




This has as solution Q̄ε = Qlfm
ε , and since there is only one solution, this proves that

the universal least favorable submodel Q̄ε = Qlfm
ε . Indeed, it follows directly that

for all ε
d

dε
L(Q̄lfm

ε ) = D∗1(Q̄lfm
ε , ḡ),

showing that our local least favorable submodel is already a universal least favorable
submodel. Indeed, the TMLE using Qlfm

ε requires only one step. In particular, as
predicted by our theory, this demonstrates that the analytic formula (4) respects
the constraints that Q̄ ∈ (0, 1), even though that is not immediately obvious from
its analytic integral or differential representation.

We refer to supplementary material for the construction of a universal least
favorable submodels to general loss functions that are allowed to depend on an
unknown nuisance parameter, and corresponding example from the causal inference
literature. These examples also demonstrate that in examples for which the TMLE
based on the local least favorable model already converged in one step, the least
favorable submodel is actually already a universal least favorable submodel.

6 Example: One-step TMLE of average treatment ef-
fect among the treated

Let O = (W,A, Y ) ∼ P0 and let M be a nonparametric statistical model. Let Ψ :
M→ IR be defined by Ψ(P ) = EP (EP (Y | A = 1,W )−EP (Y | A = 0,W ) | A = 1).
The efficient influence curve of Ψ at P is given by (Zheng et al., 2013):

D∗(P )(O) = H1(g, q)(A,W )(Y − Q̄(A,W )) +
A

q
{Q̄(1,W )− Q̄(0,W )−Ψ(P )},

where g(a |W ) = P (A = a |W ), Q̄(a,W ) = EP (Y | A = a,W ), q = P (A = 1), and

H1(g, q)(A,W ) =
A

q
− (1−A)g(1 |W )

qg(0 |W )
.

We note that

Ψ(P ) = Ψ1(QW , Q̄, g, q) =

∫
{Q̄(1, w)− Q̄(0, w)}g(1 | w)

q
dQW (w),

where QW is the probability distribution of W under P . So, if we define Q =
(QW , Q̄, g, q), then Ψ(P ) = Ψ1(Q). For notational convenience, we will use Ψ(P )
and Ψ(Q) interchangeably. Since we can estimate QW and q with their empirical
probability distributions, we are only interested in a universal least favorable sub-
model for (Q̄, g). We can orthogonally decompose D∗(P ) = D∗1(P )+D∗2(P )+D∗3(P )
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in L2
0(P ) into scores of Q̄, g, and QW , respectively, where

D∗1(P ) = H1(g, q)(A,W )(Y − Q̄(A,W ))

D∗2(P ) = H2(Q)(W )(A− g(1 |W ))

D∗3(P ) =
g(1 |W )

q
{Q̄(1,W )− Q̄(0,W )−Ψ(Q)},

and

H2(Q)(W ) =
Q̄(1,W )− Q̄(0,W )−Ψ(Q)

q
.

Thus the component of the efficient influence curve corresponding with (Q̄, g) is
given by D∗1(Q) +D∗2(Q).

We consider the following loss-functions and local least favorable submodels for
Q̄ and g (Zheng et al., 2013):

L1(Q̄)(O) = −{Y log Q̄(A,W ) + (1− Y ) log(1− Q̄(A,W ))}
LogitQ̄lfm

ε = LogitQ̄− εH1(g, q)

L2(g)(O) = −{A log g(1 |W ) + (1−A) log g(0 |W )}
Logitḡlfmε = Logitḡ − εH2(Q).

We now define the sum loss function L(Q̄, g) = L1(Q̄) +L2(g) and local least favor-
able submodel {Qlfm

ε , glfmε : ε} through (Q̄, g) at ε = 0 satisfying

d

dε
L(Q̄lfm

ε , glfmε )

∣∣∣∣
ε=0

= D∗1(Q) +D∗2(Q).

Thus, we can conclude that this defines indeed a local least favorable submodel for
(Q̄, g).

The universal least favorable submodel (3) is now defined by the following re-
cursive definition: for ε ≥ 0 and dε > 0,

LogitQ̄ε+dε = LogitQ̄lfm
ε,dε

= LogitQ̄ε − dεH1(gε, q)

Logitḡε+dε = Logitḡlfmε,dε

= Logitḡε − dεH2(QW , Q̄ε, q).

Similarly, we have a recursive relation for ε < 0, but since all these formulas are
just symmetric versions of the ε > 0 case, we will focus on ε > 0. This expresses
the next (Qε+dε, gε+dε) in terms of previously calculated (Qx, gx : x ≤ ε), thereby
fully defining this universal least favorable submodel. This recursive definition cor-
responds with the following integral representation of this universal least favorable
submodel:

LogitQ̄ε = LogitQ̄−
∫ ε

0
H1(gx, q)dx

Logitḡε = Logitḡ −
∫ ε

0
H2(QW , Q̄x, q)dx.
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Let’s now explicitly verify that this indeed satisfies the key property of a universal
least favorable submodel. Clearly, it is a submodel and it contains (Q, g) at ε = 0.
The score of Q̄ε at ε is given by H1(gε, q)(Y − Q̄ε) and the score of gε at ε is given
by H2(QW , Q̄ε, q)(A− ḡε(W )), so that

d

dε
L(Q̄ε, gε) = H1(gε, q)(Y − Q̄ε) +H2(QW , Q̄ε, q)(A− ḡε(W ))

= D∗1(QW , Q̄ε, gε, q) +D∗2(QW , Q̄ε, gε, q),

explicitly proving that indeed this is a universal least favorable model for (Q̄, g).
In our previous work on the TMLE for the average treatment effect among

the treated we implemented the TMLE based on the local least favorable sub-
model {Q̄lfm

ε1 , ḡ
lfm
ε2 : ε1, ε2}, using a separate ε1 and ε2 for Q̄ and ḡ. This TMLE

can also be implemented using a single ε by regressing a dependent variable vec-
tor (Y,A) on a stacked design matrix consisting of an offset and covariate H, the
vector (H1(g, q)(A,W ), H2(Q)(W ). This TMLE require several iterations until con-
vergence, whether it is implemented using using a single ε or separate (ε1, ε2).

The TMLE based on the universal least favorable submodel above is imple-
mented as follows, given an initial estimator (Q̄, g). One first determines the sign
of the derivative at h = 0 of PnL(Q̄h, gh). Suppose that the derivative is negative
so that it decreases for h > 0. Then, one keeps iteratively calculating (Q̄ε+dε, gε+dε)
for small dε > 0, given (Q̄x, gx : x ≤ ε), till PnL(Q̄ε+dε, gε+dε) ≥ PnL(Q̄ε, gε), at
which point the desired local maximum likelihood εn is attained. The TMLE of
(Q̄0, g0) is now given by Q̄εn , gεn , which solves Pn{D∗1(Qεn) +D∗2(Qεn)} = 0, where
Qεn = (QW,n, Q̄εn , gεn , qn), and QW,n, qn are the empirical counterparts of QW,0, q0.
Since, we also have PnD

∗
3(Qεn) = 0, it follows that PnD

∗(Qεn) = 0. The (one-step)
TMLE of Ψ(Q0) is given by the corresponding plug-in estimator Ψ(Qεn).

7 Simulation Studies for the average treatment effect
among the treated

The iterative TMLE for estimating the average treatment effect among the treated
(ATT) parameter returns to the data several times to make a sequence of local moves
that updates the estimate of Q̄n(A,W ) and ḡn(A,W ) at each iteration. In contrast,
the one-step TMLE using the universal least favorable sub-model fits the data once,
where the MLE step requires a series of micro updates within a much smaller local
neighborhood defined by a tuning parameter step size, dε. When there is sufficient
information in the data for estimating the target parameter these two approaches
can be expected to have comparable performance. When there is sparsity in the
data theory suggests the one-step TMLE will be more stable, having lower variance
than the iterative TMLE.

Two simulation studies demonstrate these properties. The iterative TMLE was
implemented using a single ε, the closest analog to the one-step TMLE. dε was set
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to 0.001 for the one-step TMLE. Source code for the estimators and the simulation
studies is available as supplementary materials. The parameter of interest is defined
by the mapping Ψ1(Q) =

∫
{Q̄(1, w) − Q̄(0, w)}g(1|w)q dQw(w). Each TMLE targets

initial estimates Q̄0
n(A,W ) and g0n(W ) towards the parameter of interest. The pa-

rameter estimate is evaluated by plugging the updated estimates, Q̄∗n(A,W ), g∗n(W )
into the mapping, with the integral approximated by taking the empirical mean over
all observations in the data, ψn = 1

n

∑n
i=1

{
Q̄∗n(1,Wi)− Q̄∗n(0,Wi)

} g∗n(1|Wi)
q .

Simulation Study I: For this study 1000 datasets were generated at two sample
sizes, n = 100 and n = 1000. Two normally distributed covariates and one binary
covariate were generated as W1 ∼ N(0, 1), W2 ∼ N(0, 1), W3 ∼ Bern(0.5). All
covariates are independent. Treatment assignment probabilities are given by P (A =
1 |W ) = expit(−0.4−0.2W1−0.4W2+0.3W3). A binary outcome, Y was generated
by setting P (Y = 1 | A,W ) = expit(−1.2−1.2A−0.1W1−0.2W2−0.1W3). The true
value of the ATT parameter is ψ0 = −0.1490. There are no theoretical positivity
violations (treatment assignment probabilities were typically between 0.07 and 0.87),
but at the smaller sample size there is less information in the data for estimating
g within some strata of W . This suggests that some of the generated data sets
will prove more challenging to the iterative TMLE than to the one-step TMLE.
Estimates were obtained using correct and misspecified logistic regression models
for the initial estimates of Q and g. Qcor was estimated using a logistic regression of
Y on A,W1,W2,W3. Qmis was estimated using a logistic regression of Y on A,W1.

gcor was estimated using a logistic regression of A on W1,W2,W3, and gmis was
estimated using a logistic regression of A on W1. Bias, variance, mean squared error
(MSE), and relative efficiency (RE = MSEone−step / MSEiter) are shown in Table 1.
RE < 1 indicates the one-step TMLE has better finite sample efficiency than the
iterative TMLE.

Results: The one-step and iterative TMLEs exhibit similar performance when n =
1000, with RE = 1. When n = 100 the iterative TMLE failed to converge for
24 of the 1000 datasets. The performance of the two TMLEs on the remaining
976 datasets was quite similar. However, the fact that the bias, variance, and
MSE of the one-step TMLE are larger when evaluated over all 1000 datasets tells
us that the 24 omitted datasets where the iterative TMLE failed were among the
most challenging. One way to repair the performance of the iterative TMLE is
to bound predicted outcome probabilities away from 0 and 1. We re-analyzed the
same 1000 datasets enforcing bounds on Q̄n of (10−9, 1− 10−9) for both estimators.
This minimal bounding prevents the iterative TMLE from failing, and should not
introduce truncation bias. Bounding Q̄n allowed the iterative TMLE to produce a
result for all analyses. Enforcing bounds had no effect on estimates produced by the
one-step TMLE. This confirms that the strategy of taking many small steps within a
local neighborhood whose boundaries shift minutely with each iteration helps avoid
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extremes. Although the iterative TMLE no longer failed when Q̄n was bounded,
it had higher variance and MSE than the one-step TMLE. Efficiency gains of the

Table 1: Simulation Study I. Bias, variance, mean squared error (MSE) and relative
efficiency (RE) of the one-step TMLE and iterative TMLE over 1000 Monte Carlo
simulations (n = 1000 and n = 100). Results when n = 100 are shown with and
without omitting 24 challenging runs from the analysis, and when Q̄n is bounded
away from 0 and 1 for both TMLEs.∗

Bias Variance MSE
one-step iterative one-step iterative one-step iterative RE

n = 1000
Q correct
gcor −0.00042 −0.00042 0.00059 0.00059 0.00059 0.00059 1.00
gmis −0.00050 −0.00050 0.00057 0.00057 0.00057 0.00057 1.00

Q misspecified
gcor −0.00035 −0.00035 0.00059 0.00059 0.00059 0.00059 1.00
gmis 0.01210 0.01210 0.00049 0.00048 0.00063 0.00063 1.00

n = 100, all runs
Q correct
gcor 0.00049 0.00694 0.00693
gmis −0.00215 0.00635 0.00635

Q misspecified
gcor 0.00113 0.00685 0.00684
gmis 0.01226 0.00528 0.00543

n = 100, (24 runs omitted)
Q correct
gcor 0.00296 0.00295 0.00679 0.00678 0.00679 0.00679 1.00
gmis 0.00023 0.00023 0.00621 0.00621 0.00621 0.00620 1.00

Q misspecified
gcor 0.00357 0.00363 0.00671 0.00669 0.00671 0.00670 1.00
gmis 0.01474 0.01473 0.00509 0.00509 0.00530 0.00530 1.00

n = 100,Q bounded
Q correct
gcor 0.00049 −0.00182 0.00694 0.00781 0.00693 0.00781 0.89
gmis −0.00215 −0.00168 0.00635 0.01033 0.00635 0.01033 0.62

Q misspecified
gcor 0.00113 −0.00052 0.00685 0.00738 0.00684 0.00738 0.93
gmis 0.01226 0.01031 0.00528 0.00592 0.00543 0.00602 0.90

∗bounding Q̄n had no effect on estimates produced when n = 1000.
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one-step TMLE were between 7 and 28 percent.

Simulation Study II: This study more closely examines estimator performance
when there is sparsity in the data. Sparsity was introduced by overfitting the ini-
tial Q̄0

n, leaving little signal for the targeting step. Theory suggests the one-step
TMLE will be a more stable estimator than the iterative TMLE under these chal-
lenging conditions. To explore the impact of overfitting the data on the iterative
and one-step TMLEs we constructed a nested sequence of correct logistic regression
outcome models. Covariates W1,W2,W3 were generated as above. Eight additional
independent and identically distributed covariates W4, . . . ,W12 were drawn from a
normal distribution with mean 0 and standard deviation 1. None of the additional
covariates were causally related to Y or A. The binary treatment indicator, A was
generated in the same way as in study I. The outcome was generated by setting
P (Y = 1 | A,W ) = expit(−1.2− 1.2A− 0.1W1− 0.2W2− 0.1W3). The smallest cor-
rect model, Qc1, regresses Y on A,W1,W2,W3. Subsequent models were constructed
by adding a single covariate to the model. The ten nested models were defined as

Qc1 : E[Y |A,W ] = expit(A+W1 +W2 +W3),

Qc2 : E[Y |A,W ] = expit(A+W1 +W2 +W3 +W4),

Qc3 : E[Y |A,W ] = expit(A+W1 +W2 +W3 +W4 +W5),

Qc4 : E[Y |A,W ] = expit(A+W1 +W2 +W3 +W4 +W5 +W6),

Qc5 : E[Y |A,W ] = expit(A+W1 +W2 +W3 +W4 +W5 +W6 +W7),

Qc6 : E[Y |A,W ] = expit(A+W1 +W2 +W3 +W4 +W5 +W6 +W7 +W8),

Qc7 : E[Y |A,W ] = expit(A+W1 +W2 +W3 +W4 +W5 +W6 +W7 +W8 +W9),

Qc8 : E[Y |A,W ] = expit(A+W1 +W2 +W3 +W4 +W5 +W6 +W7 +W8 +W9 +W10),

Qc9 : E[Y |A,W ] = expit(A+W1 +W2 +W3 +W4 +W5 +W6 +W7 +W8 +W9 +W10

+W11),

Qc10 : E[Y |A,W ] = expit(A+W1 +W2 +W3 +W4 +W5 +W6 +W7 +W8 +W9 +W10

+W11 +W12).

Each of these regression models is correct, but as the model grows larger and larger
the model fitting procedure begins to respond to random variation in the outcome.
This problem is more acute at smaller sample sizes.

Estimates were obtained from 1000 datasets (n = 100), with g modeled correctly
as a regression of A on W1,W2,W3. Bias, variance, MSE, and RE are reported in
Table 2. The iterative TMLE failed on a large number of datasets. On the less
challenging datasets where it did converge, performance of the iterative and one-step
TMLEs was quite similar. When bounds on Q̄n were enforced at (10−9, 1−10−9), the
performance of the one-step TMLE was unchanged, while the iterative TMLE was
repaired. The iterative TMLE had larger bias, variance, and MSE than the one-step
TMLE, which was up to four times more efficient then the iterative TMLE. These
results are plotted in Fig. 1, along with estimates obtained when the parameter was
evaluated based on each initial non-targeted outcome regression fit. The behavior
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Figure 1: Simulation study II. Bias, Var, MSE for iterative TMLE, one-step TMLE,
and the non-targeted Initial estimator as overfit increases, Qc1 - Qc10.

of the iterative TMLE is erratic, while that of the non-targeted estimator and the
one-step TMLE are quite stable.

8 Universal canonical one-dimensional submodel that
targets a multidimensional target parameter

Let Ψ :M→ H be a Hilbert-space valued pathwise differentiable target parameter.
Typically, we simply haveH = IRd endowed with the standard inner product 〈x, y〉 =∑d

j=1 xjyj . However, we also allow that Ψ(P ) is a function t → Ψ(P )(t) from

τ ⊂ IR to IR in a Hilbert space L2(Λ) endowed with inner product 〈h1, h2〉 =∫
h1(t)h2(t)dΛ(t), where Λ is a user supplied positive measure with

∫
dΛ(t) < ∞.

For notational convenience, we will often denote the inner product 〈h1, h2〉 with
h>1 h2, analogue to the typical notation for the inner product in IRd. Let ‖ h ‖=√
〈h, h〉 be the Hilbert space norm, which would be the standard Euclidean norm

in the case that H = IRd. Let D∗(P ) be the canonical gradient. If H = IRd, then
this is a d-dimensional canonical gradient D∗(P ) = (D∗j (P ) : j = 1, . . . , d), but in
general D∗(P ) = (D∗t (P ) : t ∈ τ). Let L(p) = − log p, where p = dP/dµ is a density
of P � µ w.r.t. some dominating measure µ. In this section we will construct a
one-dimensional submodel {Pε : ε ≥ 0} through P at ε = 0 so that, for any ε ≥ 0,

d

dε
PnL(pε) =‖ PnD∗(Pε) ‖ . (6)

The one-step TMLE Pεn with εn = arg minε PnL(Pε), or εn chosen large enough so
that the derivative is smaller than (e.g.) 1/n, now solves d

dεPnL(Pε)
∣∣
ε=0

= 0 (or
< 1/n), and thus ‖ PnD∗(Pεn) ‖= 0 (or < 1/n). Note that ‖ PnD∗(Pεn) ‖= 0
implies that PnD

∗
t (Pεn) = 0 for all t ∈ τ so that the one-step TMLE solves all

desired estimating equations.
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Table 2: Simulation Study II. Bias, variance, mean squared error (MSE) and relative
efficiency (RE) of the one-step TMLE and iterative TMLE over 1000 Monte Carlo
simulations, n = 100.

Bias Variance MSE
One-Step Iterative One-Step Iterative One-Step Iterative RE

Q̄n unbounded, problematic runs omitted∗

Qc1 0.00545 0.00544 0.00368 0.00367 0.00370 0.00370 1.00
Qc2 0.00509 0.00512 0.00376 0.00376 0.00379 0.00379 1.00
Qc3 0.00345 0.00346 0.00384 0.00384 0.00385 0.00385 1.00
Qc4 0.00109 0.00110 0.00408 0.00408 0.00408 0.00408 1.00
Qc5 −0.00047 −0.00031 0.00425 0.00425 0.00425 0.00425 1.00
Qc6 −0.00276 −0.00279 0.00443 0.00444 0.00444 0.00445 1.00
Qc7 −0.00468 −0.00472 0.00461 0.00462 0.00463 0.00464 1.00
Qc8 −0.00821 −0.00873 0.00514 0.00550 0.00520 0.00557 0.93
Qc9 −0.00980 −0.01013 0.00549 0.00561 0.00558 0.00570 0.98
Qc10 −0.01306 −0.01311 0.00579 0.00580 0.00596 0.00597 1.00

Q̄n bounded at (10−9,1− 10−9)
Qc1 −0.00308 −0.00687 0.00425 0.01649 0.00426 0.01652 0.26
Qc2 −0.00341 −0.00672 0.00435 0.01509 0.00435 0.01512 0.29
Qc3 −0.00480 −0.00979 0.00448 0.01363 0.00450 0.01371 0.33
Qc4 −0.00622 −0.00909 0.00466 0.01508 0.00470 0.01515 0.31
Qc5 −0.00784 −0.01420 0.00482 0.00872 0.00487 0.00891 0.55
Qc6 −0.00958 −0.01613 0.00501 0.00708 0.00510 0.00734 0.69
Qc7 −0.01117 −0.01519 0.00521 0.01002 0.00533 0.01024 0.52
Qc8 −0.01393 −0.01979 0.00565 0.00777 0.00583 0.00816 0.72
Qc9 −0.01528 −0.02086 0.00597 0.00778 0.00620 0.00821 0.76
Qc10 −0.01746 −0.01745 0.00632 0.01241 0.00662 0.01270 0.52
∗Number of omitted runs: 119, 110, 104, 94, 86, 73, 67, 57, 56, 42.
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8.1 A universal canonical submodel that targets a multidimen-
sional target parameter

Consider the following submodel: for ε ≥ 0, we define

pε = pΠ[0,ε]

(
1 +
{PnD∗(Px)}>D∗(Px)

‖ D∗(Px) ‖
dx

)
= p exp

(∫ ε

0

{PnD∗(Px)}>D∗(Px)

‖ D∗(Px) ‖
dx

)
. (7)

Theorem 4 We have {pε : ε ≥ 0} is a family of probability densities, its score at
ε is a linear combination of D∗t (Pε) for t ∈ τ , and is thus in the tangent space at
T (Pε), and

d

dε
PnL(Pε) =‖ PnD∗(Pε) ‖ .

As a consequence, we have d
dεPnL(Pε) = 0 implies ‖ PnD∗(Pε) ‖= 0.

As before, our practical construction below demonstrates that, under regularity
conditions, we actually have that {pε : ε} ⊂ M is also a submodel.

The normalization by ‖ D∗(Px) ‖ is motivated by a practical analogue construc-
tion below and provides an important intuition behind this analytic construction.
However, we can replace this by any other normalization for which the derivative of
the log-likelihood at ε equals a norm of PnD

∗(Pε). To illustrate this let’s consider
the case that H = IRd. For example, we could consider the following submodel. Let
Σn(Px) = Pn{D∗(Px)D∗(Px)>} be the empirical covariance matrix of D∗(Px), and
let Σ−1n (Px) be its inverse. We could then define for ε > 0,

pε = p exp

(∫ ε

0
{PnD∗(Px)}>Σ−1n D∗(Px)dx

)
.

In this case, we have

d

dε
PnL(Pε) = PnD

∗(Pε)
>Σn(Pε)

−1PnD
∗(Pε).

This seems to be an appropriately normalized norm, equal to the euclidean norm of
the orthonormalized version of the original D∗(Pε), so that the one-step TMLE will
still satisfy that ‖ PnD∗(Pεn) ‖= 0.

It is not clear to us if these choices have a finite sample implication for the
resulting one-step TMLE (asymptotics is the same), and if one choice would be
better than another, but either way, the resulting one-step TMLE ends up with a
Pεn satisfying PnD

∗(Pεn) = 0 (or oP (1/
√
n)), the only key ingredient in the proof

of the asymptotic efficiency of the TMLE.
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8.2 The practical construction of a universal canonical
one-dimensional submodel targeting a multidimensional target
parameter

Let’s define a local least favorable submodel {plfmδ : δ} ⊂ M by the following local
property: for all δ

d

dδ
log plfmδ

∣∣∣∣>
δ=0

δ = D∗(P )>δ.

For the case that H = IRd, this corresponds with assuming that the score of the
submodel at δ = 0 equals the canonical gradient D∗(P ), while, for a general Hilbert
space, it states that the derivative of log pε in the direction δ (a function in H)
equals 〈D∗(P ), δ〉 =

∫
D∗t (P )δ(t)dΛ(t).

Consider the log-likelihood criterion PnL(P lfm
δ ), and note that its derivative at

δ = 0 in the direction δ equals 〈PnD∗(P ), δ〉 = {PnD∗(P )}>δ. For a small number
dx, we want to maximize the log-likelihood over all δ with ‖ δ ‖≤ dx, and locally,
this corresponds with maximizing its linear gradient approximation:

δ → {PnD∗(P )}>δ.

By the Cauchy-Schwarz inequality, it follows that this is maximized over δ with
‖ δ ‖≤ dx by

δ∗n(P, dx) =
PnD

∗(P )

‖ PnD∗(P ) ‖
dx ≡ δ∗n(P )dx,

where we defined δ∗n(P ) = PnD
∗(P )/ ‖ PnD∗(P ) ‖. We can now define our update

Pdx = P lfm
δ∗n(P,dx)

. This process can now be iterated by applying the above with P
replaced by Pdx, resulting in an update P2dx, and in general PKdx. So this updating
process is defined by the differential equation:

Px+dx = P lfm
x,δ∗n(Px)dx

,

where P lfm
x,δ is the local least favorable multidimensional submodel above but now

through Px instead of P .
Assuming that the local least favorable model h → plfmx,h is continuously twice

differentiable with a score D∗(Px) at h = 0, we obtain a second order Taylor expan-
sion

plfmx,δ∗n(Px)dx = px +

{
d

dh
plfmx,h

∣∣∣∣
h=0

}>
δ∗n(Px)dx+O((dx)2)

= px(1 + {δ∗n(Px)}>D∗(Px)dx) +O((dx)2),

so that, under mild regularity conditions, we obtain

px+dx = px(1 + {δ∗n(Px)}>D∗(Px)dx) +O((dx)2).
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This implies:

px = p exp

(∫ ε

0

{PnD∗(Px)}>

‖ PnD∗(Px) ‖
D∗(Px)dx

)
.

So we obtained the exact same analytical representation (7) as above. Since the
above practical construction starts out with P ∈M and never leaves the modelM,
this proves that, under mild regularity conditions, this analytic representation (7) is
actually a submodel ofM after all, but, when using its practical implementation and
approximation, one should use the actual local least favorable submodel in order to
guarantee that one stays in the model. We can formalize this in a theorem analogue
to Theorem 2, but instead such a theorem will be presented in Section 10 for the
more general targeted minimum loss-based estimation methodology.

The above practical construction provides us with an intuition for the normal-
ization by ‖ PnD∗(Px) ‖.

8.3 Existence of MLE or approximate MLE εn.

Since

Pn log pε =

∫ ε

0
‖ PnD∗(Px) ‖ dx,

and its derivative thus equals ‖ PnD∗(Pε) ‖, we have that the log-likelihood is non-
decreasing in ε.

If the local least favorable submodel in the practical construction of the one-
dimensional universal canonical submodel {pε : ε ≥ 0} (7) only contains densities
with supremum norm smaller than some M < ∞ (e.g., this is assumed by the
modelM), then we will have that supε≥0 supo∈O pε(o) < M <∞. This implies that
Pn log pε is bounded from above by logM . Let’s first assume that limε→∞ Pn log pε <
∞. Thus, the log-likelihood is a strictly increasing function till it becomes flat, if
ever. Suppose that lim supx→∞ ‖ PnD∗(Px) ‖> δ > 0 for some δ > 0. Then it
follows that the log-likelihood converges to infinity when x converges to infinity,
which contradicts the assumption that the log-likelihood is bounded from above by
logM <∞. Thus, we know that lim supx→∞ ‖ PnD∗(Px) ‖= 0 so that we can find
an εn so that for ε > εn ‖ PnD∗(Pε) ‖< 1/n, as desired.

Suppose now that we are in a case in which the log-likelihood converges to
infinity when ε → ∞, so that our bounded log likelihood assumption is violated.
This might correspond with a case in which each pε is a continuous density, but pε
starts approximating an empirical distribution when ε → ∞. Even in such a case,
one would expect that we will have that ‖ PnD∗(Pε) ‖→ 0, just like an NPMLE of
a continuous density of a survival time solves the efficient influence curve equation
for its survival function.

The above practical construction of the submodel, as an iterative local maximiza-
tion of the log-likelihood along its gradient, strongly suggests that even without the
above boundedness assumption the derivative ‖ PnD∗(Pε) ‖ will converge to zero as
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ε → ∞ so that the desired MLE or approximate MLE exists. Our initial practical
implementations of this one-step TMLE of a multivariate target parameter demon-
strate that it works well and that finding the desired maximum or approximate
maximum is not an issue. We will demonstrate the implementation and practical
demonstration of such a one-step TMLE for challenging causal inference problems
in a future article.

8.4 A universal score-specific one-dimensional submodel targeting
a multivariate score equation

In the above two subsections we could simply replace D∗(P ) by a user supplied
D(P ), giving us a theoretical one-dimensional parametric model {Pε : ε} so that
the derivative d

dεPnL(Pε) at ε equals ‖ PnD(Pε) ‖, so that a corresponding one-step
TMLE will solve PnD(Pεn) = 0. Similarly, given a local parametric model whose
score at ε = 0 equals D(P ) will yield a corresponding practical construction of this
universal submodel. One can also use such a universal score-specific submodel to
construct one-step TMLE of a one-dimensional target parameter with extra proper-
ties by making it solve not only the efficient influence curve equation but also other
equations of interest (such as the PnD

∗
1(Q∗n) = PnD

∗
2(Q∗n) = 0 in Section 6). In the

current literature, solving multiple score equations typically required an iterative
TMLE based on a local score-specific submodel, so that these estimation problems
can be revisited with this new one-step TMLE (see our supplementary material).

9 Example: A one-step TMLE, based on universal canon-
ical one-dimensional submodel, of an infinite dimen-
sional target parameter

An open problem has been the construction of an efficient substitution estimator
Ψ(P ∗n) of a pathwise differentiable infinite dimensional target parameter Ψ(P0) such
as a survival function. Current approaches would correspond with incompatible
estimators such as using a TMLE for each Ψ(P0)(t) separately, resulting in a non-
substitution estimator such as a non-monotone estimator of a survival function. In
this section we demonstrate, through a causal inference example, that our universal
canonical submodel allows us to solve this problem with the one-step TMLE defined
in the previous section.

Let O = (W,A, T ) ∼ P0, where W are baseline covariates, A ∈ {0, 1} is a
point-treatment, and T is a survival time. Consider a statistical modelM that only
makes assumptions about the conditional distribution g0(a | W ) = P0(A = a | W )
of A, given W . Let W → d(W ) ∈ {0, 1} be a given dynamic treatment satisfying
g0(d(W ) |W ) > 0 a.e. Let Ψ :M→ H be defined by:

Ψ(P )(t) = EPP (T > t | A = d(W ),W ), t ≥ 0.
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Under a causal model and the randomization assumption this equals the counter-
factual survival function P (Td > t) of the counterfactual survival time Td under
intervention d.

Let H be the Hilbert space of real valued functions on IR≥0 endowed with inner
product h>1 h2 = 〈h1, h2〉 =

∫
h1(t)h2(t)dΛ(t) for some user-supplied positive and

finite measure Λ. The norm on this Hilbert space is thus given by ‖ h ‖=
√
hh> =√∫

h(t)2dΛ(t). Let Q̄t(A,W ) = P (T > t | A,W ), Y (t) = I(T > t), QW the

marginal probability distribution of W , and Q = (Q̄,QW ). The efficient influence
curve D∗(P ) = (D∗t (P ) : t ≥ 0) is defined by:

D∗t (P )(O) =
I(A = d(W ))

g(A |W )
(Y (t)− Q̄t(A,W )) + {Q̄t(d(W ),W )−Ψ(P )(t)}

≡ D∗1,t(g, Q̄) +D∗2,t(P ),

where D∗1,t(g, Q̄) is the first component of the efficient influence curve that is a score
of the conditional distribution of T , given A,W . Notice that Ψ(P ) = Ψ1(QW , Q̄) =
(QW Q̄t : t ≥ 0). We will estimateQW,0 with the empirical distribution ofW1, . . . ,Wn,
so that a TMLE will only need to target the estimator of the conditional survival
function Q̄0 of T , given A,W . Let q(t | A,W ) be the density of T , given A,W and
let qn be an initial estimator of this conditional density. For example, one might
use machine learning to estimate the conditional hazard q0/Q̄0, which then implies
a corresponding density estimator qn. We are also given an estimator gn of g0.

The universal canonical one-dimensional submodel (7) applied to p = qn is de-
fined by the following recursive relation: for ε > 0,

qn,ε = qn exp

(∫ ε

0

{PnD∗1(gn, Q̄n,x)}>D∗1(gn, Q̄n,x)

‖ D∗1(gn, Q̄n,x) ‖
dx

)
.

To obtain some more insight in this expression, we note, for example, that the inner
product is given by:

{PnD∗1(gn, Q̄n,x)}>D∗1(gn, Q̄n,x)(o) =

∫
t
(PnD

∗
1,t(gn, Q̄n,x)D∗1,t(gn, Q̄n,x)(o)dΛ(t),

(8)
and similarly we have such an integral representation of the norm in the denomi-
nator. Our Theorem 4, or explicit verification, shows that for all ε ≥ 0, qn,ε is a
conditional density of T , given A,W , and

d

dε
Pn log qn,ε =‖ PnD∗1(gn, Q̄n,ε) ‖ .

Thus, if we move ε away from zero, the log-likelihood increases, and, one searches
for the first εn so that this derivative is smaller than (e.g.) 1/n. Let q∗n = qn,εn ,
and let Q̄∗n,t(A,W ) =

∫∞
t q∗n(s | A,W )ds be its corresponding conditional survival
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function, t ≥ 0. Then our one-step TMLE of the d-specific survival function Ψ(P0)
is given by ψ∗n = Ψ(QW,n, Q̄

∗
n) = QW,nQ̄

∗
n:

ψ∗n(t) =
1

n

n∑
i=1

Q̄∗n,t(d(Wi),Wi).

Since q∗n is an actual conditional density, it follows that ψ∗n is a survival function.
Suppose that the derivative of the log-likelihood at εn equals zero exactly (instead
of being smaller than 1/n). Then, we have ‖ PnD∗(gn, QW,n, Q̄∗n) ‖= 0, so that
for each t ≥ 0, PnD

∗
t (gn, QW,n, Q̄

∗
n) = 0, making ψ∗n(t) a standard TMLE of ψ0(t),

so that its asymptotic linearity for a fixed t can be established accordingly. Let’s
now consider a proof of weak convergence of

√
n(ψ∗n − ψ0) as a random function.

Firstly, let’s assume that an exact MLE is obtained so that PnD
∗(gn, QW,n, Q̄

∗
n) = 0.

Combined with Ψ(Q∗n) − Ψ(Q0) = −P0D
∗(gn, Q

∗
n) + R2((Q

∗
n, gn), (Q0, g0)), where

R2() = (R2t() : t ∈ τ) for an explicitly defined R2t(P, P0), we then obtain

ψ∗n − ψ0 = (Pn − P0)D
∗(gn, Q

∗
n) +R2((Q

∗
n, gn), (Q0, g0)).

We now assume that {D∗t (P ) : P ∈Mt ∈ τ} is a P0-Donsker class, supt∈τ P0{D∗t (gn,
Q∗n)−D∗t (g0, Q0)}2 → 0 in probability, and supt |R2t((Q

∗
n, gn), (Q0, g0))| = oP (n−1/2).

Then, it follows that

√
n(ψ∗n − ψ0) =

√
n(Pn − P0)D

∗(P0) + oP (n−1/2)⇒d G0,

that is,
√
n(ψ∗n − ψ0) converges weakly as a random element of the cadlag function

space endowed with the supremum norm to a gaussian process G0 with covariance
structure implied by the covariance function ρ(s, t) = P0D

∗
s(P0)D

∗
t (P0). In partic-

ular, if g0 is known, then R2t((Q
∗
n, g0), (Q0, g0)) = 0, so that the second order term

condition supt | R2t((Q
∗
n, gn), (Q0, g0)) |= oP (n−1/2) is automatically satisfied with

oP (n−1/2) replaced by 0. This also allows the construction of a simultaneous con-
fidence band for ψ0. Due to the double robustness of the efficient influence curve,
under appropriate conditions, one can also obtain asymptotic linearity and weak
convergence with an inefficient influence curve under misspecfication of either gn or
Q̄n.

If we only have ‖ PnD∗(P ∗n) ‖= oP (n−1/2) (instead of 0), then the above proof
still applies so that we now obtain:

√
n(ψ∗n − ψ0) = (Pn − P0)D

∗(P0) + rn,

but where now ‖ rn ‖= oP (1/
√
n), so that we obtain asymptotic efficiency and weak

convergence in the Hilbert space L2(Λ), beyond the point-wise efficiency of ψ∗n(t).
However, in practice, one can actually track the supremum norm ‖ PnD∗(Pεn) ‖∞=
supt | PnD∗t (Pεn) |, and if one observes that for the selected εn this supremum norm
is smaller than 1/n, then, we still obtain the asymptotic efficiency in supremum
norm above.
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Regarding the practical construction of qn,ε, we could use the following infinite
dimensional local least favorable submodel through a conditional density q given by

qlfmδ = q(1 + δ>D∗1(g, Q̄)),

and follow the practical construction described in the previous section for general lo-
cal least favorable submodels. Notice that here δ>D∗1(g, Q̄) =

∫
δ(t)D∗1,t(g, Q̄)dΛ(t).

In order to guarantee that the supremum norm of the density qlfmδ for local δ with
‖ δ ‖< dx remains below a universal constant M < ∞, one could present such
models in the conditional hazard on a logistic scale that bounds the hazard between
[0,M ]. However, we doubt that this will be an issue in practice, and since it may be
necessary for the continuous density qn,ε to approximate an empirical distribution
in some sense in order to solve ‖ PnD∗(Pε) ‖= 0, we do not want to prevent this
from happening.

10 Universal canonical one-dimensional submodel for
targeted minimum loss-based estimation of a multi-
dimensional target parameter

10.1 A universal canonical one-dimensional submodel

For the sake of presentation we will focus on the case that the target parameter
is Euclidean valued, i.e. H = IRd, but the presentation immediately generalizes
to infinite dimensional target parameters, as in the previous section. Let’s now
generalize the construction of a universal canonical submodel to the more general
targeted minimum loss based estimation methodology. We now assume that Ψ(P ) =
Ψ1(Q(P )) ∈ IRd for some target parameter Q : M → Q(M) defined on the model
and real valued function Ψ1 : Q(M)→ IRd. Let L(Q)(O) be a loss-function for Q(P )
in the sense that Q(P ) = arg minQ∈Q(M) PL(Q). Let D∗(P ) = D∗(Q(P ), G(P )) be
the canonical gradient of Ψ at P , whereG :M→ G(M) is some nuisance parameter.
We consider the case that the linear span of the components of the efficient influence
curve D∗(P ) is in the tangent space of Q, so that a least favorable submodel does
not need to fluctuate G: otherwise, one just includes G in the definition of Q. Given,
(Q,G), let {Qlfm

δ : δ} ⊂ Q(M) be a local d-dimensional least favorable model w.r.t.
loss function L(Q) at δ = 0 so that

d

dδ
L(Qlfm

δ )

∣∣∣∣
δ=0

= D∗(Q,G).

The dependence of this submodel on G is suppressed in this notation.
Consider the empirical risk PnL(Qlfm

δ ), and note that its gradient at δ = 0 equals
PnD

∗(Q,G). For a small number dx, we want to minimize the empirical risk over all
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δ with ‖ δ ‖≤ dx, and locally, this corresponds with maximizing its linear gradient
approximation:

δ → {PnD∗(Q,G)}>δ.

By the Cauchy-Schwarz inequality, it follows that this is maximized over δ with
‖ δ ‖≤ dx by

δ∗n(Q, dx) =
PnD

∗(Q,G)

‖ PnD∗(Q,G) ‖
dx ≡ δ∗n(Q)dx,

where we defined δ∗n(Q) = PnD
∗(Q,G)/ ‖ PnD∗(Q,G) ‖. We can now define our

update Qdx = Qlfm
δ∗n(Q,dx)

. This process can now be iterated by applying the above
with Q replaced by Qdx, resulting in an update Q2dx, and in general QKdx. So this
updating process is defined by the differential equation:

Qx+dx = Qlfm
x,δ∗n(Qx)dx)

,

where Qlfm
x,δ is the local least favorable multidimensional submodel above but now

through Qx instead of Q.
Assume that for some L̇(Q)(O), we have

d

dh
L(Qlfm

x,h)

∣∣∣∣
h=0

= L̇(Qx)
d

dh
Qlfm
x,h

∣∣∣∣
h=0

. (9)

Then,
d

dh
Qlfm
x,h

∣∣∣∣
h=0

=
D∗(Qx, G)

L̇(Qx)
.

Utilizing that the local least favorable model h → Qlfm
x,h is continuously twice

differentiable with a score D∗(Qx, G) at h = 0, we obtain a second order Taylor
expansion

Qlfm
x,δ∗n(Qx)dx

= Qx +
d

dh
Qlfm
x,h

∣∣∣∣
h=0

δ∗n(Qx)dx+O((dx)2)

= Qx +
D∗(Qx, G)>

L̇(Qx)
δ∗n(Qx)dx+O((dx)2).

This implies the following recursive analytic definition of the universal canonical
submodel through Q:

Qε = Q+

∫ ε

0

D∗(Qx, G)>

L̇(Qx)
δ∗n(Qx)dx. (10)

Let’s now explicitly verify that this indeed satisfies the desired condition so that
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the one-step TMLE solves PnD
∗(Qεn , G) = 0. Only assuming (9) it follows that

d

dε
PnL(Qε) = Pn

d

dε
L(Qε)

= PnL̇(Qε)
d

dε
Qε

= PnL̇(Qε)
D∗(Qε, G)>

L̇(Qε)
δ∗n(Qε)

= PnD
∗(Qε, G)>δ∗n(Qε)

= {PnD∗(Qε, G)}> PnD
∗(Qε, G)

‖ PnD∗(Qε, G) ‖

=

∑d
j=1{PnD∗j (Qε, G)}2

‖ PnD∗(Qε, G) ‖
= ‖ PnD∗(Qε, G) ‖ .

In addition, under some regularity conditions, so that the following derivation in
terms of the local least favorable submodel applies, it also follows that Qε ∈ Q(M).

This proves the following theorem.

Theorem 5 Given any (Q,G) compatible with model M, let {Qlfm
δ : δ ∈ Ba(0)} ⊂

Q(M) be a local least favorable model w.r.t. loss function L(Q) at δ = 0 so that

d

dδ
L(Qlfm

δ )

∣∣∣∣
δ=0

= D∗(Q,G).

Here Ba(0) = {x :‖ x ‖< a} for some positive number a. Assume that for some
L̇(Q)(O), we have

d

dε
L(Qlfm

ε )

∣∣∣∣
ε=0

= L̇(Q)
d

dε
Qlfm
ε

∣∣∣∣
ε=0

.

Consider the corresponding univariate model {Qε : ε} defined by (10). It goes through
Q at ε = 0, and, it satisfies that for all ε

Pn
d

dε
L(Qε) =‖ PnD∗(Qε, G) ‖, (11)

where ‖ x ‖=
√∑d

j=1 x
2
j is the Euclidean norm.

In addition, assume that a in Ba(0) can be chosen to be independent of the
choice (Q,G) in {(Qε, G) : ε > 0}, and assume the following second order Taylor
expansion: for h = (h1, . . . , hd),

Qlfm
ε,h = Qε +

d

dh
Qlfm
ε,h

∣∣∣∣
h=0

h+R2(Qε, G, ‖ h ‖)

= Qε +
D∗(Qε, G)

L̇(Qε)
h+R2(Qε, G, ‖ h ‖),
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where
sup
ε

sup
o∈O
| R2(Qε, G, ‖ h ‖)(o) |= O((‖ h ‖2).

We also assume that supε supo∈O
|D∗(Qε,G)

L̇(Qε)
(o) |<∞.

Then, we also have {Qε : ε ≥ 0} ⊂ M.

11 Summary

Given a d-variate estimating function (Q,O) → D(Q,G)(O), a loss function L(Q)
for Q : M → Q(M), a local d-dimensional submodel {Qsmδ : δ} ⊂ Q(M) so that
d
dδL(Qsmδ )

∣∣
δ=0

= D(Q,G), we constructed a one-dimensional universal submodel
{Qε : ε ≥ 0} ⊂ Q(M) through Q, at ε = 0, that has the property that for all
ε ≥ 0 d

dεPnL(Qε) =‖ PnD(Qε, G) ‖, where ‖ · ‖ is the Euclidean norm. Our analytic
formula for this universal submodel does not depend on the local submodel, but the
local submodel can still play a role for the practical construction. In the special
case d = 1, we also constructed a universal one-dimensional submodel so that for
all ε d

dεL(Qε) = D(Qε, G), which then implies d
dεPnL(Qε) = PnD(Qε, G). For each

of these universal submodels, the one-step TMLE Qεn with εn = arg minε PnL(Qε)
solves each PnDj(Qεn , G) = 0, j = 1, . . . , d. We showed how this result immedi-
ately extends to an infinite dimensional estimating function D = (Dt : t ∈ τ), by
replacing the Euclidean inner product by an Hilbert space inner product. If D() is
the canonical gradient of a target parameter, we referred to this submodel as the
universal canonical submodel, and, if d = 1, the universal least favorable submodel.

The constructions of these universal submodels correspond with iteratively defin-
ing Qε+dε = Qsmε,δ(ε)dε where δ(ε) = PnD(Qε, G)/ ‖ PnD(Qε, G) ‖ moves along the

gradient of the empirical risk PnL(Qε) at ε. These practical constructions demon-
strate that this algorithm succeeds in updating an initial Q into an update Q∗n = Qεn
that solves the desired equation PnD(Qεn , G) = 0 while minimally decreasing the
empirical risk relative to its initial value PnL(Q). That is, with minimal additional
data fitting it achieves the desired goal, while fully preserving the statistical prop-
erties of the initial estimator represented by Q.

The universal submodels have dramatic implications for the TMLE literature by
allowing one to construct a one-step TMLE for any multivariate and even infinite
dimensional pathwise differentiable target parameters, solving the desired estimating
equation, so that this TMLE is asymptotically efficient and possibly has additional
desired properties implied by solving the equation PnD(Qεn , G) = 0. The one-step
TMLE step only involves minimizing an empirical risk over a univariate fluctuation
parameter ε. In the current literature, we defined various iterative TMLE based on
multivariate local submodels that can now be replaced by a more stable one-step
TMLE only relying on maximizing over a univariate ε. We demonstrated such new
one-step TMLE for various examples in this article and supplementary material,
but obviously this will impact many more problems than the ones presented here.
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We demonstrated with a simulation study that the one-step TMLE is more robust
and stable than the iterative TMLE in finite samples when the targeting step gets
challenging.

The important advantages of the TMLE based on a local least favorable sub-
model relative to estimating equation methods and the one-step estimator have
been emphasized in the literature. Since the estimating equation methodology is
more limited than the one-step estimator by 1) relying on an estimating function
representation of the efficient influence curve, 2) existence and 3) uniqueness of its
solution, let’s focus on contrasting the TMLE to the one-step estimator. One im-
portant advantage of the TMLE relative to the one-step estimator has been that it
is a substitution estimator thereby making it in principle more robust by respecting
the global constraints of the model M. Beyond this, the fact that the TMLE up-
dates an initial estimator through minimization of a loss-function specific empirical
risk, it allows one to further refine the targeted update step such as carried out
in C-TMLE. Another advantage is that it actually provides a corresponding data
distribution P ∗n ∈ M compatible with the estimator of the target parameter, for
example, allowing one to compare different TMLEs by the empirical risk of P ∗n . On
the other hand, the one-step estimator takes only one step, and that can add impor-
tant stability relative to a possibly iterative TMLE, making the comparison not so
clear in the case that the TMLE is iterative. However, our new universal submodels
presented in this article make the TMLE also a one step estimator, thereby dealing
with this possible criticism of TMLE.

The benefit of being a substitution estimator is particularly appealing if one
estimates an infinite dimensional target parameter such as a survival function with
clear global structure. Due to our universal canonical one-dimensional submodel, we
could provide one-step TMLE that completely respects this global structure of the
infinite dimensional target parameter, something a one-step estimator (or estimating
equation method) cannot achieve.

Future simulation studies will have to evaluate the practical benefits that come
with the new one-step TMLEs based on universal least favorable or canonical sub-
models, relative to TMLEs based on the typical local least favorable submodel.

Acknowledgement

This grant is funded by NIH-grant 5R01AI074345-07. The authors also thank Marco
Carone for stimulating discussions. We are particularly grateful to the two reviewers
who have been very helpful.

Hosted by The Berkeley Electronic Press



References

P.J. Bickel, C.A. Klassen, Y. Ritov, and J.A. Wellner. Efficient and adaptive es-
timation of semiparametric models. Johns Hopkins University Press, Baltimore,
MD, 1993.

M. Carone, I. Diaz, and M.J. van der Laan. Higher-order targeted minimum loss-
based estimation. Technical Report 331, www.bepress.com/ucbbiostat/paper331,
University of California, Berkeley, 2014.

I. Diaz, M. Carone, and M.J. van der Laan. Second order inference
for the mean of a variable missing at random. Technical Report 337,
www.bepress.com/ucbbiostat/paper337, University of California, Berkeley, 2015.

Iván Dı́az and M.J. van der Laan. Targeted data adaptive estimation of the causal
dose response curve. Journal of Causal Inference, 1(2), 2013.

S. Gruber and M.J. van der Laan. An application of collaborative targeted maximum
likelihood estimation in causal inference and genomics. Int J Biostat, 6(1), 2010.

S. Gruber and M.J. van der Laan. Targeted minimum loss based estimator that
outperforms a given estimator. The International Journal of Biostatistics, 8(1):
Article 11, doi: 10.1515/1557–4679.1332, 2012.

S.D. Lendle, B. Fireman, and M.J. van der Laan. Balancing score adjusted targeted
minimum loss-based estimation. Journal of Causal Inference, 3(2), 2015.

E.C. Polley, S. Rose, and M.J. van der Laan. Super learning. In M.J. van der Laan
and S. Rose, editors, Targeted Learning: Causal Inference for Observational and
Experimental Data. Springer, New York Dordrecht Heidelberg London, 2012.

J.M. Robins and A. Rotnitzky. Recovery of information and adjustment for depen-
dent censoring using surrogate markers. In AIDS Epidemiology, Methodological
issues. Bikhäuser, 1992.
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Appendix

A Example for Section 4: Universal least favorable sub-
model for parametric models, and resulting one-step
TMLE

This section represents the final subsection of Section 4.
Even though the standard MLE for a parametric model is asymptotically effi-

cient for any pathwise differentiable target parameter, if the dimension of the finite
dimensional parameter is high relative to sample size, then the MLE is often not
well defined or overly variable so that regularization is needed, and in that case
a TMLE is still needed. High dimensional linear regression is an example of such
types of high dimensional parametric models, but also saturated models when O is
discrete (but possibly with many possible values). This type of application of TMLE
motivates us to consider the universal least favorable submodel and corresponding
one-step TMLE for parametric models.

Let O ∼ Pθ0 ∈ M = {Pθ : θ ∈ Θ ⊂ IRd} be modeled with a d-dimensional
parametric model. Assume that the model is dominated by a single dominating
measure µ. The density dPθ/dµ will be denoted with pθ. Let Ψ :M→ IR be a real
valued target parameter, which is pathwise differentiable with canonical gradient
D∗(Pθ) at Pθ ∈ M. Let Sj(Pθ) = d

dθj
log dPθ/dµ be the score of θj , j = 1, . . . , d.

The tangent space T (Pθ) at Pθ is the linear span of these d scores. Let α(Pθ) =
(αj(Pθ) : j = 1, . . . , d) be the uniquely defined vector of scalars such that

D∗(Pθ) =
d∑
j=1

αj(Pθ)Sj(Pθ).

Such a vector α(Pθ) exists and is unique if the d × d information matrix I(Pθ) =
PθSθS

>
θ is invertible, but even when the tangent space is of lower dimension than

d, there exists a whole space of such vectors of scalars, and this just selects one of
them in a unique manner.

A local least favorable model {P lfm
θ,ε : ε} through Pθ at ε = 0 is given by:

P lfm
θ,ε = Pθ+εα(Pθ) = P(θj+εαj(Pθ):j=1,...,d).

Let
θlfm(ε) = θ + εα(Pθ)

be the corresponding least favorable path in the Θ space, so that we can denote
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P lfm
θ,ε = Pθlfm(ε). Indeed,

d

dε
log plfmθ,ε

∣∣∣∣
ε=0

=
1

pθ

d

dε
pθ+εα(Pθ)

∣∣∣∣
ε=0

=

d∑
j=1

1

pθ

d

dθj
pθ

d

dε
(θj + εαj(Pθ))

∣∣∣∣
ε=0

=

d∑
j=1

αj(Pθ)Sj(Pθ)

= D∗(Pθ).

Let the universal least favorable model through θ be defined by the following
differential equation: for ε > 0, dε > 0

θ(ε+ dε) = θlfm(ε)(dε) = θ(ε) + dεα(Pθ(ε)).

Similarly, we define θ(ε−dε) for ε < 0. The corresponding integral equation is given
by: for ε > 0 we have

θ(ε) = θ +

∫ ε

0
α(Pθ(x))dx.

This differential or integral equation allows one to solve recursively for θ(ε), given
previous values θ(x) for x < ε.

A corresponding universal least favorable submodel {Pθ,ε : ε} through Pθ is now
defined by: for ε ≥ 0

Pθ,ε = Pθ(ε)

= Pθ+
∫ ε
0 α(Pθ(x))dx

.

And similarly we can define Pθ,ε for ε < 0. By our results, we also know that we
could define this universal least favorable submodel through Pθ by: for ε ≥ 0

Pθ,ε = Pθ exp

(∫ ε

0
D∗(Pθ(x))dx

)
,

but for the sake of practical approximation one should prefer the above formulation
in terms of a local least favorable submodel.

So let’s now discuss how one would implement the corresponding one-step TMLE.
Let θn be an initial estimator. Suppose that Pn log pθlfmn (ε) is increasing at ε = 0.
Then, the TMLE is defined by defining εn as the smallest local maximum larger
than 0 of ε→ Pn log pθn(ε), i.e., the log-likelihood along the universal least favorable
submodel. The TMLE of θ0 is now given by the one-step update θ∗n = θn(εn), and
the TMLE of Ψ(Pθ0) is given by Ψ(Pθ∗n).
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