ε,dε = Qε +

d

dh
Qlfm
ε,h

∣∣∣∣
h=0

dε+O((dε)2)

= Qε +
D∗(Qε, G)

L̇(Qε)
dε+O((dε)2).

Note that Qε can also be represented as Qlfm
ε,0 . This implies the following recursive

analytic definition of the universal least favorable model through Q:

Qε = Q+

∫ ε

0

D∗(Qx, G)

L̇(Qx)
dx. (4)

Similarly, for ε < 0, we obtain

Qε = Q−
∫ 0

ε

D∗(Qx, G)

L̇(Qx)
dx.

As with the log-likelihood loss (and thus Q(P ) = P ), this shows that, under
regularity conditions, this analytic representation for Qε is an element in Q(M),
although using it in a practical construction (in which integrals are replaced by sums)
might easily leave the model space Q(M), so that our above practical construction
in terms of the local least favorable model and discrete grid represents the desired
practical implementation of this universal least favorable submodel. The following
theorem formalizes this result stating that the analytic formulation (4) is indeed a
universal least favorable submodel.
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Theorem 3 Given, any (Q,G) compatible with modelM, let {Qlfm
δ : δ ∈ (−a, a)} ⊂

Q(M) be a local least favorable model w.r.t. loss function L(Q) at δ = 0 so that

d

dδ
L(Qlfm

δ )

∣∣∣∣
δ=0

= D∗(Q,G).

Assume that for some L̇(Q)(O), we have

d

dε
L(Qlfm

ε )

∣∣∣∣
ε=0

= L̇(Q)
d

dε
Qlfm
ε

∣∣∣∣
ε=0

.

Consider the corresponding model {Qε : ε} defined by (4). It goes through Q at
ε = 0, and, it satisfies that for all ε

d

dε
L(Qε) = D∗(Qε, G). (5)

In addition, suppose that the a > 0 in the local least-favorable submodel above
can be chosen to be independent of the choice (Q,G) ∈ {Qε, Gε : ε}, and assume the
following second order Taylor expansion:

Qlfm
ε,dε = Qε +

d

dh
Qlfm
ε,h

∣∣∣∣
h=0

dε+R2(Qε, G, dε)

= Qε +
D∗(Qε, G)

L̇(Qε)
dε+R2(Qε, G, dε),

where
sup
ε

sup
o∈O
| R2(Qε, G, dε)(o) |= O((dε)2).

We also assume that supε supo∈O |
D∗(Qε,G)

L̇(Qε)
(o) |<∞.

Then, we also have {Qε : ε} ⊂ Q(M).

Proof: Let ε > 0. We have

d

dε
L

(
Q+

∫ ε

0

D∗(Qx, G)

L̇(Qx)
dx

)
= L̇(Qε)

d

dε
Qε

= L̇(Qε)
D∗(Qε, G)

L̇(Qε)

= D∗(Qε, G).

This completes the proof of (5). The submodel statement was already shown above,
but we now provided formal sufficient conditions. 2
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5.2 Example demonstrating that analytic formula (4) for universal
least favorable submodel is indeed a submodel

Suppose O = (W,A, Y ) ∼ P0, A ∈ {0, 1} binary, Y ∈ {0, 1} also binary, and let the
statistical model M be the nonparametric model or any model that only restricts
the tangent space of the conditional distribution of A, given W . Let Ψ : M →
IR be defined by Ψ(P ) = EPEP (Y | A = 1,W ). The efficient influence curve
D∗(P )(O) = A/ḡ(W )(Y − Q̄(W )) + Q̄(W ) − Ψ(P ), where ḡ(W ) = P (A = 1|W )
and Q̄(W ) = EP (Y | A = 1,W ). We note that Ψ(P ) = Ψ1(Q) = QW Q̄, where
Q = (QW , Q̄), and QW is the probability distribution of W under P . We can
decompose D∗(P ) = D∗1(Q̄, ḡ) + D∗0(Q), where D∗1(Q̄, ḡ) = A/ḡ(Y − Q̄(W )) is a
score of the conditional distribution of Y , given A,W , while D∗0(Q) is a score of the
marginal distribution of W . Since we estimate QW,0 with the empirical probability
distribution of W1, . . . ,Wn, there is no need to construct a submodel through QW ,
so that we focus on constructing a submodel through Q̄ only.

A valid loss function for Q̄ is given by

L(Q̄)(O) = −I(A = 1){Y log Q̄(W ) + (1− Y ) log(1− Q̄(W ))}.

Consider the local least favorable submodel through Q̄:

LogitQ̄lfm
ε = LogitQ̄− εH(ḡ),

where H(ḡ)(A,W ) = A/ḡ(W ). This is indeed a local least favorable submodel for
Q̄ since

d

dε
L(Q̄lfm

ε )

∣∣∣∣
ε=0

= D∗1(Q̄, ḡ).

Let’s now compute the corresponding theoretical universal least favorable submodel
(4). We have

d

dε
L(Q̄ε) =

d

dε
Qε

{
−I(A = 1)

Y − Q̄ε
Q̄ε(1− Q̄ε)

}
.

Thus,

L̇(Qε) = −I(A = 1)
Y − Q̄ε

Q̄ε(1− Q̄ε)
.

Thus, the universal least favorable submodel (4) through Q is given by:

Q̄ε = Q̄−H(ḡ)

∫ ε

0
Q̄x(1− Q̄x)dx.

This integral equation shows that

d
dεQ̄ε

Q̄ε(1− Q̄ε)
= −H(ḡ).
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This has as solution Q̄ε = Qlfm
ε , and since there is only one solution, this proves that

the universal least favorable submodel Q̄ε = Qlfm
ε . Indeed, it follows directly that

for all ε
d

dε
L(Q̄lfm

ε ) = D∗1(Q̄lfm
ε , ḡ),

showing that our local least favorable submodel is already a universal least favorable
submodel. Indeed, the TMLE using Qlfm

ε requires only one step. In particular, as
predicted by our theory, this demonstrates that the analytic formula (4) respects
the constraints that Q̄ ∈ (0, 1), even though that is not immediately obvious from
its analytic integral or differential representation.

We refer to supplementary material for the construction of a universal least
favorable submodels to general loss functions that are allowed to depend on an
unknown nuisance parameter, and corresponding example from the causal inference
literature. These examples also demonstrate that in examples for which the TMLE
based on the local least favorable model already converged in one step, the least
favorable submodel is actually already a universal least favorable submodel.

6 Example: One-step TMLE of average treatment ef-
fect among the treated

Let O = (W,A, Y ) ∼ P0 and let M be a nonparametric statistical model. Let Ψ :
M→ IR be defined by Ψ(P ) = EP (EP (Y | A = 1,W )−EP (Y | A = 0,W ) | A = 1).
The efficient influence curve of Ψ at P is given by (Zheng et al., 2013):

D∗(P )(O) = H1(g, q)(A,W )(Y − Q̄(A,W )) +
A

q
{Q̄(1,W )− Q̄(0,W )−Ψ(P )},

where g(a |W ) = P (A = a |W ), Q̄(a,W ) = EP (Y | A = a,W ), q = P (A = 1), and

H1(g, q)(A,W ) =
A

q
− (1−A)g(1 |W )

qg(0 |W )
.

We note that

Ψ(P ) = Ψ1(QW , Q̄, g, q) =

∫
{Q̄(1, w)− Q̄(0, w)}g(1 | w)

q
dQW (w),

where QW is the probability distribution of W under P . So, if we define Q =
(QW , Q̄, g, q), then Ψ(P ) = Ψ1(Q). For notational convenience, we will use Ψ(P )
and Ψ(Q) interchangeably. Since we can estimate QW and q with their empirical
probability distributions, we are only interested in a universal least favorable sub-
model for (Q̄, g). We can orthogonally decompose D∗(P ) = D∗1(P )+D∗2(P )+D∗3(P )
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in L2
0(P ) into scores of Q̄, g, and QW , respectively, where

D∗1(P ) = H1(g, q)(A,W )(Y − Q̄(A,W ))

D∗2(P ) = H2(Q)(W )(A− g(1 |W ))

D∗3(P ) =
g(1 |W )

q
{Q̄(1,W )− Q̄(0,W )−Ψ(Q)},

and

H2(Q)(W ) =
Q̄(1,W )− Q̄(0,W )−Ψ(Q)

q
.

Thus the component of the efficient influence curve corresponding with (Q̄, g) is
given by D∗1(Q) +D∗2(Q).

We consider the following loss-functions and local least favorable submodels for
Q̄ and g (Zheng et al., 2013):

L1(Q̄)(O) = −{Y log Q̄(A,W ) + (1− Y ) log(1− Q̄(A,W ))}
LogitQ̄lfm

ε = LogitQ̄− εH1(g, q)

L2(g)(O) = −{A log g(1 |W ) + (1−A) log g(0 |W )}
Logitḡlfmε = Logitḡ − εH2(Q).

We now define the sum loss function L(Q̄, g) = L1(Q̄) +L2(g) and local least favor-
able submodel {Qlfm

ε , glfmε : ε} through (Q̄, g) at ε = 0 satisfying

d

dε
L(Q̄lfm

ε , glfmε )

∣∣∣∣
ε=0

= D∗1(Q) +D∗2(Q).

Thus, we can conclude that this defines indeed a local least favorable submodel for
(Q̄, g).

The universal least favorable submodel (3) is now defined by the following re-
cursive definition: for ε ≥ 0 and dε > 0,

LogitQ̄ε+dε = LogitQ̄lfm
ε,dε

= LogitQ̄ε − dεH1(gε, q)

Logitḡε+dε = Logitḡlfmε,dε

= Logitḡε − dεH2(QW , Q̄ε, q).

Similarly, we have a recursive relation for ε < 0, but since all these formulas are
just symmetric versions of the ε > 0 case, we will focus on ε > 0. This expresses
the next (Qε+dε, gε+dε) in terms of previously calculated (Qx, gx : x ≤ ε), thereby
fully defining this universal least favorable submodel. This recursive definition cor-
responds with the following integral representation of this universal least favorable
submodel:

LogitQ̄ε = LogitQ̄−
∫ ε

0
H1(gx, q)dx

Logitḡε = Logitḡ −
∫ ε

0
H2(QW , Q̄x, q)dx.
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Let’s now explicitly verify that this indeed satisfies the key property of a universal
least favorable submodel. Clearly, it is a submodel and it contains (Q, g) at ε = 0.
The score of Q̄ε at ε is given by H1(gε, q)(Y − Q̄ε) and the score of gε at ε is given
by H2(QW , Q̄ε, q)(A− ḡε(W )), so that

d

dε
L(Q̄ε, gε) = H1(gε, q)(Y − Q̄ε) +H2(QW , Q̄ε, q)(A− ḡε(W ))

= D∗1(QW , Q̄ε, gε, q) +D∗2(QW , Q̄ε, gε, q),

explicitly proving that indeed this is a universal least favorable model for (Q̄, g).
In our previous work on the TMLE for the average treatment effect among

the treated we implemented the TMLE based on the local least favorable sub-
model {Q̄lfm

ε1 , ḡ
lfm
ε2 : ε1, ε2}, using a separate ε1 and ε2 for Q̄ and ḡ. This TMLE

can also be implemented using a single ε by regressing a dependent variable vec-
tor (Y,A) on a stacked design matrix consisting of an offset and covariate H, the
vector (H1(g, q)(A,W ), H2(Q)(W ). This TMLE require several iterations until con-
vergence, whether it is implemented using using a single ε or separate (ε1, ε2).

The TMLE based on the universal least favorable submodel above is imple-
mented as follows, given an initial estimator (Q̄, g). One first determines the sign
of the derivative at h = 0 of PnL(Q̄h, gh). Suppose that the derivative is negative
so that it decreases for h > 0. Then, one keeps iteratively calculating (Q̄ε+dε, gε+dε)
for small dε > 0, given (Q̄x, gx : x ≤ ε), till PnL(Q̄ε+dε, gε+dε) ≥ PnL(Q̄ε, gε), at
which point the desired local maximum likelihood εn is attained. The TMLE of
(Q̄0, g0) is now given by Q̄εn , gεn , which solves Pn{D∗1(Qεn) +D∗2(Qεn)} = 0, where
Qεn = (QW,n, Q̄εn , gεn , qn), and QW,n, qn are the empirical counterparts of QW,0, q0.
Since, we also have PnD

∗
3(Qεn) = 0, it follows that PnD

∗(Qεn) = 0. The (one-step)
TMLE of Ψ(Q0) is given by the corresponding plug-in estimator Ψ(Qεn).

7 Simulation Studies for the average treatment effect
among the treated

The iterative TMLE for estimating the average treatment effect among the treated
(ATT) parameter returns to the data several times to make a sequence of local moves
that updates the estimate of Q̄n(A,W ) and ḡn(A,W ) at each iteration. In contrast,
the one-step TMLE using the universal least favorable sub-model fits the data once,
where the MLE step requires a series of micro updates within a much smaller local
neighborhood defined by a tuning parameter step size, dε. When there is sufficient
information in the data for estimating the target parameter these two approaches
can be expected to have comparable performance. When there is sparsity in the
data theory suggests the one-step TMLE will be more stable, having lower variance
than the iterative TMLE.

Two simulation studies demonstrate these properties. The iterative TMLE was
implemented using a single ε, the closest analog to the one-step TMLE. dε was set
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to 0.001 for the one-step TMLE. Source code for the estimators and the simulation
studies is available as supplementary materials. The parameter of interest is defined
by the mapping Ψ1(Q) =

∫
{Q̄(1, w) − Q̄(0, w)}g(1|w)q dQw(w). Each TMLE targets

initial estimates Q̄0
n(A,W ) and g0n(W ) towards the parameter of interest. The pa-

rameter estimate is evaluated by plugging the updated estimates, Q̄∗n(A,W ), g∗n(W )
into the mapping, with the integral approximated by taking the empirical mean over
all observations in the data, ψn = 1

n

∑n
i=1

{
Q̄∗n(1,Wi)− Q̄∗n(0,Wi)

} g∗n(1|Wi)
q .

Simulation Study I: For this study 1000 datasets were generated at two sample
sizes, n = 100 and n = 1000. Two normally distributed covariates and one binary
covariate were generated as W1 ∼ N(0, 1), W2 ∼ N(0, 1), W3 ∼ Bern(0.5). All
covariates are independent. Treatment assignment probabilities are given by P (A =
1 |W ) = expit(−0.4−0.2W1−0.4W2+0.3W3). A binary outcome, Y was generated
by setting P (Y = 1 | A,W ) = expit(−1.2−1.2A−0.1W1−0.2W2−0.1W3). The true
value of the ATT parameter is ψ0 = −0.1490. There are no theoretical positivity
violations (treatment assignment probabilities were typically between 0.07 and 0.87),
but at the smaller sample size there is less information in the data for estimating
g within some strata of W . This suggests that some of the generated data sets
will prove more challenging to the iterative TMLE than to the one-step TMLE.
Estimates were obtained using correct and misspecified logistic regression models
for the initial estimates of Q and g. Qcor was estimated using a logistic regression of
Y on A,W1,W2,W3. Qmis was estimated using a logistic regression of Y on A,W1.

gcor was estimated using a logistic regression of A on W1,W2,W3, and gmis was
estimated using a logistic regression of A on W1. Bias, variance, mean squared error
(MSE), and relative efficiency (RE = MSEone−step / MSEiter) are shown in Table 1.
RE < 1 indicates the one-step TMLE has better finite sample efficiency than the
iterative TMLE.

Results: The one-step and iterative TMLEs exhibit similar performance when n =
1000, with RE = 1. When n = 100 the iterative TMLE failed to converge for
24 of the 1000 datasets. The performance of the two TMLEs on the remaining
976 datasets was quite similar. However, the fact that the bias, variance, and
MSE of the one-step TMLE are larger when evaluated over all 1000 datasets tells
us that the 24 omitted datasets where the iterative TMLE failed were among the
most challenging. One way to repair the performance of the iterative TMLE is
to bound predicted outcome probabilities away from 0 and 1. We re-analyzed the
same 1000 datasets enforcing bounds on Q̄n of (10−9, 1− 10−9) for both estimators.
This minimal bounding prevents the iterative TMLE from failing, and should not
introduce truncation bias. Bounding Q̄n allowed the iterative TMLE to produce a
result for all analyses. Enforcing bounds had no effect on estimates produced by the
one-step TMLE. This confirms that the strategy of taking many small steps within a
local neighborhood whose boundaries shift minutely with each iteration helps avoid

http://biostats.bepress.com/ucbbiostat/paper347



extremes. Although the iterative TMLE no longer failed when Q̄n was bounded,
it had higher variance and MSE than the one-step TMLE. Efficiency gains of the

Table 1: Simulation Study I. Bias, variance, mean squared error (MSE) and relative
efficiency (RE) of the one-step TMLE and iterative TMLE over 1000 Monte Carlo
simulations (n = 1000 and n = 100). Results when n = 100 are shown with and
without omitting 24 challenging runs from the analysis, and when Q̄n is bounded
away from 0 and 1 for both TMLEs.∗

Bias Variance MSE
one-step iterative one-step iterative one-step iterative RE

n = 1000
Q correct
gcor −0.00042 −0.00042 0.00059 0.00059 0.00059 0.00059 1.00
gmis −0.00050 −0.00050 0.00057 0.00057 0.00057 0.00057 1.00

Q misspecified
gcor −0.00035 −0.00035 0.00059 0.00059 0.00059 0.00059 1.00
gmis 0.01210 0.01210 0.00049 0.00048 0.00063 0.00063 1.00

n = 100, all runs
Q correct
gcor 0.00049 0.00694 0.00693
gmis −0.00215 0.00635 0.00635

Q misspecified
gcor 0.00113 0.00685 0.00684
gmis 0.01226 0.00528 0.00543

n = 100, (24 runs omitted)
Q correct
gcor 0.00296 0.00295 0.00679 0.00678 0.00679 0.00679 1.00
gmis 0.00023 0.00023 0.00621 0.00621 0.00621 0.00620 1.00

Q misspecified
gcor 0.00357 0.00363 0.00671 0.00669 0.00671 0.00670 1.00
gmis 0.01474 0.01473 0.00509 0.00509 0.00530 0.00530 1.00

n = 100,Q bounded
Q correct
gcor 0.00049 −0.00182 0.00694 0.00781 0.00693 0.00781 0.89
gmis −0.00215 −0.00168 0.00635 0.01033 0.00635 0.01033 0.62

Q misspecified
gcor 0.00113 −0.00052 0.00685 0.00738 0.00684 0.00738 0.93
gmis 0.01226 0.01031 0.00528 0.00592 0.00543 0.00602 0.90

∗bounding Q̄n had no effect on estimates produced when n = 1000.
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one-step TMLE were between 7 and 28 percent.

Simulation Study II: This study more closely examines estimator performance
when there is sparsity in the data. Sparsity was introduced by overfitting the ini-
tial Q̄0

n, leaving little signal for the targeting step. Theory suggests the one-step
TMLE will be a more stable estimator than the iterative TMLE under these chal-
lenging conditions. To explore the impact of overfitting the data on the iterative
and one-step TMLEs we constructed a nested sequence of correct logistic regression
outcome models. Covariates W1,W2,W3 were generated as above. Eight additional
independent and identically distributed covariates W4, . . . ,W12 were drawn from a
normal distribution with mean 0 and standard deviation 1. None of the additional
covariates were causally related to Y or A. The binary treatment indicator, A was
generated in the same way as in study I. The outcome was generated by setting
P (Y = 1 | A,W ) = expit(−1.2− 1.2A− 0.1W1− 0.2W2− 0.1W3). The smallest cor-
rect model, Qc1, regresses Y on A,W1,W2,W3. Subsequent models were constructed
by adding a single covariate to the model. The ten nested models were defined as

Qc1 : E[Y |A,W ] = expit(A+W1 +W2 +W3),

Qc2 : E[Y |A,W ] = expit(A+W1 +W2 +W3 +W4),

Qc3 : E[Y |A,W ] = expit(A+W1 +W2 +W3 +W4 +W5),

Qc4 : E[Y |A,W ] = expit(A+W1 +W2 +W3 +W4 +W5 +W6),

Qc5 : E[Y |A,W ] = expit(A+W1 +W2 +W3 +W4 +W5 +W6 +W7),

Qc6 : E[Y |A,W ] = expit(A+W1 +W2 +W3 +W4 +W5 +W6 +W7 +W8),

Qc7 : E[Y |A,W ] = expit(A+W1 +W2 +W3 +W4 +W5 +W6 +W7 +W8 +W9),

Qc8 : E[Y |A,W ] = expit(A+W1 +W2 +W3 +W4 +W5 +W6 +W7 +W8 +W9 +W10),

Qc9 : E[Y |A,W ] = expit(A+W1 +W2 +W3 +W4 +W5 +W6 +W7 +W8 +W9 +W10

+W11),

Qc10 : E[Y |A,W ] = expit(A+W1 +W2 +W3 +W4 +W5 +W6 +W7 +W8 +W9 +W10

+W11 +W12).

Each of these regression models is correct, but as the model grows larger and larger
the model fitting procedure begins to respond to random variation in the outcome.
This problem is more acute at smaller sample sizes.

Estimates were obtained from 1000 datasets (n = 100), with g modeled correctly
as a regression of A on W1,W2,W3. Bias, variance, MSE, and RE are reported in
Table 2. The iterative TMLE failed on a large number of datasets. On the less
challenging datasets where it did converge, performance of the iterative and one-step
TMLEs was quite similar. When bounds on Q̄n were enforced at (10−9, 1−10−9), the
performance of the one-step TMLE was unchanged, while the iterative TMLE was
repaired. The iterative TMLE had larger bias, variance, and MSE than the one-step
TMLE, which was up to four times more efficient then the iterative TMLE. These
results are plotted in Fig. 1, along with estimates obtained when the parameter was
evaluated based on each initial non-targeted outcome regression fit. The behavior
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Figure 1: Simulation study II. Bias, Var, MSE for iterative TMLE, one-step TMLE,
and the non-targeted Initial estimator as overfit increases, Qc1 - Qc10.

of the iterative TMLE is erratic, while that of the non-targeted estimator and the
one-step TMLE are quite stable.

8 Universal canonical one-dimensional submodel that
targets a multidimensional target parameter

Let Ψ :M→ H be a Hilbert-space valued pathwise differentiable target parameter.
Typically, we simply haveH = IRd endowed with the standard inner product 〈x, y〉 =∑d

j=1 xjyj . However, we also allow that Ψ(P ) is a function t → Ψ(P )(t) from

τ ⊂ IR to IR in a Hilbert space L2(Λ) endowed with inner product 〈h1, h2〉 =∫
h1(t)h2(t)dΛ(t), where Λ is a user supplied positive measure with

∫
dΛ(t) < ∞.

For notational convenience, we will often denote the inner product 〈h1, h2〉 with
h>1 h2, analogue to the typical notation for the inner product in IRd. Let ‖ h ‖=√
〈h, h〉 be the Hilbert space norm, which would be the standard Euclidean norm

in the case that H = IRd. Let D∗(P ) be the canonical gradient. If H = IRd, then
this is a d-dimensional canonical gradient D∗(P ) = (D∗j (P ) : j = 1, . . . , d), but in
general D∗(P ) = (D∗t (P ) : t ∈ τ). Let L(p) = − log p, where p = dP/dµ is a density
of P � µ w.r.t. some dominating measure µ. In this section we will construct a
one-dimensional submodel {Pε : ε ≥ 0} through P at ε = 0 so that, for any ε ≥ 0,

d

dε
PnL(pε) =‖ PnD∗(Pε) ‖ . (6)

The one-step TMLE Pεn with εn = arg minε PnL(Pε), or εn chosen large enough so
that the derivative is smaller than (e.g.) 1/n, now solves d

dεPnL(Pε)
∣∣
ε=0

= 0 (or
< 1/n), and thus ‖ PnD∗(Pεn) ‖= 0 (or < 1/n). Note that ‖ PnD∗(Pεn) ‖= 0
implies that PnD

∗
t (Pεn) = 0 for all t ∈ τ so that the one-step TMLE solves all

desired estimating equations.
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Table 2: Simulation Study II. Bias, variance, mean squared error (MSE) and relative
efficiency (RE) of the one-step TMLE and iterative TMLE over 1000 Monte Carlo
simulations, n = 100.

Bias Variance MSE
One-Step Iterative One-Step Iterative One-Step Iterative RE

Q̄n unbounded, problematic runs omitted∗

Qc1 0.00545 0.00544 0.00368 0.00367 0.00370 0.00370 1.00
Qc2 0.00509 0.00512 0.00376 0.00376 0.00379 0.00379 1.00
Qc3 0.00345 0.00346 0.00384 0.00384 0.00385 0.00385 1.00
Qc4 0.00109 0.00110 0.00408 0.00408 0.00408 0.00408 1.00
Qc5 −0.00047 −0.00031 0.00425 0.00425 0.00425 0.00425 1.00
Qc6 −0.00276 −0.00279 0.00443 0.00444 0.00444 0.00445 1.00
Qc7 −0.00468 −0.00472 0.00461 0.00462 0.00463 0.00464 1.00
Qc8 −0.00821 −0.00873 0.00514 0.00550 0.00520 0.00557 0.93
Qc9 −0.00980 −0.01013 0.00549 0.00561 0.00558 0.00570 0.98
Qc10 −0.01306 −0.01311 0.00579 0.00580 0.00596 0.00597 1.00

Q̄n bounded at (10−9,1− 10−9)
Qc1 −0.00308 −0.00687 0.00425 0.01649 0.00426 0.01652 0.26
Qc2 −0.00341 −0.00672 0.00435 0.01509 0.00435 0.01512 0.29
Qc3 −0.00480 −0.00979 0.00448 0.01363 0.00450 0.01371 0.33
Qc4 −0.00622 −0.00909 0.00466 0.01508 0.00470 0.01515 0.31
Qc5 −0.00784 −0.01420 0.00482 0.00872 0.00487 0.00891 0.55
Qc6 −0.00958 −0.01613 0.00501 0.00708 0.00510 0.00734 0.69
Qc7 −0.01117 −0.01519 0.00521 0.01002 0.00533 0.01024 0.52
Qc8 −0.01393 −0.01979 0.00565 0.00777 0.00583 0.00816 0.72
Qc9 −0.01528 −0.02086 0.00597 0.00778 0.00620 0.00821 0.76
Qc10 −0.01746 −0.01745 0.00632 0.01241 0.00662 0.01270 0.52
∗Number of omitted runs: 119, 110, 104, 94, 86, 73, 67, 57, 56, 42.

http://biostats.bepress.com/ucbbiostat/paper347



8.1 A universal canonical submodel that targets a multidimen-
sional target parameter

Consider the following submodel: for ε ≥ 0, we define

pε = pΠ[0,ε]

(
1 +
{PnD∗(Px)}>D∗(Px)

‖ D∗(Px) ‖
dx

)
= p exp

(∫ ε

0

{PnD∗(Px)}>D∗(Px)

‖ D∗(Px) ‖
dx

)
. (7)

Theorem 4 We have {pε : ε ≥ 0} is a family of probability densities, its score at
ε is a linear combination of D∗t (Pε) for t ∈ τ , and is thus in the tangent space at
T (Pε), and

d

dε
PnL(Pε) =‖ PnD∗(Pε) ‖ .

As a consequence, we have d
dεPnL(Pε) = 0 implies ‖ PnD∗(Pε) ‖= 0.

As before, our practical construction below demonstrates that, under regularity
conditions, we actually have that {pε : ε} ⊂ M is also a submodel.

The normalization by ‖ D∗(Px) ‖ is motivated by a practical analogue construc-
tion below and provides an important intuition behind this analytic construction.
However, we can replace this by any other normalization for which the derivative of
the log-likelihood at ε equals a norm of PnD

∗(Pε). To illustrate this let’s consider
the case that H = IRd. For example, we could consider the following submodel. Let
Σn(Px) = Pn{D∗(Px)D∗(Px)>} be the empirical covariance matrix of D∗(Px), and
let Σ−1n (Px) be its inverse. We could then define for ε > 0,

pε = p exp

(∫ ε

0
{PnD∗(Px)}>Σ−1n D∗(Px)dx

)
.

In this case, we have

d

dε
PnL(Pε) = PnD

∗(Pε)
>Σn(Pε)

−1PnD
∗(Pε).

This seems to be an appropriately normalized norm, equal to the euclidean norm of
the orthonormalized version of the original D∗(Pε), so that the one-step TMLE will
still satisfy that ‖ PnD∗(Pεn) ‖= 0.

It is not clear to us if these choices have a finite sample implication for the
resulting one-step TMLE (asymptotics is the same), and if one choice would be
better than another, but either way, the resulting one-step TMLE ends up with a
Pεn satisfying PnD

∗(Pεn) = 0 (or oP (1/
√
n)), the only key ingredient in the proof

of the asymptotic efficiency of the TMLE.
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8.2 The practical construction of a universal canonical
one-dimensional submodel targeting a multidimensional target
parameter

Let’s define a local least favorable submodel {plfmδ : δ} ⊂ M by the following local
property: for all δ

d

dδ
log plfmδ

∣∣∣∣>
δ=0

δ = D∗(P )>δ.

For the case that H = IRd, this corresponds with assuming that the score of the
submodel at δ = 0 equals the canonical gradient D∗(P ), while, for a general Hilbert
space, it states that the derivative of log pε in the direction δ (a function in H)
equals 〈D∗(P ), δ〉 =

∫
D∗t (P )δ(t)dΛ(t).

Consider the log-likelihood criterion PnL(P lfm
δ ), and note that its derivative at

δ = 0 in the direction δ equals 〈PnD∗(P ), δ〉 = {PnD∗(P )}>δ. For a small number
dx, we want to maximize the log-likelihood over all δ with ‖ δ ‖≤ dx, and locally,
this corresponds with maximizing its linear gradient approximation:

δ → {PnD∗(P )}>δ.

By the Cauchy-Schwarz inequality, it follows that this is maximized over δ with
‖ δ ‖≤ dx by

δ∗n(P, dx) =
PnD

∗(P )

‖ PnD∗(P ) ‖
dx ≡ δ∗n(P )dx,

where we defined δ∗n(P ) = PnD
∗(P )/ ‖ PnD∗(P ) ‖. We can now define our update

Pdx = P lfm
δ∗n(P,dx)

. This process can now be iterated by applying the above with P
replaced by Pdx, resulting in an update P2dx, and in general PKdx. So this updating
process is defined by the differential equation:

Px+dx = P lfm
x,δ∗n(Px)dx

,

where P lfm
x,δ is the local least favorable multidimensional submodel above but now

through Px instead of P .
Assuming that the local least favorable model h → plfmx,h is continuously twice

differentiable with a score D∗(Px) at h = 0, we obtain a second order Taylor expan-
sion

plfmx,δ∗n(Px)dx = px +

{
d

dh
plfmx,h

∣∣∣∣
h=0

}>
δ∗n(Px)dx+O((dx)2)

= px(1 + {δ∗n(Px)}>D∗(Px)dx) +O((dx)2),

so that, under mild regularity conditions, we obtain

px+dx = px(1 + {δ∗n(Px)}>D∗(Px)dx) +O((dx)2).
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This implies:

px = p exp

(∫ ε

0

{PnD∗(Px)}>

‖ PnD∗(Px) ‖
D∗(Px)dx

)
.

So we obtained the exact same analytical representation (7) as above. Since the
above practical construction starts out with P ∈M and never leaves the modelM,
this proves that, under mild regularity conditions, this analytic representation (7) is
actually a submodel ofM after all, but, when using its practical implementation and
approximation, one should use the actual local least favorable submodel in order to
guarantee that one stays in the model. We can formalize this in a theorem analogue
to Theorem 2, but instead such a theorem will be presented in Section 10 for the
more general targeted minimum loss-based estimation methodology.

The above practical construction provides us with an intuition for the normal-
ization by ‖ PnD∗(Px) ‖.

8.3 Existence of MLE or approximate MLE εn.

Since

Pn log pε =

∫ ε

0
‖ PnD∗(Px) ‖ dx,

and its derivative thus equals ‖ PnD∗(Pε) ‖, we have that the log-likelihood is non-
decreasing in ε.

If the local least favorable submodel in the practical construction of the one-
dimensional universal canonical submodel {pε : ε ≥ 0} (7) only contains densities
with supremum norm smaller than some M < ∞ (e.g., this is assumed by the
modelM), then we will have that supε≥0 supo∈O pε(o) < M <∞. This implies that
Pn log pε is bounded from above by logM . Let’s first assume that limε→∞ Pn log pε <
∞. Thus, the log-likelihood is a strictly increasing function till it becomes flat, if
ever. Suppose that lim supx→∞ ‖ PnD∗(Px) ‖> δ > 0 for some δ > 0. Then it
follows that the log-likelihood converges to infinity when x converges to infinity,
which contradicts the assumption that the log-likelihood is bounded from above by
logM <∞. Thus, we know that lim supx→∞ ‖ PnD∗(Px) ‖= 0 so that we can find
an εn so that for ε > εn ‖ PnD∗(Pε) ‖< 1/n, as desired.

Suppose now that we are in a case in which the log-likelihood converges to
infinity when ε → ∞, so that our bounded log likelihood assumption is violated.
This might correspond with a case in which each pε is a continuous density, but pε
starts approximating an empirical distribution when ε → ∞. Even in such a case,
one would expect that we will have that ‖ PnD∗(Pε) ‖→ 0, just like an NPMLE of
a continuous density of a survival time solves the efficient influence curve equation
for its survival function.

The above practical construction of the submodel, as an iterative local maximiza-
tion of the log-likelihood along its gradient, strongly suggests that even without the
above boundedness assumption the derivative ‖ PnD∗(Pε) ‖ will converge to zero as
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ε → ∞ so that the desired MLE or approximate MLE exists. Our initial practical
implementations of this one-step TMLE of a multivariate target parameter demon-
strate that it works well and that finding the desired maximum or approximate
maximum is not an issue. We will demonstrate the implementation and practical
demonstration of such a one-step TMLE for challenging causal inference problems
in a future article.

8.4 A universal score-specific one-dimensional submodel targeting
a multivariate score equation

In the above two subsections we could simply replace D∗(P ) by a user supplied
D(P ), giving us a theoretical one-dimensional parametric model {Pε : ε} so that
the derivative d

dεPnL(Pε) at ε equals ‖ PnD(Pε) ‖, so that a corresponding one-step
TMLE will solve PnD(Pεn) = 0. Similarly, given a local parametric model whose
score at ε = 0 equals D(P ) will yield a corresponding practical construction of this
universal submodel. One can also use such a universal score-specific submodel to
construct one-step TMLE of a one-dimensional target parameter with extra proper-
ties by making it solve not only the efficient influence curve equation but also other
equations of interest (such as the PnD

∗
1(Q∗n) = PnD

∗
2(Q∗n) = 0 in Section 6). In the

current literature, solving multiple score equations typically required an iterative
TMLE based on a local score-specific submodel, so that these estimation problems
can be revisited with this new one-step TMLE (see our supplementary material).

9 Example: A one-step TMLE, based on universal canon-
ical one-dimensional submodel, of an infinite dimen-
sional target parameter

An open problem has been the construction of an efficient substitution estimator
Ψ(P ∗n) of a pathwise differentiable infinite dimensional target parameter Ψ(P0) such
as a survival function. Current approaches would correspond with incompatible
estimators such as using a TMLE for each Ψ(P0)(t) separately, resulting in a non-
substitution estimator such as a non-monotone estimator of a survival function. In
this section we demonstrate, through a causal inference example, that our universal
canonical submodel allows us to solve this problem with the one-step TMLE defined
in the previous section.

Let O = (W,A, T ) ∼ P0, where W are baseline covariates, A ∈ {0, 1} is a
point-treatment, and T is a survival time. Consider a statistical modelM that only
makes assumptions about the conditional distribution g0(a | W ) = P0(A = a | W )
of A, given W . Let W → d(W ) ∈ {0, 1} be a given dynamic treatment satisfying
g0(d(W ) |W ) > 0 a.e. Let Ψ :M→ H be defined by:

Ψ(P )(t) = EPP (T > t | A = d(W ),W ), t ≥ 0.
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Under a causal model and the randomization assumption this equals the counter-
factual survival function P (Td > t) of the counterfactual survival time Td under
intervention d.

Let H be the Hilbert space of real valued functions on IR≥0 endowed with inner
product h>1 h2 = 〈h1, h2〉 =

∫
h1(t)h2(t)dΛ(t) for some user-supplied positive and

finite measure Λ. The norm on this Hilbert space is thus given by ‖ h ‖=
√
hh> =√∫

h(t)2dΛ(t). Let Q̄t(A,W ) = P (T > t | A,W ), Y (t) = I(T > t), QW the

marginal probability distribution of W , and Q = (Q̄,QW ). The efficient influence
curve D∗(P ) = (D∗t (P ) : t ≥ 0) is defined by:

D∗t (P )(O) =
I(A = d(W ))

g(A |W )
(Y (t)− Q̄t(A,W )) + {Q̄t(d(W ),W )−Ψ(P )(t)}

≡ D∗1,t(g, Q̄) +D∗2,t(P ),

where D∗1,t(g, Q̄) is the first component of the efficient influence curve that is a score
of the conditional distribution of T , given A,W . Notice that Ψ(P ) = Ψ1(QW , Q̄) =
(QW Q̄t : t ≥ 0). We will estimateQW,0 with the empirical distribution ofW1, . . . ,Wn,
so that a TMLE will only need to target the estimator of the conditional survival
function Q̄0 of T , given A,W . Let q(t | A,W ) be the density of T , given A,W and
let qn be an initial estimator of this conditional density. For example, one might
use machine learning to estimate the conditional hazard q0/Q̄0, which then implies
a corresponding density estimator qn. We are also given an estimator gn of g0.

The universal canonical one-dimensional submodel (7) applied to p = qn is de-
fined by the following recursive relation: for ε > 0,

qn,ε = qn exp

(∫ ε

0

{PnD∗1(gn, Q̄n,x)}>D∗1(gn, Q̄n,x)

‖ D∗1(gn, Q̄n,x) ‖
dx

)
.

To obtain some more insight in this expression, we note, for example, that the inner
product is given by:

{PnD∗1(gn, Q̄n,x)}>D∗1(gn, Q̄n,x)(o) =

∫
t
(PnD

∗
1,t(gn, Q̄n,x)D∗1,t(gn, Q̄n,x)(o)dΛ(t),

(8)
and similarly we have such an integral representation of the norm in the denomi-
nator. Our Theorem 4, or explicit verification, shows that for all ε ≥ 0, qn,ε is a
conditional density of T , given A,W , and

d

dε
Pn log qn,ε =‖ PnD∗1(gn, Q̄n,ε) ‖ .

Thus, if we move ε away from zero, the log-likelihood increases, and, one searches
for the first εn so that this derivative is smaller than (e.g.) 1/n. Let q∗n = qn,εn ,
and let Q̄∗n,t(A,W ) =

∫∞
t q∗n(s | A,W )ds be its corresponding conditional survival
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function, t ≥ 0. Then our one-step TMLE of the d-specific survival function Ψ(P0)
is given by ψ∗n = Ψ(QW,n, Q̄

∗
n) = QW,nQ̄

∗
n:

ψ∗n(t) =
1

n

n∑
i=1

Q̄∗n,t(d(Wi),Wi).

Since q∗n is an actual conditional density, it follows that ψ∗n is a survival function.
Suppose that the derivative of the log-likelihood at εn equals zero exactly (instead
of being smaller than 1/n). Then, we have ‖ PnD∗(gn, QW,n, Q̄∗n) ‖= 0, so that
for each t ≥ 0, PnD

∗
t (gn, QW,n, Q̄

∗
n) = 0, making ψ∗n(t) a standard TMLE of ψ0(t),

so that its asymptotic linearity for a fixed t can be established accordingly. Let’s
now consider a proof of weak convergence of

√
n(ψ∗n − ψ0) as a random function.

Firstly, let’s assume that an exact MLE is obtained so that PnD
∗(gn, QW,n, Q̄

∗
n) = 0.

Combined with Ψ(Q∗n) − Ψ(Q0) = −P0D
∗(gn, Q

∗
n) + R2((Q

∗
n, gn), (Q0, g0)), where

R2() = (R2t() : t ∈ τ) for an explicitly defined R2t(P, P0), we then obtain

ψ∗n − ψ0 = (Pn − P0)D
∗(gn, Q

∗
n) +R2((Q

∗
n, gn), (Q0, g0)).

We now assume that {D∗t (P ) : P ∈Mt ∈ τ} is a P0-Donsker class, supt∈τ P0{D∗t (gn,
Q∗n)−D∗t (g0, Q0)}2 → 0 in probability, and supt |R2t((Q

∗
n, gn), (Q0, g0))| = oP (n−1/2).

Then, it follows that

√
n(ψ∗n − ψ0) =

√
n(Pn − P0)D

∗(P0) + oP (n−1/2)⇒d G0,

that is,
√
n(ψ∗n − ψ0) converges weakly as a random element of the cadlag function

space endowed with the supremum norm to a gaussian process G0 with covariance
structure implied by the covariance function ρ(s, t) = P0D

∗
s(P0)D

∗
t (P0). In partic-

ular, if g0 is known, then R2t((Q
∗
n, g0), (Q0, g0)) = 0, so that the second order term

condition supt | R2t((Q
∗
n, gn), (Q0, g0)) |= oP (n−1/2) is automatically satisfied with

oP (n−1/2) replaced by 0. This also allows the construction of a simultaneous con-
fidence band for ψ0. Due to the double robustness of the efficient influence curve,
under appropriate conditions, one can also obtain asymptotic linearity and weak
convergence with an inefficient influence curve under misspecfication of either gn or
Q̄n.

If we only have ‖ PnD∗(P ∗n) ‖= oP (n−1/2) (instead of 0), then the above proof
still applies so that we now obtain:

√
n(ψ∗n − ψ0) = (Pn − P0)D

∗(P0) + rn,

but where now ‖ rn ‖= oP (1/
√
n), so that we obtain asymptotic efficiency and weak

convergence in the Hilbert space L2(Λ), beyond the point-wise efficiency of ψ∗n(t).
However, in practice, one can actually track the supremum norm ‖ PnD∗(Pεn) ‖∞=
supt | PnD∗t (Pεn) |, and if one observes that for the selected εn this supremum norm
is smaller than 1/n, then, we still obtain the asymptotic efficiency in supremum
norm above.
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Regarding the practical construction of qn,ε, we could use the following infinite
dimensional local least favorable submodel through a conditional density q given by

qlfmδ = q(1 + δ>D∗1(g, Q̄)),

and follow the practical construction described in the previous section for general lo-
cal least favorable submodels. Notice that here δ>D∗1(g, Q̄) =

∫
δ(t)D∗1,t(g, Q̄)dΛ(t).

In order to guarantee that the supremum norm of the density qlfmδ for local δ with
‖ δ ‖< dx remains below a universal constant M < ∞, one could present such
models in the conditional hazard on a logistic scale that bounds the hazard between
[0,M ]. However, we doubt that this will be an issue in practice, and since it may be
necessary for the continuous density qn,ε to approximate an empirical distribution
in some sense in order to solve ‖ PnD∗(Pε) ‖= 0, we do not want to prevent this
from happening.

10 Universal canonical one-dimensional submodel for
targeted minimum loss-based estimation of a multi-
dimensional target parameter

10.1 A universal canonical one-dimensional submodel

For the sake of presentation we will focus on the case that the target parameter
is Euclidean valued, i.e. H = IRd, but the presentation immediately generalizes
to infinite dimensional target parameters, as in the previous section. Let’s now
generalize the construction of a universal canonical submodel to the more general
targeted minimum loss based estimation methodology. We now assume that Ψ(P ) =
Ψ1(Q(P )) ∈ IRd for some target parameter Q : M → Q(M) defined on the model
and real valued function Ψ1 : Q(M)→ IRd. Let L(Q)(O) be a loss-function for Q(P )
in the sense that Q(P ) = arg minQ∈Q(M) PL(Q). Let D∗(P ) = D∗(Q(P ), G(P )) be
the canonical gradient of Ψ at P , whereG :M→ G(M) is some nuisance parameter.
We consider the case that the linear span of the components of the efficient influence
curve D∗(P ) is in the tangent space of Q, so that a least favorable submodel does
not need to fluctuate G: otherwise, one just includes G in the definition of Q. Given,
(Q,G), let {Qlfm

δ : δ} ⊂ Q(M) be a local d-dimensional least favorable model w.r.t.
loss function L(Q) at δ = 0 so that

d

dδ
L(Qlfm

δ )

∣∣∣∣
δ=0

= D∗(Q,G).

The dependence of this submodel on G is suppressed in this notation.
Consider the empirical risk PnL(Qlfm

δ ), and note that its gradient at δ = 0 equals
PnD

∗(Q,G). For a small number dx, we want to minimize the empirical risk over all
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δ with ‖ δ ‖≤ dx, and locally, this corresponds with maximizing its linear gradient
approximation:

δ → {PnD∗(Q,G)}>δ.

By the Cauchy-Schwarz inequality, it follows that this is maximized over δ with
‖ δ ‖≤ dx by

δ∗n(Q, dx) =
PnD

∗(Q,G)

‖ PnD∗(Q,G) ‖
dx ≡ δ∗n(Q)dx,

where we defined δ∗n(Q) = PnD
∗(Q,G)/ ‖ PnD∗(Q,G) ‖. We can now define our

update Qdx = Qlfm
δ∗n(Q,dx)

. This process can now be iterated by applying the above
with Q replaced by Qdx, resulting in an update Q2dx, and in general QKdx. So this
updating process is defined by the differential equation:

Qx+dx = Qlfm
x,δ∗n(Qx)dx)

,

where Qlfm
x,δ is the local least favorable multidimensional submodel above but now

through Qx instead of Q.
Assume that for some L̇(Q)(O), we have

d

dh
L(Qlfm

x,h)

∣∣∣∣
h=0

= L̇(Qx)
d

dh
Qlfm
x,h

∣∣∣∣
h=0

. (9)

Then,
d

dh
Qlfm
x,h

∣∣∣∣
h=0

=
D∗(Qx, G)

L̇(Qx)
.

Utilizing that the local least favorable model h → Qlfm
x,h is continuously twice

differentiable with a score D∗(Qx, G) at h = 0, we obtain a second order Taylor
expansion

Qlfm
x,δ∗n(Qx)dx

= Qx +
d

dh
Qlfm
x,h

∣∣∣∣
h=0

δ∗n(Qx)dx+O((dx)2)

= Qx +
D∗(Qx, G)>

L̇(Qx)
δ∗n(Qx)dx+O((dx)2).

This implies the following recursive analytic definition of the universal canonical
submodel through Q:

Qε = Q+

∫ ε

0

D∗(Qx, G)>

L̇(Qx)
δ∗n(Qx)dx. (10)

Let’s now explicitly verify that this indeed satisfies the desired condition so that
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the one-step TMLE solves PnD
∗(Qεn , G) = 0. Only assuming (9) it follows that

d

dε
PnL(Qε) = Pn

d

dε
L(Qε)

= PnL̇(Qε)
d

dε
Qε

= PnL̇(Qε)
D∗(Qε, G)>

L̇(Qε)
δ∗n(Qε)

= PnD
∗(Qε, G)>δ∗n(Qε)

= {PnD∗(Qε, G)}> PnD
∗(Qε, G)

‖ PnD∗(Qε, G) ‖

=

∑d
j=1{PnD∗j (Qε, G)}2

‖ PnD∗(Qε, G) ‖
= ‖ PnD∗(Qε, G) ‖ .

In addition, under some regularity conditions, so that the following derivation in
terms of the local least favorable submodel applies, it also follows that Qε ∈ Q(M).

This proves the following theorem.

Theorem 5 Given any (Q,G) compatible with model M, let {Qlfm
δ : δ ∈ Ba(0)} ⊂

Q(M) be a local least favorable model w.r.t. loss function L(Q) at δ = 0 so that

d

dδ
L(Qlfm

δ )

∣∣∣∣
δ=0

= D∗(Q,G).

Here Ba(0) = {x :‖ x ‖< a} for some positive number a. Assume that for some
L̇(Q)(O), we have

d

dε
L(Qlfm

ε )

∣∣∣∣
ε=0

= L̇(Q)
d

dε
Qlfm
ε

∣∣∣∣
ε=0

.

Consider the corresponding univariate model {Qε : ε} defined by (10). It goes through
Q at ε = 0, and, it satisfies that for all ε

Pn
d

dε
L(Qε) =‖ PnD∗(Qε, G) ‖, (11)

where ‖ x ‖=
√∑d

j=1 x
2
j is the Euclidean norm.

In addition, assume that a in Ba(0) can be chosen to be independent of the
choice (Q,G) in {(Qε, G) : ε > 0}, and assume the following second order Taylor
expansion: for h = (h1, . . . , hd),

Qlfm
ε,h = Qε +

d

dh
Qlfm
ε,h

∣∣∣∣
h=0

h+R2(Qε, G, ‖ h ‖)

= Qε +
D∗(Qε, G)

L̇(Qε)
h+R2(Qε, G, ‖ h ‖),
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where
sup
ε

sup
o∈O
| R2(Qε, G, ‖ h ‖)(o) |= O((‖ h ‖2).

We also assume that supε supo∈O
|D∗(Qε,G)

L̇(Qε)
(o) |<∞.

Then, we also have {Qε : ε ≥ 0} ⊂ M.

11 Summary

Given a d-variate estimating function (Q,O) → D(Q,G)(O), a loss function L(Q)
for Q : M → Q(M), a local d-dimensional submodel {Qsmδ : δ} ⊂ Q(M) so that
d
dδL(Qsmδ )

∣∣
δ=0

= D(Q,G), we constructed a one-dimensional universal submodel
{Qε : ε ≥ 0} ⊂ Q(M) through Q, at ε = 0, that has the property that for all
ε ≥ 0 d

dεPnL(Qε) =‖ PnD(Qε, G) ‖, where ‖ · ‖ is the Euclidean norm. Our analytic
formula for this universal submodel does not depend on the local submodel, but the
local submodel can still play a role for the practical construction. In the special
case d = 1, we also constructed a universal one-dimensional submodel so that for
all ε d

dεL(Qε) = D(Qε, G), which then implies d
dεPnL(Qε) = PnD(Qε, G). For each

of these universal submodels, the one-step TMLE Qεn with εn = arg minε PnL(Qε)
solves each PnDj(Qεn , G) = 0, j = 1, . . . , d. We showed how this result immedi-
ately extends to an infinite dimensional estimating function D = (Dt : t ∈ τ), by
replacing the Euclidean inner product by an Hilbert space inner product. If D() is
the canonical gradient of a target parameter, we referred to this submodel as the
universal canonical submodel, and, if d = 1, the universal least favorable submodel.

The constructions of these universal submodels correspond with iteratively defin-
ing Qε+dε = Qsmε,δ(ε)dε where δ(ε) = PnD(Qε, G)/ ‖ PnD(Qε, G) ‖ moves along the

gradient of the empirical risk PnL(Qε) at ε. These practical constructions demon-
strate that this algorithm succeeds in updating an initial Q into an update Q∗n = Qεn
that solves the desired equation PnD(Qεn , G) = 0 while minimally decreasing the
empirical risk relative to its initial value PnL(Q). That is, with minimal additional
data fitting it achieves the desired goal, while fully preserving the statistical prop-
erties of the initial estimator represented by Q.

The universal submodels have dramatic implications for the TMLE literature by
allowing one to construct a one-step TMLE for any multivariate and even infinite
dimensional pathwise differentiable target parameters, solving the desired estimating
equation, so that this TMLE is asymptotically efficient and possibly has additional
desired properties implied by solving the equation PnD(Qεn , G) = 0. The one-step
TMLE step only involves minimizing an empirical risk over a univariate fluctuation
parameter ε. In the current literature, we defined various iterative TMLE based on
multivariate local submodels that can now be replaced by a more stable one-step
TMLE only relying on maximizing over a univariate ε. We demonstrated such new
one-step TMLE for various examples in this article and supplementary material,
but obviously this will impact many more problems than the ones presented here.
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We demonstrated with a simulation study that the one-step TMLE is more robust
and stable than the iterative TMLE in finite samples when the targeting step gets
challenging.

The important advantages of the TMLE based on a local least favorable sub-
model relative to estimating equation methods and the one-step estimator have
been emphasized in the literature. Since the estimating equation methodology is
more limited than the one-step estimator by 1) relying on an estimating function
representation of the efficient influence curve, 2) existence and 3) uniqueness of its
solution, let’s focus on contrasting the TMLE to the one-step estimator. One im-
portant advantage of the TMLE relative to the one-step estimator has been that it
is a substitution estimator thereby making it in principle more robust by respecting
the global constraints of the model M. Beyond this, the fact that the TMLE up-
dates an initial estimator through minimization of a loss-function specific empirical
risk, it allows one to further refine the targeted update step such as carried out
in C-TMLE. Another advantage is that it actually provides a corresponding data
distribution P ∗n ∈ M compatible with the estimator of the target parameter, for
example, allowing one to compare different TMLEs by the empirical risk of P ∗n . On
the other hand, the one-step estimator takes only one step, and that can add impor-
tant stability relative to a possibly iterative TMLE, making the comparison not so
clear in the case that the TMLE is iterative. However, our new universal submodels
presented in this article make the TMLE also a one step estimator, thereby dealing
with this possible criticism of TMLE.

The benefit of being a substitution estimator is particularly appealing if one
estimates an infinite dimensional target parameter such as a survival function with
clear global structure. Due to our universal canonical one-dimensional submodel, we
could provide one-step TMLE that completely respects this global structure of the
infinite dimensional target parameter, something a one-step estimator (or estimating
equation method) cannot achieve.

Future simulation studies will have to evaluate the practical benefits that come
with the new one-step TMLEs based on universal least favorable or canonical sub-
models, relative to TMLEs based on the typical local least favorable submodel.
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Appendix

A Example for Section 4: Universal least favorable sub-
model for parametric models, and resulting one-step
TMLE

This section represents the final subsection of Section 4.
Even though the standard MLE for a parametric model is asymptotically effi-

cient for any pathwise differentiable target parameter, if the dimension of the finite
dimensional parameter is high relative to sample size, then the MLE is often not
well defined or overly variable so that regularization is needed, and in that case
a TMLE is still needed. High dimensional linear regression is an example of such
types of high dimensional parametric models, but also saturated models when O is
discrete (but possibly with many possible values). This type of application of TMLE
motivates us to consider the universal least favorable submodel and corresponding
one-step TMLE for parametric models.

Let O ∼ Pθ0 ∈ M = {Pθ : θ ∈ Θ ⊂ IRd} be modeled with a d-dimensional
parametric model. Assume that the model is dominated by a single dominating
measure µ. The density dPθ/dµ will be denoted with pθ. Let Ψ :M→ IR be a real
valued target parameter, which is pathwise differentiable with canonical gradient
D∗(Pθ) at Pθ ∈ M. Let Sj(Pθ) = d

dθj
log dPθ/dµ be the score of θj , j = 1, . . . , d.

The tangent space T (Pθ) at Pθ is the linear span of these d scores. Let α(Pθ) =
(αj(Pθ) : j = 1, . . . , d) be the uniquely defined vector of scalars such that

D∗(Pθ) =
d∑
j=1

αj(Pθ)Sj(Pθ).

Such a vector α(Pθ) exists and is unique if the d × d information matrix I(Pθ) =
PθSθS

>
θ is invertible, but even when the tangent space is of lower dimension than

d, there exists a whole space of such vectors of scalars, and this just selects one of
them in a unique manner.

A local least favorable model {P lfm
θ,ε : ε} through Pθ at ε = 0 is given by:

P lfm
θ,ε = Pθ+εα(Pθ) = P(θj+εαj(Pθ):j=1,...,d).

Let
θlfm(ε) = θ + εα(Pθ)

be the corresponding least favorable path in the Θ space, so that we can denote
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P lfm
θ,ε = Pθlfm(ε). Indeed,

d

dε
log plfmθ,ε

∣∣∣∣
ε=0

=
1

pθ

d

dε
pθ+εα(Pθ)

∣∣∣∣
ε=0

=

d∑
j=1

1

pθ

d

dθj
pθ

d

dε
(θj + εαj(Pθ))

∣∣∣∣
ε=0

=

d∑
j=1

αj(Pθ)Sj(Pθ)

= D∗(Pθ).

Let the universal least favorable model through θ be defined by the following
differential equation: for ε > 0, dε > 0

θ(ε+ dε) = θlfm(ε)(dε) = θ(ε) + dεα(Pθ(ε)).

Similarly, we define θ(ε−dε) for ε < 0. The corresponding integral equation is given
by: for ε > 0 we have

θ(ε) = θ +

∫ ε

0
α(Pθ(x))dx.

This differential or integral equation allows one to solve recursively for θ(ε), given
previous values θ(x) for x < ε.

A corresponding universal least favorable submodel {Pθ,ε : ε} through Pθ is now
defined by: for ε ≥ 0

Pθ,ε = Pθ(ε)

= Pθ+
∫ ε
0 α(Pθ(x))dx

.

And similarly we can define Pθ,ε for ε < 0. By our results, we also know that we
could define this universal least favorable submodel through Pθ by: for ε ≥ 0

Pθ,ε = Pθ exp

(∫ ε

0
D∗(Pθ(x))dx

)
,

but for the sake of practical approximation one should prefer the above formulation
in terms of a local least favorable submodel.

So let’s now discuss how one would implement the corresponding one-step TMLE.
Let θn be an initial estimator. Suppose that Pn log pθlfmn (ε) is increasing at ε = 0.
Then, the TMLE is defined by defining εn as the smallest local maximum larger
than 0 of ε→ Pn log pθn(ε), i.e., the log-likelihood along the universal least favorable
submodel. The TMLE of θ0 is now given by the one-step update θ∗n = θn(εn), and
the TMLE of Ψ(Pθ0) is given by Ψ(Pθ∗n).
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