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Scalable Collaborative Targeted Learning for
High-dimensional Data

Cheng Ju, Susan Gruber, Samuel D. Lendle, Antoine Chambaz, Jessica M.
Franklin, Richard Wyss, Sebastian Schneeweiss, and Mark J. van der Laan

Abstract

Robust inference of a low-dimensional parameter in a large semi-parametric model
relies on external estimators of infinite-dimensional features of the distribution of
the data. Typically, only one of the latter is optimized for the sake of constructing
a well behaved estimator of the low-dimensional parameter of interest. Optimiz-
ing more than one of them for the sake of achieving a better bias-variance trade-off
in the estimation of the parameter of interest is the core idea driving the C-TMLE
procedure.

The original C-TMLE procedure can be presented as a greedy forward stepwise al-
gorithm. It does not scale well when the number $p$ of covariates increases dras-
tically. This motivates the introduction of a novel template of C-TMLE procedure
where the covariates are pre-ordered. Its time complexity is $\mathcal{O}(p)$ as
opposed to the original $\mathcal{O}(p̂2)$, a remarkable gain. We propose two
pre-ordering strategies and suggest a rule of thumb to develop other meaningful
strategies. Because it is usually unclear a priori which pre-ordering strategy to
choose, we also introduce a SL-C-TMLE procedure that enables the data-driven
choice of the better pre-ordering strategy given the problem at hand. Its time com-
plexity is $\mathcal{O}(p)$ as well.

A Julia software makes it easy to implement our variants of C-TMLE procedures.
We use the software to assess their computational burdens in different scenarios;
to compare their performances in simulation studies involving fully synthetic data
or partially synthetic data based on a real, large electronic health database; and
to showcase their application to the analyses of three real, large electronic health



databases. In all analyses involving electronic health databases, the vanilla C-
TMLE procedure is unacceptably slow. Judging from the simulation studies, our
pre-ordering strategies work well, and so does the SL-C-TMLE procedure.



1 Introduction
The general template of collaborative double robust targeted minimum loss-based
estimation (C-TMLE; “C-TMLE template” for short) builds upon the targeted mini-
mum loss-based estimation (TMLE) template (van der Laan and Rose, 2011, van der
Laan, Gruber et al., 2010). Both the TMLE and C-TMLE templates can be viewed
as meta-algorithms which map a set of user-supplied choices/hyper-parameters (
e.g., parameter of interest, loss function, submodels) into a specific machine-learning
algorithm for estimation, that we call an instantiation of the template.

Constructing a TMLE or a C-TMLE involves the estimation of a nuisance
parameter, typically an infinite-dimensional feature of the distribution of the data.
For a vanilla TMLE estimator, the estimation of the nuisance parameter is addressed
as an independent statistical task. In the C-TMLE template, on the contrary, the
estimation of the nuisance parameter is optimized to provide a better bias-variance
trade-off in the inference of the targeted parameter. The C-TMLE template has
been successfully applied in a variety of areas, from survival analysis (Stitelman,
Wester, De Gruttola, and van der Laan, 2011), to the study of gene association
(Wang, Rose, and van der Laan, 2011) and longitudinal data structures (Stitelman
and van der Laan, 2010) to name just a few.

In the original instantiation of the C-TMLE template of van der Laan et al.
(2010), that we henceforth call “the greedy C-TMLE algorithm”, the estimation
of the nuisance parameter aiming for a better bias-variance trade-off is conducted
in two steps. First, a greedy forward stepwise selection procedure is implemented
to construct a nested sequence of candidate estimators of the nuisance parameter.
Second, cross-validation is used to select the candidate from this sequence which
minimizes a criterion that incorporates a measure of bias and variance with respect
to (wrt) the targeted parameter (the algorithm is described in Section 4). The au-
thors show the greedy C-TMLE algorithm exhibits superior relative performance in
analyses of sparse data, at the cost of an increase in time complexity. For instance,
in a problem with p baseline covariates, one would construct and select from p
candidate estimators of the nuisance parameter, yielding a time complexity of order
O(p2). Despite a criterion for early termination, the algorithm does not scale to
large-scale and high-dimensional data. The aim of this article is to develop novel
C-TMLE algorithms that overcome these serious practical limitations without com-
promising finite sample or asymptotic performance.

We propose two such “scalable C-TMLE algorithms”. They replace the
greedy search at each step by an easily computed data adaptive pre-ordering of the
candidate estimators of the nuisance parameter. They include a data adaptive, early
stopping rule that further reduces computational time without sacrificing statistical
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performance. In the aforementioned problem with p baseline covariates where the
time complexity of the greedy C-TMLE algorithm was of order O(p2), those of the
two novel scalable C-TMLE algorithms is of order O(p).

Because one may be reluctant to specify a single a priori pre-ordering of the
candidate estimators of the nuisance parameter, we also introduce a SL-C-TMLE
algorithm. It selects the best pre-ordering from a set of ordering strategies by super
learning (SL) (van der Laan, Polley, and Hubbard, 2007). SL is an example of
ensemble learning methodology which builds a meta-algorithm for estimation out
of a collection of individual, competing algorithms of estimation, relying on oracle
properties of cross-validation.

We focus on the estimation of the average (causal) treatment effect (ATE).
It is not hard to generalize our scalable C-TMLE algorithms to other estimation
problems.

The performance of the two scalable C-TMLE and SL-C-TMLE algorithms
are compared with those of competing, well established estimation methods: G-
computation (Robins, 1986), inverse probability of treatment weighting (IPTW)
(Hernan, Brumback, and Robins, 2000, Robins, 2000b), augmented inverse prob-
ability of treatment weighted estimator (A-IPTW) (Robins and Rotnitzky, 2001,
Robins, Rotnitzky, and van der Laan, 2000b, Robins, 2000a). Results from unad-
justed regression estimation of a point treatment effect are also provided to illustrate
the level of bias due to confounding.

The article is organized as follows. Section 2 introduces the parameter of
interest and a causal model for its causal interpretation. Section 3 describes an in-
stantiation of the TMLE template. Section 4 presents the C-TMLE template and a
greedy instantiation of it. Section 5 introduces the two proposed pre-ordered scal-
able C-TMLE algorithms, and SL-C-TMLE algorithm. Sections 6 and 7 present the
results of simulation studies (based on fully or partially synthetic data, respectively)
comparing the C-TMLE and SL-C-TMLE estimators with other common estima-
tors. Section 8 is a closing discussion. The appendix presents additional material:
an introduction to a Julia software that implements all the proposed C-TMLE al-
gorithms; a brief analysis of their computational performance; the results of their
application to the analysis of three large electronic health databases.

2 The Average Treatment Effect Example
We consider the problem of estimating the ATE in an observational study where we
observe on each experimental unit: a collection of p baseline covariates, W ; a bi-
nary treatment indicator, A; a binary or bounded continuous (0,1)-valued outcome
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of interest, Y . We use Oi = (Wi,Ai,Yi) to represent the i-th observation from the un-
known observed data distribution P0, and assume that O1, . . . ,On are independent.
The parameter of interest is defined as

Ψ(P0) = E0[E0(Y | A = 1,W )−E0(Y | A = 0,W )].

The ATE enjoys a causal interpretation under the non-parametric structural
equation model (NPSEM) given by:

W = fW (UW ),
A = fA(W,UA),
Y = fY (A,W,UY ),

,

where fW , fA and fY are deterministic functions and UW ,UA,UY are background
(exogenous) variables. The potential outcome under exposure level a ∈ {0,1} can
be obtained by substituting a for A in the third equality: Ya = fY (a,W,UY ). Note
that Y = YA (this is known as the “consistency” assumption). If we are willing to
assume that (i) A is conditionally independent of (Y1,Y0) given W (this is known
as the “no unmeasured confounders” assumption) and (ii) 0 < P(A = 1 |W ) < 1
almost everywhere (known as the “positivity” assumption), then parameter Ψ(P0)
satisfies Ψ(P0) = E0(Y1−Y0).

For future use, we introduce the propensity score (PS), defined as the con-
ditional probability of receiving treatment, and define g0(a,W )≡ P0(A = a |W ) for
both a = 0,1. We also introduce the conditional mean of the outcome: Q̄0(A,W ) =
E0(Y | A,W ). In the remainder of this article, gn(a,W ) and Q̄n(A,W ) denote esti-
mators of g0(a,W ) and Q̄0(A,W ).

3 A TMLE Instantiation for ATE
We are mainly interested in double robust (DR) estimators of Ψ(P0). An estimator
of Ψ(P0) is said to be DR if it is consistent if either Q̄0 or g0 is consistently esti-
mated. In addition, an estimator of Ψ(P0) is said to be efficient if it satisfies a central
limit theorem with a limit variance which equals the second moment under P0 of
the so called efficient influence curve (EIC) at P0. The EIC for the ATE parameter
is given by

D∗(Q̄0,g0)(O) = H0(A,W )[Y − Q̄0(A,W )]+ Q̄0(1,W )− Q̄0(0,W )−Ψ(P0),

where H0(a,W )= a/g0(1,W )−(1−a)/g0(0,W ) (a= 0,1). The notation is slightly
misleading because there is more to Ψ(P0) than (Q̄0,g0) (namely, the marginal
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distribution of W under P0). We nevertheless keep it that way for brevity. We
refer the reader to (Bickel, Klaassen, Ritov, Wellner et al., 1998) for details about
efficient influence curves.

More generally, for every valid distribution P of O = (W,A,Y ) such that (i)
the conditional expectation of Y given (A,W ) equals Q̄(A,W ) and the conditional
probability that A = a given W equals g(a,W ), and (ii) 0 < g(1,W ) < 1 almost
surely, we denote

D∗(Q̄,g)(O) = Hg(A,W )[Y − Q̄(A,W )]+ Q̄(1,W )− Q̄(0,W )−Ψ(P),

where Hg(a,W ) = a/g(1,W )− (1−a)/g(0,W ) (a = 0,1).
The augmented inverse probability of treatment weighted estimator (A-IPTW,

or so called “double robust IPTW”; Robins, Rotnitzky, and Zhao (1994), Robins,
Hernan, and Brumback (2000a), van der Laan and Dudoit (2003)) and TMLE
(van der Laan and Rubin, 2006, van der Laan and Rose, 2011) are two well studied
DR estimators. Taking the estimation of ATE as an example, A-IPTW estimates
Ψ(P0) by solving the EIC equation directly. For given estimators Q̄n, gn and with

Hgn(a,W ) = a/gn(1,W )− (1−a)/gn(0,W ) (a = 0,1), (1)

solving (in ψ)

0 =
n

∑
i=1

Hgn(Ai,Wi)[Yi− Q̄n(Ai,Wi)]+ Q̄n(1,Wi)− Q̄n(0,Wi)−ψ

yields the A-IPTW estimator

ψ
A−IPTW
n =

n

∑
i=1

Hgn(Ai,Wi)[Yi− Q̄n(Ai,Wi)]+ Q̄n(1,Wi)− Q̄n(0,Wi).

A substitution (or plug-in) estimator of Ψ(P0) is obtained by plugging-in the
estimator of a relevant part of the data-generating distribution P0 into the mapping
Ψ. Substitution estimators belong to the parameter space by definition, which is a
desirable property. The A-IPTW is not a substitution estimator and can suffer from
it by sometimes producing estimates outside of known bounds on the problem, such
as probabilities or proportions greater than 1. On the contrary, an instantiation of the
TMLE template yields a DR TMLE estimator defined by substitution. For instance,
a TMLE estimator can be can be constructed by applying the TMLE algorithm
below (which corresponds to the negative log-likelihood loss function and logistic
fluctuation submodels).
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1. Estimating Q̄0. Derive an initial estimator Q̄0
n of Q̄0. It is highly recom-

mended to avoid making parametric assumptions, as any parametric model
is likely mis-specified. Relying on SL (van der Laan et al., 2007) is a good
option.

2. Estimating g0. Derive an estimator gn of g0, The same recommendation as
above applies.

3. Building the so called “clever covariates”. For a = 0,1 and a generic W ,
define Hn(a,W ) as in (1).

4. Targeting. Fit the logistic regression of Yi on Hn(Ai,Wi) with no intercept,
using logit(Q̄0

n(Ai,Wi)) as offset (an i-specific intercept). This yields a mini-
mum loss estimator εn. Update the initial estimator Q̄0

n into Q̄∗n given by

Q̄∗n(A,W ) = expit{logit[Q̄0
n(A,W )]+ εnHn(A,W )}.

5. Evaluating the parameter estimate. Define

ψ
T MLE
n =

1
n

n

∑
i=1

(Q̄∗n(1,Wi)− Q̄∗n(0,Wi)). (2)

As emphasized, TMLE is a substitution estimator.

The targeting step aims to reduce bias in the estimation of Ψ(P0) by enhanc-
ing the initial estimator derived from Q̄0

n and the marginal empirical distribution of
W as an estimator of its counterpart under P0. The fluctuation is made in such a way
that the EIC equation is solved: ∑D∗(Q̄∗n,gn)(Oi) = 0. Therefore, the TMLE es-
timator is double robust and (locally) efficient under regularity conditions (van der
Laan and Rose, 2011).

Standard errors and confidence intervals (CIs) can be computed based on
the variance of the influence curve. Proofs and technical details are available in
the literature (van der Laan and Rubin, 2006, van der Laan and Rose, 2011, for
instance).

In practice, bounded continuous outcomes and binary outcomes are fluctu-
ated on the logit scale to ensure that bounds on the model space are respected (Gru-
ber and van der Laan, 2010b).

4 The C-TMLE General Template and Its Greedy
Instantiation for ATE

When implementing an instantiation of the TMLE template, one relies on a single
external estimate of the nuisance parameter, g0 in the ATE example (see Step 2 in
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Section 3). In contrast, an instantiation of the C-TMLE template involves construct-
ing a series of nuisance parameter estimates and corresponding TMLE estimators
using these estimates in the targeting step.

4.1 The C-TMLE Template

When the ATE is the parameter of interest, the C-TMLE template can be summa-
rized recursively like this (see Algorithm 1 for a high-level algorithmic presenta-
tion). One first builds (gn,0, Q̄0

n = Q̄n,0, Q̄∗n,0) where gn,0 is an estimator of g0 and
Q̄0

n = Q̄n,0, Q̄∗n,0 are estimators of Q̄0, the latter being targeted toward the parame-
ter of interest for instance as in Section 3. Given the previous triplets (gn,0, Q̄0

n =
Q̄n,0, Q̄∗n,0), . . . ,(gn,k−1, Q̄n,k−1, Q̄∗n,k−1) where, by construction, the empirical loss
of each Q̄∗n,` is smaller than that of Q̄∗n,`−1, one needs to generate the next triplet
in the sequence. The current initial estimator of Q̄0 at the (k + 1)-th step is set
at Q̄n,k = Q̄n,k−1 (i.e., the same as that from triplet (gn,k−1, Q̄n,k−1, Q̄∗n,k−1)). One

then has a set of moves to create candidates g j
n,k updating gn,k−1 with move j (e.g.,

adding j-th covariate), providing better empirical fit than gn,k−1 and yielding the
corresponding Q̄ j,∗

n,k using Q̄n,k = Q̄n,k−1 as initial. The candidate with the small-
est empirical loss is (gn,k, Q̄n,k, Q̄∗n,k). Two cases arise: if the empirical loss of
the candidate Q̄∗n,k is smaller than that of Q̄∗n,k−1, then one has derived the next
triplet (gn,k, Q̄n,k = Q̄n,k−1, Q̄∗n,k); otherwise, in our sequence, one updates the initial
Q̄n,k = Q̄∗n,k−1 to the Q̄∗n,k−1 in the last triplet, and one repeats the above to generate
(gn,k, Q̄n,k, Q̄∗n,k) – since it is now guaranteed that the empirical loss of Q̄∗n,k is smaller
that that of Q̄∗n,k−1, one always gets the desired next element (gn,k, Q̄n,k, Q̄∗n,k).

In the original greedy C-TMLE algorithm (van der Laan et al., 2010), the
successive nuisance parameter estimates are based on a data-adaptive forward step-
wise search that optimizes a goodness-of-fit criterion at each step. Each of them
then yields a specific, candidate TMLE. Finally, the C-TMLE is defined as that
candidate that optimizes a cross-validated version of the criterion. The C-TMLE
inherits all the properties of a vanilla TMLE estimator (van der Laan et al., 2010).
It is double robust and asymptotically efficient under appropriate regularity condi-
tions.
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Algorithm 1 General Template of C-TMLE

1: Construct an initial estimate Q̄0
n for Q̄0.

2: Create candidate Q̄∗n,k, using different estimates of treatment mechanism g0,
such that the empirical losses of Q̄∗n,k and gn,k are decreasing in k. The greedy
C-TMLE algorithm uses a forward greedy selection algorithm.

3: Select the best candidate Q̄∗n = Q̄∗n,kn
using loss-based cross-validation, with the

same loss function as in the TMLE targeting step.

In Step 1 of Algorithm 1, we recommend using SL as described further
in Section 3. Step 2 will be commented on in the next section. In Step 3, the
best candidate is selected based on the cross-validated penalized log-likelihood and
indexed by

kn = argmin
k

{
cvRSS+ cvVark +n× cvBias2

k
}

where

cvRSSk =
V

∑
v=1

∑
i∈Val(v)

(Yi− Q̄∗n,k(P
0
nv)(Wi,Ai))

2,

cvVark =
V

∑
v=1

∑
i∈Val(v)

D∗2(Q̄∗n,k(P
0
nv),gn,k(Pn))(Oi),

cvBiask =
1
V

V

∑
v=1

Ψ(Q̄∗n,k(P
0
nv))−Ψ(Q̄∗n,k(Pn)).

In the above display, Val(v) is the set of indices of observations used for valida-
tion in the v-th fold, P0

nv is the empirical distribution of the observations indexed
by i 6∈ Val(v), Pn is the empirical distribution of the whole data set, and Z(P0

nv)
(respectively, Z(Pn)) means that Z is fitted using P0

nv (respectively, Pn). The penal-
ization terms cvVark and cvBiask robustify the finite sample performance when the
positivity assumption is violated (van der Laan et al., 2010).

To achieve collaborative double robustness, the sequence of estimators (gn,k :
k) should be arranged in such a way that the bias is monotonically decreasing while
the variance is monotonically increasing such that gn,k converges (in k) to a consis-
tent estimator of g0 (van der Laan and Rose, 2011). One could for instance rely on
a nested sequence of models, see Section 4.2. By doing so, the empirical fit for g0
improves as k increases (van der Laan and Rose, 2011, Gruber and van der Laan,
2010a).

Porter, Gruber, van der Laan, and Sekhon (2011) discuss and compare TMLE
and C-TMLE with other DR estimators, including A-IPTW.
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4.2 The Greedy C-TMLE Algorithm

We refer to the original instantiation of the C-TMLE template as the greedy C-
TMLE algorithm. It uses a forward selection algorithm to build the sequence of
estimators of g0 as a nested sequence of treatment models. Let us describe it in the
case that W consists of p covariates. For k = 0, a one-dimensional logistic model
with only an intercept is used to estimate g0. Recursively, the (k+ 1)th model is
derived by adding one more covariate from W to the kth logistic model. The chosen
covariate is selected from the set of covariates in W that have not been selected so
far.

More specifically, one begins with the intercept model for g0 to construct
gn,0 then a first fluctuation covariate Hgn,0 as in (1), which is used in turn to create
the first candidate estimator Q̄∗n,0 based on Q̄n,0. Namely, denoting gn,0(1 |W ) =
Pn(A = 1) and gn,0(0 |W ) = Pn(A = 0), we set

Hgn,k(a,W ) = a/gn,k(1 |W )− (1−a)/gn,k(0 |W ), (3)

logit(Q̄∗n,k(a,W )) = logit(Q̄n,k(a,W ))+ εkHgn,k(a,W ) (a = 0,1) (4)

where k = 0. Here εk is fitted by a logistic regression of Y on Hgn,k(A,W ) with offset
Q̄n,k(A,W ), and Q̄∗n,1 is the first candidate TMLE. We denote L0 its empirical loss
wrt the negative log-likelihood function L .

We proceed recursively. Assume that we have already derived Q̄∗n,0, . . .,
Q̄∗n,k−1, and denote the initial estimator used in the last TMLE Q̄∗n,k−1 with Q̄n,k−1.
The (k+1)-th estimator gn,k of g0 is based on a larger model than that we yielded
gn,k−1. It contains the intercept and the same (k− 1) covariates as the previous
model fit gn,k−1, with one additional covariate. Each covariate Wj (1 ≤ j ≤ p such
that Wj has not been selected yet) is considered in turn for inclusion in the model,
yielding a update g j

n,k of gn,k−1, which implies corresponding updates H j
gn,k and

Q̄ j,∗
n,k as in the above display. A best update Q̄∗n,k is selected among the candidate

updates Q̄1,∗
n,k , . . . , Q̄

p,∗
n,k by minimizing the empirical loss wrt L . Its empirical loss

is denoted Lk. If Lk ≤ Lk−1, then this Q̄∗n,k defines the next fluctuation in our
sequence, with corresponding initial estimator still Q̄n,k = Q̄n,k−1, the same as that
used to build Q̄∗n,k−1. We can now move on to the next step. Otherwise, we reset the
initial estimator Q̄n,k−1 to Q̄∗n,k−1 and repeat the above procedure: i.e., we compute

the candidate updates Q̄ j,∗
n,k again for this new initial estimator, and select the best

choice Q̄∗n,k. Due to the initial estimator in Q̄∗n,k being Q̄∗n,k−1, it is now guaranteed
that the new Lk is smaller than Lk−1, thereby providing us with our next TMLE
Q̄∗n,k in our sequence.
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This forward stepwise procedure is carried out recursively until all p co-
variates have been incorporated into the model for g0. In the discussed setting,
choosing the first covariate requires p comparisons, choosing the second covari-
ate requires (p− 1) comparisons and so on, making the time complexity of this
algorithm O(p2).

Once all candidates Q̄∗n,0, . . . , Q̄
∗
n,k have been constructed, cross-validation

is used to select the optimal number of covariates to include in the model for g0.
For more concrete examples, we refer to (van der Laan et al., 2010, van der Laan
and Rose, 2011). Gruber and van der Laan (2010a) proposes several variations on
the forward greedy stepwise C-TMLE algorithm. The variations did not improve
performance in simulation studies. In this article, the greedy C-TMLE algorithm is
defined by the procedure described above.

5 Scalable C-TMLE Algorithms
Now that we have introduced the background on C-TMLE, we will now introduce
our scalable C-TMLE algorithm. Section 5.1 summarizes the philosophy of the
scalable C-TMLE algorithm, which hinges on a data adaptively determined pre-
ordering of the baseline covariates. Sections 5.2 and 5.3 present two such pre-
ordering strategies. Section 5.4 discusses what properties a pre-ordering strategy
should satisfy. Finally, Section 5.5 proposes a discrete Super Learner-based model
selection procedure to select among a set of scalable C-TMLE estimators, which is
itself a scalable C-TMLE algorithm.

5.1 Outline

As we have seen in the previous section, the time complexity of the greedy C-TMLE
algorithm is O(p2) when the number of covariates equals p. This is unsatisfactory
for large scale and high-dimensional data, which is an increasingly common situ-
ation in health care research. For example, the high-dimensional propensity score
(hdPS) algorithm is a method to extract information from electronic medical claims
data that produces hundreds or even thousands of candidate covariates, increasing
the dimension of the data dramatically (Schneeweiss, Rassen, Glynn, Avorn, Mo-
gun, and Brookhart, 2009).

In order to make it possible to apply C-TMLE algorithms to such data sets,
we propose to add a new pre-ordering procedure after the initial estimation of Q̄0
and before the stepwise construction of the candidate Q̄∗n,k, k = 0, . . .. We present
two pre-ordering procedures in Sections 5.2 and 5.3. By imposing an ordering over
the covariates only one covariate is eligible for inclusion in the PS model at each
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step when constructing the next candidate TMLE in the sequence, Q̄∗n,k. Thus, the
new C-TMLE algorithm overcomes the computational issue.

Once an ordering over the covariates has been established, we add them
one by one to the model used to estimate g0, starting from the intercept model.
Suppose that we are adding the kth covariate; we obtain a new estimate gn,k of g0;
we define a new clever covariate as in (3); we fluctuate the current initial estimator
Q̄k

n as in (4); we evaluate the empirical loss Lk wrt L of the resulting candidate
Q̄∗n,k. If Lk ≤Lk−1, then we move on to adding the next covariate; otherwise, the
current initial estimate Q̄n,k is replaced by Q̄∗n,k−1 and we restart over adding the kth
covariate. This approach guarantees that Lk ≤Lk−1.

Finally, we use cross-validation to select the best candidate among Q̄∗n,0, . . .,
Q̄∗n,p in terms of cross-validated loss wrt L .

5.2 Logistic Pre-Ordering Strategy

The logistic pre-ordering procedure is similar to the second round of the greedy C-
TMLE algorithm. However, instead of selecting one single covariate before going
on, we use the empirical losses wrt L to order the covariates by their ability to
reduce bias. More specifically, for each covariate Wk (1 ≤ k ≤ p), we construct an
estimator gn,k of the conditional distribution of A given Wk only (one might also add
Wk to a fixed baseline model); we define a clever covariate as in (3) using gn,k and
fluctuate Q̄0

n as in (4); we compute the empirical loss of the resulting Q̄∗n,k wrt L ,
yielding Lk. Finally, the covariates are ranked by increasing values of the empirical
loss. This is summarized in Algorithm 2.

Algorithm 2 Logistic Pre-Ordering Algorithm
1: for each covariate Wk in W do
2: Construct an estimator gn,k of g0 using a logistic model with Wk as predictor.
3: Define a clever covariate Hgn,k(A,Wk) as in (3).
4: Fit εk by regressing Y on Hgn,k(A,Wk) with offset Q̄0

n(A,W ).
5: Define Q̄∗n,k as in (4).
6: Compute the empirical loss Lk wrt L .
7: end for
8: Rank the covariates by increasing Lk.
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5.3 Partial Correlation Pre-Ordering Strategy

In the greedy C-TMLE algorithm described in Section 4.2, once k covariates have
already been selected, the (k+1)th is that remaining covariate which provides the
largest reduction in the empirical loss wrt L . Intuitively, the (k+ 1)th covariate
is the one that best explains the residual between Y and the current Q̄0

n. Drawing
on this idea, the partial correlation pre-ordering procedure ranks the p covariates
based on how each of them is correlated with the residual between Y and the initial
Q̄0

n within strata of A. This second strategy is less computationally demanding than
the previous one because there is no need to fit any regression models, merely to
estimate p partial correlation coefficients.

Let ρ(X1,X2) denote the Pearson correlation coefficient between X1 and X2.
Recall that the partial correlation ρ(X1,X2|X3) between X1 and X2 given X3 is de-
fined as the correlation coefficient between the residuals RX1 and RX2 resulting from
the linear regression of X1 on X3 and of X2 on X3, respectively (Hair, Black, Babin,
Anderson, and Tatham, 2006). For each 1≤ k≤ p, we introduce R =Y−Q̄0

n(A,W ),

ρ(R,Wk|A) =
ρ(R,Wk)−ρ(R,A)×ρ(Wk,A)√
(1−ρ(R,A)2)(1−ρ(Wk,A)2)

.

The partial correlation pre-ordering strategy is summarized in Algorithm 3.

Algorithm 3 Partial Correlation Pre-Ordering Algorithm
1: for each covariate Wk in W do
2: Estimate the partial correlation coefficient ρ(R,Wk|A) between R = (Y −

Q̄0
n(A,W )) and Wk given A.

3: end for
4: Rank the covariates based on the absolute value of the estimates of the partial

correlation coefficients.

5.4 Discussion of the Design of Pre-ordering

Sections 5.2 and 5.3 proposed two pre-ordering strategies. In general, a rule of
thumb for designing a pre-ordering strategy is to rank the covariates based on the
impact of each in reducing the residual bias in the target parameter which results
from the initial estimator Q̄0

n of Q̄0. In this light, the logistic ordering of Section 5.2
uses TMLE to reflect the importance of each variable wrt its potential to reduce
residual bias. The partial correlation ordering of Section 5.3 ranks the covariates
according to the partial correlation of residual of the initial fit and the covariates,
conditional on treatment.
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Because the rule of thumb considers each covariate in turn separately, it
is particularly relevant when the covariates are not too dependent. For example,
consider the extreme case where two or more of the covariates are highly correlated
and can greatly explain the residual bias in the target parameter. In this scenario,
these dependent covariates would all be ranked towards the front of the ordering.
However, after adjusting for one of them, the others would typically be much less
helpful for reducing the remaining bias. This redundancy may harm the estimation.
In cases where it is computationally feasible, this problem can be avoided by using
the greedy search strategy, but many other intermediate strategies can be pursued as
well.

5.5 Super Learner-Based C-TMLE Algorithm

Here, we explain how to combine several C-TMLE algorithms into one. The com-
bination is based on a Super Learner (SL). Super learning is an ensemble machine
learning approach that relies on cross-validation. It has been proven that a SL selec-
tor can perform asymptotically as well as an oracle selector under mild assumptions
(van der Laan et al., 2007, van der Laan and Dudoit, 2003, van der Vaart, Dudoit,
and Laan, 2006).

As hinted at above, a SL-C-TMLE algorithm is an instantiation of an ex-
tension of the C-TMLE template. It builds upon several competing C-TMLE al-
gorithms, each relying on different strategies to construct a sequence of estimators
of the nuisance parameter. A SL-C-TMLE algorithm can be designed to select the
single best strategy (discrete SL-C-TMLE algorithm), or an optimal combination
thereof (ensemble SL-C-TMLE algorithm). A SL-C-TMLE algorithm can include
both greedy search and pre-ordering methods. A SL-C-TMLE algorithm is scalable
if all of the candidate C-TMLE algorithms in the library are scalable themselves.

We focus on a scalable discrete SL-C-TMLE algorithm that uses cross-
validation to choose among candidate scalable (pre-ordered) C-TMLE algorithms.
Algorithm 4 describes its steps. Note that a single cross-validation procedure is
used to select both the ordering procedure m and the number of covariates k in-
cluded in the PS model. It is because computational time is an issue that we do not
rely on a nested cross-validation procedure to select k for each pre-ordering strategy
m.
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Algorithm 4 Super Learner C-TMLE Algorithm
1: Define M covariates pre-ordering strategies yielding M C-TMLE algorithms
2: for each pre-ordering strategy m do
3: Follow step 2 of Algorithm 1 to create candidate Q̄∗n,m,k for the m-th strategy.
4: end for
5: The best candidate Q̄∗n is the minimizer of the cross-validated losses of Q̄∗n,m,k

across all the (m,k) combinations.

The time complexity of the SL-C-TMLE algorithm is of the same order as
that of the most complex C-TMLE algorithm considered. So, if only pre-ordering
strategies of order O(p) are considered, then the time complexity of the SL-C-
TMLE algorithm is O(p) as well. Given a constant number of user-supplied strate-
gies, the SL-C-TMLE algorithm remains scalable, with a processing time that is
approximately equal to the sum of the times for each strategy.

We compare the pre-ordered C-TMLE algorithms and SL-C-TMLE algo-
rithm with greedy C-TMLE algorithm and other common methods in Sections 6
and Appendix C.

6 Simulation Studies on Fully Synthetic Data
We carried out four Monte-Carlo simulation studies to investigate and compare
the performance of G-computation (that we call MLE), IPTW, A-IPTW, greedy C-
TMLE algorithm and scalable C-TMLE algorithms to estimate the ATE parameter.
For each study, we generated N = 1,000 Monte-Carlo data sets of size n = 1,000.
Propensity score estimates were truncated to fall within the range [0.025,0.975] for
all estimators.

Denoting Q̄0
n and gn two initial estimators of Q̄0 and g0, the unadjusted, G-

computation/MLE, and IPTW estimators of the ATE parameter are given by (5), (6)
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and (7):

ψ
unad j
n =

∑
n
i=1 I(Ai = 1)Yi

∑
n
i=1 I(Ai = 1)

− ∑
n
i=1 I(Ai = 0)Yi

∑
n
i=1 I(Ai = 0)

, (5)

ψ
MLE
n =

1
n

n

∑
i=1

[Q0
n(1,Wi)−Q0

n(0,Wi)], (6)

ψ
IPTW
n =

1
n

n

∑
i=1

[I(Ai = 1)− I(Ai = 0)]
Yi

gn(Ai,Wi)
, (7)

ψ
A−IPTW
n =

1
n

n

∑
i=1

[I(Ai = 1)− I(Ai = 0)]
gn(Ai |Wi)

(Yi−Q0
n(Wi,Ai))

+
1
n

n

∑
i=1

(Q0
n(1,Wi)−Q0

n(0,Wi)). (8)

The A-IPTW and TMLE estimators were presented in Section 3. The estimators
yielded by the C-TMLE and scalable C-TMLE algorithms were presented in Sec-
tion 4, 4.2 and 5.

For all simulation studies, g0 was estimated using a correctly specified main
terms logistic regression model. Propensity scores incorporated into IPTW, A-
IPTW, and TMLE were based on the full treatment model for g0. The simulation
studies of Sections 6.1 and 6.2 illustrate the relative performance of the estima-
tors in scenarios with highly correlated covariates. These two scenarios are by far
the most challenging settings for the greedy C-TMLE and scalable C-TMLE al-
gorithms. The simulation studies of Section 6.3 and 6.4 illustrate performance in
situations where instrumental variables (covariates predictive of the treatment but
not of the outcome) are included in the true PS model. In these two scenarios,
greedy C-TMLE and our scalable C-TMLEs are expected to perform better, if not
much better, than other widely used doubly-robust methods.

6.1 Simulation Study 1: Low-dimensional, highly correlated co-
variates

In the first simulation study, data were simulated based on a data generating distri-
bution published by Freedman and Berk (2008) and further analyzed by Petersen,
Porter, Gruber, Wang, and van der Laan (2012). A pair of correlated, multivari-
ate normal baseline covariates (W1,W2) is generated as (W1,W2) ∼ N(µ,Σ) where
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µ1 = 0.5,µ2 = 1 and Σ =

[
2 1
1 1

]
. The PS is given by

P0(A = 1 |W ) = g0(1 |W ) = expit(0.5+0.25W1 +0.75W2)

(this is a slight modification of the mechanism in the original paper, which used a
probit model to generate treatment). The outcome is continuous, Y = Q̄0(A,W )+ε ,
with ε ∼N(0,1) (independent of A,W ) and Q̄0(A,W ) = 1+A+W1+2W2. The true
value of the target parameter is ψ0 = 1.

Note that (i) the two baseline covariates are highly correlated and (ii) the
choice of g0 yields practical (near) violation of the positivity assumption.

Each of the estimators involving the estimation of Q̄0 was implemented
twice, using or not a correctly specified model to estimate Q0 (the mis-specified
model is a linear regression model of Y on A and W1 only).

Table 1: Simulation study 1. Performance of the various estimators across 1000
simulated data sets of sample size 1000.

correct Q̄ mis-specified Q̄
bias (10−3) se (10−2) MSE (10−3) bias (10−3) se (10−2) MSE (10−3)

unadj 2766.8 22.6 7706.3 2766.8 22.61 7706.3
A IPTW 0.7 9.54 9.1 10.8 13.52 18.4
IPTW 75.9 34.91 127.5 75.9 34.91 127.5
MLE 1.0 8.20 6.7 699.4 13.96 508.6
TMLE 0.6 9.55 9.1 1.3 11.05 12.2
greedy C-TMLE 0.8 8.91 7.9 0.4 10.41 10.8
logRank C-TMLE 0.1 8.94 8.0 0.4 10.41 10.8
partRank C-TMLE 0.3 8.94 8.0 0.4 10.41 10.8
SL-C-TMLE 0.1 9.07 8.2 0.4 10.41 10.8
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(b) Mis-specified model for Q̄0.

Figure 1: Simulation 1: Box plot of ATE estimates with correct/mis-specified mod-
els for Q̄0. The green line indicates the true parameter value.
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Bias, variance, and mean squared error (MSE) for all estimators across 1000
simulated data sets are shown in Table 1. Box plots of the estimated ATE are shown
in Fig. 1. When Q0 was correctly specified, all models had very small bias. As
Freedman and Berk discussed, even when the correct PS model is used, near positiv-
ity violations can lead to finite sample bias for IPTW estimators (see also Petersen
et al., 2012). Scalable C-TMLEs had smaller bias than the other DR estimators, but
the distinctions were small.

When Q0 was not correctly specified, the G-computation/MLE estimator
was expected to be biased. Interestingly, A-IPTW was more biased than the other
DR estimators. All C-TMLE estimators have identical performance, because each
approach produced the same treatment model sequence.

6.2 Simulation Study 2: Highly correlated covariates

In the second simulation study, we study the case that multiple confounders are
highly correlated with each other. We will use the notation W1:k = (W1, . . . ,Wk).
The data-generating distribution is described as follows:

W1,W2,W3
iid∼ Bernoulli(0.5),

W4|W1:3 ∼ Bernoulli(0.2+0.5 ·W1),

W5|W1:4 ∼ Bernoulli(0.05+0.3 ·W1 +0.1 ·W2 +0.05 ·W3 +0.4 ·W4),

W6|W1:5 ∼ Bernoulli(0.2+0.6 ·W5),

W7|W1:6 ∼ Bernoulli(0.5+0.2 ·W3),

W8|W1:7 ∼ Bernoulli(0.1+0.2 ·W2 +0.3 ·W6 +0.1 ·W7),

P0(A = 1 |W ) = g0(1 |W )

= expit(−0.05+0.1 ·W1 +0.2 ·W2 +0.2 ·W3

−0.02 ·W4−0.6 ·W5−0.2 ·W6−0.1 ·W7),

and finally, for ε ∼ N(0,1) (independent from A and W ),

Y = 10+A+W1 +W2 +W4 +2 ·W6 +W7 + ε.

The true ATE for this simulation study is ψ0 = 1.
In this case, the true confounders are W1,W2,W4,W6,W7. Covariate W5 is

most closely related to W1 and W4. Covariate W3 is mainly associated with W7.
Neither W3 nor W5 is a confounder (both of them are predictive of treatment A, but
do not influence directly outcome Y ). Including either one of them in the PS model
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should inflate the variance (Brookhart, Schneeweiss, Rothman, Glynn, Avorn, and
Stürmer, 2006).

As in Section 6.1, each of the estimators involving the estimation of Q̄0 was
implemented twice, a correctly specified model to estimate Q0, and a mis-specified
model defined by a linear regression model of Y on A only.

Table 2: Simulation study 2. Performance of the various estimators across 1000
simulated data sets of sample size 1000.

correct Q̄ mis-specified Q̄
bias (10−3) se (10−2) MSE (10−3) bias (10−3) se (10−2) MSE (10−3)

unadj 392.9 12.65 170.3 392.9 12.65 170.3
A IPTW 2.4 6.54 4.3 2.0 6.53 4.3
IPTW 2.1 7.78 6.0 2.1 7.78 6.0
MLE 2.6 6.52 4.3 391.2 12.39 168.4
TMLE 2.4 6.54 4.3 2.0 6.53 4.3
greedy C-TMLE 2.6 6.52 4.3 11.4 7.01 5.0
logRank C-TMLE 2.5 6.52 4.3 6.3 6.72 4.6
partRank C-TMLE 2.6 6.52 4.3 2.5 6.67 4.4
SL-C-TMLE 2.5 6.52 4.3 5.2 6.79 4.6
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Figure 2: Simulation 2: Box plot of ATE estimates with correct/mis-specified mod-
els for Q̄0. The green line indicates the true parameter value.

Table 2 demonstrates and compares performance across 1000 replications.
Box plots of the estimated ATE are shown in Fig. 2. When Q̄0 was correctly spec-
ified, all estimators except the unadjusted estimator had small bias. The DR esti-
mators had lower MSE than the inefficient IPTW estimator. When Q̄0 was mis-
specified, the A-IPTW and IPTW estimators were less biased than the C-TMLE
estimators. The bias of the greedy C-TMLE was five times larger. However, all DR
estimators had lower MSE than the IPTW estimator, with the TMLE outperforming
the others.
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6.3 Simulation Study 3: Binary outcome with instrumental vari-
able

In the third simulation, we assess the performance of C-TMLE in a data set with
positivity violations. We first generate W1,W2,W3,W4 independently from the uni-
form distribution on [0,1], then A|W ∼ Bernoulli(g0(1|W )) with

g0(1,W ) = expit(−2+5W1 +2W2 +1W3),

and finally Y |(A,W )∼ Bernoulli(Q̄0(A,W )) with

Q̄0(A,W ) = expit(−3+2W2 +2W3 +W4 +A).

As in Sections 6.1 and 6.2, each of the estimators involving the estimation
of Q̄0 was implemented twice, once with a correctly specified model and once with
a mis-specified linear regression model of Y on A only.

Table 3: Simulation study 3. Performance of the various estimators across 1000
simulated data sets of sample size 10000.

correct Q̄ mis-specified Q̄
bias (10−3) se (10−2) MSE (10−3) bias (10−3) se (10−2) MSE (10−3)

unadj 78.1 3.72 7.5 78.1 3.72 7.5
A IPTW 1.7 5.62 3.2 13.9 5.64 3.4
IPTW 45.9 6.05 5.8 45.9 6.05 5.8
MLE 0.7 4.20 1.8 76.4 3.61 7.1
TMLE 1.5 6.28 3.9 1.3 6.44 4.1
greedy C-TMLE 0.4 5.39 2.9 12.2 5.79 3.5
logRank C-TMLE 0.9 5.39 2.9 11.2 5.59 3.3
partRank C-TMLE 1.2 5.65 3.2 6.9 5.37 2.9
SL-C-TMLE 0.3 5.73 3.3 7.7 5.46 3.0
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Figure 3: Simulation 3: Box plot of ATE estimates with correct/mis-specified mod-
els for Q̄0. The green line indicates the true parameter value.

http://biostats.bepress.com/ucbbiostat/paper352



Table 3 demonstrates the performance of the estimators across 1000 repli-
cations. Fig. 3 shows box plots of the estimates for the different methods across
1000 simulation, with a well specified or mis-specified model for Q̄0.

When Q̄0 was correctly specified, the DR estimators had similar bias/variance
trade-offs. Although IPTW is a consistent estimator when g is correctly specified,
truncation of the PS gn may have introduced bias. However, without truncation it
would have been extremely unstable due to violations of the positivity assumption
when instrumental variables are included in the propensity score model.

When the model for Q̄0 was mis-specified, the MLE was equivalent to the
unadjusted estimator. The DR methods performed well with an MSE close to that
observed when Q̄0 was correctly specified. All C-TMLEs had similar performance.
They out-performed the other DR methods (namely, A-IPTW and TMLE) and the
pre-ordering strategies improved the computational time without loss of precision
or accuracy compared to the greedy C-TMLE algorithm.

Side note.

Because W1 is an instrumental variable that is highly predictive of the PS, but not
helpful for confounding control, we expect that including it in the PS model would
increase the variance of the estimator. One possible way to improve the perfor-
mance of the IPTW estimator would be to apply a C-TMLE algorithm to select
covariates for fitting the PS model. In the mis-specified model for Q̄0 scenario, we
also simulated the following procedure:

1. Use a greedy C-TMLE algorithm to select the covariates.
2. Use main terms logistic regression with selected covariates for the PS model.
3. Compute IPTW using the estimated PS.

The simulated bias for this estimator was 0.0340, the SE was 0.0568, and
the MSE was 0.0043. Excluding the instrumental variable from the PS model thus
reduced bias, variance, and MSE of the IPTW estimator.

6.4 Simulation Study 4: Continuous outcome with instrumental
covariate

In the fourth simulation, we assess the performance of C-TMLEs in a simulation
scheme with a continuous outcome inspired by (Gruber and van der Laan, 2011)
(we merely increased the coefficient in front of W1 to introduce a stronger positivity
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violation). We first independently draw W1,W2,W3,W4,W5,W6 from the standard
normal law, then A given W with

P0(A = 1 |W ) = g0(1,W ) = expit(2W1 +0.2W2 +−3W3),

and finally Y given (A,W ) from a Gaussian law with variance 1 and mean

Q̄0(A,W ) = 0.5W1−8W2 +9W3−2W5 +A.

The initial estimator Q̄0
n was built based on a linear regression model of Y

on A, W1, and W2, thus partially adjusting for confounding. There was residual con-
founding due to W3. There was also residual confounding due to W1 and W2 within
at least one stratum of A, despite their inclusion in the initial outcome regression
model.

Table 4: Simulation study 4. Performance of the various estimators across 1000
simulated data sets of sample size 1000. Omitted in the table, the performance of
the unadjusted estimator was an order of magnitude worse than the performance of
the other estimators.

Mis-specified Q̄
bias se MSE

A IPTW 4.49 0.84 20.88
IPTW 2.97 0.87 9.60
MLE 12.68 0.47 161.20
TMLE 1.31 1.21 3.17
greedy C-TMLE 0.25 1.01 1.27
logRank C-TMLE 0.36 0.88 0.90
partRank C-TMLE 0.32 0.92 0.95
SL-C-TMLE 0.37 0.88 0.90
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Figure 4: Simulation 4: Box plot of ATE estimates with mis-specified model for
Q̄0.

Fig. 4 reveals that the C-TMLEs performed much better than TMLE and A-
IPTW estimators in terms of bias and standard error. This illustrates that choosing to
adjust for less than the full set of covariates can improve finite sample performance
when there are near positivity violations. In addition, Table 4 shows that the pre-
ordered C-TMLEs out-performed the greedy C-TMLE. Although the greedy C-
TMLE estimator had smaller bias, it had higher variance, perhaps due to its more
data-adaptive ordering procedure.

7 Simulation Study on Partially Synthetic Data
The aim of this section is to compare TMLE and all C-TMLEs using a large sim-
ulated data set that mimics a real-world data set. Section 7.1 starts the description
of the data-generating scheme and resulting large data set. Section 7.2 presents the
High-Dimensional Propensity Score (hdPS) method used to reduce the dimension
of the data set. Section 7.3 completes the description of the data-generating scheme
and specifies how Q̄0 and g0 are estimated. Section 7.4 summarizes the results of
the simulation study.

7.1 Data-generating scheme

The simulation scheme relies on the Nonsteroidal anti-inflammatory drugs (NSAID)
data set presented and studied in (Schneeweiss et al., 2009, Rassen and Schneeweiss,
2012). Its n= 49,653 observations were sampled from a population of patients aged
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65 years and older, and enrolled in both Medicare and the Pennsylvania Pharma-
ceutical Assistance Contract for the Elderly (PACE) programs between 1995 and
2002. Each observed data structure consists of a triplet (W,A,Y ) where W is de-
composed in two parts: a vector of 22 baseline covariates and a highly sparse vector
of C = 9,470 unique claim codes. In the latter, each entry is a nonnegative integer
indicating how many times (mostly zero) a certain procedure (uniquely identified
among C = 9,470 by its claim code) has been undergone by the corresponding pa-
tient. The claim codes were manually clustered into eight categories: ambulatory
diagnoses, ambulatory procedures, hospital diagnoses, hospital procedures, nurs-
ing home diagnoses, physician diagnoses, physician procedures and prescription
drugs. The binary indicator A stands for exposure to a selective COX-2 inhibitor
or a comparison drug (a non-selective NSAID). Finally, the binary outcome Y indi-
cates whether or not either a hospitalization for severe gastrointestinal hemorrhage
or peptic ulcer disease complications including perforation in GI patients occurred.

The simulated data set was generated as in (Gadbury, Xiang, Yang, Barnes,
Page, and Allison, 2008, Franklin, Schneeweiss, Polinski, and Rassen, 2014). It
took the form of n = 49,653 data structures (Wi,Ai,Yi) where {(Wi,Ai) : 1≤ i≤ n}
was extracted from the above real data set and where {Yi : 1≤ i≤ n} was simulated
by us in such a way that, for each 1 ≤ i ≤ n, the random sampling of Yi depended
only on the corresponding (Wi,Ai). As argued in the aforementioned articles, this
approach preserves the covariance structure of the covariates and complexity of the
true treatment assignment mechanism, while allowing the true value of the ATE
parameter to be known, and preserving control over the degree of confounding.

7.2 High-Dimensional Propensity Score Method For Dimension
Reduction

The simulated data set was large, both in number of observations and the number
of covariates. In this framework, directly applying any version of C-TMLE algo-
rithms would not be the best course of action First, the computational time would
be unreasonably long due to the large number of covariates. Second, the resulting
estimators would be plagued by high variance due to the low signal-to-noise ratio
in the claim data.

This motivated us to apply the High-Dimensional Propensity Score (hdPS)
method for dimension reduction prior to applying the TMLE and C-TMLE algo-
rithms.

Introduced in (Schneeweiss et al., 2009)), the hdPS method was proposed to
reduce the dimension in large electronic healthcare databases. It is is increasingly
used in studies involving such databases (Rassen and Schneeweiss, 2012, Patorno,
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Glynn, Hernández-Dı́az, Liu, and Schneeweiss, 2014, Franklin, Eddings, Glynn,
and Schneeweiss, 2015, Toh, Garcı́a Rodrı́guez, and Hernán, 2011, Kumamaru,
Gagne, Glynn, Setoguchi, and Schneeweiss, 2016, Ju, Combs, Lendle, Franklin,
Wyss, Schneeweiss, and van der Laan, 2016)).

The hdPS method essentially consists of two main steps: (i) generating so
called hdPS covariates from the claims data (which can increase the dimension) then
(ii) screening the enlarged collection of covariates to select a small proportion of
them (which dramatically reduces the dimension). Specifically, the method unfolds
as follows (Schneeweiss et al., 2009):

1. Cluster by Resource. Cluster the data by resource in C clusters.
In the current example, we derived C = 8 clusters corresponding to the follow-
ing categories: ambulatory diagnoses, ambulatory procedures, hospital diagnoses,
hospital procedures, nursing home diagnoses, physician diagnoses, physician pro-
cedures and prescription drugs. See (Schneeweiss et al., 2009, Patorno et al.,
2014) for other examples.

2. Identify Candidate Claim Codes. For each cluster separately, for each claim
code c within the cluster, compute the empirical proportion Pr(c) of positive en-
tries, then sort the claim codes by decreasing values of min(Pr(c),1− Pr(c)).
Finally, select only the top J claim codes. We thus go from C claim codes to
J×C claim codes.
As explained below, we chose J = 50 so the dimension of the claims data went
from 9,470 to 400.

3. Assess Recurrence of Claim Codes. For each selected claim code c and each
patient 1≤ i≤ n, replace the corresponding ci with three binary covariates called
“hdPS covariates”: c(1)i equal to one if and only if (iff) ci is positive; c(2)i equal to
one iff ci is larger than the median of {ci : 1 ≤ i ≤ n}; c(3)i equal to one iff ci is
larger than the 75%-quantile of {ci : 1≤ i≤ n}. This inflates the number of claim
codes related covariates by a factor 3.
As explained below, the dimension of the claims data thus went from 400 to 1,200.

4. Select Among the hdPS Covariates. For each hdPS covariate, estimate a mea-
sure of its potential confounding impact, then sort them by decreasing values of
the estimates of the measure. Finally, select only the top K hdPS covariates.
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For instance, one can rely on the following estimate of the measure of the potential
confounding impact introduced in (Bross, 1954): for hdPS covariate c`

π`
n(1)(r

`
n−1)+1

π`
n(0)(r`n−1)+1

(9)

where

π
`
n(a) =

∑
n
i=1 1{c`i = 1,ai = a}

∑
n
i=1 1{ai = a}

(a = 0,1) and

r`n =
pn(1)
pn(0)

with pn(c) =
∑

n
i=1 1{yi = 1,c`i = c}

∑
n
i=1 1{c`i = c}

(c = 0,1).

A rationale for this choice can be found in (Schneeweiss et al., 2009), where r`n in
(9) is replaced by max(r`n,1/r`n).
As explained below we chose K = 100. As a result, the dimension of the claims
data was reduced to 100 from 9,470.

7.3 Data-generating scheme (continued) and estimating proce-
dures

Let us resume here the presentation of the simulation scheme initiated in Sec-
tion 7.1. Recall that the simulated data set writes as {(Wi,Ai,Yi) : 1≤ i≤ n} where
{Wi : 1 ≤ i ≤ n} is the by product of the hdPS method of Section 7.2 with J = 50
and K = 100 and {Ai : 1≤ i≤ n} is the original vector of exposures. It only remains
to present how {Yi : 1≤ i≤ n} was generated.

First, we arbitrarily chose a subset W ′ of W , that consists of 10 baseline
covariates (congestive heart failure, previous use of warfarin, number of generic
drugs in last year, previous use of oral steroids, rheumatoid arthritis, age in years,
osteoarthritis, number of doctor visits in last year, calendar year) and 5 hdPS co-
variates. Second, we arbitrarily defined a parameter

β = (1.280,−1.727,1.690,0.503,2.528,0.549,0.238,−1.048,1.294,

0.825,−0.055,−0.784,−0.733,−0.215,−0.334)>.

Finally, Y1, . . . ,Yn were independently sampled given {(Wi,Ai) : 1 ≤ i ≤ n} from
Bernoulli distributions with parameters q1, . . . ,qn where, for each 1≤ i≤ n,

qi = expit
(

β
>W ′i +Ai

)
.

The resulting true value of the ATE is ψ0 = 0.21156.
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The estimation of the conditional expectation Q̄0 was carried out based on
two logistic regression models. The first one was well specified whereas the second
one was mis-specified, due to the omission of the five hdPS covariates.

For the TMLE algorithm, the estimation of the PS g0 was carried out based
on a single, main terms logistic regression model including all of the 122 covariates.
For the C-TMLE algorithms, main terms logistic regression model were also fitted
at each step. An early stopping rule was implemented to save computational time.
Specifically, if the cross-validated loss of Q̄∗n,k is smaller than the cross-validated
losses of Q̄∗n,k+1, . . . , Q̄

∗
n,k+10, then the procedure is stopped and outputs the TMLE

estimator corresponding to Q̄∗n,k.
The scalable SL-C-TMLE library included the two scalable pre-ordered C-

TMLE algorithms and excluded the greedy C-TMLE algorithm.

7.4 Results

Table 5 reports the point estimates for ψ0 as derived by all the considered meth-
ods. It also reports the 95% CIs of the form [ψn ± 1.96σn/

√
n], where σ2

n =
n−1

∑
n
i=1 D∗(Q̄n,gn)(Oi)

2 estimates the variance of the efficient influence curve at
the couple (Q̄n,gn) yielding ψn. We refer the interested reader to (van der Laan and
Rose, 2011, Appendix A) for details on influence curve based inference. All the CIs
contained the true value of ψ0. Table 5 also reports processing times (in seconds).

Table 5: Point estimates and 95% CIs for TMLE and C-TMLE estimators

Model for Q̄0
n estimate CI Processing time

TMLE Well specified 0.202 (0.193, 0.212) 0.6s
Mis-specified 0.203 (0.193, 0.213) 0.6s

C-TMLE, Well specified 0.205 (0.196, 0.213) 618.7s
greedy Mis-specified 0.214 (0.205, 0.223) 1101.2s
C-TMLE, Well specified 0.205 (0.196, 0.213) 57.4s
logistic ordering Mis-specified 0.211 (0.202, 0.219) 125.6s
C-TMLE, Well specified 0.205 (0.197, 0.213) 22.5s
partial correlation ordering Mis-specified 0.211 (0.202, 0.219) 149.0s
SL-C-TMLE Well specified 0.205 (0.197, 0.213) 69.8s

Mis-specified 0.211 (0.202, 0.219) 264.3s

The point estimates and CIs were similar across all C-TMLEs. When the
model for Q̄0 was correctly specified, the SL-C-TMLE selected the partial correla-
tion ordering. When the model for Q̄0 was mis-specified, it selected the logistic or-
dering. In both cases, the estimator with smaller bias was data-adaptively selected.
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In addition, as all the candidates in its library were scalable, the SL-C-TMLE algo-
rithm was also scalable, and ran much faster than the greedy C-TMLE algorithm.
Computational time for the scalable C-TMLE algorithms was approximately 1/10th
of the computational time of the greedy C-TMLE algorithm.

8 Discussion
Robust inference of a low-dimensional parameter in a large semi-parametric model
traditionally relies on external estimators of infinite-dimensional features of the dis-
tribution of the data. Typically, only one of the latter is optimized for the sake of
constructing a well behaved estimator of the low-dimensional parameter of interest.
For instance, the targeted minimum loss (TMLE) estimator of the average treatment
effect (ATE) (2) relies on an external estimator Q̄0

n of the conditional mean Q̄0 of the
outcome given binary treatment and baseline covariates, and on an external estima-
tor gn of the propensity score g0. Only Q̄0

n is optimized/updated into Q̄∗n based on gn
in such a way that the resulting substitution estimator of the ATE can be used, under
mild assumptions, to derive a narrow confidence interval with a given asymptotic
level.

There is room for optimization in the estimation of g0 for the sake of achiev-
ing a better bias-variance trade-off in the estimation of the ATE. This is the core idea
driving the general C-TMLE template. It uses a targeted penalized loss function to
make smart choices in determining which variables to adjust for in the estimation of
g0, only adjusting for variables that have not been fully exploited in the construction
of Q̄0

n, as revealed in the course of a data-driven sequential procedure.
The original instantiation of the general C-TMLE template was presented

as a greedy forward stepwise algorithm. It does not scale well when the number
p of covariates increases drastically. This motivated the introduction of novel in-
stantiations of the C-TMLE general template where the covariates are pre-ordered.
Their time complexity is O(p) as opposed to the original O(p2), a remarkable
gain. We proposed two pre-ordering strategies and suggested a rule of thumb to
develop other meaningful strategies. Because it is usually unclear a priori which
pre-ordering strategy to choose, we also introduced a SL-C-TMLE algorithm that
enables the data-driven choice of the better pre-ordering given the problem at hand.
Its time complexity is O(p) as well.

The C-TMLE algorithms used in our data analyses have been implemented
in Julia and are publicly available at https://lendle.github.io/TargetedLearning.
jl/. We undertook five simulation studies. Four of them involved fully synthetic
data. The last one involves partially synthetic data based on a real electronic health
database and the implementation of a high-dimensional propensity score (hdPS)
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method for dimension reduction widely used for the statistical analysis of claim
codes data. In the appendix, we compare the computational times of variants of C-
TMLE algorithms. We also showcase the use of C-TMLE algorithms on three real
electronic health database. In all analyses involving electronic health databases, the
greedy C-TMLE algorithm was unacceptably slow. Judging from the simulation
studies, our scalable C-TMLE algorithms work well, and so does the SL-C-TMLE
algorithm.

This article focused on ATE with a binary treatment. In future work, we will
adapt the theory and practice of scalable C-TMLE algorithms for the estimation of
the ATE with multi-level or continuous treatment by employing a working marginal
structural model. We will also extend the analysis to address the estimation of other
classical parameters of interest.
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Appendix
We gather here some additional material. Appendix A provides notes on

a Julia software package that implements all the proposed C-TMLE algorithms.
Appendix B presents and compares the empirical processing time of C-TMLE al-
gorithms for different sample sizes and number of candidate estimators of the nui-
sance parameter. Appendix C compares the performance of the new C-TMLEs with
standard TMLE on three real data sets.

A C-TMLE Software
A flexible Julia software package implementing all C-TMLE algorithms described
in this article is publicly available at https://lendle.github.io/TargetedLearning.
jl/. The website contains detailed documentation and a tutorial for researchers
who do not have experience with Julia.

In addition to the two pre-ordering methods described in Section 5, the soft-
ware accepts any user-defined ranking algorithm. The software also offers several
options to decrease the computational time of the scalable C-TMLE algorithms.
The "Pre-Ordered" search strategy has an optional argument k which defaults to
1. At each step, the next k available ordered covariates are added to the model used
to estimate g0. Large k can speed up the procedure when there are many covariates.
However, this approach is prone to over-fitting, and may miss the optimal solution.

An early stopping criteria that avoids computing and cross-validating the
complete model containing all p covariates can also save unnecessary computa-
tions. A "patience" argument accelerates the training phase by setting the number
of steps to carry out after having found a local optimum. To prepare Section 7.1,
argument "patience" was set to 10. More details are provided in that section.

B Time Complexity
We study here the computational time of the pre-ordered C-TMLE algorithms. The
computational time of each algorithm depends on the sample size n and number of
covariates p. First, we set n = 1,000 and varied p between 10 and 100 by steps of
10. Second, we varied n from 1,000 to 20,000 by steps of 1,000 and set p = 20.
For each (n, p) pair, the analysis was replicated ten times independently, and the
median computational time was reported. In every data set, all the random variables
are mutually independent. The results are shown in Figures 5a and 5b.
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Figure 5: Computational times of the C-TMLE algorithms with greedy search and
pre-ordering.

Figure 5a is in line with the theory: the computational time of the forward
stepwise C-TMLE is O(p2) whereas the computational times of the pre-ordered
C-TMLE algorithms are O(p). Note that the pre-ordered C-TMLEs are indeed
scalable. When n = 1,000 and p = 100, all the scalable C-TMLE algorithms ran in
less than 30 seconds.

Figure 5b reveals that the pre-ordered C-TMLE algorithms are much faster
in practice than the greedy C-TMLE algorithm, even if all computational times are
O(n) in that framework with fixed p.

C Real Data Analyses
This section presents the application of variants of the TMLE and C-TMLE al-
gorithms for the analysis of three real data sets. Our objectives are to showcase
their use and to illustrate the consistency of the results provided by the scalable
and greedy C-TMLE estimators. We thus do not implement the competing unad-
justed, G-computation/MLE, IPTW and A-IPTW estimators (see the beginning of
Section 6).

In Sections 6 and 7, we knew the true value of the ATE. This is not the case
here.
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C.1 Real data sets and estimating procedures

We compared the performance of variants of TMLE and C-TMLE algorithms across
three observational data sets. Here are brief descriptions, borrowed from Schneeweiss
et al. (2009), Ju et al. (2016).

NSAID Data Set. Refer to Section 7.1 for its description.

Novel Oral Anticoagulant (NOAC) Data Set. The NOAC data were collected
between October, 2009 and December, 2012 by United Healthcare. The data set
tracked a cohort of new users of oral anticoagulants for use in a study of the
comparative safety and effectiveness of these agents. The exposure is either “war-
farin” or “dabigatran”. The binary outcome indicates whether or not a patient had
a stroke during the 180 days after initiation of an anticoagulant.
The data set includes n = 18,447 observations, p = 60 baseline covariates and
C = 23,531 unique claim codes. The claim codes are manually clustered in four
categories: inpatient diagnoses, outpatient diagnoses, inpatient procedures and
outpatient procedures.

Vytorin Data Set. The Vytorin data included all United Healthcare patients who
initiated either treatment between January 1, 2003 and December 31, 2012, with
age over 65 on day of entry into cohort. The data set tracked a cohort of new users
of Vytorin and high-intensity statin therapies. The exposure is either “Vytorin” or
“high-intensity statin”. The outcomes indicates whether or not any of the events
“myocardial infarction”, “stroke” and “death” occurred.
The data set includes n = 148,327 observations, p = 67 baseline covariates and
C = 15,010 unique claim codes. The claim codes are manually clustered in
five categories: ambulatory diagnoses, ambulatory procedures, hospital diagnoses,
hospital procedures, and prescription drugs.

Each data set is given by {(Wi,Ai,Yi) : 1≤ i≤ n} where {Wi : 1≤ i≤ n} is
the by product of the hdPS method of Section 7.2 with J = 100 and K = 200 and
{(Ai,Yi) : 1≤ i≤ n} is the original collection of paired exposures and outcomes.

The estimations of the conditional expectation Q̄0 and of the PS g0 were car-
ried out based on logistic regression models. Both models used either the baseline
covariates only or the baseline covariates and the additional hdPS covariates.

To save computational time, the C-TMLE algorithms relied on the same
early stopping rule described in Section 7.3. The scalable SL-C-TMLE library
included the two scalable pre-ordered C-TMLE algorithms and excluded the greedy
C-TMLE algorithm.
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C.2 Results on the NSAID data set

Figure 6 shows the point estimates and 95% CIs yielded by the different TMLE and
C-TMLE estimators built from the NSAID data set.
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Figure 6: Point estimates and 95% CIs yielded by the different TMLE and C-TMLE
estimators built on the NSAID data set.

The various C-TMLE estimators exhibit similar results, with slightly larger
point estimates and narrower CIs compared to the TMLE estimators. All the CIs
contain zero.

C.3 Results on the NOAC Data Set

Figure 7 shows the point estimates and 95% CIs yielded by the different TMLE and
C-TMLE estimators built on the NOAC data set.

We observe more variability in the results than in those presented in Ap-
pendix C.2.

The various TMLE and C-TMLEs exhibit similar results, with a non-significant
shift to the right for the latter. All the CIs contain zero.

C.4 Results on the Vytorin Data Set

Figure 8 shows the point estimates and 95% CIs yielded by the different TMLE and
C-TMLEs built on the Vytorin data set.

http://biostats.bepress.com/ucbbiostat/paper352



●

●

●

●

●

●

●

●

●

●

greedy C−TMLE

greedy C−TMLE hdPS

logRank C−TMLE

logRank C−TMLE hdPS

partRank C−TMLE

partRank C−TMLE hdPS

SL−CTMLE

SL−CTMLE hdPS

TMLE

TMLE hdPS

−0.02 0.00 0.02

value

E
st

im
at

or

Figure 7: Point estimates and 95% CIs yielded by the different TMLE and C-
TMLEs built on the NOAC data set.
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Figure 8: Point estimates and 95% CIs yielded by the different TMLE and C-
TMLEs built on the Vytorin data set.

Hosted by The Berkeley Electronic Press



The various TMLE and C-TMLEs exhibit similar results, with a non-significant
shift to the right for the latter. All the CIs contain zero.
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