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Doubly-robust Nonparametric Inference on the
Average Treatment Effect

David Benkeser, Marco Carone, Mark J. van der Laan, and Peter Gilbert

Abstract

Doubly-robust estimators are widely used to draw inference about the average
effect of a treatment. Such estimators are consistent for the effect of interest
if either one of two nuisance parameters is consistently estimated. However, if
flexible, data-adaptive estimators of these nuisance parameters are used, double-
robustness does not readily extend to inference. We present a general theoretical
study of the behavior of doubly-robust estimators of an average treatment effect
when one of the nuisance parameters is inconsistently estimated. We contrast dif-
ferent approaches for constructing such estimators and investigate the extent to
which they may be modified to also allow doubly-robust inference. We find that
while targeted maximum likelihood estimation can be used to solve this prob-
lem very naturally, common alternative frameworks appear to be inappropriate
for this purpose. We provide a theoretical study and a numerical evaluation of
the alternatives considered. Our simulations highlight the need and usefulness of
these approaches in practice, while our theoretical developments have broad im-
plications for the construction of estimators that permit doubly-robust inference
in other problems.



1 Introduction

In recent years, doubly-robust estimators have gained immense popularity in many
fields, including causal inference. An estimator is said to be doubly-robust if it is
consistent for the target parameter of interest if any of two nuisance parameters is
consistently estimated. This property gives doubly-robust estimators a natural ap-
peal: any possible inconsistency in the estimation of one nuisance parameter may be
mitigated by the consistent estimation of the other. In many problems, doubly-robust
estimators arise spontaneously in pursuit of asymptotic efficiency in that locally effi-
cient estimators often also exhibit double-robustness properties. The form of the effi-
cient influence function of the parameter of interest in the statistical model considered
generally determines whether or not this is the case. This turns out to be the case
for many problems arising in causal inference, which may explain why doubly-robust
estimators arise so frequently in that area. For example, under common causal iden-
tification assumptions, the statistical parameter identifying the mean counterfactual
response under a point treatment yields a doubly-robust efficient influence function
in a nonparametric model (Robins et al., 1994). Thus, locally efficient estimators of
this statistical target parameter are naturally doubly-robust.

While the conceptual appeal of doubly-robust estimators is rather clear, questions
remain about how these estimators should be constructed in practice. In the liter-
ature, it has been long noted that the use of finite-dimensional models is generally
overly restrictive to permit consistent estimation of the involved nuisance parame-
ters (Bang and Robins, 2005). Nevertheless, much of the current work on doubly-
robust estimation involves parametric working models and estimation via maximum
likelihood. Kang and Schafer (2007) showed that doubly-robust estimators can be
arbitrarily poorly behaved if both nuisance parameters are inconsistently estimated,
leading to recent proposals for estimators that minimize the first-order bias resulting
from misspecification (Vermeulen and Vansteelandt, 2014, 2016). While providing a
significant improvement over conventional techniques, these estimators nevertheless
rely upon at least one nuisance parameter being consistently estimated using a para-
metric model. An alternative approach argues for aggressively employing flexible,
data-adaptive estimation techniques for both nuisance parameters to reduce as much
as possible the risk of inconsistency (van der Laan and Rose, 2011).

A general study of the behavior of doubly-robust estimators under inconsistent
estimation of a nuisance parameter is needed in order to understand how robust sta-
tistical inference can be performed. Surprisingly, this topic has not received very
much attention. This could in part be due to the fact that when parametric mod-
els are used, the problems arising from model misspecification are well-understood.
For example, if nuisance parameters are estimated using maximum likelihood, the
resulting estimator of the parameter of interest is asymptotically linear even if one
of the nuisance parameter models has been misspecified. Though in this scenario
the asymptotic variance of this estimator may not be so easy to calculate explic-
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itly, resampling techniques such as the nonparametric bootstrap may be employed
to construct confidence intervals and perform statistical hypothesis tests. When the
estimator is the solution of an estimating equation, robust sandwich-type variance es-
timators may also be available. In contrast, when nuisance parameters are estimated
using data-adaptive approaches, including nonparametric smoothing techniques and
flexible semiparametric procedures, the complications of inconsistently estimating one
nuisance parameter are much more serious. Generally, the resulting estimator is ir-
regular, exhibits large bias and has a convergence rate slower than root-n. As we
illustrate in this article, the implications for performing inference are dire: regardless
of nominal level, the coverage of näıvely constructed two-sided confidence intervals
tends to zero and the type I error rate of two-sided hypothesis tests tends to one as
sample size increases. This phenomenon cannot simply be avoided by better variance
estimators, and in fact occurs even when the true variance of the estimator is exactly
known. Furthermore, the nonparametric bootstrap is no longer a saving grace. Due
to the use of data-adaptive procedures and the irregularity of the resulting estimator,
this technique is not in general valid for constructing confidence intervals and tests.

In view of these challenges, investigators may believe it simpler to restrict their
attention to parametric models. However, this is not an appealing solution since under
such a strategy both nuisance parameters, and therefore also the parameter of interest,
are likely to be inconsistently estimated. The use of flexible, data-adaptive techniques,
such as the Super Learner (van der Laan and Polley, 2007), appears necessary to
have any reasonable expectation of consistency for any of the nuisance parameter
estimators. The Super Learner is an ensemble learning approach for automatically
combining estimators within a library of candidate estimators, possibly including
nonparametric, semiparametric or parametric procedures, based on cross-validated
risk estimates. Asymptotically, it is guaranteed to perform as well as the best possible
such combination (van der Laan and Dudoit, 2003; van der Laan et al., 2006; van der
Vaart et al., 2006). As such, in practice, it is a practical and principled way of
hedging bets in constructing estimators. However, because it is highly adaptive,
research is needed for developing appropriate methods for doubly-robust inference
that use flexible estimation tools.

A first theoretical study of the problem of doubly-robust nonparametric inference
is reported in van der Laan (2014), which focuses on the counterfactual mean under
a single time-point intervention and is based on targeted minimum loss-based esti-
mation. Of course, because the average treatment effect is the difference between
two counterfactual means under different treatments, it too is directly addressed in
this work. The estimators proposed therein were shown to be doubly-robust not only
with respect to consistency but also with respect to asymptotic linearity. Further-
more, under general regularity conditions, the analytic form of their influence function
is known, which paves the way for the construction of doubly-robust confidence in-
tervals and p-values. The proposed procedure is quite complex, notably involving an
iterative procedure and estimation of additional nuisance parameters. Furthermore,
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it has never been implemented before. We are thus motivated to study theoretically
and numerically the following three questions as pertains to the problem of doubly-
robust nonparametric inference on an average treatment effect, or equivalently, on a
counterfactual mean:

i) How severe are the effects of inconsistent nuisance parameter estimation on in-
ference using data-adaptive estimators, and how do estimators allowing doubly-
robust inference perform?

ii) Can targeted minimum loss-based estimators allowing doubly-robust inference
be improved through dimension reduction?

iii) Can simpler alternatives to targeted minimum loss-based estimation be used
to construct estimators that are doubly-robust for inference and also easier to
implement in practice?

As we shall illustrate via a simulation study, the answer to question i) is that näıvely
constructed confidence intervals can have very poor coverage, whereas intervals con-
structed based on appropriate correction procedures have coverage near their nominal
level. This suggests that the methods discussed in this paper are truly needed and
that they may indeed be quite useful. For question ii), we demonstrate that it is
possible to reduce the dimension of the nuisance parameters introduced in the quest
for doubly-robust inference. At the very least, this provides theoretical benefits over
the proposal of van der Laan (2014). More importantly, this methodological advance
is likely to be critical to any extension of the methods discussed here to the setting of
treatments defined by multiple-timepoint interventions. Finally, for question iii), we
show that the most popular alternative framework to targeted minimum loss-based
estimation, the so-called one-step approach, may not be used to theoretically guar-
antee doubly-robust inference, though it may still yield an estimator with reasonable
performance in practice.

This paper is organized as follows. In Section 2, we review strategies for doubly-
robust estimation of a counterfactual mean in a nonparametric model. This sets
the stage for the study of doubly-robust inference. In Section 3, we discuss correc-
tion procedures using targeted minimum loss-based estimation to recover asymptotic
linearity of the parameter estimator under inconsistent estimation of one nuisance
parameter. In Section 4, we investigate whether the simpler one-step estimation
framework may be used as an alternative to targeted minimum loss-based estimation
to perform doubly-robust inference. In Section 5, we provide concluding remarks.
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2 Doubly-robust estimation

2.1 Notation and background

Suppose the observed data unit is O := (W,A, Y ) ∼ P0, where W is a vector of
baseline covariates, A ∈ {0, 1} a binary treatment, and Y an outcome, and P0 is the
true data-generating distribution, known only to lie in some model M. We take M
to be a nonparametric model, although arbitrary restrictions on the distribution of
A given W are allowed without any impact on the developments herein. We focus on
the statistical parameter Ψ : M → R defined as

Ψ(P ) :=

∫
Q̄(w)dQW (w)

for each P ∈ M, where Q̄(w) = Q̄P (w) := EP (Y | A = 1,W = w) is the so-called
outcome regression and QW (w) = QW,P (w) := P (W ≤ w) is the distribution func-
tion of the covariate vector. The parameter value Ψ(P ) represents the treatment-
specific, covariate-adjusted mean outcome implied by P ∈ M. Under additional
causal assumptions, it can be interpreted as the mean counterfactual outcome under
the treatment corresponding to A = 1 (Rubin, 1974). Because all developments below
immediately apply to the case A = 0, and therefore to the average treatment effect,
without loss of generality, we explicitly examine only the case A = 1.

As the parameter of interest only depends on P through Q = Q(P ) := (Q̄, QW ),
we will at times write Ψ(Q) to denote Ψ(P ). We will denote Q(P0) in shorthand
as Q0 := (Q̄0, QW,0), where Q̄0 is the true outcome regression and QW,0 the true
distribution of W . The propensity score, defined as g(w) := P (A = 1 | W = w),
plays an important role and throughout, the true propensity score g0 is assumed to
satisfy g0(w) > δ for some δ > 0 and all w in the support of QW,0. Below, we make use
of empirical process notation, writing Pf to denote

∫
f(o)dP (o) for each P ∈ M and

P -integrable function f . We also denote by Pn the empirical distribution function
based on O1, O2, . . . , On, and thus, Pnf is the empirical average n−1

∑n
i=1 f(Oi).

We recall that a regular estimator ψn of ψ0 := Ψ(Q0) is asymptotically linear if and
only if it can be written as ψn = ψ0 + PnD(P0) + oP (n

−1/2), where D(P0) ∈ L0
2(P0)

is a gradient of Ψ at P0 relative to model M. Here, for each P ∈ M, we denote
by L0

2(P ) the Hilbert space of mean zero finite variance functions endowed with the
covariance inner product. The function D(P ) ∈ L0

2(P ) is said to be a gradient of Ψ
at P relative to M if

d

dϵ
Ψ(Pϵ)

∣∣∣∣
ϵ=0

=

∫
D(P )(o)s(o)dP (o)

for any regular one-dimensional parametric submodel {Pϵ} ⊆ M with score s for ϵ
at ϵ = 0 and such that Pϵ=0 = P . Furthermore, such estimators are efficient if and
only if their influence function is given by the efficient influence function D∗(P0).
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The efficient influence function is the unique gradient that lies in the tangent space
TM(P0) ⊆ L0

2(P0) of M at P0, and it is a critical ingredient in the construction
of asymptotically efficient estimators. For an overview of efficiency theory we refer
readers to Bickel et al. (1997).

The efficient influence function of Ψ at P relative to M is

D∗(P )(o) = D∗(Q, g)(o) =
a

g(w)

{
y − Q̄(w)

}
+ Q̄(w)−Ψ(Q)

with o := (w, a, y) denoting a realized value of O (van der Laan and Robins, 2003).

2.2 Doubly-robust consistency

Suppose that Q̄n and gn are estimators of Q̄0 and g0, respectively, and denote by Q̄ and
g their respective in-probability limits. We will write Qn := (Q̄n, QW,n), where QW,n

is the empirical distribution based on observations W1,W2, . . . ,Wn. A linearization
of the parameter and simple algebraic manipulations allow us to write

Ψ(Qn)−Ψ(Q0) = −P0D
∗(Qn, gn) +R(Qn, Q0, gn, g0)

= (Pn − P0)D
∗(Qn, gn)− PnD

∗(Qn, gn) +R(Qn, Q0, gn, g0)

= (Pn − P0)D
∗(Q, g)− PnD

∗(Qn, gn) +R(Qn, Q0, gn, g0)

+ (Pn − P0) {D∗(Qn, gn)−D∗(Q, g)} ,

where R(Q1, Q2, g1, g2) := P0{(g1 − g2)(Q̄1 − Q̄2)/g1} is the remainder term from
the linearization of Ψ using the canonical gradient. As shorthand, we will write
Bn(Qn, gn) := PnD

∗(Qn, gn) andMn(Qn, Q, gn, g) :=
(
Pn−P0

){
D∗(Qn, gn)−D∗(Q, g)

}
.

Using this notation, we can write the estimation error Ψ(Qn)−Ψ(Q0) as

(Pn − P0)D
∗(Q, g)−Bn(Qn, gn) +Mn(Qn, Q, gn, g) +R(Qn, Q0, gn, g0) . (1)

This representation reduces the analysis of the plug-in estimator Ψ(Qn) to that of
four terms. The first term, (Pn − P0)D

∗(Q, g), is the empirical average of a random
variable, D∗(Q, g)(O), with mean zero if either Q = Q0 or g = g0. The latter
observation is a simple but fundamental fact underlying much of the doubly-robust
estimation literature. Since QW,n is known to converge to QW,0, we note that Q =
Q0 is equivalent to Q̄ = Q̄0. The second term, Bn(Qn, gn), is a first-order bias
term that must be accounted for to allow Ψ(Qn) to be asymptotically linear. The
third term is an empirical process term that is often asymptotically negligible, that
is, Mn := Mn(Qn, Q, gn, g) = oP (n

−1/2). This is true, for example, if D∗(Qn, gn)
falls in a P0-Donsker class with probability tending to one and P0{D∗(Qn, gn) −
D∗(Q, g)}2 converges to zero in probability. For a comprehensive reference on the
theory of empirical processes, we encourage readers to consult van der Vaart and
Wellner (1996). Finally, the fourth term, Rn := R(Qn, Q0, gn, g0), is the remainder
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from the linearization. By inspection, this term tends to zero at a rate determined
by how fast the nuisance functions Q̄0 and g0 are estimated.

To correct for the first-order bias term highlighted above, two general strategies
may be used: the one-step Newton-Raphson approach and targeted minimum loss-
based estimation. The one-step Newton-Raphson procedure, hereafter referred to as
the one-step approach, suggests performing an additive correction for the first-order
bias in the parameter space, leading to the estimator

ψ+
n := Ψ(Qn) +Bn(Qn, gn) .

This approach appeared early on in the works of Ibragimov et al. (1981) and Pfanzagl
(1982), and is the infinite-dimensional extension of the well-known one-step Newton-
Raphson technique for efficient estimation in parametric models. In the case consid-
ered in this paper, the efficient influence function of the parameter of interest is a
linear function of the parameter. As such, the one-step estimator agrees exactly with
the solution of the optimal estimating equation for this parameter and is thus equiv-
alent to the so-called augmented inverse probability of treatment estimator (Robins
et al., 1994; van der Laan and Robins, 2003). Owing to their simple construction,
one-step estimators are generally computationally convenient to implement. However,
this convenience comes at a cost. In practice, the one-step correction may produce
estimates outside of the parameter space, such as probability estimates either below 0
or above 1. Targeted minimum loss-based estimation, formally developed in van der
Laan and Rubin (2006) and comprehensively discussed in van der Laan and Rose
(2011), provides a recursive algorithm to convert Qn into a targeted estimator Q∗

n of
Q0 such that Bn(Q

∗
n, gn) = 0, which may then be used to define the targeted plug-in

estimator ψ∗
n := Ψ(Q∗

n). The first update of Qn in this recursive scheme consists of
the minimizer of an empirical risk over a least-favorable submodel through Qn. The
process is then repeated using this updated version of Qn instead of Qn itself. This
updating procedure is iterated until convergence to yield Q∗

n. In the problem consid-
ered here, convergence occurs in a single step. In contrast to the one-step approach,
targeted minimum-loss based estimation corresponds to performing bias correction in
the model space. By virtue of being a plug-in estimator, ψ∗

n may exhibit improved
finite-sample behavior relative to its one-step counterpart (Porter et al., 2011).

The large-sample properties of both ψ+
n and ψ∗

n can be studied through the rep-
resentation provided in (1). As discussed above, suppose that the empirical process
term Mn is asymptotically negligible. If both Q0 and g0 are estimated consistently,
so that Q = Q0 and g = g0, and if estimation of these nuisance functions is fast
enough to ensure that the remainder term Rn is asymptotically negligible, it follows
that ψ+

n is asymptotically linear with influence function equal to D∗(Q0, g0) and thus
asymptotically efficient. The same can be said about ψ∗

n if these same conditions hold
replacing Qn by Q∗

n in both the Mn and Rn terms. If only one of Q = Q0 or g = g0
holds, it is impossible to guarantee the asymptotic negligibility of the remainder term,
even when using correctly-specified parametric models. Nevertheless, under very mild

6

http://biostats.bepress.com/ucbbiostat/paper356



conditions, the remainder term Rn based on either of Qn and Q∗
n tends to zero in prob-

ability, and the empirical process term Mn remains asymptotically negligible. Since
D∗(Q, g)(O) has mean zero if either Q = Q0 or g = g0 and finite variance, the central
limit theorem implies that (Pn −P0)D

∗(Q, g) is OP (n
−1/2). It follows then that both

ψ+
n and ψ∗

n are consistent estimators of ψ0. This is what is generally referred to as
double robustness: consistent estimation of ψ0 if either at least one of the nuisance
functions Q0 or g0 is consistently estimated.

2.3 Doubly-robust asymptotic linearity

Doubly-robust asymptotic linearity is a more stringent requirement than doubly-
robust consistency. It is also arguably a more important property since without
it the construction of valid confidence intervals and tests may be very difficult, if
not impossible. A careful study of Rn is required to determine how double-robust
inference may be obtained.

When both the outcome regression and propensity score are consistently esti-
mated, Rn is a second-order term consisting of the product of two differences, both
tending to zero. Thus, provided Q̄0 and g0 are estimated sufficiently fast, it is the
case that Rn = oP (n

−1/2). This holds, for example, if both Q̄n − Q̄0 and gn − g0 are
oP (n

−1/4) with respect to the L2(P0) norm. If only one of the outcome regression or
propensity score is consistently estimated, one of the differences in Rn does not tend
to zero. Consequently, Rn is either of the same order or slower than (Pn−P0)D

∗(Q, g).
As such, it at least contributes to the first-order behavior of the estimator, if not de-
termines it entirely. In this case, if a correctly-specified parametric model is used to
estimate either Q̄0 or g0, the delta method generally implies that Rn is asymptotically
linear. Then, both ψ+

n and ψ∗
n are also asymptotically linear, though their influence

function consists of two summands, D∗(Q, g) and the influence function of Rn as an
estimator of zero. Correctly specifying a parametric model can seldom be done in
realistic settings, however. For this reason, it may be preferable to use flexible, data-
adaptive estimators of the nuisance functions to get as close as possible to their true
value. In this case, whenever one nuisance is inconsistently estimated, the remainder
term Rn tends to zero slowly and dominates the first-order behavior of the estimator
of ψ0. The latter then does not exhibit regular large-sample behavior. Therefore, in
this case, the one-step and targeted minimum loss-based estimator are doubly-robust
with respect to consistency but not with respect to asymptotic linearity.

To illustrate the deleterious effect of the remainder on inference in these situations,
suppose that we construct an asymptotic level 1− α two-sided Wald-type confidence
interval for ψ0 based on a consistent estimator ψn, say with true standard error sn.
Suppose further that |ψn − ψ0|/sn tends to +∞ in probability, which often occurs
when the bias of ψn tends to zero slower than its standard error. Denoting by zβ the
β quantile of the standard normal distribution, the coverage of the oracle Wald-type
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interval ψn ± z1−α/2sn is given by

P0

(
ψn − z1−α/2sn < ψ0 < ψn + z1−α/2sn

)
= P0

(∣∣∣∣ψn − ψ0

sn

∣∣∣∣ < z1−α/2

)
and thus tends to zero. This remains true if we replace sn by any random sequence
that converges to zero at the same rate or faster. Were asymptotic linearity preserved
under inconsistent estimation of one of the nuisance parameters, (ψn − ψ0)/sn would
instead tend to a standard normal variate. The oracle Wald-type intervals, and
in fact any Wald-type interval using a consistent standard error estimator, would
have correct asymptotic coverage. This argument therefore stresses the benefit of
constructing estimators that are doubly-robust with respect to asymptotic linearity
for the sake of obtaining confidence intervals and tests whose validity is doubly-robust.

3 Doubly-robust inference via targeted minimum

loss-based estimation

3.1 Existing construction

Recently, van der Laan (2014) proposed a targeted minimum loss-based estimator of
ψ0 that is not only locally efficient and doubly-robust for consistency but also doubly-
robust for asymptotic linearity. To do so, he showed that with some additional bias
correction Rn may be rendered asymptotically linear with a well-described influence
function. This requires approximating the first-order behavior of Rn using additional
nuisance parameters. These nuisance parameters consist of a bivariate and univariate
regression, defined respectively as

g0,r(Q̄, g)(w) := EP0

{
A | Q̄(W ) = Q̄(w), g(W ) = g(w)

}
,

Q̄0,r(Q̄, g)(w) := EP0

{
Y − Q̄(W ) | A = 1, g(W ) = g(w)

}
.

The first nuisance parameter above is the bivariate regression of the true propensity of
treatment on an outcome regression and a propensity score, whereas the second is the
univariate regression of the residual from an outcome regression on a propensity score
in the treated subgroup. The subscript r emphasizes that these nuisance parameters
are of reduced dimension relative to g0 and Q̄0. This dimension reduction is critical
since it essentially guarantees that consistent estimators of these parameters can be
constructed in practice. For example, we may be unable to consistently estimate g0,
which is a function of the entire vector of potential confounders; however, we can
guarantee consistent estimation of g0,r, which involves only a bivariate summary of
W .

Key to the study of how these additional nuisance parameters may be used to
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approximate the first-order behavior of the remainder term Rn are the functions

DA(Q̄0,r, g)(o) := −Q̄0,r(w)

g(w)
{a− g(w)} ,

DY (Q̄, g0,r)(o) := − a

g0,r(w)

{
g0,r(w)− g(w)

g(w)

}{
y − Q̄(w)

}
.

In Appendix A, we show that the remainder term R(Qn, Q, gn, g) can be represented
as

R∗
n + I(g = g0)

{
(Pn − P0)DA(Q̄0,r, g)−BA,n(Q̄n,r, gn) +Rg,n

}
+ I(Q̄ = Q̄0)

{
(Pn − P0)DY (Q̄, g0,r)−BY,n(Q̄n, gn,r) +RQ,n

}
,
(2)

where BA,n(Q̄n,r, gn) := PnDA(Q̄n,r, gn) and BY,n(Q̄n, gn,r) := PnDY (Q̄n, gn,r) are
first-order bias terms, and R∗

n, Rg,n and RQ,n are second-order terms. The specific
form of these terms is provided in Appendix A, where we also discuss sufficient con-
ditions for ensuring their asymptotic negligibility. Importantly, just as the bias term
in (1) had to be accounted for to achieve doubly-robust consistency, so too must the
bias terms in (2) in order to achieve doubly-robust asymptotic linearity.

An iterative targeted minimum loss-based estimation algorithm was proposed in
van der Laan (2014) to produce estimators Q̄∗

n, g
∗
n, Q̄

∗
n,r and g

∗
n,r from initial estimators

Qn and gn in such a manner as to ensure that

Bn(Q
∗
n, g

∗
n) = BA,n(Q̄

∗
n,r, g

∗
n) = BY,n(Q̄

∗
n, g

∗
n,r) = oP (n

−1/2) .

In view of (1) and (2), this implies that ψ∗
n := Ψ(Q∗

n) is asymptotically linear with
influence function

D∗,#(Q, g) := D∗(Q, g)− I(g = g0)DA(Q̄0,r, g)− I(Q̄ = Q̄0)DY (Q̄, g0,r)

provided either Q̄0 or g0 is estimated consistently. We note that if both Q̄0 and g0
are estimated consistently, both DA(Q̄

r
0, g) and DY (Q̄, g0,r) are identically zero since

then Q̄0,r = 0 and g0,r = g0. This establishes that asymptotic local efficiency is indeed
preserved. We refer readers to Theorem 3 of van der Laan (2014) for a presentation
of the corresponding algorithm.

3.2 Novel reduced-dimension construction

In this subsection, we show that it is possible to theoretically improve upon the
proposal of van der Laan (2014) through an alternative formulation of a targeted
minimum loss-based estimator. In particular, we derive an approximation of the re-
mainder that relies on alternate nuisance parameters of lower dimension than those
presented in the previous subsection. This not only renders the involved estima-
tion problem more feasible in practice but it may also pave the way to a tractable
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generalization of this work to settings wherein the treatment considered is defined
longitudinally.

In Appendix B, we argue that the remainder term in (2) can alternatively be
represented using Q̄0,r as previously defined and the additional nuisance parameters

g1,0,r(Q̄)(w) := E0

{
A | Q̄(W ) = Q̄(w)

}
,

g2,0,r(Q̄, g)(w) := E0

{
A− g(W )

g(W )

∣∣∣∣ Q̄(W ) = Q̄(w)

}
.

We note that g1,0,r and g2,0,r consist only of univariate regressions in contrast to
the bivariate regression g0,r(Q̄, g) described in the previous subsection and used in
van der Laan (2014). As such, nonparametric estimators of these univariate nuisance
parameters achieve better rates than those proposed in that work. Use of this al-
ternate representation results in estimators guaranteed to be asymptotically linear
under weaker conditions than previously required.

Here, we state the main result dictating the behavior of the novel estimator im-
plied by this parametrization of the remainder term, and we discuss an iterative
implementation of this estimator. Redefining

DY (Q̄, g1,0,r, g2,0,r)(o) :=
a

g1,0,r(w)
g2,0,r(w)

{
y − Q̄(w)

}
,

we have the following result.

Theorem 1 Suppose that either Q̄ = Q̄0 or g = g0. Provided the nuisance estimators
(Q̄∗

n, Q̄
∗
n,r, g

∗
n, g

∗
1,n,r, g

∗
2,n,r) satisfy the equations

Bn(Q
∗
n, g

∗
n) = BA,n(Q̄

∗
n,r, g

∗
n) = BY,n(Q̄

∗
n, g

∗
1,n,r, g

∗
2,n,r) = oP (n

−1/2)

and the second-order terms RQ,n and Rg,n described in Appendix B are oP (n
−1/2),

the plug-in estimator ψ∗,c
n := Ψ(Q∗

n) is asymptotically linear with influence function
D∗,#(Q, g). Furthermore, n1/2(ψ∗,c

n − ψ0) converges in law to a zero-mean normal
random variable with variance estimated consistently by

σ2
n := Pn

{
D∗(Q∗

n, g
∗
n)−DA(Q̄

∗
n,r, g

∗
n)−DY (Q̄

∗
n, g

∗
1,n,r, g

∗
2,n,r)

}2
.

An algorithm to construct nuisance estimators that solve the above equations can
be devised based on targeted minimum loss-based estimation. Without any loss of
generality, suppose that Y is bounded between 0 and 1. Defining H1(g)(a, w) :=
a/g(w), H2(g1, g2)(a, w) := ag2(w)/g1(w) and H3(Q̄, g)(w) := Q̄(w)/g(w), we imple-
ment the following recursive procedure:

1. construct initial estimates Q̄0
n and g0n of Q̄0 and g0, and set k = 0;
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2. define H1n,k := H1(g
k
n)(A,W ) and L1n,k := logit{Q̄k

n(W )}, fit a logistic regres-
sion with outcome Y , covariate H1n,k and offset L1n,k using only data points
with A = 1, set ϵ1n,k as the estimated coefficient of H1n,k, and define

Q̄k,◦
n (w) := expit

[
logit{Q̄k

n(w)}+ ϵ1n,kH1(g
k
n)(1, w)

]
;

3. construct estimates gk1,n,r and g
k
2,n,r of g1,0,r and g2,0,r based on gkn and Q̄k,◦

n ;

4. define H2n,k := H2(g
k
1,n,r, g

k
2,n,r)(A,W ) and L2n,k := logit{Q̄k,◦

n (W )}, fit a logis-
tic regression with outcome Y , covariate H2n,k and offset L2n,k using only data
points with A = 1, set ϵ2n,k as the estimated coefficient of H2n,k, and define

Q̄k+1
n (w) := expit

[
logit{Q̄k,◦

n (w)}+ ϵ2n,kH2(g
k
1,n,r, g

k
2,n,r)(1, w)

]
;

5. construct estimates Q̄k
n,r of Q̄0,r based on gkn and Q̄k+1

n ;

6. define H3n,k := H3(Q̄
k
n,r, g

k
n)(W ) and L3n,k := logit{gkn(W )}, fit a logistic re-

gression with outcome A, covariate H3n,k and offset L3n,k, set ϵ3n,k as the
estimated coefficient of H3n,k, and define

gk+1
n (w) := expit

[
logit{gkn(w)}+ ϵ3n,kH3(Q̄

k
n,r, g

k
n)(w)

]
;

7. set k = k + 1 and iterate the above steps until K large enough so that
PnD

∗(QK
n , g

K
n ) ≈ PnDA(Q̄

K
n,r, g

K
n ) ≈ PnDY (Q̄

K
n , g

K
1,n,r, g

K
2,n,r) ≈ 0.

8. set Q̄∗
n,r := Q̄K

n,r, g
∗
n := gKn , Q̄∗

n,r := Q̄K
n,r, g

∗
1,n,r := gK1,n,r and g

∗
2,n,r := gK2,n,r.

The important ramification of Theorem 1 is that doubly-robust confidence inter-
vals and tests can readily be crafted. For example, the Wald construction ψ∗,c

n ±
z1−α/2σnn

−1/2 is a doubly-robust 100 × (1 − α)% asymptotic confidence interval for
ψ0, and prescribing rejection whenever∣∣∣∣n1/2(ψ∗,c

n − ψ◦)

σn

∣∣∣∣ > z1−α/2

and failure to reject otherwise constitutes a doubly-robust hypothesis test of the null
hypothesis ψ0 = ψ◦ versus the alternative ψ0 ̸= ψ◦ with asymptotic level α. Thus,
valid statistical inference is preserved when one nuisance parameter is inconsistently
estimated, in sharp contrast to conventional doubly-robust estimation, wherein only
consistency is preserved.

11

Hosted by The Berkeley Electronic Press



4 Doubly-robust inference via one-step estimation

In Section 2, we discussed the construction of doubly-robust, locally efficient estima-
tors of ψ0. We argued that two general strategies, the one-step approach and tar-
geted minimum loss-based estimation, can be used for bias correction. For the sake
of constructing asymptotically efficient estimators, these two strategies are generally
considered to be alternatives to each other, with targeted minimum loss-based estima-
tion possibly delivering better finite-sample behavior but the one-step approach often
simpler to implement. In the previous section, we outlined how the bias-correction
feature of the targeted minimum loss-based estimation framework could be leveraged
to achieve doubly-robust asymptotic linearity and thus perform doubly-robust in-
ference. Since targeted minimum loss-based estimation can be more complicated to
implement than the one-step correction procedure, particularly in view of the iterative
nature of the algorithm, it is natural to wonder whether a one-step approach could
also be used to account for the additional bias terms that result from the inconsistent
estimation of either Q̄0 or g0 in the problem considered. If so, the resulting one-step
estimator could provide a computationally convenient alternative to the complex re-
cursive algorithm involved in the construction of the targeted minimum loss-based
estimators.

We recall that the doubly-robust, locally efficient one-step estimator ψ+
n was con-

structed by adding the bias term B∗
n(Qn, gn) to the initial plug-in estimator Ψ(Qn).

By extension, it appears sensible to investigate whether the estimator

ψ+,c
n := ψ+

n +BA,n(Q̄n,r, gn) +BY,n(Q̄n, g1,n,r, g2,n,r) (3)

is doubly-robust with respect to asymptotic linearity. By equations (1) and (2), we
immediately have that the estimator

ψoracle
n := ψ+

n + I(g = g0)BA,n(Q̄n,r, gn) + I(Q̄ = Q̄0)BY,n(Q̄n, g1,n,r, g2,n,r)

is asymptotically linear with influence function D#(Q, g), just as the targeted mini-
mum loss-based estimators in the previous section. Therefore, ψoracle

n is locally efficient
and doubly-robust with respect to asymptotic linearity. Nevertheless, to compute
ψoracle
n , the analyst must know which nuisance parameter, if any, is inconsistently

estimated. Such information will generally not be available, except in the case of a
randomized trial, where g0 may be known to the experimenter. To study the proper-
ties of ψ+,c

n , we note that

ψ+,c
n − ψoracle

n = I(g ̸= g0)BA,n(Q̄n,r, gn) + I(Q̄ ̸= Q̄0)BY,n(Q̄n, g1,n,r, g2,n,r) . (4)

The one-step estimator ψ+,c
n corrects for both inconsistent estimation of Q̄0 and g0.

However, for consistent estimation of ψ0, no more than one of these two nuisances can
in reality be inconsistently estimated. In this case, there is necessarily overcorrection
in ψ+,c

n and it is not a priori obvious whether this may be detrimental to the behavior
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of the estimator. Elucidating this fact requires a careful study of each of the two bias
correction terms in settings in which they are not in fact needed. For example, the
term BA,n(Q̄n,r, gn), used to correct for bias resulting from inconsistent estimation
of Q̄0, must be analyzed under the scenario wherein it is in fact g0 that has been
inconsistently estimated.

In Appendix C, we show that under reasonable rate conditions, we can represent
the first summand on the right-hand side of (4) as

BA,n(Q̄n,r, gn) = P0

{(
g0 − g

g

)
Q̄n,r

}
+ oP (n

−1/2) (5)

when g ̸= g0, and we can represent the second summand as

BY,n(Q̄n, g1,n,r, g2,n,r) = P0

{
A

g1,n,r
(Q̄0 − Q̄)g2,n,r

}
+ oP (n

−1/2)

when Q̄ ̸= Q̄0. This implies that the first-order behavior of ψ+,c
n is driven by these

terms. In particular, the rate of convergence of ψ+,c
n is determined by that of the es-

timators Q̄n,r, g1,n,r and g2,n,r of the reduced-dimension nuisance parameters. These
terms are unlikely to be estimable at the parametric rate in practice since this would
require the correct specification of a parametric model for a complex object. In prac-
tice, flexible, data-adaptive techniques are likely to be used to consistently estimate
these regression functions. Because the rates achieved by these techniques are gen-
erally slower than one over root-n, the estimator ψ+,c

n fails to be root-n-consistent
and hence doubly-robust with respect to asymptotic linearity. Using an argument
identical to that made in Section 3, we can show that Wald-type confidence intervals
for ψ+,c

n have similarly poor asymptotic coverage. Therefore, at least theoretically,
the one-step construction does not appear helpful to achieve double-robust inference.

This result warrants further discussion. The above theory shows that the targeted
minimum loss-based estimation framework is able to simultaneously account for in-
consistent estimation of either the outcome regression or the propensity score without
the need to know which is needed. In contrast, the one-step approach is unable to
do so: it requires knowledge of which nuisance parameter is possibly inconsistently
estimated to retain asymptotically linearity. Without this knowledge, asymptotic lin-
earity cannot be theoretically guaranteed in a doubly-robust fashion. This suggests
that for the purpose of performing doubly-robust inference on ψ0 targeted minimum
loss-based estimation may be required. This finding is relevant for future work to
derive procedures for doubly-robust inference on other parameters admitting doubly-
or multiply-robust estimators.

13

Hosted by The Berkeley Electronic Press



5 Simulation study

5.1 Data-generating mechanism and setup

In each of the simulations below, we used the following data-generating mechanism.
The baseline covariate vector W := (W1,W2) has independent components. W1 is
distributed according to a uniform distribution over the interval (−2,+2) andW2 is a
binary random variable with success probability 1/2. The conditional probability of
receiving treatment A = 1 given W = (w1, w2) is given by g0(w1, w2) := expit(−w1 +
2w1w2). The outcome Y is a binary random variable with conditional probability of
occurrence given A = a given by Q̄0(a, w) := expit(0.2a− w1 + 2w1w2).

We implemented and compared the performance of the following six distinct esti-
mators:

(1) the standard, uncorrected targeted minimum loss-based estimator;

(2) the corrected targeted minimum loss-based estimator using bivariate nuisance
regression, as proposed in van der Laan (2014);

(3) the corrected targeted minimum loss-based estimator using univariate nuisance
regressions, as introduced in Theorem 1;

(4) the standard, uncorrected one-step estimator, commonly referred to as the aug-
mented inverse probability weighted estimator;

(5) the corrected one-step estimator using bivariate nuisance regression;

(6) the corrected one-step estimator using univariate nuisance regressions, as dis-
played in (3).

These estimators were evaluated in each of the three following scenarios:

I. only outcome regression consistently estimated;

II. only propensity score consistently estimated;

III. both outcome regression and propensity score consistently estimated.

The consistently-estimated nuisance parameter, either the outcome regression or
the propensity score, was estimated using a bivariate kernel regression estimator
with bandwidth selected using cross-validation (Racine and Li, 2004), while the
inconsistently-estimated nuisance parameter was estimated using a logistic regres-
sion model with main terms only, thus ignoring the interaction between W1 and W2.
The reduced-dimension nuisance parameters required for the additional correction
procedure involved in computing estimators (2), (3), (5) and (6) were estimated us-
ing the Nadaraya-Watson estimator with bandwidth selected using cross-validation.
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For scenarios I and II, we considered sample sizes n = 250, 500, 1000, 3000, 5000, 9000
to study the characteristics of the estimators. For scenario III, theory dictates that
all estimators considered are asymptotically equivalent, and so, we only focused on
sample sizes n = 100, 250, 500, 750, 1000. For each sample size, we randomly gener-
ated 5000 data sets. We summarized estimator performance based on four criteria:
bias, bias times root-n, nominal coverage of 95% confidence intervals, and accuracy
of the standard error estimator. The fourth criterion was studied by comparing the
Monte Carlo variance of the estimator and the average value of the estimated variance
across simulations. We used these summaries to examine the following hypotheses
based on the theoretical developments above:

(a) in scenarios I and II, the bias of estimators (1), (4), (5) and (6) tends to zero
slower than one over root-n, whereas that of estimators (2) and (3) does so faster
than one over root-n;

(b) in scenarios I and II, the slow convergence of the bias for estimators (1), (4), (5)
and (6) adversely affects the nominal confidence interval coverage, while with the
corrected targeted minimum loss-based estimators (2) and (3) have asymptoti-
cally nominal coverage;

(c) in scenarios I and II, influence function-based variance estimators are accurate
for the corrected estimators (2), (3), (5) and (6), but not for the uncorrected
estimators (1) and (4);

(d) in scenario III, all estimators have approximately the same behavior.

5.2 Results

We first focus on the results pertaining to scenario I, in which only the outcome
regression is consistently estimated. In the top left panel of Figure 1, the bias of
each estimator tends to zero, illustrating the conventional double-robustness of these
estimators. However, the top right panel supports hypothesis (a) in that the bias of
the uncorrected estimators clearly tends to zero slower than one over root-n, while
the bias of the corrected targeted minimum loss-based estimators tends to zero faster
than this rate. The bias of the corrected one-step estimators is reduced relative to
the uncorrected estimators, and for the sample sizes considered, we do not yet see
the expected divergence in the bias when inflated by root-n. The bottom left panel
indicates strong support for hypothesis (b) in that the coverage of intervals based on
the uncorrected estimators is not only far from the nominal level but also U-shaped,
suggesting worsening coverage in larger samples, as is expected based on our argu-
ments in Section 3. Intervals based on the corrected estimators have approximately
nominal coverage in moderate and large samples. The lower right panel indicates
that the bias is not the only factor driving the poor coverage of intervals based on
the uncorrected estimators: the variance estimators are also anti-conservative. The
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Figure 1: Scenario I: only outcome regression consistently estimated

variance estimators for the corrected estimators are approximately accurate in larger
samples, thus supporting hypothesis (c).

We now discuss the results for the scenario in which only the propensity regres-
sion is consistently estimated, as summarized in Figure 1. In the top right panel,
we see again that the bias of the uncorrected estimators tends to zero slower than
one over root-n. In this case, we also find that this is true of the corrected one-step
estimators. In contrast, the bias of the corrected targeted minimum loss-based es-
timators appears to converge to zero faster than one over root-n. The bottom left
panel partially supports hypothesis (b): intervals based on the uncorrected estima-
tors achieve near-nominal coverage for moderately large sample sizes in spite of the
large bias of these estimators. However, we again find the expected U-shape, with an
eventual downturn in coverage as the sample size increases. Intervals based on the
corrected targeted minimum loss-based estimators using bivariate nuisance regression
have improved coverage throughout, and intervals based on either corrected targeted
minimum loss-based estimators have nearly nominal coverage in larger samples. Inter-
vals based on the corrected one-step estimator with the univariate correction achieve
approximately nominal coverage, while those based on the one-step estimator with
bivariate correction do not, likely due to larger bias, as illustrated in the upper right
panel. The bottom right panel shows that the variance estimator for the uncorrected
one-step estimator is conservative, while that based on the uncorrected targeted min-
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Figure 2: Scenario II: only propensity score consistently estimated

imum loss-based estimator is approximately accurate. The variance estimators based
on corrected one-step or targeted minimum loss-based estimators are found to be valid
throughout, though the variance estimator based on targeted minimum loss-based
using univariate nuisance regressions appears to be substantially anti-conservative in
smaller samples.

Finally, Figure 3 supports hypothesis (d): when both the propensity score and
outcome regression are consistently estimated, all of the estimators perform approx-
imately equally well, even in smaller samples. This suggests that implementing the
correction procedures needed to achieve doubly-robust asymptotic linearity and in-
ference does not come at a cost in terms of estimator performance in situations where
the additional corrections are not needed.

6 Concluding remarks

As highlighted earlier, an interesting finding of this work is that it is possible to
theoretically guarantee doubly-robust inference under mild conditions using targeted
minimum loss-based estimation but not with the more popular one-step approach.
While we found the corrected one-step estimators to perform relatively well in simu-
lations, we cannot expect this to hold in all scenarios since theory suggests otherwise.
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Figure 3: Scenario III: both outcome regression and propensity score consistently
estimated
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Therefore, in spite of its computational complexity, targeted minimum loss-based
estimation may be the preferred approach for providing doubly-robust inference.

It may be fruitful to incorporate universally least favorable parametric submod-
els, as introduced in van der Laan (2015), into the targeted minimum loss-based
estimation algorithms utilized here. Such submodels facilitate the construction of
estimators using minimal additional data fitting in the bias-reduction step of the al-
gorithm. Rather than requiring iterations to perform bias reduction, use of these
submodels would yield algorithms converging in only a single step. This could result
in more expedient computational implementations as well as improved performance
in finite samples, particularly in extensions of this work to more complex parameters,
including average treatment effects defined by longitudinal interventions.

Appendix A: First-order expansion of remainder

We derive equation (2) and sufficient conditions under which it holds. We note that

R(Q̄n, Q̄0, gn, g0) = P0

{
(Q̄n − Q̄0)

(
gn − g0
gn

)}
= P0

{
(Q̄n − Q̄0)

(
gn − g0
g

)}
+R1n ,

where we define the second-order remainder term R1,n := P0{(Q̄n − Q̄0)(gn − g0)(g−
gn)/(gng)}. Adding and subtracting Q̄ and g and simplifying, we find that

P0

{
(Q̄n − Q̄0)

(
gn − g0
g

)}
= P0

{
(Q̄n − Q̄)

(
g − g0
g

)}
+ P0

{
(Q̄− Q̄0)

(
gn − g

g

)}
+R2n ,

where we define the second-order term R2,n := P0{(Q̄n − Q̄)(gn − g)/g}. Assuming
that either Q̄ = Q̄0 or g = g0, we can write

P0

{
(Q̄− Q̄0)

(
gn − g

g

)}
= I(g = g0)P0

{
(Q̄− Q̄0)

(
gn − g0
g

)}
, (6)

P0

{
(Q̄n − Q̄)

(
g − g0
g

)}
= I(Q̄ = Q̄0)P0

{
(Q̄n − Q̄0)

(
g − g0
g

)}
. (7)

Examining (6) and with some abuse of notation, we note that

P0

{
(Q̄− Q̄0)

(
gn − g0
g

)}
= −P0

{
A

g20

(
Y − Q̄

)
(gn − g0)

}
= −P0

{
Q̄0n,r

g0
(gn − g0)

}
,
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where we set Q̄0n,r(w) := E0{Y − Q̄(W ) | gn(W ) = gn(w), g0(W ) = g0(w)}. Then,
we may write

− P0

{
Q̄0n,r

g0
(gn − g0)

}
= −(Pn − P0)

{
Q̄n,r

g0
(A− gn)

}
+BA,n(Q̄n,r, gn) +R3n +R4n +M1n,

where we define

R3n := P0

{(
Q̄0n,r − Q̄0,r

g0

)
(g0 − gn)

}
, R4n := P0

{(
Q̄0,r

g0
− Q̄n,r

gn

)
(g0 − gn)

}
,

M1n := (Pn − P0)
{
DA(Q̄n,r, gn)−DA(Q̄0,r, g0)

}
.

If, for example, each of Q̄0n,r − Q̄n,r, Q̄n,r − Q̄0,r and gn − g0 are oP (n
−1/4) in

L2(P0) norm, it generally follows that R3n and R4n are both oP (n
−1/2). Further-

more, if DA(Q̄n,r, gn) falls in a P0-Donsker class with probability tending to one and
P0{DA(Q̄n,r, gn)−DA(Q̄0,r, g0)}2 = oP (1), it also follows that M1n = oP (n

−1/2).
Now, examining (7) and again allowing some abuse of notation, we find that

P0

{
(Q̄n − Q̄0)

(
g − g0
g

)}
= −P0

{
(Q̄n − Q̄0)

(
A− g

g

)}
= P0

{
A

g0n,r

g0n,r − g

g
(Y − Q̄n)

}
,

where we define the addition nuisance parameter g0n,r(Q̄n, Q̄0, g) := E0

{
A | Q̄n, Q̄0, g

}
.

Algebraic manipulation allows us to write

P0

{
A

g0n,r

g0n,r − g

g
(Y − Q̄n)

}
= −(Pn − P0)DY (Q̄0, g0,r) +BY,n(Q̄n, gn,r) +R5,n +R6,n +R7,n +M2,n ,

where we define

R5n := −P0

{
g0n,r − g0,r

g
(Q̄n − Q̄0)

}
, R6n := −P0

{
gn,r − g0,r

gn,r
(Q̄n − Q̄0)

}
,

R7n := −P0

{
g0,r
gng

(gn − g)(Q̄n − Q̄0)

}
,

M2n := (Pn − P0)
{
DY (Q̄n, gn,r)−DY (Q̄0, g0,r)

}
.

If, for example, each of Q̄n−Q̄0, g0n,r−g0,r and gn,r−g0,r are oP (n−1/4) in L2(P0) norm,
it generally follows that R5n, R6n and R7n are oP (n

−1/2). Furthermore, if DY (Q̄n, gn,r)
falls in a P0-Donsker class with probability tending to one and P0{DY (Q̄n, gn,r) −
DY (Q̄0, g0,r)}2 = oP (1), it also follows that M2n = oP (n

−1/2).
The above derivations directly imply (2) with R∗

n := R1n + R2n, RQ,n := R3n +
R4n +M1n and Rg,n := R5n +R6n +R7n +M2n.
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Appendix B: Derivation of reduced-dimension re-

mainder representation

We proceed similarly as above but now with regards to (7). With some abuse of
notation, we have

P0

{
(Q̄n − Q̄0)

(
g − g0
g

)}
= −P0

{
(Q̄n − Q̄0)

(
A− g

g

)}
= −P0

{
g2,0n,r(Q̄n − Q̄0)

}
= P0

{
A

g1,0n,r
g2,0n,r(Y − Q̄n)

}
,

where we define nuisances g1,0n,r(Q̄n, Q̄0)(w) := E0{A | Q̄n(W ) = Q̄n(w), Q̄0(W ) =
Q̄0(w)} and g2,0n,r(Q̄n, Q̄0, g)(w) := E0[{A−g(W )}/g(W ) | Q̄n(W ) = Q̄n(w), Q̄0(W ) =
Q̄0(w)]. We can then write

P0

{
A

g1,0n,r
g2,0n,r(Y − Q̄n)

}
= −(Pn − P0)DY (Q̄0, g1,0,r, g2,0,r) +BY,n(Q̄n, g1,n,r, g2,n,r) + R̃5n + R̃6n + M̃2n,

where we define

R̃5n := P0

{(
A

g1,0n,r
g2,0n,r −

A

g1,0,r
g2,0,r

)
(Y − Q̄n)

}
,

R̃6n := P0

{(
A

g1,0,r
g2,0,r −

A

g1,n,r
g2,n,r

)
(Y − Q̄n)

}
,

M̃2n := (Pn − P0)
{
DY (Q̄n, g1,n,r, g2,n,r)−DY (Q̄0, g1,0,r, g2,0,r)

}
.

If, for example, each of Q̄n − Q̄0, g2,0n,r − g2,0,r and g2,n,r − g2,0,r are oP (n
−1/4) in

L2(P0) norm, it generally follows that R̃5n and R̃6n are oP (n
−1/2). Furthermore, if

DY (Q̄n, g1,n,r, g2,n,r) falls in a P0-Donsker class with probability tending to one and
P0{DY (Q̄n, g1,n,r, g2,n,r) − DY (Q̄0, g1,0,r, g2,0,r)}2 = oP (1), it also follows that M̃2n =
oP (n

−1/2).
This implies that (2) holds with R∗

n := R1,n +R2,n, RQ,n := R3n +R4n +M1n and
Rg,n := R̃5n + R̃6n + M̃2n when the alternative reduced-dimension parametrization of
the remainder is used.

Appendix C: Behavior of unnecessary correction

terms

We first examine the behavior of BA,n(Q̄n,r, gn) when Q̄ = Q̄0. We note that

BA,n(Q̄n,r, gn) = PnDA(Q̄n,r, gn) = P0DA(Q̄n,r, gn) +MA,n,
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where we define the empirical process term

MA,n := (Pn − P0){DA(Q̄n,r, gn)−DA(Q̄0,r, g)} ,

which can reasonably be assumed to be oP (n
−1/2). The second equality is a conse-

quence of the fact that DA(Q̄0,r, g) = 0 for all g, which follows because Q̄0,r = 0.
With some abuse of notation, we can write

P0DA(Q̄n,r, gn) = P0

{
Q̄n,r

gn
(A− gn)

}
= P0

{
Q̄n,r

gn
(g0 − gn)

}
= P0

{
Q̄n,r

g
(g0 − g)

}
+RA,n,

where we define

RA,n := P0

{
Q̄n,r

(
g − gn
gng

)
(g0 − gn)

}
+ P0

{
Q̄n,r

g
(g − gn)

}
,

which is oP (n
−1/2) under the rate conditions outlined in Appendices A and B.

We now examine the behavior of BY,n(Q̄n, g1,n,r, g2,n,r) when g = g0. We have

BY,n(Q̄n, g1,n,r, g2,n,r) = PnDY (Q̄n, g1,n,r, g2,n,r) = P0DY (Q̄n, g1,n,r, g2,n,r) +MY,n,

where we define the empirical process term MY,n := (Pn −P0){DY (Q̄n, g1,n,r, g2,n,r)−
DY (Q̄, g1,0,r, g2,0,r)}, which can reasonably be assumed to be oP (n

−1/2). As above,
the second equality is a consequence of the fact that DY (Q̄, g1,0,r, g2,0,r) = 0 for all Q̄,
which follows because g2,0,r = 0 when g = g0. With some abuse of notation, we can
write

P0DY (Q̄n, g1,n,r, g2,n,r) = P0

{
A

g1,n,r
g2,n,r(Y − Q̄n)

}
= P0

{
A

g1,n,r
g2,n,r(Q̄0 − Q̄n)

}
= P0

{
A

g1,0,r
(Q̄0 − Q̄)g2,n,r

}
+RY,n,

where we define

RY,n := P0

{
A

(
g1,0,r − g1,n,r
g1,0,rg1,n,r

)
g2,n,r(Q̄0 − Q̄n)

}
+ P0

{
A

g1,0,r
g2,n,r(Q̄− Q̄n)

}
,

which is oP (n
−1/2) under the rate conditions above.
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