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Performance-constrained Binary Classification
Using Ensemble Learning: an Application to

Cost-efficient Targeted PrEP Strategies

Wenjing Zheng, Laura Balzer, Maya L. Petersen, and Mark J. van der Laan

Abstract

Binary classifications problems are ubiquitous in health and social science ap-
plications. In many cases, one wishes to balance two conflicting criteria for an
optimal binary classifier. For instance, in resource-limited settings, an HIV pre-
vention program based on offering Pre-Exposure Prophylaxis (PrEP) to select
high-risk individuals must balance the sensitivity of the binary classifier in de-
tecting future seroconverters (and hence offering them PrEP regimens) with the
total number of PrEP regimens that is financially and logistically feasible for the
program to deliver. In this article, we consider a general class of performance-
constrained binary classification problems wherein the objective function and the
constraint are both monotonic with respect to a threshold function. These include
the minimization of the Rate of Positive Predictions subject to a lower bound on
the sensitivity, and vice versa, and the Neyman-Pearson paradigm, which mini-
mizes the type II error subject to an upper bound on the type I error. We propose
an ensemble approach to these binary classification problems based on the Super
Learner algorithm, characterized by weights combining the constituent risk pre-
diction algorithms and a discriminating risk threshold for classification that aim to
minimize the given constrained optimality criterion. We then illustrate the appli-
cation of the proposed classifier to develop an individual PrEP targeting strategy in
a resource-limited setting, with the goal of minimizing the number of PrEP offer-
ings while achieving a minimum required sensitivity. This proof of concept data
analysis uses baseline data from the ongoing Sustainable East Africa Research in
Community Health study.



1 Introduction
Binary classifications problems often arise in health and social science applications,
wherein individuals classified into the ‘positive’ class are to receive an intervention
of interest, which caries with it an associated resource cost. Therefore, it is often de-
sirable, especially in resource-limited settings, to strike a balance between capacity
constraints and the sensitivity of the classification algorithm. For example, consider a
targeted HIV prevention strategy which prescribes a Pre-Exposure Prophylaxis (PrEP)
regimen to individuals with substantial risk of infection. Delivery of PrEP requires a
meaningful resource expenditure per individual treated, including ongoing medication
and monitoring costs [1]. WHO Guidelines advocate targeting PrEP to subpopula-
tions known to be at high risk for HIV infection [2]. However, within a generalized
epidemic, the optimal demographic subgroups to target may not be self-evident, and
simply offering PrEP to known high-risk subgroups, such as young women, or mobile
populations, may be inefficient. In other words, a strategy that targets PrEP based on a
more sophisticated use of individual characteristics may be able to reduce the resource
spending per new HIV infection prevented. A natural question, therefore, is ‘how can
individual characteristics be used to offer targeted PrEP in order to prevent as many
new HIV infections as possible, given some fixed constraint on the total number of
PrEP regimens offered?’. This questions translates into a binary classification prob-
lem that aims to maximize sensitivity, subject to a constraint on the Rate of Positive
Predictions (RPP). Alternatively, one might ask ‘how should PrEP be targeted at the
individual-level in order to minimize the number of individuals offered Pr-EP while
preventing a desired percentage of new infections?’ This question translates into a bi-
nary classification problem that minimizes the RPP, subject to a sensitivity constraint.

The two problems we considered above are ubiquitous in devising cost-efficient
intervention or prevention strategies. In fact, in many real-world applications, one of-
ten wishes to balance two conflicting criteria for an optimal binary classifier, and/or the
cost of misclassification is higher in one class than the other. To this end, we propose in
this article a general group of Super Learner-based binary classifiers that aim to satisfy
a wide class of performance-constrained optimality criteria. Super Learner [3] is an
ensemble learning method in which a user-supplied library of algorithms are combined
through a convex weighted combination, with the optimal weights selected to minimize
a cross-validated empirical risk specified by the user. It can accommodate large classes
of user-specified loss functions; standard implementations include the squared error
loss and the log-likelihood loss. Theoretical results [4, 5, 6] exist to guarantee that the
ensemble algorithm improves upon any of its constituent algorithms asymptotically.
We first consider the binary classification problem of minimizing the Rate of Positive
Predictions, subject to achieving a minimum sensitivity requirement. The proposed
Super Learner-based binary classifier is characterized by weights combining the con-
stituent risk prediction algorithms and a discriminating risk threshold for classification
that together aim to minimize a sensitivity-constrained RPP. Next, we describe how
the proposed method can be adapted to the converse problem of maximizing a RPP-
constrained sensitivity. We then further extend the proposed Super Learner to a larger
group of performance-constrained binary classification problems where the objective
function and the constraint function are monotonic in the same direction with respect
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to the threshold function. This type of classification problem includes the well-known
Neyman-Pearson paradigm [7] which minimizes the type II error subject to an upper
bound on the type I error.

As an illustration of the proposed methods, we develop and evaluate a hypotheti-
cal HIV prevention strategy that uses a Super Learner-based binary classifier to offer
PrEP to selected individuals, with the goal of minimizing the number of PrEP offerings
while achieving a minimum target sensitivity. We use baseline data from the Sustain-
able East Africa Research in Community Health (SEARCH, NCT01864603) study to
illustrate the development and evaluation of this targeted PrEP algorithm, and compare
its projected performance to standard subgroup-based PrEP strategies. In this example,
classifiers are trained to predict baseline (prevalent) HIV status using individual-level
demographics and other risk factor variables collected at baseline. (In real-world de-
velopment of such a targeted PrEP algorithm, one would instead train the classifier to
predict HIV seroconversions among baseline HIV uninfected individuals. However, as
these seroconversions are interim primary outcomes of the ongoing SEARCH study,
they will not be used in this example). We also employ in this example a second-level
cross-validation evaluation scheme to assess and compare the performance (in terms of
sensitivity and capacity savings) of different classifiers. This scheme seeks to mimic,
to the extent possible, an intervention in which the classifier is trained on a random
subsample of the population and applied to the remaining individuals. In this sense, we
believe it to be a more pragmatic approach to evaluating the performance of a classifier
developed with this objective than the standard area under the ROC curve [8].

1.1 Literature overview
A general solution to binary classification with performance constraints has been pro-
posed by [9] within the context of statistical hypothesis testing, and encompasses the
problems considered in the current paper. While the solutions developed by [9] have
omnipotent applicability, their implementations are, to the best of our understanding,
with respect to specific classification or prediction algorithms, and therefore may not
be immediately translatable to ensemble learning, which allows one to combine several
algorithms, and may have a higher technical barrier for implementation.

Of the class of performance-constrained binary classification problems considered
in this article, the Neyman-Pearson paradigm is perhaps the most common one. The
theoretical properties of single classifiers that solve the corresponding constrained op-
timization problem with biased versions of the empirical False Negative Rate and em-
pirical False Positive Rate were studied in [10] and [11]. Theoretical properties of an
ensemble classifier based on convex-weighted majority vote of the constituent classi-
fiers, with weights solving the corresponding convex optimization problem, were stud-
ied in [12]. In the current paper, we show that the performance-constrained problems
considered, including the Neyman-Pearson paradigm, can be recast as optimization of
the objective function evaluated at an appropriate threshold, and therefore applicable
beyond problems with convex objective and performance functions. We also approach
the ensemble differently, by employing cross-validated versions of the objective func-
tions and performance constraints to reduce overfitting, and by developing both a risk
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predictor and a discriminating threshold to obtain a final classifier, instead of combin-
ing base classifiers.

In a similar application setting, the use of individualized rules to offer selective
HIV viral load testing to detect treatment failure in resource-limited settings had been
proposed in [13] and [14], among others. In [13], one models the distribution of
the risk score (based on a user-supplied scoring scheme) through a nonparametric or
semi-parametric approach, and seeks a tripartite rule that minimizes a user-specified
weighted combination of False Negative Rate and False Positive Rate, subject to a
RPP constraint. In this sense, this program aims to satisfy a different goal than the
RPP-constrained sensitivity or the Neyman-Pearson paradigm. While this constrained
optimality criterion does not fall into the class we study here, it is an optimization ob-
jective that is universal in many applications. The synergy between this work and the
current paper would be a promising direction of research.

[14] proposed a Super Learner-based binary classifier to identify patients for se-
lective viral load testing based on routinely collected data. This classifier first obtains
risk prediction using the standard Super Learner (with weights optimized for the log-
likelihood loss). A second-level cross-validation scheme is used to evaluate the per-
formance of classifiers (our proposed evaluation scheme models after this one). The
general performance of a classifier is summarized using the cross-validated area under
the ROC curve across a range of discriminating thresholds. For a given lower bound
on sensitivity, the cross-validated ideal RPP of a classifier is obtained by first comput-
ing on each validation set the RPP under the largest threshold for which the sensitivity
criterion is satisfied, and then averaging this ideal RPP across the validation sets. This
is the ‘ideal’ RPP in that it uses the threshold one would have chosen if given the
data-generating distribution of the evaluation data, not a threshold estimated from the
learning data. The methods proposed in the current paper build upon and extend those
in [14] in that the Super Learner weights are now optimized for the target constrained
classification criterion, construction of the discriminating threshold is built into the
classifier development, and the evaluation scheme assesses the empirical RPP under
the risk predictor–threshold duo.

1.2 Organization
This article is organized as follows. In section 2.1 we formulate the binary classifi-
cation problem of minimizing RPP subject to a sensitivity constraint. In section 2.2
we propose a cross-validated objective function and the implementation of a Super
Learner-based classifier which aims to optimize this objective function. In sections 3.1
and 3.2, we describe how the proposed formulation can be extended to the converse
problem of maximizing sensitivity subject to a RPP constraint, and to a general class
of binary classification problem with monotonic objective function and performance
constraints. The corresponding Super Learner classifier is described in section 3.3.
In section 4, we illustrate the development and evaluation of a targeted PrEP strategy
based on the Super Learner classifier proposed in section 2. We conclude the article
with a summary.
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2 Sensitivity-constrained minimization of the rate of pos-
itive predictions

2.1 Problem formulation
Consider the observed data structure O = (Y,W )∼ P0, with Y ∈ {0,1} a binary class of
interest and W a set of covariates. For an estimator ψ : W → [0,1] of EP0(Y |W ), and
a threshold c, the pair (ψ,c) defines a binary classification algorithm on W , wherein
ψ(W )≥ c is classified to the class Y = 1. Our goal is to learn a classification procedure
that achieves a sensitivity of at least s0, for some user-specified s0 ∈ (0,1), with a
minimal Rate of Positive Predictions.

The sensitivity of (ψ,c) under a data-generating distribution P is given by

s(P;ψ,c)≡ P(ψ(W )≥ c | Y = 1) . (1)

Note that s(P;ψ,c) is one minus the conditional cumulative distribution of ψ(W ) given
Y = 1, and thus is monotonically non-increasing in c. In particular, for every ψ , we
can define a unique sensitivity threshold for ψ under P as:

c(P;ψ)≡ max{c : s(P;ψ,c)≥ s0}. (2)

In other words, c(P,ψ) is the largest threshold for ψ under distribution P at which the
sensitivity is at least s0.

Consider an objective function for ψ , denoted r(P;ψ,c), that is monotonically non-
increasing in c. In this section, we take r to be the Rate of Positive Predictions:

r(P;ψ,c)≡ P(ψ(W )≥ c).

For a fixed data-generating P0, our goal is a binary classification algorithm (ψ,c)
that satisfies the sensitivity-constrained minimization

minψ,cr(P0;ψ,c) such that s(P0;ψ,c)≥ s0. (3)

Using the sensitivity threshold defined in (2), we can define a sensitivity-constrained
objective function as

r(P0;ψ)≡ r(P0;ψ,c(P0,ψ)). (4)

In words, this is the RPP of a classification procedure that combines the prediction
function ψ with its sensitivity threshold under P0. Our optimal binary classifier is thus
given by (ψ0,c(P0,ψ0)), where

ψ0 ≡ argmin
ψ

r (P0;ψ) . (5)

It is easy to see that the constrained minimization problem in (3) can be solved
by (ψ0,c(P0,ψ0)). Indeed, firstly, we know that (ψ0,c(P0,ψ0)) satisfies the sensitiv-
ity constraint of (3). Secondly, suppose (ψ ′,c′) also satisfies the sensitivity constraint.
Since for fixed P0 and ψ , s is a non-increasing function in c, the definition of c(P0,ψ

′)
given in (2) implies that c(P0,ψ

′) ≥ c′. Since r is non-increasing in c, this inequality
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implies that r(P0;ψ ′,c′)≥ r(P0;ψ ′,c(P0,ψ
′))≡ r(P0;ψ ′). By definition of ψ0 as a so-

lution of (5), we know that r(P0;ψ ′)≥ r(P0;ψ0). Therefore r(P0;ψ ′,c′)≥ r(P0;ψ ′)≥
r(P0;ψ0)≡ r(P0;ψ0,c(P0,ψ0)). In other words, (ψ0,c(P0,ψ0)) achieves the minimum
of r(P;ψ,c) under the constraint.

Consequently, we can solve the constrained minimization problem in (3) by min-
imizing the sensitivity-constrained objective function in (5). The latter problem seeks
an estimator ψ of EP0(Y |W ) such that at its sensitivity threshold, this estimator mini-
mizes the objective function, compared to other estimators at their respective sensitivity
thresholds. The formulation in (5) is more amenable to application under the existing
Super Learner framework, and to asymptotic studies of a cross-validated sensitivity-
constrained risk. We will devote our attention to estimating this optimal classifier
(ψ0,c(P0,ψ0)).

2.2 Super Learner classifier to minimize the sensitivity-constrained
RPP

In this section, we consider a Super Learner-based classifier that estimates the un-
known optimal classifier defined in (5). Let M denote the set of all distributions for
O, including the true unknown P0, and W denote the outcome space of W . An es-
timating procedure Ψ : M → W [0,1] inputs a distribution P and outputs an estimator
Ψ(P) ≡ ψ : W → [0,1] of EP0(Y |W ). If one assumes a parametric model M , then
classical Maximum Likelihood Estimation (MLE) methods can be used to estimate ψ0.
However, in most applications, it is often difficult to specify precisely how a large ar-
ray of risk factors interact to produce the outcome of interest. Therefore, we use a
nonparametric model for M . In this case, an ensemble learning method such as Super
Learner would allow one to invoke a wide array of estimators, both parametric and
nonparametric, in estimating ψ0.

For a measurable function f (O) of the data, and a distribution P, we will use the
notation P f ≡ EP( f (O)).

2.2.1 Cross-validated sensitivity-constrained RPP

We described an objective function (4) for our classification problem, and appointed
its minimizer to be our unknown optimal binary classifier. Therefore, estimating this
objective function is central to our tasks of assessing the performance of candidate
algorithms and selecting the optimal among them. To provide protection against over-
fitting, we will accomplish these tasks using cross-validation.

Consider a split of a sample of n independent and identically distributed (i.i.d.)
copies of O into a validation set and a training set. This can be represented by a random
vector B ∈ {v, t}n, indicating whether each of the n observations is in the validation set
(v) or the training set (t). We use Pn to denote the empirical distribution of the n
i.i.d. observations, Pv

n,B the empirical distribution of the validation set, and Pt
n,B the

empirical distribution of the training set. Note that in our notation for B, we suppressed
the fact that B depends on n. The particular choice of cross-validation procedure is
characterized by the distribution for B. For instance, in an M-fold cross-validation, the
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distribution would place weight 1/M to each of the M vectors corresponding to each
of the M folds.

We define the empirical cross-validated sensitivity-constrained RPP of Ψ as

rn(Pn,Ψ)≡ EB r
(
Pv

n,B;Ψ(Pt
n,B)
)
. (6)

In words, for a sample spilt B, we obtain the risk r
(

Pv
n,B;Ψ(Pt

n,B)
)

as follows:

1. Fit Ψ on the training set Pt
n,B to obtain an estimator ψn,B ≡Ψ(Pt

n,B) : W → [0,1].

2. Obtain the sensitivity threshold cn,B ≡ c(Pv
n,B,ψn,B) of this estimator under the

empirical distribution of the validation set. That is, we apply ψn,B to obtain
predictions for the validation set observations, and find the largest threshold c for
which Pv

n,BI (ψn,B(W )≥ c,Y = 1)
/

Pv
n,BI(Y = 1)≥ s0. This can be implemented

using the quantile function on the observations in the validation set with Y = 1.

3. The risk r
(

Pv
n,B;Ψ(Pt

n,B)
)

is given by the RPP Pv
n,BI (ψn,B(W )≥ cn,B), i.e. the

proportion of the observations in the validation set whose risk prediction under
ψn,B surpasses the corresponding threshold cn,B.

Note that this empirical cross-validated sensitivity-constrained RPP in (6) is an
estimator for the oracle cross-validated sensitivity-constrained RPP

r0(Pn,Ψ)≡ EB r
(
P0;Ψ(Pt

n,B)
)
. (7)

In words, if we knew P0, we would fit Ψ on the training set to obtain the predictor ψn,B,
and then determine the sensitivity-constrained threshold and corresponding RPP for
this predictor ψn,B under the true P0. This is the true conditional sensitivity-constrained
RPP of the procedure Ψ, conditional on being fitted on the training sets under the
specified cross-validation procedure on a sample of size n.

2.2.2 Super Learner

Now we are ready to present a Super Learner for this binary classification problem.
Suppose we have J constituent procedures Ψ1, . . . ,ΨJ , of E0(Y |W ). A constituent
procedure may be a pre-specified parametric regression model, as well as machine
learning approaches such as neural networks and random forests. It can also be aug-
mented with a screening algorithm (e.g. only using variables that pass a correlation
criterion).

For α in the (J−1)-simplex ∆J , we define

Ψα(P)≡
J

∑
j=1

α
j
Ψ

j(P).

Each Ψα is thus a prediction algorithm that takes J independent variables, which are
the predicted values from the J constituent algorithms, and combines them through
the linear combination given by α . The goal is to find the optimal weight α , and a
corresponding threshold c, for the classification problem under consideration.

6
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To apply the framework from the previous section, we can consider a representation
∆J

n of ∆J by partition into K(n) many grids with size converging to 0 (e.g. size 1/nq for
q > 0). As discussed in [3], minimization over ∆J

n vs ∆J would produce asymptotically
equivalent procedures.

Consider an M-fold sample split, with Pv
n,m and Pt

n,m denoting the m-th empirical
distributions of the validation and training sets, respectively. Super Learner is a gen-
eralized stacking learning method that can accommodate a wide range of optimality
criteria. Standard implementations [15] produce predictor Ψαn , where αn minimizes
1
M ∑

M
m=1 Pv

n,mL
(
Ψα(Pt

n,m)
)
(O), with L

(
Ψα(Pt

n,m)
)
(O) being the minus log-likelihood

loss
−
{

Y logΨα(Pt
n,m)(A,W )+(1−Y ) log

(
1−Ψα(Pt

n,m)(A,W )
)}

,

or the squared-error loss
(
Y −Ψα(Pt

n,m)(A,W )
)2. A Super Learner that maximizes the

area under the ROC curve is presented in [16].
The proposed Super Learner predictor, which optimizes the constrained criterion

in (3), is given by Ψαn , where αn minimizes the empirical cross-validated risk function
in (6):

αn ≡ arg min
α∈∆J

n

rn(Pn,Ψα) = arg min
α∈∆J

n

1
M

M

∑
m=1

r

(
Pv

n,m;∑
j

α
j
Ψ

j(Pt
n,m)

)
(8)

In words, we implement the function rn(Pn,Ψα) of α as follows: 1) at m-th fold, fit each
Ψ j on the training set to produce the combined predictor Ψα(Pt

n,m) ≡ ∑ j α jΨ j(Pt
n,m);

2) use the validation set to obtain the sensitivity threshold and the corresponding RPP
P
(
Ψα(Pt

n,m)≥ c(Pv
n,m,Ψα(Pt

n,m)
)
; 3) the desired rn(Pn,Ψα) is given by the average of

such fold-specified sensitivity constrained RPPs across the M folds.
To complete the classifier, we now require a threshold. The predictor Ψαn is one

that has minimal (cross-validated) RPP at its sensitivity threshold. Therefore, we now
focus our efforts on estimating its sensitivity threshold. Following analogous proce-
dure, consider the empirical cross-validated sensitivity of a classification procedure
based on predictor Ψ and threshold c:

sn(Pn;Ψ,c) =
1
M

M

∑
m=1

s
(
Pv

n,m;Ψ(Pt
n,m),c

)
=

1
M

M

∑
m=1

Pv
n,m
(
Ψ(Pt

n,m)(W )≥ c | Y = 1
)
.

(9)
This is an estimator of the oracle cross-validated sensitivity

s0(Pn;Ψ,c) =
1
M

M

∑
m=1

s
(
P0;Ψ(Pt

n,m),c
)
.

This is the true conditional sensitivity of Ψ under threshold c, conditional on the train-
ing sets used to fit the risk prediction procedures. The sensitivity threshold for our
predictor Ψαn can then be estimated by finding a threshold that satisfies the constraint
on the empirical cross-validated sensitivity:

cn ≡max{c ∈ (0,1) : sn(Pn;Ψαn ,c)≥ s0} . (10)
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The final classifier is given by the pair (Ψαn(Pn),cn), where the predictor Ψαn(Pn)=

∑ j α
j

nΨ j(Pn) is obtained by combining the constituent predictors fitted on the full
dataset. It classifies a given W as I (Ψαn(Pn)(W )≥ cn).

2.2.3 On applications with rare outcomes

In the HIV example considered in this paper, as well as in other applications where
performance-constrained classification is needed, the outcomes of interest may be rare.
In such cases and irrespective of the objective function considered, instead of using the
full sample, the Super Learner can use a case-control subsample [17, 18] that consists
of all the H cases in the full sample plus a random sample of (C−1)×H controls. Each
observation in the subsample will be weighted by the inverse of its probability of being
sampled from the learning data: cases will have weights 1, controls will have weights
given by the number of controls in the full data divided by the number of controls
in the subsample. Subsequently, the algorithm’s fit on the training set, as well as the
fold-specific evaluation of the constraint and objective functions, will use weighted
observations. Moreover, we can implement the Super Learner using a M-fold sample
split that is stratified by outcome case, and thus ensuring that the validation sets have
similar number of cases.

3 More general performance-constrained binary clas-
sification problems

In section 2 we considered a Super Learner-based binary classifier that minimizes the
RPP subject to achieving a minimum sensitivity. In this section, we first consider the
converse to this problem: maximizing the sensitivity subject to an upper bound on the
RPP. We then unify these two under a larger class of performance-constrained binary
classification problems.

3.1 RPP-constrained maximization of sensitivity
Suppose our goal now is to learn a classification procedure that can achieve maximal
sensitivity subject to an upper bound s0 on the RPP, for some user-specified s0 ∈ (0,1).
To keep the language parallel, we will formulate this problem in terms of minimizing
the False Negative Rate (FNR), subject to a minimum Rate of Negative Predictions
(RNP).

The RNP of a classifier (ψ,c) under a data-generating distribution P is given by

s(P;ψ,c)≡ P(ψ(W )< c) . (11)

This is the cumulative distribution of ψ(W ), and hence is monotonically non-decreasing
in c. In particular, for every ψ , we can define a unique RNP threshold for ψ under P
as:

c(P;ψ)≡ min{c : s(P;ψ,c)≥ s0}. (12)

8
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In other words, c(P,ψ) is the smallest threshold for ψ under distribution P at which the
RNP is at least s0.

Consider the objective function for ψ , denoted r(P;ψ,c), to be the False Negative
Rate:

r(P;ψ,c)≡ P(ψ(W )< c | Y = 1).

Like s(P;ψ,c), r(P;ψ,c) is also non-decreasing in c.
For a fixed data-generating P0, our goal is a binary classification algorithm (ψ,c)

that satisfies the RNP-constrained minimization

minψ,cr(P0;ψ,c) such that s(P0;ψ,c)≥ s0. (13)

Using the RNP threshold defined in (12), we can define a RNP-constrained objective
function as

r(P0;ψ)≡ r(P0;ψ,c(P0,ψ)). (14)

In words, this is the FNR of a classification procedure that combines the prediction
function ψ with its RNP threshold under P0. Our optimal binary classifier is thus given
by (ψ0,c(P0,ψ0)), where

ψ0 ≡ argmin
ψ

r (P0;ψ) . (15)

It is easy to see that the constrained minimization problem in (13) can be solved
by (ψ0,c(P0,ψ0)). Indeed, firstly, we know that (ψ0,c(P0,ψ0)) satisfies the RNP con-
straint of (15). Secondly, suppose (ψ ′,c′) also satisfies the RNP constraint. Since for
fixed P0 and ψ , s is a non-decreasing function in c, the definition of c(P0,ψ

′) given
in (12) implies that c(P0,ψ

′) ≤ c′. Since r is non-decreasing in c, this inequality im-
plies that r(P0;ψ ′,c′) ≥ r(P0;ψ ′,c(P0,ψ

′)) ≡ r(P0;ψ ′). By definition of ψ0 as a solu-
tion of (15), we know that r(P0;ψ ′) ≥ r(P0;ψ0). Therefore r(P0;ψ ′,c′) ≥ r(P0;ψ ′) ≥
r(P0;ψ0)≡ r(P0;ψ0,c(P0,ψ0)). In other words, (ψ0,c(P0,ψ0)) achieves the minimum
of r(P;ψ,c) under the constraint.

3.2 A general class of performance-constrained binary classifica-
tion problems

The two constrained binary classification problems we considered in section 2 and 3.1
can be generalized to a larger class of performance-constrained binary classification
problems where the objective function and the constraint are monotonic with respect
to the threshold.

Specifically, for a binary classifier characterized by a risk predictor ψ and a thresh-
old c, we wish to minimize an objective function r(P0;ψ,c) that is monotonic in c,
subject to a constraint s̃(P0;ψ,c) ≥ 0, where the constraint function s̃(P0;ψ,c) is also
monotonic in c. Suppose the constraint function s̃ is monotonic in c in the same direc-
tion of the objective function r — that is, either both are non-decreasing in c or both
are non-increasing in c. Then, we can define c(P0,ψ) ≡ max{c : s̃(P0;ψ,c) ≥ 0}, in
the non-increasing case, and c(P0;ψ)≡min{c : s̃(P0;ψ,c)≥ 0}, in the non-decreasing
case. In the two problems we considered previously, the RPP and the minimal sensi-
tivity requirement correspond to non-increasing objective function and constraint, and
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the FNR and the minimal RNP requirement corresponds to a non-decreasing objective
function and constraint.

The constrained binary classification problem of

min
ψ,c

r(P0;ψ,c) such that s̃(P0;ψ,c)≥ 0

can thus be solved by (ψ0,c(P0,ψ0)) where

ψ0 ≡ argmin
ψ

r(P0;ψ,c(P0,ψ)).

Indeed, if a pair (ψ ′,c′) satisfies the constraint, then either c′≤ c(P0,ψ
′) and r(P0;ψ ′,c′)≥

r (P0;ψ ′,c(P0,ψ
′)) in the non-increasing case, or c′ ≥ c(P0,ψ

′) and r(P0;ψ ′,c′) ≥
r (P0;ψ ′,c(P0,ψ

′)) in the non-decreasing case. Hence, in both cases, r(P0;ψ ′,c′) ≥
r (P0;ψ ′,c(P0,ψ

′))≥ r (P0;ψ0,c(P0,ψ0)), by definition of ψ0.
This group of classification problems includes most constraints and objective func-

tions that are the traditional performance metrics, and addresses many applications
where one must balance conflicting performance criteria. In particular, it includes the
commonly known Neyman-Pearson criterion, which aims to minimize type II error (i.e.
minimize False Negative Rate) with an upper bound on type I error (i.e. lower bound
on True Negative Rate).

3.3 Super Learner
Once the parallel formulation to the problem considered in section 2 is established, the
corresponding Super Learner-based classifier can be obtained in a similar manner. We
will not repeat the entire description here, but only highlight the relevant modifications.

The cross-validated risk rn(Pn,Ψα) of each potential weight α is obtained as fol-
lows. At fold m, fit each constituent algorithm Ψ j on the training set to produce the
combined predictor Ψα(Pt

n,m)≡∑ j α jΨ j(Pt
n,m). To compute the threshold c

(
Pv

n,m,Ψα(Pt
n,m)
)

of this estimator under the empirical distribution of the validation set, we apply Ψα(Pt
n,m)

to obtain predictions for the validation set observations, and either find the largest
threshold c, in the case of non-increasing objective and constraint, or find the small-
est threshold c, in the case of non-decreasing objective and constraint, among those
satisfying the constraint, i.e. among the set

{
c : s̃

(
Pv

n,m;Ψα(Pt
n,m),c

)
≥ 0
}

. The corre-
sponding risk of Ψα on this fold is thus r

(
Pv

n,m;Ψα(Pt
n,m),c

(
Pv

n,m,Ψα(Pt
n,m)
))

, i.e. the
objective function evaluated at the predictor Ψα(Pt

n,m) and its corresponding constraint
threshold c

(
Pv

n,m,Ψα(Pt
n,m)
)
. The desired cross-validated risk of Ψα is thus given by

the average of such fold-specific risks:

rn(Pn,Ψα)≡
1
M ∑

m
r
(
Pv

n,m;Ψα(Pt
n,m),c

(
Pv

n,m,Ψα(Pt
n,m)
))

.

The Super Learner weights αn is the weight vector that minimizes rn(Pn,Ψα). In the
RNP-constrained minimization of FNR considered in section 3.1, the threshold for the
fold m would be the smallest c such that Pv

n,mI
(
Ψα(Pt

n,m)(W )< c
)
− s0 ≥ 0, and the

corresponding risk on this fold is the FNR

Pv
n,mI

(
Ψα(Pt

n,m)(W )< c,Y = 1)
/

Pv
n,mI(Y = 1).
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Correspondingly, the empirical cross-validated constraint function s̃ of a classifi-
cation procedure based on predictor Ψ and threshold c is

s̃n(Pn;Ψ,c) =
1
M

M

∑
m=1

s̃
(
Pv

n,m;Ψ(Pt
n,m),c

)
.

Consequently, the threshold for our predictor Ψαn can be estimated by finding a thresh-
old that satisfies the empirical cross-validated constraint:

cn ≡max{c : s̃n(Pn;Ψαn ,c)≥ 0} and cn ≡min{c : s̃n(Pn;Ψαn ,c)≥ 0} ,

in the non-increasing and the non-decreasing cases, respectively.
The final classifier is given by the pair (Ψαn(Pn),cn), where the predictor Ψαn(Pn)=

∑ j α
j

nΨ j(Pn) is obtained combining the constituent predictors fitted on the full dataset.
It classifies a given W as I (Ψαn(Pn)(W )≥ cn).

The comments in section 2.2.3 on case control sampling in applications with rare
outcomes naturally apply here.

4 Application to an individualized targeted PrEP strat-
egy

4.1 Background
We now consider an example from HIV prevention. Pre-exposure prophylaxis (PrEP)
is an HIV prevention method in which uninfected individuals follow a regimen of an-
tiretroviral medication to reduce their risk of infection. As of September 2015, the
World Health Organization recommends that individuals with high risk of HIV infec-
tion be offered PrEP as part of a comprehensive prevention strategy [2]. The success
of this prevention tool relies on consistent use of the medication and regular monitor-
ing, leading to considerable resource expenditure associated with each PrEP regimen.
Therefore, for long-term sustainability, prevention programs need strategies for iden-
tifying high risk individuals for PrEP eligibility that optimize population level impact
within resource constraints. In regions with generalized epidemics, offering PrEP to
known demographic risk groups may be neither optimally effective nor optimally effi-
cient. The highest risk subgroups, such as individuals in a serodiscordant relationship,
may represent only a minority of total new infections in the general population, while
broader demographic groups, such as young women, that include a larger proportion of
new infections may have too low an incidence to form the basis of a cost-efficient tar-
geting strategy. Flexible machine learning methods for building individual risk scores
that appropriately tradeoff sensitivity and constrained roll out therefore have the poten-
tial to improve the impact of PrEP as an HIV prevention tool.

In this example, we consider a hypothetical PrEP-based prevention program in
Eastern Uganda. The goal of this program is to offer PrEP to select HIV uninfected
individuals in the target population in order to prevent 80% of new infections, while
keeping the number of such offerings to a minimum. To this end, we would like an
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algorithm that uses individual-level data to identify prospective seroconverters with
a sensitivity of at least 80% while minimizing the number of positive predictions. To
further illustrate strategy development, we consider an implementation scenario where,
while the algorithm training has at its disposal a large array of variables, at the program
rollout only a limited number of variables can be collected at real-time on the prospec-
tive individuals. Consequently, the constrained optimality criterion will also be used to
select a small subset of the variables to be used in the implemented algorithm. We will
compare the performance of the targeted Super Learner-based strategy to a conven-
tional subgroup-based strategy wherein one offers PrEP to everyone in a pre-specified
subgroup defined by strata of demographic factors. In this example, we could also
use a standard implementation of the Super Learner with a minus log-likelihood loss
function, as carried out in [14] for predicting viral load failure among HIV patients on
treatment (more detail in section 1.1). This standard implementation is not designed to
optimize the constrained criterion under consideration, but it is still of interest for our
application. It will be included in our example for comparison.

4.2 Methods
4.2.1 Data, target population and outcome of interest

In this example, we will use baseline data from the SEARCH study to illustrate the
development and demonstrate applicability of such an targeted PrEP algorithm. The
SEARCH study is a cluster-randomized trial that includes 32 communities of roughly
10,000 persons each, in Uganda and Kenya. The first phase of this study tests a
community-level intervention that consists of annual community-based HIV and multi-
disease testing, with immediate linkage to care, antiretroviral therapy (ART) eligibility
for all HIV-infected individuals, and streamlined ART delivery using a patient-centered
model. At baseline, the population of each community was enumerated through a
door-to-door household census, and basic demographics (age, sex, marital status and
occupation) were collected on all household members. Then, baseline HIV testing and
other baseline data collection were performed during a community health campaign
and subsequent home-based tracking for those that did not attend the campaign. We
refer to [19, 20] for a detailed exposition on the census and the community-based HIV
and multi-disease testing campaign. In this example, we use baseline data from 10
communities in Eastern Uganda.

Our target population is adult community residents (≥ 15 years of age) with a con-
clusive baseline HIV test result from these 10 communities. Our classifier will be
trained to predict the baseline prevalent HIV status with the goal of achieving at least
80% sensitivity while minimizing the number of positive predictions. Importantly,
this baseline data analysis is intended solely as a proof of concept; in designing a
classifier for use in the actual targeted PrEP strategy deployed in the second phase of
the SEARCH study, we instead train the classifier to predict seroconversion outcomes
among baseline HIV uninfected individuals in a target population that includes all re-
gions in the study. However, as these seroconversions are interim primary outcomes
of the ongoing SEARCH study, this seroconversion analysis is not described here. We
chose Eastern Uganda as an illustration of the method because it has the lowest base-
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line HIV prevalence, and is thus more comparable to a seroconversion outcome which
is expected to be rare.

4.2.2 Candidate predictors and models

In this example, we consider an implementation scenario where only a limited number
of predictor variables can be collected on the prospective individuals during the rollout
of the program. Therefore, as part of the algorithm development the investigator must
decide which subsets of the predictor variables should be used. Suppose also that
variables within the same domain can often be found in the same data source. Therefore
to minimize the number of data sources needed at the program rollout, one would group
the predictor variables by domain:

• Demographics: age, gender, occupation, marital status, polygamy, educational
attainment, and circumcision (for males).

• Mobility: whether (and for how many months) a stable resident, whether had
lived outside the parish in the past year, number of nights spent in your own
residence in the past months.

• Reproductive Health: pregnancy in the past 12 months (females), whether you
or your partner currently using contraception.

• Drinking: whether drink alcohol, how often binge drink (6 or more drinks at
once), many days in a months drink alcohol, how many drinks in a typical day.

• Depression: Patient Health Questionnaire-2 score [21], Generalized Anxiety-2
score [22].

• Work Productivity: days worked in the past month, hours worked in a normal
day in the past week.

From here onward, by a ‘Model’ we mean a combination of predictor variables
from these domains. For instance the model Demographics.Mobility would use the
variables under the domains Demographics and Mobility. We will be considering mod-
els that combine Demographics with each one of the other domains. These make up a
total of 6 models under consideration.

4.2.3 Building the Super Learner-based classification algorithm.

For each of the models considered, we apply the Super Learner classifier described
in section 2 to classify the baseline HIV status, with the goal of minimizing the Rate
of Positive Predictions while achieving a sensitivity of at least 80%. The constituent
algorithms consist of screening-prediction pairs. The risk prediction algorithms in-
clude Lasso regression [23], main term logistic regression, generalized additive model
[24, 25], random forest [26], Bayes logistic regression [27], and recursive partition-
ing regression [28]. Each of these candidate prediction algorithms is augmented with
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screening algorithms that either use a) all the variables, b) only the top 10% most cor-
related variables, or c) only variables with a T-test p-value of less than 0.1. We imple-
ment a Super Learner-based classifier that constructs a risk predictor through a linear
combination of the constituent algorithms, with weights minimizing the sensitivity-
constrained RPP, and uses as its threshold the cross-validated sensitivity threshold in
(10). Besides the proposed Super Learner, we can also use a standard implementa-
tion of the Super Learner risk predictor (with weights minimizing the risk associated
with minus log-likelihood loss), coupled with the cross-validated sensitivity threshold
in (10). We will call the former the constrained RPP Super Learner, and the latter the
log-likelihood Super Learner. We will apply both Super Learner-based classifiers in
this example for comparison.

To mitigate the rare outcome, the Super Learner uses a case-control subsample from
the learning data that consists of all the H baseline HIV positive cases and a random
sample of (C− 1)×H controls. We implement the Super Learner using a 10-fold
sample split that is stratified by outcome case.

4.2.4 Performance assessment

We assess the performance of each classifier in terms of empirical sensitivity, as mea-
sured by the true positive rate, and the number needed to treat (NNT), as measured by
the total number of positive predictions divided by the total number of cases identified.
If a case consisted of a seroconversion (rather than, as here, a prevalent HIV case), this
latter measure conveys the number of individuals offered PrEP per infection potentially
prevented (actual infections prevented would of course also depend on uptake and ad-
herence to PrEP among those individuals to whom it was offered). NNT allows for
capacity-spendings comparison across individual and subgroup based strategies. The
empirical sensitivity and NNT are assessed through the average of 10 repetitions of a
10-fold split of the baseline target population into a learning dataset and an evaluation
dataset. Specifically, we split the sample into 10 folds; on each fold, we use the learning
dataset to fit the Super Learner classifier (characterized by weights αn and threshold cn,
with ’full data’ Pn being the learning dataset), and then apply it to classify the individ-
uals in the evaluation set and obtain the fold-specific sensitivity and NNT measures of
the classifier. We then average each performance measure across the 10 folds to obtain
the cross-validated sensitivity and the cross-validated NNT of this classifier under the
10-fold split. Lastly, we repeat this 10-fold splitting and cross-validation evaluation
scheme 10 times, and then average the resulting cross-validated sensitivity and cross-
validated NNT. This would assess the average sensitivity and NNT of a strategy where
we use a random subset of individuals in the population to train the classifier and apply
the learned strategy to an independent sample from the same population.

These average cross-validated sensitivity and NNT measures can also be applied to
evaluate the performance of subgroup-based strategies, wherein one only recommends
PrEP to individuals in a pre-defined subgroup prescribed by baseline variable strata. In
these cases, as there is no algorithm fitting in the learning set, the fold-specific sensi-
tivity is the number of cases in the stratum in the validation set divided by the number
of cases in the validation set, and the fold-specific NNT is the size of the stratum in
the validation set divided by the number of cases in the stratum in the validation set.
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We believe the average cross-validated measures are more realistic assessments com-
pared to the absolute sensitivity and NNT based on entire population stratum, since
they mimic a real-world implementation where one learns, from a random sample,
strata with highest risk of infection, and then subsequently offer PrEP to others in the
population within those strata.

4.3 Results
The dataset consists of 44762 adult (age 15 or older) residents from the 10 Eastern
Ugandan communities enumerated in the SEARCH baseline survey, with conclusive
baseline HIV test results. Of these, 1493 had a positive baseline HIV test (3.3% preva-
lence). In Table 1, we describe the baseline HIV status per stratum of key baseline
variables. We reiterate here that since only baseline data is used in this example for il-
lustration and proof of concept for the proposed classifier, the reader must not interpret
the subject matter-specific results in this analysis as directly translatable to risk fac-
tors in seroconversion, nor the performance assessments as indicative of actual results
expected from such a targeted PrEP strategy.

4.3.1 Subgroup-based strategies

In the Table 1, we also assess the average cross-validated sensitivity and NNT of
subgroup-based strategies that would roll out PrEP to all individuals in a stratum. A
strategy to roll out PrEP to everyone in the population would have a sensitivity of
100%, at the cost of 30 individuals offered PrEP per infection potentially prevented;
this should serve as a benchmark for the upper-bound cost of a PrEP prevention pro-
gram. By way of comparison, if we were to offer PrEP to all those employed in the
farming sector, we would achieve a sensitivity of 74% at the cost of 25.33 NNT. In
general, a subgroup-based strategy using any one stratum in this table would have a
cost of 30 NNT or greater in order to achieve a sensitivity of at least 80%. For an NNT
less than 30, the highest sensitivity achieved is less than 75%.

Based on the above observation, an ad-hoc data-adaptive approach to building a
targeted PrEP strategy might simply combine the most promising pre-specified sub-
groups; for example those with a sensitivity above 60% and an NNT less than 30. In
our example, such an approach would offer PrEP to all women as well as men that
are married and/or employed in farming. This subgroup has a total of 38,321 indi-
viduals (85% of the total population), with 1,457 positives. This strategy would have
an average cross-validated performance of 98% sensitivity with a cost of 26.86 NNT.
This ad-hoc strategy illustrates that the more variables we combine, the greater gain in
capacity savings (less NNT for a given sensitivity level).

4.3.2 Super Learner-based strategies

Now, we turn to the performance of the proposed Super Learner-based PrEP strategy,
calibrated to achieve at least 80% sensitivity while minimizing the rate of positive pre-
diction. We implemented the Super Learner algorithms with a case-control sampling
ratio of C = 10.
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The empirical performance of the constrained RPP Super Learner using each of the
models considered in section 4.2.2, as assessed by the average cross-validated sensitiv-
ity and NNT, is depicted in Figure 1. The empirical sensitivities were about 80-81%,
above the nominal 80% and thus satisfying the required constraint, with a cost of only
17-18 NNT. In other words, the proposed constrained RPP Super Learner-based strate-
gies are less costly than the subgroup-based strategies in Table 1 that could yield over
70% sensitivity, and are more sensitive to subgroup-based strategies of similar cost.

We further contrast the performance of the constrained RPP Super Learner pro-
posed in this paper with the standard log-likelihood Super Learner. The performance
of the log-likelihood Super Learner-based classifier is depicted in Figure 2. The cross-
validated sensitivity threshold again ensured that the sensitivity constraint is achieved
in a new dataset. However, as this Super Learner predictor was optimized for the log-
likelihood loss, not the RPP, the resulting classifier tends to overshoot the required
sensitivity level, resulting in a higher NNT than that achieved by the constrained RPP
Super Leaner.

We have seen in section 4.3.1 that a composite subgroup strategy (all women as
well as men who are married and/or employed in farming) could yield a classifier
that achieves 98% sensitivity with about 27 NNT. We also saw in Figure 2 that an
individual strategy using a log-likelihood Super Learner classifier could achieve a 98%
sensitivity with about 29 NNT. Let us now consider the proposed constrained RPP
Super Learner classifier calibrated to achieve at least 98% sensitivity. Its performance
is depicted in Figure 3. To achieve 98% empirical sensitivity, such strategy would use
about 25 NNT. To translate these performance metrics into implementation logistics, in
a population with about 1500 cases, a strategy with 98% sensitivity at 25 NNT would
result in 1500× .98×25 = 36,750 individuals offered PrEP in the population, and one
at 27 NNT would result in about 39,690 individuals offered PrEP. In this case, an NNT
difference of merely 2 points results in 3,000 more individuals offered PrEP.

4.3.3 Interpretation

From this data analysis, we saw that, at least for rare outcome applications, principled
individual-based strategies were generally more sensitive and less costly (for a given
sensitivity level) than strategies based on pre-specified demographic subgroups. Com-
posite subgroup-based strategies that uses several predictor strata yielded large gains in
sensitivity and capacity savings. However, such approaches remained more costly (i.e.
required higher NNT for a given sensitivity) than an approach that used the proposed
constrained RPP Super Learner to build a flexible individual based targeting strategy.
In short, in this application at least, the use of a state-of the art machine learning ap-
proach (Super Learner) that employs an optimality criteria specifically aligned with
the implementation objective of optimizing efficient and effective roll outs, can result
in substantial performance improvements.
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5 Summary
In this article, we proposed a general group of Super Learner-based binary classifiers
that optimizes performance-constrained criteria. As an illustration, we developed and
evaluated a hypothetical HIV prevention strategy that uses a Super Learner-based bi-
nary classifier to offer PrEP at an individual basis, with the goal of minimizing the
number of PrEP offerings while achieving the minimum required sensitivity.

Super Learner is an ensemble machine learning algorithm that combines its con-
stituent algorithms linearly using weights that minimize a cross-validated user-supplied
objective function. We considered as specific implementations a classifier that mini-
mizes the rate of positive predictions subject to a lower bound requirement on the
sensitivity, and a classifier that maximizes the sensitivity subject to an upper bound
requirement on the rate of positive predictions. To construct the proposed classifiers,
we first expressed the constrained optimization problem as the minimization of a con-
strained objective function. Then, we obtained a Super Learner-based risk predictor
with weights minimizing the cross-validated version of said function; the risk thresh-
old of the corresponding binary classifier is one that satisfies the cross-validated version
of the constraint.

In our targeted PrEP example, we used baseline data from the SEARCH study
and trained the classifiers to predict baseline (prevalence) HIV status using individual-
level demographics and other risk factor variables collected at baseline. The perfor-
mance of this and other standard subgroup-based classifiers were assessed in terms
of sensitivity and NNT. These measures were obtained under a 10-fold sample-split
evaluation scheme, wherein the classifiers were trained in the learning set, and their
sensitivity and NNT were evaluated based on their performance in classifying the eval-
uation set. Averaging these performance measures across the 10 folds, we obtained a
cross-validated sensitivity and NNT of each strategy. We conducted 10 repetitions of
such 10-fold sample split evaluation to obtain as our final performance assessment an
average cross-validated sensitivity and NNT for each classifier. For this application,
we believe this empirical performance assessment to be a more pragmatic evaluation
scheme than the standard area under the ROC curve, as deriving an appropriate thresh-
old is part of the classifier development. In the results of this data analysis, we saw
that Super Learner-based classifiers are generally more sensitive and less costly than
subgroup-based strategies. But a Super Learner-based classifier that targets the desired
constrained RPP may outperform (in terms of the desired capacity savings optimiza-
tion), or at least perform as well as, a Super Learner-based classifier that targets the
log-likelihood loss. In summary, such individualized classifiers targeting the desired
optimality criterion offer great promise to applications with rare outcome within a het-
erogeneous population in which the desired strategy must balance complex logistics
and scientific needs that may not be fully captured by standard loss functions.

In addition to using the empirical objective and constraint metrics described here
as an evaluation scheme, we could also adopt an inferential approach, in which the
oracle cross-validated sensitivity-constrained RPP (7) of a risk predictor algorithm Ψ

is considered a (data-adaptive) target parameter of interest (see [29] on data-adaptive
target parameters). One can use a non-parametric MLE estimator (6) for this target
parameter, and use bootstrap to obtain a confidence interval. However, bootstrap pro-
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cedures may be prohibitively time-consuming when using machine learning algorithms
on large datasets. Alternatively, we note that conditional on a trained predictor, this tar-
get parameter is path-wise differentiable and thus its efficient influence curve can be
derived, providing basis for influence curve-based confidence intervals. This approach
has been proposed in [30] with the area under the ROC as performance metric and
target parameter. Besides the nonparametric MLE estimator, for finite sample gain,
we can also use Targeted Maximum Likelihood Estimator [31] or its cross-validated
version [32] to estimate this target parameter. The latter may help reduce second order
terms in the linear expansion as the target parameter is not linear in P0. This research
topic is currently under development and will be presented in a separate work.
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Table 1: Baseline HIV status by baseline variables. For a subgroup-based strat-
egy defined by a stratum, we assess a) the average cross-validated true positive
rate (aCV-sensitivity), and b) the average cross-validated number needed to treat
(aCV-NNT)

negative positive total aCV-sensitivity aCV-NNT

Pop’n total 43,269 1,493 44,762 1 30

Gender
male 19,646 527 20,173 0.350 39.19
female 23,623 966 24,589 0.650 26.07
Age group
15-19 10,154 57 10,211 0.040 209.55
20-29 12,066 280 12,346 0.190 45.91
30-39 7,485 452 7,937 0.300 18,30
40-49 5,453 415 5,868 0.280 14.86
50-59 3,592 199 3,791 0.130 20.43
60 or older 4,519 90 4,609 0.060 59.63
Marital Status
no answer 183 6 189 0.00 NA
single 12,694 117 12,811 0.080 117.81
married 25,763 958 26,721 0.640 28.44
widowed 2,582 219 2,801 0.150 13.77
divorced 380 44 424 0.030 12.38
separated 1,667 149 1,816 0.100 13.67
Polygamy
no answer 17510 536 18,046 0.360 34.65
no 19,468 647 20,115 0.430 31.89
yes 6,291 310 6,601 0.210 22.35
Occupation
No answer 188 6 194 0 NA
farm 26,290 1,107 27,397 0.740 25.33
fish 87 10 97 0.010 5.79
food/tourism 295 41 336 0.030 10.13
household worker 1,355 46 1,401 0.030 38.58
industrial 577 22 599 0.02 27.87
market/shopkeeper 1,132 55 1,187 0.040 26.36
no job/other 2,124 78 2,202 0.050 33.15
public sector 520 35 555 0.020 18.87
student 9,503 29 9,532 0.020 427.67
teacher/clerk 794 38 832 0.030 25.87
transport 404 26 430 0.020 20.98
Education
No School 6,562 276 6,838 0.180 25.80
Primary 25,730 885 26,615 0.590 30.69
Secondary 10,977 332 11,309 0.220 35.38
Stable Resident
not stable 1,660 39 1,699 0.030 54.16
stable 41,609 1,454 43,063 0.970 30.13
Contraception Use
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no answer 8,638 143 8,781 0.100 67
no 27,113 914 28,027 0.610 31.28
yes 7,518 436 7,954 0.290 19
Drink Alcohol
no answer 52 0 52 0 NA
no 36,064 1,116 37,180 0.750 33.84
yes 7,153 377 7,530 0.250 20.83
Binge drink
no answer 36,116 1,116 37,232 0.750 33.88
never 4,717 263 4,980 0.180 19.95
less than monthly 800 41 841 0.030 26.56
monthly 632 27 659 0.020 27.34
weekly 586 23 609 0.020 27.85
daily 418 23 441 0.020 21.52
Days in a month
drinking
no answer 36,116 1,116 37,232 0.750 33.88
0-3 1,906 83 1,989 0.060 28.14
4-7 1,200 55 1,255 0.040 30.22
8-11 669 45 714 0.030 20.13
12-15 629 45 674 0.030 19.05
16-19 202 7 209 0.010 9.40
20-23 513 26 539 0.020 24.19
24 or more 2,034 116 2,150 0.080 21.25
Number of drinks
in a day
no answer 36,116 1,116 37,232 0.750 33.88
1 2,789 158 2,947 0.110 20.25
2 2,365 115 2,480 0.080 23.95
3 1,114 66 1,180 0.040 22.22
4 442 15 457 0.010 23.53
5 or more 443 23 466 0.020 22.77
Days worked in
past month
no answer 71 1 72 0 NA
0-12 6,873 163 7,036 0.110 45.90
13-19 3,055 95 3,150 0.060 36.67
20-23 8,049 246 8,295 0.160 35.45
24-27 17,316 645 17,961 0.430 28.56
28 or more 7,905 343 8,248 0.230 25.08
Hours/Day worked
in past week
no answer 73 1 74 0 NA
0-4 15,440 493 15,933 0.330 33.15
5-7 12,774 460 13,234 0.310 29.53
8-10 8,788 297 9,085 0.200 31.98
11 or more 6,194 242 6,436 0.160 27.88
PHQ-2 score
no answer 6,523 30 6,553 0.020 260.64
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0 13,289 422 13,711 0.280 33.39
1 6,681 280 6,961 0.190 25.95
2 11,582 510 12,092 0.340 24.46
3 2,082 102 2,184 0.070 24.55
4 1,962 85 2,047 0.060 27.85
5 274 13 287 0.010 15.30
6 876 51 927 0.030 23.86
GAD-2 score
no answer 6,525 30 6,555 0.020 260.76
0 14,727 478 15,205 0.320 32.65
1 5,792 245 6,037 0.160 25.95
2 10,788 487 11,275 0.330 23.86
3 1,870 85 1,955 0.060 26.12
4 2,269 98 2,367 0.070 27.38
5 411 18 429 0.010 23.52
6 887 52 939 0.030 21.52

Composite group
woman or married
or farming

36864 1457 38321 0.976 26.86
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Figure 1: Empirical performance of a Super Learner classifier that minimizes RPP under the
nominal constraint of achieiving at least 80% sensitivity. Performance measures are given by
average cross-validated sensitivity, and average cross-validated number needed to treat (NNT).
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Figure 2: Empirical performance of a Super Learner predictor that minimizes the minus log-
likelihood, coupled with a cross-validated 80% sensitivity threshold. Performance measures are
given by average cross-validated sensitivity, and average cross-validated number needed to treat
(NNT).
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Figure 3: Empirical performance of a Super Learner classifier that minimizes RPP under the
nominal constraint of achieiving at least 98% sensitivity. Performance measures are given by
average cross-validated sensitivity, and average cross-validated number needed to treat (NNT).
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