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Propensity score prediction for electronic
healthcare databases using Super Learner and
High-dimensional Propensity Score Methods

Cheng Ju, Mary Combs, Samuel D. Lendle, Jessica M. Franklin, Richard Wyss,
Sebastian Schneeweiss, and Mark J. van der Laan

Abstract

<blockquote>The optimal learner for prediction modeling varies depending on
the underlying data-generating distribution. Super Learner (SL) is a generic en-
semble learning algorithm that uses cross-validation to select among a “library” of
candidate prediction models. The SL is not restricted to a single prediction model,
but uses the strengths of a variety of learning algorithms to adapt to different
databases. While the SL has been shown to perform well in a number of settings,
it has not been thoroughly evaluated in large electronic healthcare databases that
are common in pharmacoepidemiology and comparative effectiveness research.
In this study, we applied and evaluated the performance of the SL in its abil-
ity to predict treatment assignment using three electronic healthcare databases.
We considered a library of algorithms that consisted of both nonparametric and
parametric models. We also considered a novel strategy for prediction modeling
that combines the SL with the high-dimensional propensity score (hdPS) variable
selection algorithm. Predictive performance was assessed using three metrics:
the negative log-likelihood, area under the curve (AUC), and time complexity.
Results showed that the best individual algorithm, in terms of predictive perfor-
mance, varied across datasets. The SL was able to adapt to the given dataset
and optimize predictive performance relative to any individual learner. Combin-
ing the SL with the hdPS was the most consistent prediction method and may
be promising for PS estimation and prediction modeling in electronic healthcare
databases.</blockquote>



1 Introduction
Traditional approaches to prediction modeling have primarily included parametric
models like logistic regression (Brookhart, Schneeweiss, Rothman, Glynn, Avorn,
and Stürmer, 2006). While useful in many settings, parametric models require
strong assumptions that are not always satisfied in practice. Modern statistical and
machine learning methods, including classification trees, boosting, and random for-
est , have been developed to overcome the limitations of parametric models by re-
quiring assumptions that are less restrictive (Hastie, Tibshirani, Friedman, Hastie,
Friedman, and Tibshirani, 2009). Several of these methods have been evaluated for
modeling propensity scores and have been shown to perform well in many situations
when parametric assumptions are not satisfied (Setoguchi, Schneeweiss, Brookhart,
Glynn, and Cook, 2008, Lee, Lessler, and Stuart, 2010, Westreich, Lessler, and
Funk, 2010, Wyss, Ellis, Brookhart, Girman, Funk, LoCasale, and Stürmer, 2014).
No single prediction algorithm, however, is optimal in every setting and the best
performing prediction model will vary across different settings and data structures.

Super Learner is a general loss-based learning method that has been pro-
posed and analyzed theoretically in (van der Laan, , Polley, and Hubbard, 2007).
It is an ensemble learning algorithm that creates a weighted combination of many
candidate learners to build the optimal estimator in terms of minimizing a specified
loss function. It has been demonstrated that the super learner performs asymptoti-
cally at least as well as the best choice among the library of candidate algorithms
if the library does not contain a correctly specified parametric model; otherwise, it
achieves the same rate of convergence as the correctly specified parametric model
(van der Laan and Dudoit, 2003, Dudoit and van der Laan, 2005, van der Vaart,
Dudoit, and van der Laan, 2006). Benkeser, Lendle, Ju, and van der Laan (2016)
further proposed an online-version of Super Learner for streaming data or big data.
While the SL has been shown to perform well in a number of settings (van der Laan
et al., 2007, Gruber, Logan, Jarrı́n, Monge, and Hernán, 2015, Rose, 2016), it’s per-
formance has not been thoroughly investigated within large electronic healthcare
datasets that are common in pharmacoepidemiology and medical research. Elec-
tronic healthcare datasets based on insurance claims data are different from tradi-
tional medical datasets. It is impossible to directly use all of the claims codes as
input covariates for supervised learning algorithms, as the number of codes could
be larger than the sample size.

In the this study, we compared several statistical and machine learning pre-
diction algorithms for estimating propensity scores within three electronic health-
care datasets. We considered a library of algorithms that consisted of both nonpara-
metric and parametric models. We also considered a novel strategy for prediction
modeling that combines the SL with an automated variable selection algorithm for
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electronic healthcare databases known as the high-dimensional propensity score
(hdPS) (discussed later). The predictive performance for each of the methods was
assessed using the negative log-likelihood, AUC (i.e., c-statistic or area under the
curve), and time complexity. While the goal of the PS is to control for confounding
by balancing covariates across treatment groups, in this study we were interested
in evaluating the accuracy in the predictive performance of various PS estimation
methods rather than the estimation of treatment effects. This study extends previous
work that has implemented the SL within electronic healthcare data by proposing
and evaluating the novel strategy of combining the SL with the hdPS variable selec-
tion algorithm for PS estimation. This study also provides the most extensive eval-
uation of the SL within healthcare claims data by utilizing three separate healthcare
datasets and considering a large set of supervised learning algorithms, including
the direct implementation of hdPS generated variables within the supervised algo-
rithms.

2 Data Sources and Study Cohorts
We used three data sets Schneeweiss, Rassen, Glynn, Avorn, Mogun, and Brookhart
(2009), Ju, Gruber, Lendle, Franklin, Wyss, Schneeweiss, and van der Laan (2016)
to assess the performance of the models: the Novel Oral Anticoagulant Prescribing
(NOAC) data set, the Nonsteroidal anti-inflammatory drugs (NSAID) data set and
the Vytorin data set. Each dataset consisted of two types of covariates: baseline
covariates which were selected a priori using expert knowledge, and claims codes.
Baseline covariates include demographic variables (e.g. age, sex, census region
and race) and other predefined covariates that were selected a priori using expert
knowledge. Claims codes included information on diagnostic, drug, and procedural
insurance claims for individuals within the healthcare databases.

2.1 Novel Oral Anticoagulant (NOAC) Study

The NOAC data set was generated to track a cohort of new users of oral anticoagu-
lants to study the comparative safety and effectiveness of warfarin versus dabigatran
in preventing stroke. Data were collected by United Healthcare between October,
2009 and December, 2012. The dataset includes 18,447 observations, 60 baseline
covariates and 23,531 claims code covariates. Each claims code within the dataset
records the number of times that specific code occurred for each patient within a
pre-specified baseline period prior to initiating treatment.. The claims code covari-
ates fall into four categories, or ”data dimensions”: inpatient diagnoses, outpatient
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diagnoses, inpatient procedures and outpatient procedures. For example, if a pa-
tient has a value of 2 for the variable ”pxop V5260”, then the patient received the
outpatient procedure coded as V5260 twice between October, 2009 and December,
2012.

2.2 Nonsteroidal anti-inflammatory drugs (NSAID) Study

The NSAID dataset was constructed to compare new-users of a selective COX-2
inhibitor versus a nonselective NSAID in the risk of GI bleed. The observations
were drawn from a population of patients aged 65 years and older enrolled in both
Medicare and the Pennsylvania Pharmaceutical Assistance Contract for the Elderly
(PACE) programs between 1995 and 2002. The dataset consists of 49,653 obser-
vations, with 22 baseline covariates and 9,470 claims code covariates (Schneeweiss
et al. (2009)). The claims code covariates fell into eight data dimensions: prescrip-
tion drugs, ambulatory diagnoses, hospital diagnoses, nursing home diagnoses, am-
bulatory procedures, hospital procedures, doctor diagnoses and doctor procedures.

2.3 Vytorin Study

This data set was generated to track a cohort of new users of Vytorin and high-
intensity statin therapies. The data were collected to study the effects of these
medications on the combined outcome, myocardial infarction, stroke and death.
The dataset includes all United Healthcare patients between January 1, 2003 De-
cember 31, 2012, who were 65 years of age or older on the day of entry into the
study cohort (Schneeweiss, Rassen, Glynn, Myers, Daniel, Singer, Solomon, Kim,
Rothman, Liu et al. (2012)). The dataset includes 148,327 observations, 67 base-
line covariates and 15,010 code covariates. The claims code covariates fell into
five data dimensions: ambulatory diagnoses, ambulatory procedures, prescription
drugs, hospital diagnoses and hospital procedures.

3 Methods
In this paper, we used R (version 3.2.2) for the data analysis. For each dataset, we
randomly selected 80% of the data as the training set and the rest as the testing set.
We centered and scaled each of the covariates as some algorithms are sensitive to
the magnitude of the covariates. We conduct model fitting and selection only on the
training set, and assessed the goodness of fit of all the models on only the testing
set to ensure objective measures of prediction reliability.
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3.1 The high-dimensional propensity score algorithm

The high-dimensional propensity score (hdPS) is an automated variable selection
algorithm that is designed to identify confounding variables within electronic health-
care databases. Healthcare claims databases contain multiple data dimensions,
where each dimension represents a different aspect of healthcare utilization (e.g.,
outpatient procedures, inpatient procedures, medication claims, etc.). When imple-
menting the hdPS, the investigator first specifies how many variables to consider
within each data dimension. Following the notation of (Schneeweiss et al. (2009))
we let n represent this number. For example, if n = 200 and there are 3 data dimen-
sions, then the hdPS will consider 600 codes.

For each of these 600 codes, the hdPS then creates three binary variables
labeled frequent, sporadic, and once based on the frequency of occurrence for each
code during a covariate assessment period prior to the initiation of exposure. In
this example, there are now a total of 1,800 binary variables. The hdPS then ranks
each variable based on its potential for bias using the Bross formula (Bross (1966),
Schneeweiss et al. (2009)). Based on this ordering, investigators then specify the
number of variables to include in the hdPS model, which is represented by k. A
detailed description of the hdPS is provided by Schneeweiss et al. (2009).

3.2 Machine Learning Algorithm Library

We evaluated the predictive performance of a variety of machine learning algo-
rithms that are available within the caret package (version 6.0) (Kuhn (2008), Kuhn,
Wing, Weston, Williams, Keefer, Engelhardt, Cooper, Mayer, Team, Benesty et al.
(2014)) in the R programming environment. Due to computational constraints, we
screened the available algorithms to only include those that were computationally
less intensive. A list of the chosen algorithms is provided in the Web Appendix.

Because of the large size of the data, we used leave group out (LGO) cross-
validation instead of V -fold cross-validation to select the tuning parameters for each
individual algorithm. We randomly selected 90% of the training data for model
training and 10% of the training data for model tuning and selection. For clarity,
we refer to these subsets of the training data as the LGO training set and the LGO
validation set, respectively. After the tuning parameters are selected, we fit the
selected models on the whole training set, and assess the models on the testing set.
The split could be different for different algorithms. See the appendix for more
details of the base learners.
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Figure 1: The split of dataset

3.3 Super Learner

Super Learner (SL) is a method for selecting an optimal prediction algorithm from
a set of user-specified prediction models. The SL relies on the choice of a loss
function (negative log-likelihood in the present study) and the choice of a library of
candidate algorithms. The SL then compares the performance of the candidate algo-
rithms using V-fold cross-validation: for each candidate algorithm, SL averages the
estimated risks across the validation sets, resulting in the so-called cross-validated
risk. Cross-validated risk estimates are then used to compute the best weighted lin-
ear convex combination of the candidate learners with the smallest estimated risk.
This weighted combination is then applied to the full study data to produce a new
set of predicted values and is referred to as the SL estimator (van der Laan et al.
(2007), Polley and van der Laan (2010)).

Due to the computational constraints, in this study, we used LGO validation
instead of V-fold cross-validation. We first fit every candidate algorithm on the
LGO training set, then compute the Super Learner weight on the LGO validation
set. This is so-called sample split super learner algorithm. We used the Super
Learner package in R (Version: 2.0-15) to evaluate the predictive performance of
three Super Learner estimators:

SL1 Included only baseline variables with all 23 of the previously identified tradi-
tional machine learning algorithms in the SL library.

SL2 Identical to SL1, but with the addition of the hdPS algorithms with different
tuning parameters in its SL library. Note that only the hdPS algorithms had
access to the claims code variables in SL2.
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SL3 Identical to SL1, but with the addition of claims code covariates selected by
the hdPS screening method. Based on the performance of single hdPS algo-
rithms, a fixed pair of hdPS tuning parameters is selected, and SL3 finds the
optimal ensemble of all the algorithm candidates fitted on the same baseline
and hdPS covariates.

Super
Learner

Libray Covariates

SL1 All machine learning algorithms Only baseline covariates.
SL2 All machine learning algorithms

and the hdPS algorithm
Baseline covariates; Only the hdPS algorithm
can use code data.

SL3 All machine learning algorithms Baseline covariates and hdPS covariates gener-
ated from code data by hdPS screening method.

Table 1: Details of the three Super Learners considered.

3.4 Performance Metrics

We used three criteria to evaluate the prediction algorithms: computing time, neg-
ative log-likelihood, and area under the curve (AUC). In statistics, a receiver oper-
ating characteristic (ROC), or ROC curve, is a plot that illustrates the performance
of a binary classifier system as its discrimination threshold is varied. The curve is
created by plotting the true positive rate against the false positive rate at various
threshold settings. The AUC is then computed as the area under the ROC curve.

For both computation time and negative log-likelihood, smaller values in-
dicate better performance, whereas for AUC the better classifier achieves greater
values (Hanley and McNeil (1982)). Compared to the error rate, the AUC is a
better assessment of performance for the unbalanced classification problem.
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4 Results

4.1 Using the hdPS prediction algorithm with Super Learner

4.1.1 Computation Times
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Figure 2: Running times for individual machine learning and hdPS algorithms with-
out Super Learner. The y-axis is in log scale.

Figure 2 shows the running time for the 23 individual machine learning algorithms
and the hdPS algorithm across all three datasets without the use of Super Learner.
Running time is measured in seconds. Figure 2a shows the running time for the
machine learning algorithms that only use baseline covariates. Figure 2b shows the
running time for the hdPS algorithm at varying values of the tuning parameters k
and n. Recall n represents the number of variables that the hdPS algorithm con-
siders within each data dimension and k represents the total number of variables
that are selected or included in the final hdPS model as discussed previously. The
running time is sensitive to n, while less sensitive to k. This suggests most of the
running time for hdPS is spent generating and screening covariates. The running
time for the hdPS algorithm is generally around the median of all the running times
of the machine learning algorithms with only baseline covariates. Here we only
compared the running time for each pair of parameters for hdPS. It is worth noting
that the variable creation and ranking only has to be done once for each value of n.
Modifying values of k just means taking different numbers of variables from a list
and refitting the logistic regression.

The running time of SL is not placed in the figures. Super Learner with
baseline covariates takes just over twice as long as the sum of the running time for
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each individual algorithm in its library: SL splits data into training and validation
sets, fits the base learners on the training set, finds weights based the on the vali-
dation set, and finally retrains the model on the whole set. In other words, Super
Learner will fits every single algorithm twice, with additional processing time for
computing the weights. Therefore, the running time will be about twice the sum of
its constituent algorithms, which is what we see in this study (See Table 2).

Data Set Algorithm
Processing Time

(seconds)
NOAC Sum of machine learning algorithms 481.13

Sum of hdPS algorithms 222.87
Super Learner 1 1035.43
Super Learner 2 1636.48

NSAID Sum of machine learning algorithms 476.09
Sum of hdPS algorithms 477.32

Super Learner 1 1101.84
Super Learner 2 2075.05

VYTORIN Sum of machine learning algorithms 3982.03
Sum of hdPS algorithms 1398.01

Super Learner 1 9165.93
Super Learner 2 15743.89

Table 2: Running time of the machine learning algorithms, the hdPS algorithms,
and Super Learners 1 and 2. Twice the sum of the running time of the machine
learning algorithms is comparable to the running time of Super Learner 1 and twice
the sum of the running times of both the machine learning algorithms and the hdPS
algorithms is comparable to the running time of Super Learner 2.
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4.1.2 Negative log-likelihood
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Figure 3: The negative log-likelihood for SL1, SL2, the hdPS algorithm, and the 23
machine learning algorithms.

Figure 3a shows the negative log-likelihood for Super Learners 1 and 2, and each
of the 23 machine learning algorithms (with only baseline covariates) . Figure 3b
shows the negative log-likelihood for hdPS algorithms with varying tuning param-
eters, n and k.

The performance of hdPS is not sensitive to either n or k. hdPS outperforms
most individual algorithms in the library in most cases, as it takes advantage of the
extra information from code data. However, in the Vytorin data set, there are still
some machine learning algorithms which perform slightly better than hdPS with
respect to the negative log-likelihood.

We can see the SL (without hdPS) outperforms all the other individual al-
gorithms, empirically verifing the optimal property proved by previous literatures
van der Laan et al. (2007), Polley and van der Laan (2010): the Super Learner can
do at least as well as the best algorithm in the library. The figures show that includ-
ing the hdPS algorithm improves the performance of Super Learner. With the help
of hdPS, Super Learner achieves the best performance among all the algorithms (in-
cluding hdPS itself). This suggests the time consumption is worthwhile for Super
Learner.
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4.1.3 AUC
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Figure 4: The area under the ROC curve (AUC) for for Super Learners 1 and 2, the
hdPS algorithm, and each of the 23 machine learning algorithms.

The SL uses loss-based cross-validation to select the optimal combination of in-
dividual algorithms. It is not surprising that it outperforms other algorithms with
respect to the negative log-likelihood. As propensity score estimation can be con-
sidered a binary classification problem, we can use the Area Under the Curve (AUC)
to compare performance across algorithms. Binary classification is typically de-
termined by setting a threshold. As the threshold varies for a given classifier we
can achieve different true positive rates (TPR) and false positive rates (FPR). A Re-
ceiver Operator Curve (ROC) space is defined by FPR and TPR as the x- and y-axes
respectively, to depict the trade-off between true positives (benefits) and false pos-
itives (costs) at various classification thresholds. We then draw the ROC curve of
TPR and FPR for each model and calculate the AUC. The upper bound for a perfect
classifier is 1 while a naive random guess would achieve about 0.5.

In Figure 4a, we compare the performance of Super Learners 1 and 2, the
hdPS algorithm, and each of the 23 machine learning algorithms. Although we
optimized Super Learners with respect to the negative log-likelihood loss function,
SL1 and SL2 have outstanding performance with respect to the AUC; Over the
NOAC and NSAID data set, SL1 (with only baseline variables) achieves the best
AUC compared to all machine learning algorithms in its library, with only a slightly
weaker AUC performance than hdPS. In the VYTORIN data set, SL1 outperforms
hdPS algorithms with respect to AUC, even though the hdPS algorithms use the
additional claims data.
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data SL1 SL2 best hdPS (parameter k/n)
noac 0.7652 0.8203 0.8179 (500/200)
nsaid 0.6651 0.6967 0.6948 (500/200)
vytorin 0.6931 0.6970 0.6527 (750/500)

Table 3: Comparison of AUC for SL1, SL2 and best hdPS across three data sets.
The best hdPS for noac is k = 500, n = 200, and for nsaid is k = 500, n = 200, for
vytorin is k = 750, n = 500.

Super Learner 2 clearly combines the strength of the hdPS algorithm and all
the machine learning algorithms in its library. Table 3 shows, in all three data sets,
it achieves higher AUC over all the other algorithms, including hdPS and SL1.

4.2 Using the hdPS screening method with Super Learner

In the previous sections, we compared machine learning algorithms limited to only
baseline covariates with the hdPS algorithms across different parameters (negative
log-likelihood and AUC). The results showed that including the hdPS algorithm
in a Super Learner library increases performance significantly. In this section, we
combined the strength of the claims code data via the hdPS screening method with
the machine learning algorithms to improve the propensity score estimation.

We first used the hdPS screening method (with tuning parameters n= 200,k=
500) to generate and screen the hdPS covariates. Then we combined these hdPS co-
variates with the baseline covariates to generate augmented datasets for each of the
three datasets under consideration. We build a Super Learner library which included
each of the 23 individual machine learning algorithms, fitted on both baseline and
hdPS covariates. Note that, as the original hdPS method uses logistic regression for
prediction, it can be considered a special case of LASSO (with λ = 0).
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Figure 5: Negative log-likelihood and AUC of SL1, SL2, and SL3, compared with
each of the single machine learning algorithms (with and without using hdPS co-
variates). We could see among all the single algorithms and Super Learners, SL3
performs the best cross three datasets

For convenience, we differentiate Super Learners 1, 2 and 3 by their algo-
rithm libraries: machine learning algorithms with only baseline covariates, aug-
menting this library with hdPS, and only the machine learning algorithms but with
both baseline and hdPS screened covariates. (See Table 1).

Figures 5 compares the negative log-likelihood and AUC, respectively, of
all three Super Learners and machine learning algorithms. It is clear that the per-
formance of all algorithms increases significantly by including the hdPS screened
code covariates. SL3 is slightly better than SL2, and the difference is very small.

Data set Performance Metric Super Learner 1 Super Learner2 Super Learner 3
NOAC 0.7652 0.8203 0.8304
NSAID AUC 0.6651 0.6967 0.6975

VYTORIN 0.6931 0.6970 0.698
NOAC 0.5251 0.4808 0.4641
NSAID Negative Log-likelihood 0.6099 0.5939 0.5924

VYTORIN 0.4191 0.4180 0.4171

Table 4: Performance as measured by AUC and negative log-likelihood for the three
Super Learners with the following libraries: machine learning algorithms with only
baseline covariates, augmenting this library with hdPS, and only the machine learn-
ing algorithms but with both baseline and hdPS screened covariates. (See Table
1).
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In table 4, we can again see the trend that performance improves from Su-
per Learner 1 to 2 and from 2 to 3. The differences in AUC and in negative log-
likelihood between SL1 and 2 are large, while these differences between SL2 and 3
are small. This suggests two things: First, the prediction step in the hdPS algorithm
(logistic regression) works well: it performs approximately as well as the best indi-
vidual machine learning algorithm in the library for Super Learner 3. Second, the
hdPS screened covariates make the propensity score estimation more flexible; using
Super Learner we can easily develop different models/algorithms which incorporate
the covariate screening method from hdPS.
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4.3 Weights of Individual Algorithms in Super Learners 1 and
2

Data Set Algorithms Selected for SL1 Weight
NOAC SL.caret.bayesglm All 0.30

SL.caret.C5.0 All 0.11
SL.caret.C5.0Tree All 0.11
SL.caret.gbm All 0.39
SL.caret.glm All 0.01
SL.caret.pda2 All 0.07
SL.caret.plr All 0.01

NSAID SL.caret.C5.0 All 0.06
SL.caret.C5.0Rules All 0.01
SL.caret.C5.0Tree All 0.06
SL.caret.ctree2 All 0.01
SL.caret.gbm All 0.52
SL.caret.glm All 0.35

VYTORIN SL.caret.gbm All 0.93
SL.caret.multinom All 0.07

Data Set Algorithms Selected for SL2 Weight
NOAC SL.caret.C5.0 screen.baseline 0.03

SL.caret.C5.0Tree screen.baseline 0.03
SL.caret.earth screen.baseline 0.05
SL.caret.gcvEarth screen.baseline 0.05
SL.caret.pda2 screen.baseline 0.02
SL.caret.rpart screen.baseline 0.04
SL.caret.rpartCost screen.baseline 0.04
SL.caret.sddaLDA screen.baseline 0.03
SL.caret.sddaQDA screen.baseline 0.03
SL.hdps.100 All 0.00
SL.hdps.350 All 0.48
SL.hdps.500 All 0.19

NSAID SL.caret.gbm screen.baseline 0.24
SL.caret.sddaLDA screen.baseline 0.03
SL.caret.sddaQDA screen.baseline 0.03
SL.hdps.100 All 0.25
SL.hdps.200 All 0.21
SL.hdps.500 All 0.01
SL.hdps.1000 All 0.23

VYTORIN SL.caret.C5.0Rules screen.baseline 0.01
SL.caret.gbm screen.baseline 0.71
SL.hdps.350 All 0.07
SL.hdps.750 All 0.04
SL.hdps.1000 All 0.17

Table 5: Non-zero weights of individual algorithms in Super Learners 1 and 2 across
all three data sets.

Super Learner produces an optimal ensemble learning algorithm, i.e. a weighted
combination of the candidate learners in its library. Table 5 shows the weights
for all the non-zero weighted algorithms included in the optimal, data set-specific
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ensemble learner generated by SL 1 and 2. We can see for all the three data sets,
the gradient boosting algorithm gbm has the highest weight. It is also interesting
to note that across the different data sets the hdPS algorithms have very different
weights. Using NOAC and NSAID, the hdPS algorithm plays a dominating role:
hdPS algorithms occupy more than 50% of the weight. However in VYTORIN,
boosting still plays the most important role, with weight 0.71. This suggests that
gradient boosting and hdPS plays a significant role in the prediction of propensity
scores. In further studies of prediction/estimation of propensity scores on similar
data sets, we may first only include the algorithms with high weights if computation
time is limited.

5 Discussion

Data Set Method
Negative

Log
Likelihood

AUC

Negative
Log

Likelihood
(Train)

AUC
(Train)

Processing
Time

(Seconds)

NOAH k=50, n=200 0.50 0.80 0.51 0.79 19.77
k=100, n=200 0.50 0.80 0.50 0.80 20.69
k=200, n=200 0.49 0.80 0.49 0.81 22.02
k=350, n=200 0.49 0.82 0.47 0.83 25.38
k=500, n=200 0.49 0.82 0.46 0.84 27.35
k=750, n=500 0.50 0.81 0.45 0.85 50.58
k=1000, n=500 0.52 0.80 0.43 0.86 57.08

sl baseline 0.53 0.77 0.53 0.77 1035.43
sl hdps 0.48 0.82 0.47 0.83 1636.48

NSAID k=50, n=200 0.60 0.68 0.61 0.67 43.15
k=100, n=200 0.60 0.69 0.60 0.69 43.48
k=200, n=200 0.59 0.70 0.60 0.69 47.08
k=350, n=200 0.60 0.69 0.59 0.70 52.99
k=500, n=200 0.60 0.69 0.59 0.71 58.90
k=750, n=500 0.60 0.69 0.58 0.71 112.44
k=1000, n=500 0.61 0.69 0.58 0.72 119.28

sl baseline 0.61 0.67 0.61 0.66 1101.84
sl hdps 0.59 0.70 0.59 0.71 2075.05

VYTORIN k=50, n=200 0.44 0.64 0.43 0.64 113.45
k=100, n=200 0.43 0.65 0.43 0.65 116.73
k=200, n=200 0.43 0.65 0.43 0.66 146.81
k=350, n=200 0.43 0.65 0.42 0.67 166.18
k=500, n=200 0.43 0.65 0.42 0.67 189.18
k=750, n=500 0.43 0.65 0.42 0.68 315.22
k=1000, n=500 0.43 0.65 0.42 0.68 350.45

sl baseline 0.42 0.69 0.42 0.70 9165.93
sl hdps 0.42 0.70 0.41 0.71 15743.89

Table 6: Perfomance for hdPS algorithms and Super Learners
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5.1 Tuning Parameters for hdPS Screening Method

The screening process of hdPS needs to be cross-validated in the same step as its
predictive algorithm. For this study, the computation is too expensive for this proce-
dure, so there is an additional risk of overfitting due to the selection of hdPS covari-
ates. A solution would be to generate various hdPS covariate sets under different
hdPS hyper parameters and fit the machine learning algorithms on each covariate
set. Then, SL3 would find the optimal ensemble among all the hdPS covariate
set/learning algorithm combinations.

5.2 Performance of hdPS

Although hdPS is a simple logistic algorithm, it wisely takes advantage of extra
information from claims data. It is, therefore, reasonable that the hdPS outperforms
most algorithms in most cases. Processing time for the hdPS is sensitive to n while
less sensitive of k (see 2). The performance is, however, not sensitive to either n
or k (see 6). Therefore, Super Learners which include hdPS may save processing
time by including only a limited selection of hdPS algorithms without sacrificing
performance.

5.2.1 Risk of overfitting for hdPS
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Figure 6: AUC for hdPS algorithms with different number of variables, k.
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Figure 7: Negative loglikelihood for hdPS algorithms with different number of vari-
ables, k.

The hdPS algorithm utilizes many more features than traditional methods, which
may raise the risk of overfitting. The performance table (table 6) shows the negative
loglikelihood for both training set and testing set. We can see the difference of
performance of hdPS in training set and test set are very small, and not sensitive to
k and n. As long as we control k and n in a resonable range, we may not need to
worry about the curse of dimensionality.

To study the risk of overfitting for hdPS across each data set, we fix the
propotion of number of variable per dimension (n) and number of total hdPS vari-
ables (k), then increase k to see the performance of hdPS algorithms. The green
lines represent performance over the training sets and red lines represent pefor-
mance over the test sets.

From figure 6, we see that increasing the number of variables in hdPS, re-
sults in an increase in AUC in the training sets. This is deterministically a result
of increasing model complexity. To mitigate this effect, we looked at the AUC
over the test sets to determine if model complexity reduces performance. For both
n/k = 0.2 and n/k = 0.4, AUC in the testing sets is fairly stable for k < 500, but
for larger values of k begins to decrease. We find then, that hdPS is only sensitive
to overfitting for k > 500.

Similarly, in figure 7, the negative log-likelihood decreases as k gets larger.
The negative log-likelihood in the testing sets begins to increase only for k > 500,
similary to what we found for AUC. Thus, we conclude the negative log-likelihood
is also not sensitive to k for k < 500.

Hosted by The Berkeley Electronic Press



Due to the large sample sizes of our datasets, the binary nature of the claims
code covariates, and the sparsity of hdPS variables, these hdPS algorithms are at
less of a risk of overfitting. However, the high dimensionality data may lead to
-some computation issues.

5.2.2 Penalized hdPS
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Figure 8: Unregularized hdPS Compared with Regularized hdPS

The hdPS algorithm uses multivariate logistic regression for its estimation. We
compared the performance of this algorithm against that of regularized regression
by implementing the estimation step using the cv.glmnet method in glmnet Fried-
man, Hastie, and Tibshirani (2009) package in R, which uses cross-validation to
find the best tunin parameter λ .

To study if regularization can decrease the risk of overfitting for hdPS, we
used L − 1 regularization (LASSO) for the logistic regression step in hdPS. For
every regular hdPS we used cross-validation to find out the best tunning parameter
based on discrete Super Learner.

Figure 8 shows the negative log-likelihood and AUC over the test sets for
unregularized hdPS (left) and regularized hdPS (right). We can see that using reg-
ularization can increase performance slightly. In this study, the sample size is rel-
atively large. The regularization does not help a lot. However, when dealing with
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smaller data set, it is highly suggested to use regularized regression for the last step
of hdPS algorithmm, or first generate hdPS covariates and then use Super Learner
(as the idea of SL3).

5.3 Predictive Performance for SL

SL is a weighted linear combination of candidate learner algorithms that has been
demonstrated to perform asymptotically at least as well as the best choice among
the library of candidate algorithms, whether or not the library contains a correctly
specified parametric statistical model. The results in previous sections show the
performance of SL in a finite data set.

From the previous sections, we found that among algorithms which only
utilize baseline variables, SL always outperforms the best candidate in its library.
Also with respect to the prediction of propensity scores:

• Super Learner reliably outperforms candidate algorithms in AUC, even though
the model selection step in SL minimizes a different performance criterion:
the cross-validated negative log-likelihood.

• The hdPS screening method offers a simple way to utilize the information
from claims data which increases estimation performance significantly. It is
therefore reasonable to take advantage of hdPS covariates in Super Learner.

5.4 Data-adaptive property of SL

Besides the outstanding estimation performance, there are several other reasons
to use Super Learner for the estimation of propensity scores: First, esimating the
propensity score using a parametric model requires accepting strong assumptions
concerning the functional form of the relationship between treatment allocation and
the covariates, while propensity score model misspecification may result in signif-
icant bias in the treatment effect estimate (Rubin (2004), Brookhart et al. (2006)).
Second, the relative performance of different algorithms relies heavily on the un-
derlying data generate distribution. Therefore, to avoid model misspecification,
we must try many models. This paper clearly demonstrates the strength of this
approach: some algorithms perform well over several data sets, but not always.
Including many different types of algorithms in the SL library accommodates this
inevitability. Cross-validation helps us avoid the risk of overfitting, and so we may
include as many algorithms as we can, if the computation consumption permits.

To summarize:
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• From figure 5, the Gradient Boosting and hdPS have the dominating weight
in all three data sets. Hence they are two most powerful individual algorithms
for prediction of propensity scores in these three data sets. We may include
them first if computation resource is limited.

• The optimal learner for prediction will highly depend on the underlying data-
generating distribution: one model may succed in one case, while may fail in
another data set. Therefore it is recommendable to use SL including as many
competing algorithms as possible.

6 Conclusion
This article demonstrates the practical performance of Super Learner in finite sam-
ple sets for a specific prediction problem (propensity score prediction). The out-
standing performances for both negative log-likelihood and AUC demonstrate the
reliability of the performance of Super Learner. Based on the cross-validation
procedure, SL can adaptively combine a number of different estimators with non-
negative weights while avoiding overfitting.

One of the advantages of Super Learner is how easily it can adopt the
strengths of field-specific algorithms. In this study that focused on electronic health-
care databases, we successfully implemented SL utilizing the hdPS algorithm to
predict propensity scores.

In conclusion, this study has two contributions:

• The primary contribution of this paper is that this is the first paper to consider
and introduce the novel strategy of combining the SL with the hdPS.

• The other contribution is that this is the most thorough evaluation of the SL
within healthcare claims data. While there are published papers that have
looked at the SL in claims data before, they have not done so to this extent
and detail.
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Appendix
Model name abbreviation
Bayesian Generalized Linear Model bayesglm
C5.0 C5.0
Single C5.0 Ruleset C5.0Rules
Single C5.0 Tree C5.0Tree
Conditional Inference Tree ctree2
Multivariate Adaptive Regression Spline earth
Boosted Generalized Linear Model glmboost
Penalized Discriminant Analysis pda
Shrinkage Discriminant Analysis sda
Flexible Discriminant Analysis fda
Lasso and Elastic-Net Regularized Generalized Linear Models glmnet
Penalized Discriminant Analysis pda2
Stepwise Diagonal Linear Discriminant Analysis sddaLDA
Stochastic Gradient Boosting gbm
Multivariate Adaptive Regression Splines gcvEarth
Boosted Logistic Regression LogitBoost
Penalized Multinomial Regression multinom,
Penalized Logistic Regression plr,
CART rpart
Stepwise Diagonal Quadratic Discriminant Analysis sddaQDA
Generalized Linear Model glm
Nearest Shrunken Centroids pam
Cost-Sensitive CART rpartCost
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