
University of California, Berkeley
U.C. Berkeley Division of Biostatistics Working Paper Series

Year  Paper 

TMLE for Marginal Structural Models Based
on an Instrument

Boriska Toth∗ Mark J. van der Laan†

∗University of California, Berkeley, Division of Biostatistics, bori@stat.berkeley.edu
†University of California, Berkeley, Division of Biostatistics, laan@berkeley.edu

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-
cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/ucbbiostat/paper350

Copyright c©2016 by the authors.



TMLE for Marginal Structural Models Based
on an Instrument

Boriska Toth and Mark J. van der Laan

Abstract

We consider estimation of a causal effect of a possibly continuous treatment when
treatment assignment is potentially subject to unmeasured confounding, but an
instrumental variable is available. Our focus is on estimating heterogeneous treat-
ment effects, so that the treatment effect can be a function of an arbitrary subset
of the observed covariates. One setting where this framework is especially useful
is with clinical outcomes. Allowing the causal dose-response curve to depend on
a subset of the covariates, we define our parameter of interest to be the projection
of the true dose-response curve onto a user-supplied working marginal structural
model. We develop a targeted minimum loss-based estimator (TMLE) of this es-
timand. Our TMLE can be viewed as a generalization of the two-stage regression
method in the instrumental variable methodology to a semiparametric model with
minimal assumptions. The asymptotic efficiency and robustness of this substitu-
tion estimator is outlined. Through detailed simulations, we demonstrate that our
estimator’s finite-sample performance can beat other semiparametric estimators
with similar asymptotic properties. In addition, our estimator can greatly out-
perform standard approaches. For instance, the use of data-adaptive learning to
achieve a good fit can lead to both lower bias and lower variance than for an in-
correctly specified parametric estimator. Finally, we apply our estimator to a real
dataset to estimate the effect of parents’ education on their infant’s health.
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1. Introduction

When estimating a causal effect in an observational study, the problem of unmeasured

confounding is a pervasive caveat. It is similarly problematic in inferring a causal effect of a

treatment in an experiment where the treatment isn’t fully randomized. A classic solution

for obtaining a consistent estimate is to use an instrumental variable, assuming one exists.

Informally, an instrumental variable, or instrument, affects the outcome only through its

effect on the treatment, and the residual (error) term of the instrument is uncorrelated with

the residual term of the outcome (Imbens and Angrist 1994, Rubins et al. 1996). Thus, the

instrument produces exogenous variation in the treatment.

Instrumental variables have been used in a number of works in biometrics and biostatistics

to obtain consistent estimates of a treatment effect. (See (Brookhart et al 2010) for a

large collection of references.) They are a basic tool for inferring the causal effect of a

clinical treatment or a medication on a health outcome, as large-scale randomization of

patients is typically not feasible. In these settings, the instrumental variable is usually

some attribute that is related to the health care a patient receives, but is not at the

level of individual patients. Thus, the instrument is not confounded by factors affecting

an individual’s response to treatment. For example, (Brookhart and Schneeweiss 2007) use

physician’s preference for the treatment (non-steriodal anti-inflammatory medications) as the

instrument in establishing the effect on gastrointestinal bleeding. (Newhouse and McClellan

1998) exploit regional variation in the availability of catheterization and revascularization

procedures as their instrument in estimating the effect of these procedures on reducing

mortality in heart attack patients. Another important setting for instrumental variables in

health research is when the treatment is randomly assigned, but non-compliance is significant.

Then the random treatment assignment serves as an ideal instrument. (van der Laan et al

2007) describe this setting.
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This work goes beyond the usual estimation problem solved using an instrument, which

is to estimate a single local average treatment effect. Instead, we estimate how the causal

effect depends on any subset V of baseline covariates W . Thus, we are able to estimate

heterogeneous treatment effects. Specifically, we take the expected causal effect given V , and

project that function of V unto a user-supplied parametric working model. The usefulness of

estimates of the treatment effect is greatly enhanced in clinical settings when the estimates

can be conditional on a patient’s individual characteristics and biomarkers. Furthermore,

it is important that when estimating the causal effect as a function of covariates V , that

V can be a strict subset of all baseline covariates W . Medical data often involves a large

space of covariates, and conditioning on many covariates in estimating relevant components

of the data-generating distribution can be helpful in: 1) decreasing the variance of estimated

conditional means, and 2) ensuring that the instrument induces exogenous variation given

the covariates. However, a physician typically has a smaller set of patient variables that are

available and that s/he considers reliable predictors. Thus the causal effect as a function of

an arbitrary subset of baseline covariates is of great interest.

While instrumental variables are widely used to infer causal effects, the majority of studies

make use of strong assumptions about the structure of the data and typically rely on

parametric assumptions (Terza et al. 2008). In contrast, this work uses semiparametric

modelling. Beyond the criteria that there is a valid instrument, we make use of the single

structural assumption that the expected value of the outcome is linear in the treatment,

conditional on the covariates. This assumption is used in virtually all similar works; however,

as we discuss below, even this single assumption we make can be weakened.

We use targeted minimum loss estimation (TMLE), which is a methodology for semipara-

metric estimation that has very favorable theoretical properties and can be superior to other

estimators in practice (van der Laan and Rubin 2006, van der Laan and Rose 2011). The

http://biostats.bepress.com/ucbbiostat/paper350
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TMLE procedure targets only those components of the data-generating distribution that

are relevant to the statistical parameter of interest. Initial estimates are formed of certain

components, by data-adaptively learning on a library of prediction algorithms. The initial

estimates are then fluctuated one or more times in a direction that removes bias and optimizes

for semiparametric efficiency.

The TMLE method has a robustness guarantee: it produces consistent estimates even

when the functional form is not known for all relevant components. We discuss the most

common such scenario: when the conditional distribution of the outcome cannot be es-

timated consistently, and one only has information about the form of the distributions

generating the instrument and treatment. TMLE also guarantees asymptotic efficiency when

all relevant components and nuisance parameters are consistently estimated. Thus, under

certain conditions, the TMLE estimator is optimal in having the asymptotically lowest

variance for a consistent estimator in a general semiparametric model, thereby achieving

the semiparametric Cramer-Rao lower bound (Newey 1990).

TMLE has the advantage over other semiparametric efficient estimators that it imposes

constraints that ensure that the estimator matches the data well. It is a substitution esti-

mator, meaning that the final estimate is made by evaluating the parameter of interest on

the estimates of its relevant components, where these estimates respect the bounds on their

parameter space. These properties have been linked to good performance in sparse data

in (Gruber and van der Laan 2010), while we demonstrate performance gains over other

estimators in continuous data having sharp boundaries in section 5.3.2.

In section 3, we give a general model for the setting of estimating the effect of a treatment on

an outcome in the presence of an instrumental variable and both measured and unmeasured

confounders. We use Pearl’s model of counterfactual variables to meaningfully define the

causal effect of the treatment (Pearl 2000, see also Rubin 1974). In Appendix 2, we derive
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the efficient influence curve for the statistical parameter of interest in several settings, and

in section 4, we give TMLE-based procedures for estimating the causal effect. Next, we

establish the comparative performance of our estimator in section 5 through simulations,

studying for instance: 1) how performance compares to well known approaches, including

semiparametric and parametric methods; 2) the bias-variance tradeoff in using a higher

variance, instrumental variable-based estimate over a biased estimate. Finally, section 6

presents an application to the (Chou et al 2010) dataset on the effect of parents’ education

on their infant’s health.

2. Review of existing methods

Let W be a vector of baseline covariates, and m(W ) denote the marginal causal effect of

treatment given W . Most prior work on estimating the marginal causal effect of a treatment

using an instrument deal with either the case where a scalar average effect E(m(W )) is esti-

mated, or the entire curve m(W ) is estimated. In contrast, our work estimates E(m(W )|V )

for V possibly a strict subset of W . (Tan 2010) is another work that lets V be any subset of

W and gives estimators for the marginal effect of the treatment on Y , conditional on V and

level of treatment. However, their marginal effect is assumed to take a parametric form.

(Ogburn et al) is a recent work that also proposes a semiparametric estimator for the

marginal causal effect given a strict subset of the covariates V ⊆ W 1. They also present an

estimator for the best least-squares projection of the true causal effect unto a parametric

working model. Their estimators use the method estimating equations, and are efficient

and double robust, but are not substitution estimators. In addition, (Ogburn et al) restrict

attention to the case of a binary instrument and treatment, and make slightly stronger

1Ogburn et al’s work was accepted for publication around the time this work was submitted for publication.
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assumptions about the instrument than we do (for instance, they assume no confounding

between the instrument and treatment).

(Abadie 2003) gives an estimator for the treatment effect in compliers as a function of

W . However, the instrument propensity score P (Z|W ) must be estimated consistently in

his approach. Both (van der Laan et al 2007) and (Robins 2004) present semiparametric,

consistent, and locally efficient estimators for the effect of treatment on an outcome, as a

function of covariates W , as motivated by the setting where Z is the randomized assignment

to a binary treatment, and A is the binary compliance with treatment. The counterfactual

outcomes are assumed to follow a parametric form E(Y (A = 0)|W,Z,A) = m̃(W,Z,A). The

former work gives a solution for binary outcomes using the method of estimating equations,

so that their estimator is double robust to misspecification of either Pr(Z|W ) or E(Y (A =

0)|W,Z,A).

For the special case of a null V where a scalar average effect is estimated, semiparametric

efficient approaches abound (see for instance: Cheng et al 2009; Hong and Nekipelov 2010;

Kasy 2009). (Uysal 2011) and (Tan 2006) describe doubly robust estimators, where either the

propensity score Pr(Z|W ), or the conditional means given the instrument, must be correctly

specified.

3. The model and causal parameter of interest

We use the notation that P0 and E0 refer to the true probability distribution and expectation,

respectively, and Pn and En the empirical counterparts. We observe n i.i.d. copies O1, . . . , On

of a random variable O = (W,Z,A, Y ) ∼ P0, where P0 is its probability distribution. Here W

denotes the measured baseline covariates, and Z denotes the subsequently (in time) realized

instrument that is believed to only affect the final outcome Y through the intermediate

treatment variable A. The goal of the study is to assess a causal effect of treatment A on

outcome Y . We consider the case in which it is believed that A is a function of both the

Hosted by The Berkeley Electronic Press
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measured W and also unmeasured confounders. As a consequence, methods that rely on the

assumption of no unmeasured confounding will likely be biased. Figure 1 shows how the

variables in our model are related; the arrows indicate the direction of causation.

[Figure 1 about here.]

Using the structural equation framework of (Pearl 2000), we assume that each variable is

a function of other variables that affect it and a random term (also called error term). Let

U denote the error terms. Thus, we have

W = fW (UW ), Z = fZ(W,UZ), A = fA(W,Z,UA), Y = fY (W,Z,A, UY )

where U = (UW , UZ , UA, UY ) ∼ PU,0 is an exogenous random variable, and fW , fZ , fA, fY

may be unspecified or partially specified (for instance, we might know that the instrument

is randomized). Further, three assumptions need to be made to guarantee that Z is a valid

instrument for estimating the effect of A on Y :

Assumptions ensuring that Z is a valid instrument:

(1) Z only affects outcome Y through its effect on treatment A. Thus, fY (W,Z,A, UY ) =

fY (W,A,UY ).

(2) Given baseline covariates W , the random terms UZ and UY are conditionally indepen-

dent. Equivalently, UZ ⊥⊥ UY | W .

(3) Var0[E0(A|Z,W )|W ] > 0 for all W .

In other words, although we don’t assume that A is randomized with respect to Y , we

do assume that Z is randomized with respect to Y , conditional on W in both cases. The

last assumption guarantees that for every value of covariates W , there is variation in the

instrument, and that the instrument induces variation in the treatment. Further, we assume

the following form for the marginal structural equation for outcome Y , where m0 and θ0 are

unspecified:

Structural equation for outcome Y :

http://biostats.bepress.com/ucbbiostat/paper350
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Y = fY (W,A,UY ) = Am0(W ) + θ0(W ) + UY

Assumption 2 guarantees that E(UY |Z,W ) = 0.

The linearity in A of the structural equation for Y is necessary for identifying the treatment

effect using an instrument unless further assumptions are made. In the common case where

the treatment A is binary, this assumption always holds, and we have a fully general semi-

parametric model that only assumes Z is a valid instrument. It should also be noted that

unlike many instrument-based estimators, we don’t require the instrument to be randomized

with respect to treatment (UZ ⊥⊥ UA| W is not necessary).

We use the counterfactual framework of (Pearl 2000) to define the causal parameter

of interest. Let counterfactual outcome Y (a) denote the outcome given by the structural

equations if the treatment variable were set to A = a, and all other variables, including the

exogenous terms, were unchanged. We have that Y (a) = a · m0(W ) + θ0(W ) + UY for all

possible values a ∈ A, where A denotes a support of A. We can now define the marginal

causal effect we’re interested in as E0(Y (a)− Y (0)) and observe that it equals a ·Em0(W ).

Similarly, define adjusted causal effects E0(Y (a)− Y (0) | V ) conditional on a user supplied

covariate V ⊂ W . These causal effects are functions of m0(W ) and the distribution of W .

Causal effect of interest:

The marginal causal effect is E0(Y (a)− Y (0)) = a · Em0(W ).

The adjusted causal effect is E0(Y (a)−Y (0) | V ) = a ·E(m0(W ) | V ), given a user supplied

covariate V ⊂ W .

Note that m0(W ) represents the causal effect of one unit of treatment given W .

Notation. Let Π0(Z,W ) ≡ E0(A | Z,W ) be the conditional mean of A given Z,W .

Hosted by The Berkeley Electronic Press
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Let µ0(Z,W ) ≡ E0(Y | Π0(Z,W ),W ) be the expected value of Y , given W and Π0(Z,W ).

The instrumental variable assumption that E(UY |Z,W ) = 0 implies

E0(Y | Π0(Z,W ),W ) = Π0(Z,W )m0(W ) + θ0(W )

Thus, our structural equation model implies a semiparametric regression model for E0(Y |

Π0(Z,W ),W ). Note that for a pair of values z and z1, we have

E0(Y | Z = z,W )− E0(Y | Z = z1,W ) = {Π0(z,W )− Π0(z1,W )}m0(W )

From this equation, we get an identifiability result for m0, stated below as a formal lemma.

Lemma 1: Let Π0(Z,W ) ≡ E0(A | Z,W ). Let dZ,0 be the conditional probability distri-

bution of Z, given W . Let W be a support of the distribution PW,0 of W . Let w ∈ W. By

assumption 3 above, Var(Π0(z, w)|W = w) > 0, so there exists two values (z, z1) in a support

of dZ,0(· | W = w) for which Π0(z, w)− Π0(z1, w) 6= 0. Thus

m0(w) =
E0(Y | Z = z,W = w)− E0(Y | Z = z1,W = w)

Π0(z, w)− Π0(z1, w)
,

which demonstrates that m0(w) is identified as a function of P0.

Statistical model: The above stated causal model implies the statistical model M

consisting of all probability distributions P of O = (W,Z,A, Y ) satisfying EP (Y | Z,W ) =

Π(P )(Z,W )m(P )(W )+θ(P )(W ) for some unspecified functionsm(P ), θ(P ), and Π(P )(Z,W ) =

EP (A | Z,W ). Π(P )(Z,W ) must satisfy VarP [Π(P )(Z,W )|W ] > 0 for all W .

Causal parameter: We define our causal parameter of interest to be the projection of

the dose-response curve E0(Y (a) − Y (0) | V ) = aE0(m0(W ) | V ) on a working model. Let

{amβ(v) : β} be a working model for E0(Y (a) − Y (0) | V ). Specifically, given some weight

http://biostats.bepress.com/ucbbiostat/paper350
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function h(A, V ), let

β0 = arg min
β
E0

∑
a

h(a, V ){aE(m0(W ) | V )− amβ(V )}2 (1)

= arg min
β
E0

∑
a

h(a, V )a2{E(m0(W ) | V )−mβ(V )}2 (2)

= arg min
β
E0

∑
a

h(a, V )a2{m0(W )−mβ(V )}2 (3)

≡ arg min
β
E0 j(V ){m0(W )−mβ(V )}2, (4)

where we defined j(V ) ≡
∑

a h(a, V )a2.

For example, if V is empty, and mβ(v) = β, then E0(Y (a) − Y (0)) = β0a. We can also

select V = W and mβ(w) = βTw, in which case βT0 w is the projection of m0(w) on this

linear working model {βTW : β}.

Statistical Target parameter: Our target parameter is ψ0 = β0.

Let Ψ : M → Rd be the target parameter mapping so that Ψ(P0) = ψ0 = β0, which

exists under the identifiability assumptions stated in Lemma 1. We note that ψ0 = Ψ(P0) =

Ψ(m0, PW,0) only depends on P0 through m0 and PW,0, while m0, as statistical parameter

of P0, is identified as a function of µ0 = E0(Y | Z,W ) under the semiparametric regression

model µ0 = E0(Y | Z,W ) = π0(Z,W )m0(W ) + θ0(W ).

The statistical estimation problem is now defined. We observe n i.i.d. copies of O =

(W,Z,A, Y ) ∼ P0 ∈ M, and we want to estimate ψ0 = Ψ(P0) defined in terms of the

mapping Ψ :M→ Rd.

Weakening the structural assumption We briefly note that the structural assumption

Y = fY (W,A,UY ) = Am(W ) + θ(W ) + UY can be weakened in many cases when Z is

a continuous variable. For a general equation Y = fY (W,A,UY ) = q(W,A) + UY , where

q(W,A) is any function, we can write a Taylor approximation for a k-degree polynomial in

A as

fY (W,A,UY ) = Akmk(W ) + Ak−1mk−1(W ) + ...+ Am1(W ) +m0(W ) + UY

Hosted by The Berkeley Electronic Press
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Now suppose we have (k + 1) values of Z: (Zk, Zk−1, ...., Z0). We have that E(Y |Zi,W ) =

E(Ak|Zi,W )mk(W ) + E(Ak−1|Zi,W )mk−1(W ) + ... + m0(W ). This means if the equation

below is solvable (the matrix shown is not singular), then we can identify

(mk(W ),mk−1(W ), ...,m0(W )).
E(Y |Zk,W )

...

E(Y |Z0,W )

 =


E(Ak|Zk,W ) E(Ak−1|Zk,W ) · · ·

...
. . .

...

E(Ak|Z0,W ) E(Ak−1|Z0,W ) · · ·




mk(W )

...

m0(W )


4. Targeted minimum loss based estimation

4.1 The efficient influence curve of Ψ

The efficient influence curve for Ψ is derived in Appendix 2. Recall our semiparametric model,

and notation PW,0, π0, (Z,W ),m0(W ), θ0(W ), from section 3. Let d0(Z,W ) = Pr(Z|W ).

Also, define h1(V ) ≡
∑

a h(a, V )a2 d
dβ0
mβ0(V ), which has the same dimension as β0, where

h(a, V ) is defined in section 3.

Lemma 2: The efficient influence curve of Ψ :M→ Rd is given by

D∗(P0) = D∗W (P0)

+c−1
0

h1(V )
σ2(W )

(π0(Z,W )− E0(π0(Z,W ) | W ))(Y − π0(Z,W )m0(W )− θ0(W ))

−c−1
0

h1(V )
σ2(W )

{(π0(Z,W )− E0(π0(Z,W ) | W ))m0(W )} (A− π0(Z,W ))

≡ D∗W (P0) + CY (Z,W )(Y − π0(Z,W )m0(W )− θ0(W ))

−CA(Z,W )(A− π0(Z,W ))

≡ D∗W (P0) +D∗Y (P0)−D∗A(P0),

(5)

where

c0 ≡ E0

∑
a

h(a, V )a2

{
d

dβ0

mβ0(V )

}2

,

which is a d× d matrix, and

D∗W (P0) ≡ c−1
0

∑
a

h(a, V )a2 d

dβ0

mβ0(V )(m0(W )−mβ0(V ))

http://biostats.bepress.com/ucbbiostat/paper350
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σ2(W ) = Vard0(Π0(Z,W ) | W ))

h(W ) = c−1
0

h1(V )

σ2(W )

CY (Z,W ) = h(W )(π0(Z,W )− Ed0(π0(Z,W ) | W ))

CA(Z,W ) = CY (Z,W )m0(W ).

Note that D∗(P0) will be a vector-valued function in general.

Appendix 3 gives the derivation of the efficient influence curve in the special case of

assuming a parametric form for the effect of treatment as a function of covariates, meaning

that m0 = mα0 for some model {mα : α}.

4.2 The targeted minimum loss-based framework

Targeted minimum loss-based estimation (TMLE) is a method to construct a semi-parametric

substitution estimator of a target parameter Ψ(P0) of a true distribution P0 ∈ M, where

M is a semiparametric statistical model (van der Laan and Rubin 2006, van der Laan and

Rose 2011). The estimate is based on sampling n i.i.d. data points (O1, ..., On) from P0. It is

consistent and asymptotically efficient under certain conditions.

(1) One first notes that the parameter of interest Ψ(P0) depends on P0 only through relevant

components Q0 of the full distribution P0, in other words, Ψ(P0) = Ψ(Q0) 2. TMLE targets

these relevant components by only estimating these Q0 and certain nuisance parameters

g0
3 that are needed for updating the relevant components. An initial estimate (Q0

n, gn) is

formed of the relevant components and nuisance parameters. This is typically done using

the Super Learner (see below) approach described in (van der Laan et al 2007), in which

the best combination of learning algorithms is chosen from a library using cross-validation.

2We are abusing notation here for the sake of convenience by using Ψ(·) to denote both the mapping from the full distribution

to Rd, and from the relevant components to Rd.
3The nuisance parameters are those components g0 of the efficient influence curve D∗(Q0, g0) that Ψ(Q0) does not depend

on.

Hosted by The Berkeley Electronic Press
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(2) Then the relevant components Q0
n are fluctuated, possibly in an iterative process, in an

optimal direction for removing bias efficiently. (3) Finally, one evaluates the statistical target

parameter on the updated relevant components Q∗n, and arrives at estimate ψ∗n = Ψ(Q∗n).

Note that the final estimate of ψ∗n is formed by evaluating the target parameter on estimates

of relevant components that are consistent with a single data-generating distribution, and

with the observed bounds of the data. This property of being a substitution estimator has

been shown to be conducive to good performance in practice (Gruber and van der Laan

2010).

We use notation such as Q0
n, where the subscript clarifies that an empirical estimate is

being made from the sample of size n, while the superscript refers to the estimate being

an initial one (“zeroeth” iteration). To fluctuate the initial components Q0
n to updated

components Q1
n, one defines a fluctuation function ε → Q(ε|gn). gn is an estimate of the

nuisance parameters, and the fluctuation of Q0
n can depend on gn, although we some-

times drop the explicit dependency in the notation, and use Q(ε) to denote Q(ε|gn). One

also defines a loss function L(), where we set Q1
n = Q0

n(ε0n|gn) by solving for fluctuation

ε0n = argminε L(Q0
n(ε|gn), gn, (O1, ..., On)). We use the convention that when the fluctuation

parameter ε is zero, Q0
n(ε|gn) = Q0

n. This procedure of updating Qk+1
n = Qk

n(εkn|gn) might

need to be iterated to convergence. In some versions of TMLE, the nuisance parameters gn

are also updated, using a fluctuation function and loss function similarly. The requirement

is to choose the fluctuation and loss functions so that, upon convergence of the components

to their final estimate Q∗n and g∗n, the efficient influence curve equation is solved:

Pn D
∗(Q∗n, g

∗
n) = 0

Pn denotes the empirical distribution (O1, ..., On), and we use the shorthand notation

Pnf = 1
n

∑n
i=1 f(Oi). The equation above is the basis for the guarantees of consistency

http://biostats.bepress.com/ucbbiostat/paper350
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(under partial misspecification) and asymptotic efficiency (under correct specification of

relevant components and nuisance parameters).

To give a few examples, the loss function might be the mean squared error, or the negative

log likelihood function. For instance, for the estimator using iterative updating presented in

section 4.5, we use fluctuation µ1
n = µ0

n+ε·C0
Y,n, with µ = E(Y |W,Z) and CY as defined in sec-

tion 4.1. The loss function is L(Q0
n(ε|gn), gn, (O1, ..., On)) =

∑n
i=1 (Y [i]− µ0

n[i]− ε · C0
Y,n[i])

2
.

Here is the TMLE estimation procedure for our marginal structural model:

Step 1: Forming initial estimates.

Components of P0 that need to be estimated: Initial estimates must be formed of

relevant components Q0
n = (m0

n(W ), PW,n), and

nuisance parameters g0
n = (Π0

n(Z,W ), E0
n(Π0

n|W ),Var0
n(Π0

n|W ), θ0
n(W )).

Super Learner. We use the Super Learner approach to form initial estimates (van

der Laan et al 2007), and software implementation in R (http://cran.r-project.org/

web/packages/SuperLearner/index.html). Super Learner is a data-adaptive technique to

choose the best linear combination of learning algorithms from a library. The objective that

is minimized is the cross-validated empirical mean squared error. Each candidate learning

algorithm is trained on all the data except for a hold-out test set, and this process is

repeated over different hold-out sets so all data points are included in a test set. The linear

combination of candidate learners that minimizes MSE over all test sets in chosen. This

method has the very desirable guarantees that: 1) if none of the candidate learners converge

at a parametric rate, Super Learner asymptotically attains the same risk as the oracle learner,

which selects the true optimal combination of learners and 2) if one of the candidate learners

uses a parametric model and contains the true data-generating distribution, Super Learner

Hosted by The Berkeley Electronic Press
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converges at an almost-parametric rate.

See section 5.2 for a list of candidate learning algorithms we use for forming the initial

estimates.

Step 2: Fluctuating the relevant components Q0
n.

We present three versions of TMLE in this paper: one where the relevant components and

nuisance parameters are fluctuated iteratively, and two versions of the non-iterative TMLE

described below.

Non-iterative TMLE. Suppose we have a fluctuation function ε → Q(ε|gn) so that we

can solve for ε the equation:

PnD
∗(Q0

n(ε|gn), gn) = 0 (6)

Then the efficient influence curve is satisfied in a single update and there is no need for itera-

tion. This case corresponds to using the loss function L(Q, g, (O1, ..., On)) =| 1
n

∑n
i=1 D

∗(Q, g)(Oi) |2.

In a single step, a solution can be found so the loss function takes its lower bound of 0.

It turns out that we can solve 6 without updating PW by setting it to its empirical

distribution PW = PW,n of the baseline covariates. Thus, we need to solve

PnD
∗(Q∗n = {m0

n(ε), PW,n}, gn) = 0 (7)

where we drop the explicit dependency of m0
n(ε) on gn in the notation. Sections 4.3 and

4.4 describe versions of this non-iterative estimator that use logistic and linear fluctuations,

respectively, for m0
n(ε).

Step 3: Obtain final estimate β∗n = Ψ(m∗n, PW,n).

Properties of TMLE. See Appendix 1 for sketches of proofs.

Efficiency

(See van der Laan and Robins 2003, and van der Laan and Rubin 2006.)
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Recall that an efficient estimator is one that achieves the optimal asymptotic variance

among semiparametric estimators. We briefly give a few relevant definitions.

An estimator is asymptotically linear if, informally, it is asymptotically equivalent to a

sample average. Formally, we have that an estimator Ψ∗n for estimating true parameter Ψ(P0)

from an iid sample (O1, .., On) is asymptotically linear if

√
n(Ψ∗n−Ψ(P0)) = 1√

n

∑n
i=1 Ψ̇P (Oi)+oP (1), where Ψ̇P is a zero mean, finite variance function.

Ψ̇P is called the influence function.

Recall that a parameter Ψ is pathwise differentiable at P0 relative to a tangent space of a

model P at P0 if there exists a continuous linear map Ψ̇P0 such that for every score function

g in the tangent space and submodel t→ Pt with score function g, we have

Ψ(Pt)−Ψ(P0)
t

→ Ψ̇P0 g. By the Riesz representation theorem, we have Ψ̇P0 g =
∫

Ψ̃P0 gdP0

where Ψ̃P0 is an “influence function”. The efficient influence curve is the unique influence

function whose coordinate functions are contained in the closure of the linear span of the

tangent space.

An estimator is efficient if it is asymptotically linear with the efficient influence curve

as its influence function. Thus, we have that for an efficient estimator Ψ∗n estimating true

parameter Ψ(P0) from an iid sample (O1, ..., On):

Ψ∗n −Ψ(P0) = 1
n

∑n
i=1 D

∗(P0)(Oi) + oP ( 1√
n
), where D∗ is the efficient influence curve.

Suppose all initial estimates (Q0
n, g

0
n) are consistent, and that

P0 (D∗(Q∗n, g
∗
n)−D∗(Q0, g0))2 ∈ oP (1). Then the final estimate Ψ(Q∗n) is asymptotically

efficient, with

Ψ(Q∗n)−Ψ(Q0) =
[
Pn − P0

]
D∗(Q0, g0) + oP (1/

√
n) (8)

Consistency under misspecification

TMLE yields a consistent estimate for Ψ∗ = β∗n under 3 scenarios of partial misspecification

of components:
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(1) Initial estimates Π0 and Pr0(Z|W ) are consistent.

(2) Initial estimates m0 and Pr0(Z|W ) are consistent.

(3) Initial estimates m0 and θ0 are consistent.

4.3 Estimator using a logistic fluctuation for scalar ψ

This estimator has the advantage that it can match the bounds of the observed data in

estimating E(Y |W,Π(Z,W )).

In accordance with the non-iterative TMLE procedure, we want to find ε such that

PnD
∗(Q∗n = {m0

n(ε), PW,n}, gn) = 0 according to 7.

A pre-processing step is done of converting Y -values to the range [0,1] using a linear

mapping Y → Ỹ , where Ỹ = 0 corresponds to min(Y ) in the dataset and Ỹ = 1 to

max(Y ). Thus, we can use the mapping Ỹ = (Y −min(Y ))/(max(Y )−min(Y )). The equa-

tion E(Y | Π(Z,W ),W ) = Π(Z,W )m(W ) + θ(W ) can be written as E(Ỹ | Π(Z,W ),W ) =

Π(Z,W )m̃(W ) + θ̃(W ), where m̃(W ) = m(W )/(max(Y ) − min(Y )) ∈ [−1, 1] and θ̃(W ) =

(θ(W ) − min(Y ))/(max(Y ) − min(Y )) ∈ [0, 1]. Now initial estimates can be formed of all

relevant components and nuisance parameters using the modified data set (W,Z,A, Ỹ ).

Replacing m0
n(ε) with m̃0

n(ε), we use this fluctuation function in equation 7:

m̃0
n(ε)(W ) = 2× logistic(logit(

m̃0
n(W ) + 1

2
) + εT · h(W ))− 1 (9)

where logistic() denotes the function logistic(x) = 1
1+e−x

and logit() its inverse logit(y) =

log y
1−y . This corresponds to the mapping f(ε) = logistic(logit(f)+ε ·h) where f is m̃0

n scaled

to be in [0, 1].

Inspecting the efficient influence curve, we have that the first term Pn D
∗
W (Q∗n, gn) = 0,

because this expression is equivalent to β∗n = arg minβ PW,nj(V ){m∗n(W ) −mβ(V )}2, which

holds by definition of β∗n. Also, we have that the

+/− h(W )(π(Z,W )− E(π(Z,W ) | W ))(π(Z,W )m(W )) terms cancel. Thus

D∗(Q, g) reduces to h(W )(π(Z,W )− E(π(Z,W ) | W ))(Y − A ·m(W )− θ(W ))
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so we need to find ε such that

Pn D
∗(m̃0

n(ε), PW,n, g
0
n) =

1

n

n∑
i=1

h0
n(W )(π0

n(Z,W )− E0
n(π0

n | W ))(Ỹ − A · m̃0
n(ε)(W )− θ̃0

n(W )) = 0

for m̃0
n(ε)(W ) defined in 9.

Since E0(Ỹ − A · m̃0(W ) − θ̃0(W )|Z,W ) = 0, the equation above has a solution ε for

any reasonable initial estimates (Q0
n = {m̃0

n, PW,n}, g0
n). For k = dim(β), we have a k-

dimensional equation in k-dimensional ε. When k = 1 and we need a scalar ε, we can

use a bisection method as a computationally simple way to compute ε. One first finds left

and right boundaries ε1, ε2 such that

En h
0
n(W )(π0

n(Z,W )− E0
n(π0

n | W ))(A · m̃0
n(ε1)(W )) 6

En h
0
n(W )(π0

n(Z,W )− E0
n(π0

n | W ))(Ỹ − θ̃0
n(W )) 6

En h
0
n(W )(π0

n(Z,W )− E0
n(π0

n | W ))(A · m̃0
n(ε2)(W ))

where En denotes the empirical mean. Then one iteratively shrinks the distance between the

left and right boundaries ε1 and ε2 until a suitably close approximation to the solution is

found.

Once one solves for ε and finds m̃∗n = m̃0
n(ε), one converts back to the original scale for

outcome Y , by setting m∗n = m̃∗n · (max(Y ) − min(Y )). Then the parameter of interest is

evaluated by finding Ψ(m∗n, PW,n) = β∗n.

When the parameter of interest ψ is vector-valued, solving the efficient influence curve

equation using a logistic fluctuation translates to a non-convex multi-dimensional optimiza-

tion problem with no known analytical solution. Various numerical techniques and software

packages are available.

One application of this estimator is to use a tighter bound for E(Y |Π(Z,W ),W ) than the
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bounds of the data. For instance, when Y is a rare binary outcome, its conditional mean for

any value of W might lie in a far smaller interval than [0, 1].

4.4 Estimator using a linear fluctuation

Once again, we want to find ε such that PnD
∗(Q∗n = {m0

n(ε), PW,n}, gn) = 0 according to 7.

A TMLE-based estimator that is especially simple to understand and implement involves

using a simple linear fluctuation

m0
n(ε)(W ) = m0

n(W ) + h(W )T · ε

and solving for ε in a single non-iterative step. h(W ) = c−1
0

h1(V )
σ2(W )

as defined in section 4.1.

As usual, we form initial estimates of all relevant components and nuisance parameters. In

solving the efficient influence curve equation 7, once again we have that Pn D
∗
W (Q∗n, gn) = 0,

and we can simplify to get

En h
0
n(W )(π0

n)− E0
n(π0

n(Z,W ) | W ))(Y − A ·m0
n(W )− θ0

n(W ))

= En h
0
n(W )(π0

n − E0
n(π0

n(Z,W ) | W ))(A · h0
n(W )

T
ε)

We can solve for (generally vector-valued) ε by finding the solution to a simple system of

linear equations. As usual, we then set m∗n = m0
n(ε) = m0

n(W ) + h(W )T · ε, and evaluate the

parameter of interest ψ∗n = Ψ(m∗n, PW,n) by finding the projection β∗n of m∗n unto the working

model {mβ(v) : β}.

This approach is simple and achieves the same asymptotic guarantees as any of the other

formulations of TMLE. However, it has the drawback compared to the version described

above using logistic fluctuation that the final estimate µ∗n = Π0
n ·m∗n + θ0

n is not constrained

to observe the bounds of Y in the data.
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4.5 Estimator using iterative updating

One estimation method in the TMLE framework we developed involves iteratively updating

relevant components and nuisance parameters until convergence to components (Q∗n, g
∗
n) such

that the efficient influence curve equation is satisfied: Pn D
∗(Q∗n, g

∗
n) = 0.

As usual, initial estimates are formed of all relevant components Q0
n and the nuisance

parameters g0
n. We set PW to its empirical distribution PW = PW,n and never update that

component. Next, at each iteration until convergence, we fluctuate components as follows:

(i) Let k denote the iteration number. For µ = E(Y |W,Z), and CY (Z,W ) = h(W )(π(Z,W )−

E(π(Z,W ) | W )) as defined in section 4.1, we have:

µk+1
n = µkn + ε · Ck

Y,n

ε = arg min
n∑
i=1

(Y [i]− µkn[i]− ε · Ck
Y,n[i])2

Note that by setting mk+1
n = mk

n + ε · hkn, and θk+1
n = θkn + ε · [−hknE(Πk

n|W )], where hkn

refers to h(W ) = c−1
0

h1(V )
σ2(W )

, we have that µk+1
n = mk+1

n · Πk
n + θk+1

n and thus remains in our

marginal structural model.

(ii) Given µk+1
n , we update Ck+1

A,n = Ck
Y,nm

k+1
n and then fluctuate Πk

n(Z,W ) = Ek
n(A|Z,W )

as follows. If A is continuous, we first replace A with linear transformation A′ ∈ [0, 1],

where A′ = (A−min(A))/(range(A)), and apply the inverse transformation to get the final

Π(Z,W ).

Πk+1
n = Πk

n(ε) = logistic(logit(Πk
n) + ε · Ck+1

A,n )

ε = arg min
n∑
i=1

[
− A[i] · log(Πk

n(ε)[i])− (1− A[i]) · log(1− Πk
n(ε)[i])

]
where the logistic function is 1

1+e−x
and the logit its inverse. The optimization above is
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solved using standard logistic regression software, even though the independent variable can

be continuous in [0, 1] here. We then update

Ck+1
Y,n = hkn · ( Πk+1

n − E
[
Πk+1
n (Z,W |W )

]
).

(iii) Finally, we update the E(Π(Z,W )|W )-component to be E(Πk+1
n (Z,W )|W ), and

σ2(W ) = Var(Π(Z,W )|W ) as Var(Πk+1
n (Z,W )|W ), using the initial estimates for the rele-

vant parts of Pr(Z|W ).

This algorithm converges to components (Q∗n, g
∗
n). In each step of updating µkn, Πk

n, we

are solving for εk to minimize
∑n

i=1 L(P k
n (ε))(Oi), for some loss function L and parametric

submodel P (ε). Thus we have d
dε

∑n
i=1 L(P k

n (ε))(Oi)|ε=εk = 0. As the algorithm converges,

we have that the objective
∑n

i=1 L(P ∗n(ε))(Oi) is minimized with ε = 0; in other words, the

components (Q∗n, g
∗
n) are already optimal for the loss function and do not get fluctuated.

Thus, we have d
dε

∑n
i=1 L(P ∗n(ε))(Oi)|ε=0 = 0.

It is easy to check that for the loss function used to update µkn, we have

d
dε
L(P (ε))|ε=0 = CY · (Y − µ) = D∗Y , so we have Pn D

∗
Y = 0 upon convergence. Similarly,

for the loss function used to update Πk
n, we have d

dε
L(P (ε))|ε=0 = CA · (A − Π) = D∗A, so

we have Pn D
∗
A = 0 upon convergence. We have that the first term Pn D

∗
W = 0, because

this expression is equivalent to β∗n = arg minβ PW,nj(V ){m∗n(W )−mβ(V )}2, which holds by

definition of β∗n. Thus, PnD
∗(Q∗n, g

∗
n) = 0 and we have a valid TMLE procedure.

5. Simulation results

We show results from a number of simulations. We compare all three versions of a TMLE-

based estimator proposed above to several standard methods: 1) a likewise semiparametric,

locally efficient estimator based on the method of estimating equations; 2) two-stage least

squares, which is a standard parametric approach; 3) a biased estimate of the causal effect

of A on Y ignoring the confounding.
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There are two cases we use for the parameter of interest: Scalar. We estimate a constant

mean causal effect E(Y (1)− Y (0)) = E(m(W )) = β = mβ(v). Vector-valued linear. We use

a linear working model mβ(w) = βT
(

1
w

)
for E(Y (1)− Y (0)|W ) = m(W ).

5.1 Standard approaches for comparison.

5.1.1 The method of estimating equations. (van der Laan and Robins 2003) presents

background on the method of estimating equations. When the efficient influence curve is

an explicit function of the parameter of interest Ψ0, under regularity conditions, one can

solve for Ψ using the equation

PnD
∗(P ) = Pn D

∗(PW ,Π,E(Π|W ),Var(Π|W )m, θ,Ψ) = 0

The components of D∗ are estimated using Super Learner, just as with TMLE. Estimat-

ing equations has the same properties of local efficiency and robustness to misspecifica-

tion as the TMLE-based estimators: when all relevant components and nuisance param-

eters are estimated consistently, the estimate is asymptotically efficient, and as long as

(PW ,Π
0
n,E

0
n(Π|W ),Var0

n(Π|W )) are estimated consistently, the estimate for the parameter

of interest Ψ = β is consistent.

In the scalar case, our estimating equation is

En

[
c−1

0 j(V )(m(W )− β) +D∗Y (P )(Y, Z,W )−D∗A(P )(A,Z,W )

]
= 0

where the D∗Y , D∗A terms to do not depend on β.

For the case of a linear working model, the estimating equation is

En

[
c−1

0 j(V )

(
1

W

)
(m(W )− β′

(
1

W

)
) +D∗Y (P )(Y, Z,W )−D∗A(P )(A,Z,W )

]
= 0

which can also be solved as a linear equation of β. The terms D∗Y , D∗A do not depend on β

and are vector-valued here.

5.1.2 Two-stage least squares. The most widely used solution to estimating the effect

of a treatment on an outcome in the presence of a confounder and valid instrument is to
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use a linear model for both the “first-stage” equation A = αZZ + αWW + α11 + εA and

the “second stage”: Y = βAA + βWW + β11 + εY . When there is a single instrumental

variable and treatment, which is the case we study, a solution for scalar β̂ that is consistent

and asymptotically optimal among linear models is β̂ = ((Z,W, 1)′(A,W, 1))−1((Z,W, 1)′Y ).

This estimate corresponds to the two-stage least squares solution where one estimates A∗ =

E(A|Z,W ) using a linear model, and then estimates the effect of (A∗,W ) on Y using a linear

model again (having exogenous variation).

When estimating a vector-valued causal effect, we find A∗ = E(A|Z,W ) and then do

linear regression of Y on cross terms A∗× (1,W ) and covariates (1,W ), thus finding a linear

treatment effect modifier function m(W ) and a linear additive effect function θ(W ). 2SLS is

a parametric model and is in general not consistent for estimating our causal parameter of

interest.

5.1.3 Ignoring the confounding. We include a “confounded” estimator in each table that

ignores the unmeasured confounding between the treatment and outcome, and does not use

an instrument. We use a correctly specified parametric model for m(W ), θ(W ), and estimate

their parameters using E(Y |W,A) = A ·m(W ) + θ(W ), which will give a biased estimate for

m(W ) by ignoring the confounding between A and the residual term. The correctly specified

model for m(W ) converges at a parametric rate, and for large n, we isolate the effect of the

bias arising from not using an instrument.

5.2 Initial estimates.

For the semiparametric approaches (our three estimators based on TMLE, and estimating

equations), initial estimates are formed as follows. We use the empirical distribution of W

for PW and never update this component. For Var0
n(Π0

n(Z,W )|W ) and E0
n(Π0

n(Z,W )|W ),

noting that our instrument Z is binary in the simulations below, we estimate P (Z =

1|W ) = E(Z|W ) and find the expectation and variance of Π0
n(Z,W ) from P (Z = 1|W ),
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instead of directly estimating them as a function of Z, W . Thus we need initial estimates

for E(Z|W ),Π(Z,W ), θ(W ),m(W ) from the data.

For Π(Z,W ) in cases where A is binary, and for E(Z|W ), we use as candidate learners

the following R packages (see the corresponding function specifications in Super Learner):

glm, step, knn, DSA.2, svm, randomForest (Sinisi and van der Laan 2004). For glm

(generalized linear models), step (stepwise model selection using AIC), and svm (support

vector machines), we use both linear and second-order terms. In addition, we use cross-

validation to find the highest degree of polynomial terms in glm that results in the lowest

prediction error, thus using terms of degree higher than two with glm. For Π(Z,W ) in cases

where A is continuous, we use candidate learners glm, step, svm, randomForest, nnet

and polymars.

For m(W ) and θ(W ) which involve continuous outcomes, we use candidate learners glm,

step, svm, and polymars. We need to predict m(W ) and θ(W ) so that

µ(Z,W ) = π(Z,W ) ·m(W )+θ(W ) retains the structural form. We include Π×m(W ) cross-

terms as well as θ(W ) terms, having various functional forms for parameterizing m(W ),

θ(W ).

5.3 Results.

In the simulations that follow, we use the following general format for generating data. In

accordance with R’s notation, the right-hand side of the formulas specify the regressors but

leave the link function unspecified. εAY is a confounding term, while the treatment effect

modifier function mW can be highly non-linear.
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W ∼ N(µ,Σ)

Z ∼ Binom(p(W ))

A ∼ W + Z + εAY

Y ∼ A ·m(W ) + θ(W ) + εAY

5.3.1 Nonlinear design 1. We test our estimators in the case of highly nonlinear treatment

effect modification m(W ) ∼ eW in tables 1-2. As we show, 2SLS can be extremely biased in

recovering the correct projection of m(W ) unto a linear working model. We use W ∼ N(3, 1),

p = .5 for Z, and a continuous treatment generated as a linear function of its regressor terms.

Scalar parameter. (Table 1.) The true effect is 33.23, sample size of n = 1000 is relatively

small for using an instrumental variable, and 10,000 repetitions are made. The “initial

substitution” estimator is formed by substituting the estimates of relevant components into

the parameter of interest, which is just β0
n = Ψ(Q0

n) = EW,nm
0
n(W ) here, or the estimated

mean treatment effect. When consistent initial estimates are formed of all components of D∗

using Super Learner, we observed a bias of just .0038, and variance of .6990 for the initial

substitution estimator. The three new methods all performed very similarly, achieving lower

bias than the initial substitution estimator, as well as slightly lower variance. Since all rele-

vant components are consistently specified, the TMLE-based estimators are asymptotically

guaranteed to have the lowest possible variance within the class of consistent estimators in our

semiparametric model. The same asymptotic guarantees hold for the estimating equations

estimator, which achieves similar magnitude bias and slightly higher variance than the

TMLE-based estimators. The two-stage least squares (2SLS) estimator, in contrast, achieves

not only much higher bias but vastly higher variance than the semiparametric estimators,
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even though it is a parametric estimator. The highly misspecified linear model that 2SLS fits

for the conditional outcome brings about the bias and large finite-sample variance. Finally,

the estimate that ignores confounding has a bias of about 21.

In table 2, we use an inconsistent initial estimate of Q(W,R), namely, we fit an incorrect

linear model m(W ) = b′
(

1
W

)
. Thus, the substitution estimator essentially functions like

2SLS. The confounded and 2SLS estimators are unchanged. The TMLE-based estimators

often show bias removal at the expense of some increase in variance as compared to the

unfluctuated initial substitution estimator in the case of misspecification. However we don’t

see that here with the modest sample size (n=1000), for which the initial substitution

estimator has fairly large variance in this simulation. Also, in this case of a scalar parameter,

the bias of the initial estimator was quite small (less than 2%). Performing the TMLE

fluctuation step causes neither an improvement nor substantial decline in performance here.

Vector-valued parameter. For the projection of m0(W ) unto a linear working model,

the true two-dimensional parameter of interest is [−64.2, 32.3].

2SLS solves the following optimization in the second stage:

arg minβ1,β2
∑n

i=1(Y −Π(Z,W )βT1
(

1
W

)
−βT2

(
1
W

)
)2. β1 is output as the parameter of interest. It

is easy to check that this can give a very different solution than a semiparametric approach

which estimates a function m(W ) that can take a variety of functional forms, and then

solves β = arg min
∑n

i=1(m(W )− βT
(

1
W

)
)2. Specifically, let εβ(W ) = m(W )− βT

(
1
W

)
denote

the vector of residuals in approximating m(W ) by βT
(

1
W

)
. Then in the case of a lin-

ear θ(W ), 2SLS solves arg minβ
∑n

i=1(Π(Z,W )εβ(W ))2, while the semiparametric approach

solves arg minβ
∑n

i=1(εβ(W ))2.

We see in table 2 that 2SLS has a mean absolute bias of around 136. A typical value

for its estimate is [−224, 90]. It is useless for estimating our parameter of interest without

knowing the functional form for m(W ) a priori. The confounded estimator that is fully
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correctly specified in its functional forms but ignores confounding has a bias of roughly 10.

All the semiparametric approaches achieve very low bias when initial estimates are consistent.

Furthermore, they all achieve similar and low variance for a large sample size, as the n =

10000 column shows. For the sample sizes in our simulation, the 2SLS estimator is not only

extremely biased, it also has larger variance than the semiparametric estimators, due to the

large mismatch between the second-stage linear model it fits and the data-generating process.

The right-hand side of table 2 shows an incorrect linear fit for m(W ) to form an inconsistent

initial estimate of µ(Z,W ). The initial substitution estimator works essentially like two-stage

least squares in this case. We deliberately start with this enormously biased initial estimator

to see if the semiparametric estimators can remove bias sufficiently. Indeed, we see very low

finite-sample bias for the three semiparametric consistent estimators. The iterative TMLE-

based approach performs best here, with mean absolute bias around just .25 at n = 10000

(compared to a mean absolute effect around 48). Furthermore, while the variance of the

semiparametric consistent estimators can be an order of magnitude higher than for the

initial substitution estimator when n = 1000, the variances are at a comparable scale for

n = 10000.

5.3.2 Scalar effect, nonlinear design 2. In table 3, we generate a continuous outcome

such that E(Y |Z,W ) lies within sharp boundaries covering a much smaller range than Y .

TMLE using the logistic fluctuation has been shown to be especially effective with similarly

generated data, where the data or conditional outcome falls within sharp cutoffs (Gruber

and van der Laan 2010).

We use a 3-dimensional W ∼ N(1, 1), p = .5 for Z, a binary treatment generated using

the binomial link function. The confounding term is εAY ∼ N(0, 5). m(W ) and θ(W ) are

continuous, and they each have the form a · plogis(βW ) + b, for some constants a, b. Thus,
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m(W ) and θ(W ) fall within some bounds [b, a + b]. Furthermore, the parameters are set so

that many values for each function are close to the boundaries.

The true effect is 1.00, and we use n = 1000. We see that without using an instrument, the

estimate is confounded by more than 50%. For the case of consistently specifying all initial

estimates, we include the correct parametric form for E(Y |Z,W ) in Super Learner’s library.

In this case the initial substitution estimator has both lowest bias and lowest variance. The

logistic fluctuation and estimating equations estimators also do well with relatively low bias

and variance, followed by the iterative and linear fluctuation TMLE, and finally, 2SLS has

the highest MSE of the unconfounded estimators. In the right hand of table 3, we misspecify

the initial estimate for E(Y |Z,W ) as a second-order polynomial. In this case, TMLE using

logistic fluctuation is the clear winner. It achieves an MSE (dominated by the variance) of

.34, compared to roughly .45 for the other semiparametric approaches. It also achieves a large

reduction in bias for minimal gain in variance compared to the initial substitution estimator.

5.3.3 Vector-valued effect, linear model. In table 4, we use a linear model for m(W ), so

that two-stage least squares with the correctly specified cross terms Π(Z,W )×W estimates

µ(Z,W ) consistently. Here we use a 3-dimensional covariate W ∼ N(2, 1), Z is binary and

of the form E(Z|W ) = plogis(α′W + α0). Treatment A is also binary and uses the logit link

function; m(W ) = βT
(

1
W

)
.

We see that although 2SLS uses the correct second-stage specification for E(Y |W,Z), it

remains slightly biased for all n, with .2 mean absolute bias (about 17%), since E(A|W,Z)

uses a nonlinear link function. The confounded estimate has (mean absolute) bias of .34.

The semiparametric consistent estimators have much lower bias than 2SLS even for n =

1000, with linear fluctuation and estimating equations achieving lower bias than the initial

substitution estimator. The table reflects the roughly
√
n decrease in bias of the consistent

estimators and decrease in SD of all estimators. The initial substitution estimator has just

Hosted by The Berkeley Electronic Press



28

slightly higher SD than 2SLS, as the former chooses the correct linear model from a library

of methods.

When we use an inconsistent initial estimate for µ(Z,W ): one of the coefficients in β is

fixed to an incorrect value and then a linear model is fit (Super Learner is only used for

estimating Pr(Z|W ), Π(Z,W )). This makes for a mean absolute bias of roughly 1.5 in the

initial substitution estimator (corresponding to an error of 100%). The three semiparametric

consistent estimates successfully remove bias; the two TMLE-based approaches have par-

ticularly low bias (about 94% of the bias is removed for n = 10000). The semiparametric

estimates have mean SD’s of only around .3 for n=10,000 where mean absolute effect is 1.5.

The linear fluctuation TMLE-based estimator performs the best overall, with lowest bias

and variance for large samples.

5.3.4 Confidence intervals. Table 5 shows 95% confidence intervals corresponding to

tables 2,4. These are calculated separately for each component of the vector-valued parameter

of interest. For the semiparametric estimators, as proved in (van der Laan and Rubin 2006),

the following equation holds:

Ψ(Q∗n)−Ψ(Q0) =
[
Pn − P0

]
D∗(Q∗n, g

∗
n)−

[
Pn − P0

]
Proj(D∗(Q∗n, g

∗
n)|Tang(g0)) + oP (

1√
n

)

Here Proj(D∗(Q∗n, g
∗
n)|Tang(g0)) denotes the projection of the efficient influence curve D∗

unto the tangent space of nuisance parameters, T (g0). It thus follows that a conservative

estimator for the variance of β∗n = Ψ(Q∗n) is the variance of D∗(Q∗, g∗). Note that when all

its components are consistently estimated, under regularity conditions, [Pn−P0] D∗(Q∗, g∗) =

[Pn−P0] D∗(Q0, g0)+oP ( 1√
n
), and thus the semiparametric efficiency bound is achieved. For

the three semiparametric consistent estimators, shown at the top of the list in table 5, we

use the estimated variance of the efficient influence curve D∗(Q∗, g∗) to calculate confidence

interval width. For the other three estimators, we simply use the empirical variance. For
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these cases, we demonstrate that even when “cheating” by accurately knowing the correct

width of the confidence intervals, coverage is still very poor due to the bias of the estimators.

We see that for all three semiparametric estimators, the coverage is generally overestimated,

as the theory suggests, but is usually not too far from 95%. For the case of consistent initial

estimates, coverage is around 96% when estimating a linear treatment effect and closer to

97% when estimating a nonlinear effect. Similar results holds when using misspecified initial

estimates; however, estimating equations has poor coverage (in the 80’s) due to finite-sample

bias. The initial substitution estimator is consistent when the initial estimates of components

are; however, it has coverage slightly below 95% even when using the empirical variance to

estimate the variance. This could be due to its not being normally distributed. When the

initial estimates of components is not consistent, the initial substitution estimator can be

heavily biased, and we see 0 coverage for most columns, even using an accurate variance.

Likewise the large bias of the confounded and 2SLS estimators for the case of the nonlinear

treatment effect causes 0 coverage. When a linear treatment effect is estimated, both the

confounded and 2SLS estimators exhibit poor coverage that deteriorates with n. In the

case of 2SLS, the bias is due to the mismatch between the linear model and the nonlinear

distribution of the conditional treatment Π(Z,W ).

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

[Table 5 about here.]
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6. Application to a dataset: estimating the effect of parents’ education on

infant health

We apply our TMLE-based estimators in the context of a program that expanded schooling

in Taiwan. In 1968, Taiwan expanded mandatory schooling from 6 years to 9 years, and more

than 150 new junior high schools were opened in 1968-1973 to accommodate this program.

Prior to this expansion of schools, enrollment in junior high was based on a competitive

process in which only part of the population of 12-14 year-old children was accepted. There

is significant variation in how much the schooling expansion program affected an individual’s

access to education based on the individual’s birth cohort and county of residence. In counties

where there were previously relatively few educated people and spots in school beyond grade

6, many new junior high schools were opened per child. Thus, program intensity as a function

of birth cohort and county serves as an instrumental variable that causes exogenous variation

in people’s educational attainment. This lets one make a consistent estimate of the effect of

parents’ education on their child’s health.

The school expansion program caused junior high enrollment to jump from 62% to 75%

within a year in 1968, before leveling off around 84% in 1973.

We use the same dataset as (Chou et al 2010). The treatment variable is either the mother’s

or the father’s education in years (starting from first grade). There are four outcomes we

study: low birth weight (< 2500g), neonatal mortality (in the first 27 days after birth),

postneonatal mortality (between day 28 and 365), and infant mortality (either neonatal or

postneonatal). The instrument is the cumulative number of new junior highs opened in a

county by the time a birth cohort reaches junior high, per 1000 children age 12-14 in that

year. This serves as a proxy for the intensity of the school expansion program for a particular

birth-county cohort. The data is taken by checking every birth certificate for children born

in Taiwan between 1978 and 1999. The birth certificates list for both parents their ages,
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number of years of education, and county of birth (which we use as a usually correct guess

for the county in which the parent went to school), as well as the incidence of low birth

weight. Birth certificates are matched to death certificates from a similar period using a

unique identification number issued for each person born to ascertain if an infant death

has taken place. The previous study done on this dataset (Chou et al 2010) used standard

OLS and 2SLS, which are sensitive to highly collinear regressors, and as a result separately

estimated the effect of father’s and mother’s education on infant’s health. To ease comparison

with prior results, we do the same here. Only datapoints where the father was born in [1943-

1968], or the mother in [1948-1968] were included in the study. Those points where the parent

was at most 12 years old in 1968 constitute the treatment group, and the rest the control

group where the instrument Z is 0 (for those who were unaffected by the school reform).

This resulted in a sample size of about 6.5 million, of which roughly 4 million were in the

treatment group, for either case of parent.

We reestimate (Chou et al 2010)’s scalar effect estimates using our TMLE-based approach.

We also give previously unpublished estimates of treatment effect heterogeneity as a function

of the parent’s and children’s birth cohorts.

The usefulness of the semiparametric approaches depend on the σ2(W ) = Var(Π(Z,W )|W )

term being large (recall Π(Z,W ) = E(A|Z,W )). This term captures the strength of the

instrument in predicting the treatment given W , and the variance of the instrument-based

estimators blow up when σ2 is small. Our instrument only depends on the parent’s birth

cohort and the county, so σ2 would be 0 if we include both these variables in W . Since most

variation in Z is by county (of parent’s birth), we do not include county in W , and use

as covariates W only parent’s and child’s birth cohort, coding these as dummy variables.

In addition, we remove datapoints where σ2(W ) = 0, which corresponds to including only
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points where the parent was born after or in 1956. People born earlier were unaffected by

the schooling reform.

We need to check that county (parent’s county of birth) does not serve as a confounder

causing UZ , UY to be correlated. Using modified outcome Y ′ (the log-odds ratio for a binary

health outcome, see below), we compare the between-county vs the within-county variation.

We see that, for any of the 4 health outcomes, and using either mother’s or father’s county,

fixing W , at most 1.1% of the variation in Y ′ is between-county, but on average only .5%.

Thus, we can rule out that confounding from county will effect our estimates. The IV-

assumptions in section 3 are satisfied.

Table 8 shows summary statistics. Note that for the outcome of postneonatal mortality,

we only include datapoints where the child survived the neonatal period.

[Table 6 about here.]

We perform our TMLE-based estimates using the noniterative, linear-fluctuation estima-

tor, as this was found to perform well across multiple simulations, and had low bootstrap vari-

ance on the data, suggesting a good fit. We use the same library of initial estimates described

above in section 5.4, and the empirical distribution for the probability of a county given the

birth cohorts, Pr(Z|W ). Since our outcomes are binary with relatively few positives, and the

covariates are indicator variables that divide the dataset into cells, we modify our dataset

(W,Z,A, Y ) −→ (W,Z, Ā, Y ′) when forming initial estimates Π(Z,W ), m(W ), θ(W ). Āi is

the average value of education A in the ith cell given by the parent and child’s birth cohorts

and the county (thus, fixing W and Z). Y ′ is the log-odds ratio given by Cox’s modified

logistic transformation: Y ′i = log Ni+.5
Di−Ni+.5 , where there are Di total points in the i-th cell,

and Ni of these are 1, for one of the four outcomes of interest.

Table 9 gives estimates of the scalar treatment effects. For the OLS and 2SLS estimates,
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we include the parent and child’s birth cohorts as covariates, with heteroscedasticity-robust

standard errors (White’s method as implemented in R’s sandwich package).

We use the final semiparametric model of the components that TMLE fits (PW ,Π(Z,W ),

etc...), as well as a linear 2SLS model to estimate the number of adverse infant health out-

comes prevented by schooling reform. Using our modified log-odds outcome Yi
′ = log Ni+.5

Di−Ni+.5 ,

where i indexes a cell, we estimate the counterfactuals for Y ′ without the schooling reform,

denoted Y ′(Z = 0). We have Y ′(Z = 0) = m(W )Π(Z = 0,W ) + θ(W ), where

Π(Z = 0,W ) estimates the counterfactual E(A(Z = 0)|W ). Then we convert from Yi
′(Z = 0)

to Ni(Z = 0), which is the (counterfactual) number of adverse outcomes in a cell. ∆N =∑
cellsNi(Z = 0) − Ni gives the estimated total reduction in an adverse outcome from the

schooling reform. We also show the linear 2SLS model’s estimate. In this case, Y ′(Z = 0)

simplifies to (1, (1, 0,W )′β1,W )T (β2), where β1, β2 are the first- and second-stage coefficients,

indexing (1, Z,W )T , and (1, A,W )T , respectively.

As table 9 shows, estimates of the scalar effect of (a parent’s) education on the log-odds

ratio of (infant’s) health outcome range from -.2 to -1.0. The estimated percent reduction

in adverse outcomes ranges from 1.5% for low birthweight (father’s education is treatment,

TMLE is the estimator) to 16.7% for neonatal mortality (with mother’s education, TMLE

estimator). The results imply a significant human benefit from the schooling reform regarding

health: our TMLE estimator estimates roughly 1850 infant deaths were spared as an indirect

effect of schooling reform.4 The TMLE estimator finds a significantly greater reduction in

adverse outcomes than 2SLS when the outcome is neonatal mortality and mother’s education

is the treatment, and for infant mortality when father’s education is the treatment. TMLE

and 2SLS yield similar estimates for the effect for low-birthweight/mother’s-education and

postneonatal-mortality/father’s-education, while TMLE gives a somewhat lower estimate

4This estimate is made using semiparametric, TMLE-based estimates of the effect of father’s education on reducing infant

mortality in the treated population.
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than 2SLS in the remaining two cases. The beneficial effect of father’s education on infant

and postneonatal mortality was highly significant for either estimation method, while the

effect of mother’s education on neonatal mortality was highly significant only for the TMLE

estimator.

The use of a library of learners (TMLE) instead of a linear parametric model (2SLS) is

reflected in the better fit and higher cross-validated R2 value achieved for both stages. The

“first stage” of the method of instruments refers to fitting Π(Z,W ) in our semiparametric

model, and the “second stage” to fitting µ(Z,W ). Especially for the second stage of father’s

education, there is a large gain in R2 of .2-.3 from using data-adaptive learning. Super-

Learner chooses a least-squares linear model with largest weight in every case; however,

our semiparametric model for E(Y |Z,W ) = Π(Z,W )m(W ) + θ(W ) even when m(W ),

θ(W ) are set to be linear in W is more flexible than the standard linear 2SLS model

E(Y |Z,W ) = βAE(A|Z,W )+βTW
(

1
W

)
, and we include quadratic terms in W . Support vector

machine is also chosen with large weight for both stages, and Random Forest for the first

stage. The instrument is slightly stronger for predicting mother’s education than father’s,

which might explain the higher first-stage R2 values for mother’s education.

As expected, our semiparametric estimator typically has higher variance than 2SLS; how-

ever, this is not always true, as TMLE achieves a better fit, which can make for a lower

variance despite the added complexity of choosing from various learners.

We had expected that OLS would be biased from unmeasured confounding between a

parent’s education and his/her infant’s health. One would expect that confounding factors

would increase parents’ education and decrease adverse health effects, or vice versa, biasing

the OLS estimates to overestimate the beneficial effects of education. Surprisingly, we saw

that the OLS estimates were smaller in magnitude that either of the instrument-based

estimates for several columns in our table. One possible explanation is there might not have
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been significant unmeasured confounding. Indeed, the Hausman-Wu (F-) test for exogeneity

gives low evidence in support of confounding.

In tables 10-11, we estimate the treatment effect modification, where the parent’s or child’s

membership in a particular birth cohort is a modifier (given by the dummy variables W ). As

before, we estimate a vector-valued parameter β using a linear working model {mβ(W ) =

βT
(

1
W

)
|β}. Since all covariates in W are binary indicators for birth cohorts, the coefficients

in β can be directly compared to one another to reflect treatment effect modification.

The six effect modifiers that are largest in magnitude for each case are shown. The child

being born in the late 70’s or 80’s often corresponded to a substantial increase in the beneficial

effects of parent’s education. The father being born in 1965, 1967, or 1968 corresponded to

increased beneficial effects of his education on his infant’s mortality. However, the effect of

mother’s education on her child’s good health was found be diminished for babies born in

1998 or 1999. Virtually all the treatment effect modifiers shown are highly significant for

mothers, as well as for fathers when postneonatal mortality is the outcome. The largest

magnitude effect modifiers were not necessarily the most statistically significant ones, so the

treatment effect modifiers are summarized for each case both as original and as standardized

values (effect modifier ÷ SE). There were roughly 33 total effect modifiers. We see that

for some cases, a significant fraction of the effect modifiers had a coefficient of statistically

significant magnitude (neonatal mortality for mothers, and low birthweight and postneonatal

mortality for fathers).

[Table 7 about here.]

[Table 8 about here.]

[Table 9 about here.]
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7. Discussion

We consider the problem of estimating the causal effect of a treatment on an outcome in

the presence of unmeasured confounding and a valid instrument. Assuming the treatment

effect (Y (A = a)−Y (A = 0)) is a function of covariates W , we are interested in the average

effect of treatment given an arbitrary subset V of W . Our causal parameter of interest is the

projection of this treatment effect E(Y (A = a)−Y (A = 0)|V ), as modulated by variables V ,

unto a user-supplied parametric model. We derive our solution in a highly general framework

compared to prior work. We allow a binary or continuous instrument and treatment, and

use a fully semiparametric model that invokes minimal assumptions to ensure identification

in the instrumental variables setting.

Our solution is based on the targeted minimum loss-based estimation (TMLE) methodol-

ogy. A first step is to find the efficient influence curve of the parameter of interest. We do so

both for the general semiparametric case, as well as for the case when the treatment effect

has a parametric form. The TMLE procedure is to construct initial estimates of certain

components of the data-generating distribution, then fluctuate some of the components

in a direction that optimizes efficiency while removing bias. We describe three different

implementations of the TMLE procedure for this problem, and demonstrate in simulations

that each of these implementations has its advantages. Our estimators have a number of

desirable properties both theoretically and empirically.

Our simulations reflect that even compared to a parametric estimator for the scalar effect

of interest, such as two-stage least squares, the semiparametric efficient estimates can have

both lower bias and far lower variance due to the better fit with relevant components of the

data-generating distribution. We also showed that two-stage least squares can be enormously

biased when estimating a vector-valued parameter, while TMLE is very effective at removing

bias with only a moderate gain in variance in finite samples. Using TMLE with a logistic
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fluctuation can give the best performance when the conditional mean of the outcome follows

sharp cutoffs, and each of the three TMLE-based estimators we describe has datasets on

which is it the strongest performer. Finally, using the (estimated) variance of the efficient

influence curve to estimate the standard error gives confidence intervals that are just slightly

conservative. The confidence intervals based on TMLE can perform better than those based

on a conventional semiparametric estimator.

We performed an extensive data analysis estimating the effect of parents’ education on

their infant’s health in the context of a schooling reform in Taiwan. We identified a number

of birth cohorts, pertaining to either the parent or the infant, that significantly increased, or

decreased, the beneficial effect of education on health.

Several avenues for future work are of interest. One is to work with instrumental variables

in the context of more complex causal models, such as when there are multiple instruments

and treatments. This may for example occur in the setting of longitudinal data where each

time point has an instrument, or in the context that a multivariate instrument is used to

control for a multivariate confounded treatment. A number of extensions are of interest along

empirical lines as well. For instance, future work could apply our methods to data having

a very high-dimensional covariate space W , where V is a tiny subset of W , in finding the

effect of the treatment given V .

The authors gratefully acknowledge the support of the National Institutes of Health,

through NIAID grant number 5R01AI074345.
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Appendix 1: Proofs of properties of the TMLE-based estimators

Consistency under partial misspecification.

TMLE is constructed so that the efficient influence curve equation holds. We can explicitly

write this as a function of the final estimate Ψ∗ = β∗ using the definition of β. Thus we have

PnD
∗(Q∗, g∗, β∗) = 0 (we drop the n-subscript notation here). Since PnD

∗(Q∗, g∗, β∗) con-

verges to P0D
∗(Q′, g′, β′), where {Q′, g′, β′} are the components in the limiting distribution,

when the true parameter of interest β′ = β0 solves P0D
∗(Q′, g′, β′) = 0, for some case of

consistent specification of some of {Q′, g′}, then we have that β∗ −→ β0 for our TMLE

estimators.

Simplifying slightly, we get that P0D
∗(Q, g, β) = 0 reduces to

P0 c
−1
0 h1(m−mβ) (A.1)

+ P0 c
−1
0

h1

σ2
(Π− E(Π))((m0 −m)Π0 − (θ0 − θ)) (A.2)

= 0 (A.3)
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TMLE yields a consistent estimate for Ψ∗ = β∗ under 3 scenarios of partial misspecification

of components given below, with the reasoning sketched. Note that for the non-iterative

versions of TMLE, only m0 is updated, and the initial estimates are the same as the final

estimates for the other components. For iterative TMLE, it is easy to check that when an

initial estimate for a component is consistent, so is the final estimate (i.e. at every step k,

εkA → 0 when Π0 is consistent ).

(1) Initial estimates Π0 and Pr0(Z|W ) are consistent.

We have E0( (Π0(Z,W ) − E0(Π0)|W )Π0(Z,W ) |W ) = σ2(W ) since Π, EΠ|W are

correctly specified. Also, since E0( (Π0(Z,W )−E0(Π0)|W ) |W ) = 0, the term involving

(θ0(W )− θ(W )) is 0 in expectation. Thus, A.2 reduces to

P0 c
−1
0 h1(m0 −m), so P0D

∗(Q, g, β) = 0 becomes P0 c
−1
0 h1(m0 −mβ) = 0, and this is

solved by β = β0 by definition of β.

(2) Initial estimates m0 and Pr0(Z|W ) are consistent.

The term in A.2 involving (m0 − m) is 0 by the consistency of m, and the term

involving (θ0−θ) is also 0 since E0( Π(Z,W )−E0(Π(Z,W )|W ) |W ) = 0. Thus, we have

P0 c
−1
0 h1(m0 −mβ) = 0, which is solved by β = β0 by definition of β.

(3) Initial estimates m0 and θ0 are consistent.

A.2 goes to 0 because both m0 − m = 0, θ0 − θ = 0. The rest of the reasoning is the

same as above.

Efficiency under correct specification of all relevant components and nuisance parameters.

(See van der Laan and Robins 2003, and van der Laan and Rubin 2006.)

Suppose all initial estimates (Q0
n, g

0
n) are consistent, and that

Var(D∗(Q∗n, g
∗
n) − D∗(Q0, g0)) ∈ o(1). Then the final estimate Ψ(Q∗n) is asymptotically

efficient, with

Ψ(Q∗n)−Ψ(Q0) =
[
Pn − P0

]
D∗(Q0, g0) + op(1/

√
n) (A.4)
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Sketch of proof: Note that when all initial estimates are consistent, then so are all final

estimates (Q∗n, g
∗
n). In the non-iterative case, only m0

n(W ) is updated and m∗n → m0
n when

the other components are consistent (see Consistency proof above). Using the definition of

the canonical gradient D∗ at (Q∗n, g0) and taking a Taylor expansion (see van der Laan and

Robins 2003), we have

Ψ(Q∗n)−Ψ(Q0) = −P0 D
∗(Q∗n, g0) + op(1/

√
n) (A.5)

We can expand the first term on rhs into

−P0 D
∗(Q∗n, g0) = −P0 D

∗(Q∗n, g
∗
n) +

[
P0 D

∗(Q∗n, g
∗
n)− P0 D

∗(Q∗n, g0)

]
(A.6)

The expression in brackets is equal to an empirical process-like expression involving the

projection unto the tangent space of g0:

[
Pn − P0

]
(Proj(D∗(Q∗n, g

∗
n))|Tang(g0)) + oP (1/

√
(n)) (A.7)

Rewriting equation A.5, using A.6, A.7 and the key property of TMLE that PnD
∗(Q∗n, g

∗
n) =

0, we get

Ψ(Q∗n)−Ψ(Q0) =
[
Pn − P0

]
D∗(Q∗n, g

∗
n) +

[
Pn − P0

]
(Proj(D∗(Q∗n, g

∗
n))|Tang(g0)) + op(1/

√
n)

=
[
Pn − P0

]
D∗(Q0, g0) +

[
Pn − P0

]
(D∗(Q∗n, g

∗
n)−D∗(Q0, g0)) + op(1/

√
n)

=
[
Pn − P0

]
D∗(Q0, g0) + op(1/

√
n)

Appendix 2: Efficient influence curve of target parameter

We determine the efficient influence curve of Ψ :M→ Rd in a two step process. Firstly, we

determine the efficient influence curve in the model in which Π0 is assumed to be known.

Subsequently, we compute the correction term that yields the efficient influence curve in our

model of interest in which Π0 is unspecified.
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Efficient influence curve in model in which Π0 is known.

First, we consider the statistical model M(π0) ⊂ M in which Π0(Z,W ) = E0(A | Z,W ) is

known. For the sake of the derivation of the canonical gradient, let W ∈ RN be discrete with

supportW so that we can view our model as a high dimensional parametric model, allowing

us to re-use previously established results. That is, we represent the semiparametric regres-

sion model as E0(Y | Z,W ) = Π0(Z,W )
∑

wm0(w)I(W = w)+θ0(W ) so that it corresponds

with a linear regression fm0(Z,W ) = Π0(Z,W )
∑

wm0(w)I(W = w) in which m0 represents

the coefficient vector. Define the N -dimensional vector h(Π0)(Z,W ) = d/dm0fm0(Z,W ) =

(Π0(Z,W )I(W = w) : w ∈ W). By previous results on the semiparametric regression model,

a gradient for the N -dimensional parameter m(P ) at P = P0 ∈M(π0) is given by

D∗m,Π0
(P0) = C(π0)−1(h(Π0)(Z,W )− E(h(Π0)(Z,W ) | W ))(Y − fm0(Z,W )− θ0(W )),

where C(π0) is a N ×N matrix defined as

C(π0) = E0{d/dm0fm0(Z,W )− E0(d/dm0fm0(Z,W ) | W )}2

= E0{(I(W = w){Π0(Z,W )− E0(Π0(Z,W ) | W} : w}2

= Diag
(
E0{I(W = w){Π0(Z,W )− E0(Π0(Z,W ) | W = w)}2} : w

)
= Diag

(
PW,0(w)E0

(
{Π0(Z,W )− E0(Π0(Z,W ) | W )}2 | W = w

)
: w
)
.

For notational convenience, given a vector X, we used notation X2 for the matrix XX>.

We also used the notation Diag(x) for the N × N diagonal matrix with diagonal elements

defined by vector x. Thus, the inverse of C(π0) exists in closed form and is given by:

C(π0)−1 = Diag

(
1

PW,0(w)E0({Π0(Z,W )− E0(Π0(Z,W ) | W )}2 | W = w)
: w

)
.

This yields the following formula for the efficient influence curve of m0 in model M(π0):

D∗m,Π0,w
(P0) = 1

PW,0(w)E0({Π0(Z,W )−E0(Π0(Z,W )|W )}2|W=w)

I(W = w)(Π0(Z,W )− E0(Π0(Z,W ) | W ))(Y − Π0(Z,W )m0(W )− θ0(W )),
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where D∗m,Π0
(P0) is N × 1 vector with components D∗m0,Π0,w

(P0) indexed by w ∈ W . We can

further simplify this as follows:

D∗m,Π0,w
(P0)(W,Z, Y ) = 1

PW,0(w)E0({Π0(Z,W )−E0(Π0(Z,W )|W )}2|W=w)

I(W = w)(Π0(Z,w)− E0(Π0(Z,W ) | W = w))(Y − Π0(Z,w)m0(w)− θ0(w)).

This gradient equals the canonical gradient of m0 in this modelM(π0), if E0((Y −E0(Y |

Π0,W ))2 | Z,W ) is only a function of W . For example, this would hold if E(U2
Y | Z,W ) =

E0(U2
Y | W ). This might be a reasonable assumption for an instrumental variable Z. For the

sake of presentation, we work with this gradient due to its relative simplicity. and the fact

that it still equals the actual canonical gradient under this assumption.

We have that ψ0 = φ(m0, PW,0) for a mapping

φ(m0.PW,0) = arg min
β
E0

∑
a

h(a, V )a2 (m0(W )−mβ(V ))2 ,

defined by working model {mβ : β}. Let dφ(m0, PW,0)(hm, hW ) = d
dm0

φ(m0, PW,0)(hm) +

d
dPW,0

φ(m0, PW,0)(hW ) be the directional derivative in direction (hm, hW ). The gradient of

Ψ :M(Π0)→ Rd is given by D∗ψ,Π0
(P0) = d

dm0
φ(m0, PW,0)D∗m,Π0

(P0) + d
dPW,0

φ(m0, PW,0)ICW ,

where ICW (O) = (I(W = w) − PW,0(w) : w). We note that β0 = φ(m0, PW,0) solves the

following d× 1 equation

U(β0,m0, PW,0) ≡ E0

∑
a

h(a, V )a2 d

dβ0

mβ0(V )(m0(W )−mβ0(V )) = 0.

By the implicit function theorem, the directional derivative of β0 = φ(m0, PW,0) is given by

dφ(m0, PW,0)(hm, hW ) = −
{

d
dβ0
U(β0,m0, PW,0)

}−1

{
d

dm0
U(β0,m0, PW,0)(hm) + d

dPW,0
U(β0,m0, PW,0)(hW )

}
.

We need to apply this directional derivative to (hm, hW ) = (D∗m,Π0
(P0), ICW ). Recall we

assumed that mβ is linear in β. We have

c0 ≡ −
d

dβ0

U(β0,m0) = E0

∑
a

h(a, V )a2

{
d

dβ0

mβ0(V )

}2

,

which is a d× d matrix. Note that if mβ(V ) =
∑

j βjVj, then this reduces to

c0 = E0

∑
a

h(a, V )a2~V ~V >,
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where ~V = (V1, . . . , Vd). We have

d

dPW,0
U(β0,m0, PW,0)(hW ) =

∑
w

hW (w)
∑
a

h(a, v)a2 d

dβ0

mβ0(v)(m0(w)−mβ0(v)).

Thus, the latter expression applied to ICW (O) yields c−1
0 D∗W (P0), where

D∗W (P0) ≡
∑
a

h(a, V )a2 d

dβ0

mβ0(V )(m0(W )−mβ0(V )).

In addition, the directional derivative d
dε
U(β0,m0 + εhm, PW,0)|ε=0 in the direction of the

function hm is given by

d

dm0

U(β0,m0, PW,0)(hm) = E0

∑
a

h(a, V )a2 d

dβ0

mβ0(V )hm(W ).

We conclude that

dφ(m0, PW,0)(hm, hW ) = D∗W (P0) + c−1
0

{
E0

∑
a

h(a, V )a2 d

dβ0

mβ0(V )D∗m,W (P0)

}
.

We conclude that the canonical gradient of Ψ :M(Π0)→ Rd is given by

D∗ψ,Π0
(P0)(O) = D∗W (P0)(O)

+c−1
0 E0

∑
a h(a, V )a2 d

dβ0
mβ0(V )D∗m,W (P0)

= c−1
0

∑
a h(a, V )a2 d

dβ0
mβ0(V )(m0(W )−mβ0(V ))

+c−1
0

∑
a h(a, V )a2 d

dβ0
mβ0(V ) 1

E0({Π0(Z,W )−E(Π0(Z,W )|W )}2|W )

(Π0(Z,W )− E0(Π0(Z,W ) | W ))(Y − Π0(Z,W )m0(W )− θ0(W )).

We state this result in the following lemma and also state a robustness result for this efficient

influence curve.

Lemma 3: The efficient influence curve of Ψ :M(Π0)→ Rd is given by

D∗ψ,Π0
(P0) = c−1

0

∑
a h(a, V )a2 d

dβ0
mβ0(V )(m0(W )−mβ0(V ))

+c−1
0

∑
a h(a, V )a2 d

dβ0
mβ0(V ) 1

E0({Π0(Z,W )−E(Π0(Z,W )|W )}2|W )

(Π0(Z,W )− E0(Π0(Z,W ) | W ))(Y − Π0(Z,W )m0(W )− θ0(W )).

Assume the linear working model mβ(V ) = β~V . Let h1(V ) =
∑

a h(a, V )a2~V . We have that

for all θ, (d0 below refers to Pr(Z|W )):

P0D
∗
ψ,Π0

(g0,m, θ) = 0 if E0h1(V )(m−m0)(W ) = 0,
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or, equivalently, if ψ ≡ Ψ(m,PW,0) = Ψ(m0, PW,0) = ψ0.

Efficient influence curve in model in which Π0 is unknown

We will now derive the efficient influence curve in modelM in which Π0 is unknown, which is

obtained by adding a correction term Dπ(P0) to the above derived D∗ψ,Π0
(P0). The correction

term Dπ(P0) that needs to be added to D∗ψ,Π0
is the influence curve of P0{D∗ψ,Π0

(πn) −

D∗ψ,Π0
(π0)}, where D∗ψ,Π0

(π) = D∗ψ,Π0
(β0, θ0,m0, d0, π) is the efficient influence curve in model

M(π0), as derived above with π0 replaced by π, and πn is the nonparametric NPMLE of π0.

Let h1(V ) ≡
∑

a h(a, v)a2 d
dβ0
mβ0(v). Let π(ε) = π + εη. We plug in for η the influence curve

of the NPMLE Πn(z, w), which is given by

η(z, w) =
I(Z = z,W = w)

P0(z, w)
(A− Π(Z,W )).

We have

Dπ(P0) = d
dε
P0D

∗
ψ(π(ε))

∣∣
ε=0

= P0c
−1
0 h1(V )

{
−2E0((π−E(π|W ))(η−E(η|W ))|W )

E0((π−E(π|W ))2|W )

(π − E(π | W )(Y − πm0 − θ0)}

+P0c
−1
0 h1(V )

{
(η−E(η|W ))(Y−πm0−θ0)
E0((π−E(π|W ))2|W )

}
−P0c

−1
0 h1(V )

{
(π−E(π|W ))ηm0

E0((π−E(π|W ))2|W )

}
.

By writing the expectation w.r.t. P0 as an expectation of a conditional expectation, given

Z,W , and noting that E(Y −π0m0− θ0 | Z,W ) = 0, it follows that the first two terms equal

zero. Thus,

Dπ(P0) = −P0c
−1
0 h1(V )

{
(π−E0(π|W ))ηm0

E0((π−E0(π|W ))2|W )

}
.

This yields as correction term:

Dπ(P0) = −(A− Π0(Z,W ))
∫
z,w

P0(z, w)c−1
0 h1(V )

{
(π−E(π|W ))

I(Z=z,W=w)
P0(z,w)

m0

E0((π−E(π|W ))2|W )

}
= −(A− Π0(Z,W ))c−1

0 h1(V )
{

(π(Z,W )−E(π(Z,W )|W ))m0(W )
E0((π(Z,W )−E0(π(Z,W )|W ))2|W )

}
.

This proves the following lemma.
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Lemma 4: The efficient influence curve of Ψ :M→ Rd is given by

D∗(P0) = D∗W (P0)

+c−1
0

h1(V )
σ2(d0,π0)(W )

(π0(Z,W )− E0(π0(Z,W ) | W ))(Y − π0(Z,W )m0(W )− θ0(W ))

−c−1
0

h1(V )
σ2(d0,π0)(W )

{(π0(Z,W )− E0(π0(Z,W ) | W ))m0(W )} (A− π0(Z,W ))

≡ D∗W (P0) + CY (d0, π0)(Z,W )(Y − π0(Z,W )m0(W )− θ0(W ))

−CA(d0, π0,m0)(A− π0(Z,W ))

≡ D∗W (P0) +D∗Y (P0)−D∗A(P0),

where

σ2(d0, π0)(W ) = E0({Π0(Z,W )− E(Π0(Z,W ) | W )}2 | W )

h(d0, π0)(W ) = c−1
0

h1(V )

σ2(d0, π0)(W )

CY (d0, π0)(Z,W ) = h(d0, π0)(W )(π0(Z,W )− Ed0(π0(Z,W ) | W ))

CA(d0, π0,m0)(Z,W ) = CY (d0, π0)(Z,W )m0(W ).

Double robustness of efficient influence curve: We already showed P0D
∗(π0, d0,m, θ) =

0 if φ(m,PW,0) = φ(m0, PW,0). If φ(m,PW,0) = φ(m0, PW,0) (i.e., ψ = ψ0), then,

P0D
∗(π, d0,m, θ) = P0

h1

σ2(d0, π)
(π − Pd0π)(π0 − π)(m0 −m),

where we used notation Pd0h = Ed0(h(Z,W ) | W ) for the conditional expectation operator

over Z, given W . This is thus second order in (m − m0)(π − π0). In particular, it equals

zero if m = m0 or π = π0. We can thus also state the following double robustness result: if

m = m0, then P0D
∗(π, d,m0, θ) = 0 if d = d0 or if π = π0.

Appendix 3: Efficient influence curve of target parameter when assuming a parametric

form for effect of treatment as function of covariates

We now assume m0 = mα0 for some model {mα : α}, which implies the semiparametric re-

gression modelE0(Y | Z,W ) = Π0(Z,W )mβ0(W )+θ0(W ). Let fβ(Z,W ) = Π0(Z,W )mβ(W ).
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Let mα(W ) = α>W ∗, where W ∗ is k-dimensional vector of functions of W . Note that α is

d-dimensional and d
dα
mα(W ) = W ∗.

Efficient influence curve in model in which Π0 is known.

First, we consider the statistical model M(π0) ⊂ M in which Π0(Z,W ) = E0(A | Z,W ) is

known. Define the k-dimensional vector

h(Π0)(Z,W ) = d/α0mα0(Z,W ) = Π0(Z,W )d/dα0mα0(W ) = Π0(Z,W )W ∗.

By previous results on the semiparametric regression model, a gradient for the k-dimensional

parameter α(P ) at P = P0 ∈M(π0) is given by

D∗α,Π0
(P0) = C(π0)−1(h(Π0)(Z,W )− E(h(Π0)(Z,W ) | W ))(Y − fα0(Z,W )− θ0(W )),

where C(π0) is a k × k matrix defined as

C(π0) = E0{d/dα0fα0(Z,W )− E0(d/dα0fα0(Z,W ) | W )}2

= E0{(W ∗W ∗>{Π0(Z,W )− E0(Π0(Z,W ) | W}2}.

Let C(π0)−1 be the inverse of C(π0).

This gradient equals the canonical gradient of α0 in this model M(π0), if E0((Y −E0(Y |

Π0,W ))2 | Z,W ) is only a function of W . For example, this would hold if E(U2
Y | Z,W ) =

E0(U2
Y | W ). This might be a reasonable assumption for an instrumental variable Z. For the

sake of presentation, we work with this gradient due to its relative simplicity. and the fact

that it still equals the actual canonical gradient under this assumption.

We have that ψ0 = φ(α0, PW,0) for a mapping

φ(α0.PW,0) = arg min
β
E0

∑
a

h(a, V )a2 (mα0(W )−mβ(V ))2 ,

defined by working model {mβ : β}. Let dφ(α0, PW,0)(hα, hW ) = d
dα0
φ(α0, PW,0)(hα) +

d
dPW,0

φ(α0, PW,0)(hW ) be the directional derivative in direction (hβ, hW ). The gradient of

Ψ : M(Π0) → Rd is given by D∗α,Π0
(P0) = d

dα0
φ(α0, PW,0)D∗α,Π0

(P0) + d
dPW,0

φ(α0, PW,0)ICW ,

where ICW (O) = (I(W = w) − PW,0(w) : w) is the influence curve of the empirical
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distribution of W . We note that β0 = φ(α0, PW,0) solves the following d× 1 equation

U(β0, α0, PW,0) ≡ E0

∑
a

h(a, V )a2 d

dβ0

mβ0(V )(mα0(W )−mβ0(V )) = 0.

By the implicit function theorem, the directional derivative of β0 = φ(α0, PW,0) is given by

dφ(α0, PW,0)(hα, hW ) = −
{

d
dβ0
U(β0, α0, PW,0)

}−1

{
d
dα0
U(β0, α0, PW,0)(hα) + d

dPW,0
U(β0, α0, PW,0)(hW )

}
.

We need to apply this directional derivative to (hα, hW ) = (D∗α,Π0
(P0), ICW ). Recall we

assumed that mβ is linear in β. We have

c0 ≡ −
d

dβ0

U(β0, α0, PW,0) = E0

∑
a

h(a, V )a2

{
d

dβ0

mβ0(V )

}2

,

which is a d× d matrix. Note that if mβ(V ) =
∑

j βjVj, then this reduces to

c0 = E0

∑
a

h(a, V )a2~V ~V >,

where ~V = (V1, . . . , Vd). We have

d

dPW,0
U(β0, α0, PW,0)(hW ) =

∑
w

hW (w)
∑
a

h(a, v)a2 d

dβ0

mβ0(v)(mα0(w)−mβ0(v)).

Thus, the latter expression applied to ICW (O) yields the contribution c−1
0 D∗W (P0), where

D∗W (P0) ≡
∑
a

h(a, V )a2 d

dβ0

mβ0(V )(mα0(W )−mβ0(V )).

In addition,

d

dα0

U(β0, α0, PW,0) = E0

∑
a

h(a, V )a2 d

dβ0

mβ0(V )
d

dα0

mα0(W ).

We conclude that

dφ(α0, PW,0)(hα, hW ) =

D∗W (P0) + c−1
0

{
E0

∑
a h(a, V )a2 d

dβ0
mβ0(V ) d

dα0
mα0(W )D∗α,Π0

(P0)
}
.
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We conclude that the canonical gradient of Ψ :M(Π0)→ Rd is given by

D∗ψ,Π0
(P0) = D∗W (P0)(O)

+c−1
0

{
E0

∑
a

h(a, V )a2 d

dβ0

mβ0(V )
d

dα0

mα0(W )

}
D∗α,Π0

(P0)(O)

= D∗W (P0)(O) +

c−1
0

{
E0h1(V )~V ~W ∗>

}
C(π0)−1(h(Π0)(Z,W )− E(h(Π0)(Z,W ) | W ))×

(Y − fα0(Z,W )− θ0(W )).

We state this result in the following lemma and also state a robustness result for this efficient

influence curve.

Lemma 5: Let h1(V ) =
∑

a h(a, V )a2~V .The efficient influence curve of Ψ : M(Π0) →

Rd is given by

D∗ψ,Π0
(P0) = c−1

0 h1(V ) d
dβ0
mβ0(V )(mα0(W )−mβ0(V ))

+c−1
0

{
E0h1(V )~V ~W ∗>

}
C(π0)−1(h(Π0)(Z,W )− E(h(Π0)(Z,W ) | W ))×

(Y − fα0(Z,W )− θ0(W )).

We have that

P0D
∗
ψ,Π0

(d,mα0 , θ) = 0, if either d = d0 or θ = θ0.

Efficient influence curve in model in which Π0 is unknown

We will now derive the efficient influence curve in modelM in which Π0 is unknown, which is

obtained by adding a correction term Dπ(P0) to the above derived D∗ψ,Π0
(P0). The correction

term Dπ(P0) that needs to be added to D∗ψ,Π0
is the influence curve of P0{D∗ψ,Π0

(πn) −

D∗ψ,Π0
(π0)}, where D∗ψ,Π0

(π) = D∗ψ,Π0
(β0, θ0, α0, d0, π) is the efficient influence curve in model

M(π0), as derived above with π0 replaced by π, and πn is the nonparametric NPMLE of π0.

Let h1(V ) ≡
∑

a h(a, v)a2 d
dβ0
mβ0(v). Let π(ε) = π + εη. We plug in for η the influence curve
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of the NPMLE Πn(z, w), which is given by

η(z, w) =
I(Z = z,W = w)

P0(z, w)
(A− Π(Z,W )).

We have

Dπ(P0) =
d

dε
P0D

∗
ψ(π(ε))

∣∣∣∣
ε=0

= −
{
P0c

−1
0 h1(V )~VW ∗>

}
C(π0)−1P0

{
W ∗W ∗>(π0 − E(π0 | W ))η(Z,W )

}
.

This yields as correction term:

Dπ(P0)(O) = −(A− Π0(Z,W )){
P0c

−1
0 h1(V )~VW ∗>

}
C(π0)−1

{
W ∗W ∗>(π0(Z,W )− E(π0 | W ))

}
.

This proves the following lemma.

Lemma 6: The efficient influence curve of Ψ :M→ Rd is given by

D∗(P0) = D∗W (P0)

+c−1
0

{
E0h1(V )~V ~W ∗>

}
C(π0)−1W ∗(Π0 − E(Π0(Z,W ) | W ))(Y − fα0(Z,W )− θ0(W ))

−
{
P0c

−1
0 h1(V )~VW ∗>

}
C(π0)−1

{
W ∗W ∗>(π0(Z,W )− E(π0 | W ))

}
(A− Π0(Z,W ))

≡ D∗W (P0) + CY (d0, π0)(Z,W )(Y − π0(Z,W )mα0(W )− θ0(W ))

−CA(d0, π0,m0)(A− π0(Z,W ))

≡ D∗W (P0) +D∗Y (P0)−D∗A(P0),

where

CY (d0, π0)(Z,W ) = c−1
0

{
E0

∑
a h(a, V )a2~V ~W ∗>

}
×

C(π0)−1(h(Π0)(Z,W )− E(h(Π0)(Z,W ) | W ))

CA(d0, π0,m0)(Z,W ) =
{
P0c

−1
0 h1(V )~VW ∗>

}
C(π0)−1

{
W ∗W ∗>(π0(Z,W )− E(π0 | W ))

}
.

Double robustness of efficient influence curve: We already showed P0D
∗(π0, d, α0, θ) =

0 if d = d0 or θ = θ0. We also have that P0D
∗(π, d0, α0, θ) = 0 for all θ and π.

The TMLE is analogue to the TMLE presented for the nonparametric model for m0(W ).
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Figure 1. Causal diagram
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Table 1
Performance of estimators in estimating a scalar causal effect, nonlinear design 1. The initial estimator for
E(Y |Z,W ) is either consistently specified or misspecified, and all other nuisance parameters are consistenly

specified. Sample size is 1000, and 10,000 repetitions were made. The true effect is 33.23.

CONSISTENTLY SPECIFIED

Estimator Bias Var MSE

New methods
Iterative .0016 .6103 .6103
Linear fluctuation .0015 .6189 .6189
Logistic fluctuation .0015 .6189 .6189

Non-parametric
Estimating equations −.0016 .7834 .7834
Initial substitution estimator .0038 .6990 .6990
Confounded 20.97 0.000 439.7
Two-stage least squares −.3904 52.74 52.89

E(Y |W,Z) IS MISSPECIFIED

Estimator Bias Var MSE

New methods
Iterative .3157 117.7 117.8
Linear fluctuation .6214 78.27 78.65
Logistic fluctuation .8193 82.99 83.66

Non-parametric
Estimating equations −.2088 35.14 35.18
Initial substitution estimator −.3941 54.07 54.22
Confounded 20.97 0.000 439.7
Two-stage least squares −.3904 52.74 52.89
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Table 2
Performance of estimators in estimating vector-valued causal effect, when the treatment effect is nonlinear

(design 1). Causal parameter β to estimate is projection of effect unto linear function of covariates
{mβ(W ) = βTW |β}. The true effect is [−64.2, 32.3].

MEAN ABSOLUTE BIAS OF ESTIMATORS
Consistent specification E(Y |Z,W ) is misspecified

n=1000 n=3000 n=10000 n=1000 n=3000 n=10000
Iterative .0683 .0219 .0191 1.350 .6043 .2552

Linear fluctuation .3025 .0247 .0056 8.773 2.589 .6587
Estimating equations .0128 .0084 .0119 1.521 1.013 .4110

Initial substitution estimator .6478 .0595 .0473 136.0 136.3 136.1
Two-stage least squares 136.6 136.4 136.6 136.6 136.4 136.6

Confounded 10.93 10.15 10.72 10.93 10.15 10.72

MEAN ABSOLUTE STD DEV OF ESTIMATORS
Consistent specification E(Y |Z,W ) is misspecified

n=1000 n=3000 n=10000 n=1000 n=3000 n=10000
Iterative 11.34 3.782 1.860 34.59 12.00 4.851

Linear fluctuation 8.192 3.016 1.494 86.78 17.34 5.212
Estimating equations 5.029 2.741 1.492 19.03 10.15 5.954

Initial substitution estimator 4.861 2.709 1.565 11.37 6.743 3.789
Two-stage least squares 11.12 6.235 3.694 11.12 6.235 3.694

Confounded .0021 .0009 .0005 .0021 .0009 .0005
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Table 3
Performance of estimators in estimating a scalar causal effect, nonlinear design 2, where E(Y |W,Z) follows
sharp cutoffs. The initial estimator for E(Y |Z,W ) is either consistently specified or misspecified, and all other

nuisance parameters are consistenly specified. Sample size is 1000, and 10,000 repetitions were made. The true effect
is 1.00.

CONSISTENTLY SPECIFIED

Estimator Bias Var MSE

New methods
Iterative −.0853 .2226 .2299
Linear fluctuation −.0827 .2198 .2266
Logistic fluctuation .0307 .1645 .1654

Non-parametric
Estimating equations −.0643 .1508 .1549
Initial substitution estimator .0202 .1196 .1200
Confounded .5735 .0170 .3459
Two-stage least squares .0926 .2792 .2878

E(Y |W,Z) IS MISSPECIFIED

Estimator Bias Var MSE

New methods
Iterative −.0703 .4498 .4547
Linear fluctuation −.0414 .4561 .4578
Logistic fluctuation .0487 .3396 .3420

Non-parametric
Estimating equations −.0636 .4492 .4532
Initial substitution estimator .0865 .3870 .3945
Confounded .5735 .0170 .3459
Two-stage least squares .0926 .2792 .2878
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Table 4
Performance of estimators in estimating vector-valued causal effect, when the treatment effect is linear. The

true effect is [0, 1, 2, 3]. Causal parameter β to estimate is coefficient α, where the treatment effect is m(W ) = αTW .

MEAN ABSOLUTE BIAS OF ESTIMATORS
Consistent specification E(Y |Z,W ) is misspecified

n=1000 n=3000 n=10000 n=1000 n=3000 n=10000
Iterative .0705 .0417 .0071 .1540 .1302 .0980

Linear fluctuation .0049 .0034 .0015 .1101 .1134 .0861
Estimating equations .0062 .0027 .0020 .4194 .3803 .2374

Initial substitution estimator .0090 .0117 .0029 1.546 1.499 1.503
Two-stage least squares .2446 .2324 .2443 .2446 .2324 .2443

Confounded .3484 .3432 .3430 .3484 .3432 .3430

MEAN ABSOLUTE STD DEV OF ESTIMATORS
Consistent specification E(Y |Z,W ) is misspecified

n=1000 n=3000 n=10000 n=1000 n=3000 n=10000
Iterative 1.044 .5967 .1927 1.038 .6305 .3421

Linear fluctuation .5746 .3067 .1799 .5528 .3410 .2268
Estimating equations .6356 .3944 .1618 .5371 .3549 .2989

Initial substitution estimator .5413 .3140 .1713 .4296 .2514 .1345
Two-stage least squares .5104 .2906 .1580 .5104 .2906 .1580

Confounded .1188 .0657 .0359 .1188 .0657 .0359
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Table 5
Mean coverage of 95% confidence intervals. The coverage is calculated for each dimension of the parameter of
interest and the average taken. For the top three estimators in each table, the empirical variance of the efficient

influence curve Var(D∗(Q∗
n, g

∗
n)) is used to calculate the standard error. For the other estimators, we give the unfair

advantage of using the accurate variance in calculating the confidence intervals
.

LINEAR TREATMENT EFFECT
Consistent specification E(Y |Z,W ) is misspecified

n=1000 n=3000 n=10000 n=1000 n=3000 n=10000
Iterative 96.8 96.4 96.2 96.1 96.0 95.2

Linear fluctuation 96.6 96.1 96.3 95.9 95.1 94.7
Estimating equations 96.4 96.0 96.3 89.4 88.8 90.3

Initial substitution estimator 94.6 94.8 94.8 5.98 0 0
Two-stage least squares 92.6 87.5 67.7 92.6 87.5 67.7

Confounded 19.8 0.22 0 19.8 0.22 0

NONLINEAR TREATMENT EFFECT
Consistent specification E(Y |Z,W ) is misspecified

n=1000 n=3000 n=10000 n=1000 n=3000 n=10000
Iterative 97.5 97.1 96.7 97.3 97.2 96.9

Linear fluctuation 97.2 96.5 96.8 96.9 95.9 96.6
Estimating equations 96.4 95.7 96.2 96.8 96.3 97.0

Initial substitution estimator 94.2 94.6 94.3 0 0 0
Two-stage least squares 0 0 0 0 0 0

Confounded 0 0 0 0 0 0
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Table 6
Means and SDs of variables.

Mothers Fathers

Sample size 4,101,825 4,001,970

Program intensity (R) 0.22 0.22
(0.11) (0.11)

Parent’s years of schooling 9.93 10.67
(1.46) (1.15)

Percentage of low-birthweight births 4.50 4.80
(1.24) (1.25)

Neonatal mortality (deaths per 2.32 2.33
thousand births) (2.38) (2.38)

Postneonatal mortality (deaths per 3.50 3.38
thousand neonatal survivors) (2.56) (2.71)

Infant mortality (deaths per 5.81 5.71
thousand births) (3.58) (3.67)

Note: the SDs for the binary outcomes (low birth weight, and mortality) are the SD’s for
the average rates within each cell (in which county, and parent and child’s birth cohorts are
fixed). Each cell is weighted by its sample size for the relevant outcome (for example, the

total number of births in a cell for infant mortality) in finding the SD.
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