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Semiparametric Receiver Operating Characteristic
Analysis to Evaluate Biomarkers for Disease

Tianxi Cai and Margaret Sullivan Pepe

The receiver operating characteristic (ROC) curve is a popular method for characterizing the accuracy of diagnostic tests when test
results are not binary. Various methodologies for estimating and comparing ROC curves have been developed. One approach, due to
Pepe, uses a parametric regression model ROCx�u�= g�h0�u�+�′

0x� with the baseline function h0�u� specified up to a finite-dimensional
parameter. In this article we extend the regression models by allowing arbitrary nonparametric baseline functions. We also provide
asymptotic distribution theory and procedures for making statistical inference. We illustrate our approach with dataset from a prostate
cancer biomarker study. Simulation studies suggest that the extra flexibility inherent in the semiparametric method is gained with little
loss in statistical efficiency.

KEY WORDS: Diagnostic tests; Disease screening; Estimating equation; Generalized linear model; Sensitivity.

1. INTRODUCTION

New technologies, such as gene expression microarrays and
protein mass spectrometry, promise to yield a multitude of
biomarkers for disease. Once a biomarker is identified, it can
be used as the basis for diagnosing disease (Srivastava and
Kramer 2000) or for monitoring patients during and after treat-
ment. Biomarkers such as CA-125 and prostate-specific anti-
gen (PSA) are used for these purposes in the management
of ovarian cancer and prostate cancer, respectively. Another
application for biomarker research is in the development of
treatment strategies, where disease-specific biomarkers can
suggest new targets for therapeutic drugs (Elmer-Dewitt et al.
2001). Statistical methods are needed to evaluate a biomarker’s
capacity for distinguishing subjects with disease from those
without and for comparing biomarkers (Pepe et al. 2001). One
potentially useful statistical tool in this setting is the receiver
operating characteristic (ROC) curve, which has long been
popular in medical diagnostic research, particularly in radiol-
ogy (Hanley 1989). In this article we consider new statisti-
cal methodology for making inference about ROC curves and
apply the methods to data from a prostate cancer biomarker
study.
Let D be a binary variable taking the value 1 for diseased

subjects and 0 for nondiseased subjects. Let the variable Y
denote the biomarker, and use the convention that higher val-
ues of Y are considered more indicative of disease. The ROC
curve is motivated as follows: If a threshold value c is used
to classify subjects as diseased or not on the basis of Y , then
the true-positive and false-positive rates can be written as

SD�c�= P�Y ≥ c�D = 1�

and
S�D�c�= P�Y ≥ c�D = 0��

A perfect biomarker is one for which at some threshold c∗,
SD�c

∗� = 1 and S�D�c∗� = 0. More usually, there is a trade-
off between SD and S�D displayed through the ROC curve, a
plot of the true-positive rates versus the false-positive rates,
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��S�D�c�
 SD�c��
 c ∈ �−


��, or, equivalently, the function
��u
ROC�u��
 u ∈ �0
1��= ��u
SD�S−1�D �u���
 u ∈ �0
1��.
Higher values of the true-positive rate SD�c� obtained by

lowering the threshold are achieved at the expense of increas-
ing the false-positive rate S�D�c�. Biomarkers that better dis-
criminate disease from nondisease have ROC curves that are
higher and to the left of the positive unit quadrant. Swets
and Picket (1982), Hanley (1989), and, more recently, Pepe
(2000b) have discussed the attributes of ROC curves for eval-
uating diagnostic markers of disease.
Regression models for ROC curves can be used to exam-

ine covariates that affect the discriminatory capacity of a
biomarker. Covariates can include factors related to the envi-
ronment in which the biomarker is measured, the protocol for
obtaining and processing samples, subject characteristics, and
even disease characteristics. It is important to assess factors
that influence the performance of a biomarker to optimize use
of the biomarker in practice.
We have previously proposed parametric ROC regression

models (Pepe 1997, 2000a) of the generalized linear model
(GLM) form,

ROCx�u�= g��′x+h��u��
 0 ≤ u≤ 1


where x denotes covariates, g−1 is a link function, and h is
a baseline function specified up to parameters �. Choices for
g and h� used in our applications were g = � and h��u� =
�0+�1�−1�u�, where � denotes the cumulative normal dis-
tribution function. This corresponds to extending the classic
binormal model for the ROC curve (Metz 1986) to include
covariates. The baseline function h� essentially defines the
location and shape of the ROC curve, whereas � quantifies
covariate effects. In this article we extend the regression mod-
els by allowing arbitrary nonparametric baseline functions for
h�. It turns out that the extra flexibility is gained at little cost
in efficiency of estimating �.
In Section 2 we describe the regression modeling frame-

work and procedures for estimating � and the baseline ROC
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function. We outline asymptotic distribution theory and pro-
cedures for making statistical inference in Section 3. We per-
formed simulation studies to illustrate the advantage gained in
terms of robustness of inference by allowing a nonparametric
form for h and to determine whether the new semiparametric
procedure has reduced efficiency relative to the parametric
approach. We summarize results of the simulation studies in
Section 4, and present an illustrative example in Section 5. The
dataset is derived from a study to evaluate PSA as a biomarker
for the early detection of prostate cancer. We give some clos-
ing remarks in Section 6.

2. ESTIMATION

Suppose that the data for analysis are organized as ND data
records for nD subjects with disease,

��Yik
Zik
ZDik�
 k = 1
 � � � 
Ki
 i = 1
 � � � 
 nD�


and N�D data records for n�D subjects without disease,

��Yjl
Zjl�
 l = 1
 � � � 
Kj
 j = nD+1
 � � � 
 nD+n�D�

where each subject may have more than one data record,
ND = ∑nD

i=1Ki and N�D = ∑nD+n�D
j=nD+1Kj . The covariates denoted

by Z are relevant to both diseased and nondiseased sub-
jects. Examples might include the subject’s age or the type of
biomarker represented by Y (see Pepe 2000a, sec. 3.3). We
include another category of covariates, denoted by ZD, that
are specific to subjects with disease but are not relevant to
nondiseased subjects. Examples include be severity of disease
or timing of biomarker measurement before onset of clinical
symptoms (see Sec. 5).
The ROC curve that compares the biomarker distributions

in diseased subjects who have covariates �Z
ZD� with nondis-
eased subjects who have covariate level Z is modeled as

ROCZ
ZD
�u�= g�h0�u�+�′Z+�′

DZD�
 (1)

where g is a monotone increasing function mapping �−


�
to �0
1� and h0 is an unspecified monotone increasing func-
tion from �0
1� to �−


�. We have previously noted that,
conditional on the covariates �Z
ZD� and D= 1, the expected
value of I�Y ≥ S−1�D
Z�u�� is ROCZ
ZD

�u� = g�h0�u�+�′Z+
�′
DZD�. This motivates the following class of estimating equa-

tions for �0 = ��
�D� based on binary indicator variables
(Pepe 1997):

nD∑
i=1

Ki∑
k=1

∫ b
a
w�Xik
 u�Xik

[
I
{
Yik ≥ S−1�D
Z�u�

}
−g��′Xik+h�u��

]
dv̂�u�= 0


where the prespecified constants �a
 b� are chosen such that
P�Y11 < S

−1
�D
Z11

�a�� and P�Y11 > S
−1
�D
Z11

�b�� are positive; to
simplify notation, we write X = !Z′
Z′

D"
′, so that �′Z+

�′
DZD = �′

0X, w is a positive bounded uniformly continuous
weight function; and for now we assume that h0�·� and S−1�D
Z�·�
are known and that v̂�·� is a known increasing but possibly
data-dependent function. In practice, neither h0�·� nor S−1�D
Z�·�
is known and also need to be estimated.

Our semiparametric approach to estimation involves two
steps. First, for S�D
Z we use a semiparametric location model
(Pepe 1998; Heagerty and Pepe 1999),

S�D
Z�c�= S0�c−� ′
0Z��

We estimate the parameter �0 as the solution to

nD+n�D∑
j=nD+1

Kj∑
l=1

Zjl�Yjl−� ′Zjl�= 0
 (2)

which is denoted by �̂, and the survivor function S0 with the
empirical distribution of the residuals

Ŝ0�c�=
1
N�D

nD+n�D∑
j=nD+1

Kj∑
l=1
I�Yjl− �̂ ′Zjl ≥ c�� (3)

We then estimate the baseline ROC function h0 and the param-
eter �0 simultaneously as solutions to

n�D∑
i=1

Ki∑
k=1
w�Xik
 u�

[
I
{
Yik ≥ Ŝ−1�D
Z�u�

}−g{�′Xik+h�u�
}]= 0


for u ∈ !a
 b" (4)

and

nD∑
i=1

Ki∑
k=1

∫ b
a
w�Xik
 u�Xik

[
I
{
Yik ≥ Ŝ−1�D
Z�u�

}
−g{�′Xik+h�u�

}]
dv̂�u�= 0
 (5)

where Ŝ−1�D
Z�u�= Ŝ−10 �u�+ �̂ ′Z.

Remark 1. Although biomarkers are typically measured
on continuous scales, the methodology is equally applicable
to biomarkers with discrete or ordinal distributions. Such data
often arise in diagnostic radiology and in psychology studies,
where ROC analysis is already a well-accepted approach to
evaluating new procedures.

Remark 2. It follows from (4) and the monotone increas-
ing property of the function g that the estimator ĥ is a mono-
tone increasing function. In this article we assume that h0�·�
has a continuous first derivative.

Remark 3. In practice, let a ≤ u1 < u2 < · · · < uL ≤ b
be the set of distinct jump points of Ŝ−1�D
Zik �u� on !a
 b". Also,
let v̂l = v̂�tl+1�− v̂�tl� and hl = h�ul�. Then solving the two
sets of estimating equations is equivalent to solving the p+L
equations

nD∑
i=1

Ki∑
k=1
w�Xik
 ul�

[
I
{
Yik ≥ Ŝ−1�D
Zik �ul�

}−g��′Xik+hl�
]= 0


l = 1
 � � � 
L

and

L∑
l=1

nD∑
i=1

Ki∑
k=1
w�Xik
 ul�Xik

[
I
{
Yik ≥ Ŝ−1�D
Zik �ul�

}
−g��′Xik+hl�

]
v̂l = 0�
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The Newton–Raphson algorithm can be used to solve the
foregoing p+L equations. It is not hard to see that in this
case, inverting the �p+L�× �p+L� Jacobian matrix can be
obtained by inverting a diagonal L×L matrix and a p× p
matrix.

Remark 4. The covariates Z and ZD are assumed to be
bounded. If the covariate Z takes on only a few values, a
completely nonparametric approach to estimating S�D
Z may
be preferred. For example, if the problem is to compare two
biomarkers and Z is an indicator of the type of biomarker
quantified by Y , then Ŝ�D
Z�·� can be estimated separately for
each Z using the empirical survivor function for the corre-
sponding biomarker among the nondiseased subjects.

Remark 5. A parametric formulation for h0�u�, such as
h0�u�= �1+�2�−1�u� say, can be accommodated by replac-
ing (4) with an equation identical in form to (5) with
!1�−1�u�"′ substituted for Xik in the integrand. Then (4)
and (5) are solved simultaneously. (See Pepe (1997) for this
parametric approach.)

Remark 6. As indicated by our notation, the data records
may be clustered. For example, if multiple biomarkers are
measured on a subject or if the same biomarker is measured
at different times, then each subject may have several data
records in the analysis. The probability distributions and con-
sequent ROC curves are defined in a marginal sense. There-
fore, our estimating equations provide valid estimates for clus-
tered data. In the next section we account for correlation
between data records in the same cluster in making statistical
inference.

Remark 7. The function v̂�u� can be data dependent, but
we assume that it converges to a deterministic function uni-
formly in u. For example, we can choose v̂�u� to be the count-
ing process

∑nD
i=1

∑Ki
k=1 I�Yik ≥ Ŝ−1�D
Zik �u��. We can also restrict

v̂�u� to be 0 in certain ranges of u that might not be of par-
ticular interest. For example, if large false-positive rates are
not of particular interest, we might model the ROC curve only
over a restricted region, say, u≤ 20%. In that case, we choose
v̂�u� = 0 for u > �2. (See Weiand, Gail, James, and James
1989 and Pepe 1998 for further discussion about restricting
inference about ROC curves to clinically relevant ranges of
false-positive rates.) We let the weight function w�x
u� be 1
in the analyses presented in this article, although more gen-
eral choices are possible. Note that we do not allow w to be
dependent on � or h, a condition necessary to guarantee the
uniqueness of the solution ��̂
 ĥ�u��.

Remark 8. The form of the ROC model ROCx�u� =
g�h0�u�+�′

0x� suggests that the covariate effect is the same
at all false-positive rates u. This can be relaxed by including
interactions between functions of u and x in the regression
model. In general, we can write

ROCx�u�= g��′
0x+�′

1(1�u�x+· · ·+�′
q(q�u�x+h0�u��


where (k�u� are specified functions. This is analogous to
the standard procedure for relaxing the proportional hazards
assumption in the Cox model for survival data, where covari-
ate effects can change with time by including interactions

between time and the covariate in the relative risk function.
Our estimation procedures are appropriate for the more gen-
eral model as well.

3. INFERENCE IN LARGE SAMPLES

3.1 Asymptotic Properties of �̂

Let ��̂
 ĥ�u�� denote the solution to (4) and (5) and let
ĥ�u
�� denote the solution to (4) for any given �. We show
in Appendix A that

Theorem 1. ��̂
 ĥ�u�� are unique for large n and are con-
sistent for u ∈ !a
 b", where 0< a < b < 1.

To obtain large-sample distributions for ��̂
 ĥ�u��, we first
show in Appendix B that

Lemma 1. n
1
2
�D!S�D
 z�Ŝ

−1
�D
 z�u��−u" is asymptotically equiv-

alent to

�̃�u
 z�=− n
1
2
�D
N�D

nD+n�D∑
j=nD+1

Kj∑
l=1

[
I
{
Yjl−� ′

0Zjl > S
−1
0 �u�

}−u
+{
���D
1− z�′�−1

�D
2Zjl
}
�Yjl−� ′

0Zjl�Ṡ0
{
S−10 �u�

}]



where for any function f �x�, ḟ �x� denotes df�x�/dx, ��D
1
is the limit of �Z�D
1 =

∑nD+n�D
j=nD+1

∑Kj
l=1Zjl/n�D
��D
2 is the limit

of �Z�D
2 =
∑nD+n�D
j=nD+1

∑Kj
l=1ZjlZ

′
jl/n�D, and �̃�u
 z� converges in

distribution to a Gaussian process.

To obtain interval estimates of specific components of �0,
in Appendix C we show that

Theorem 2. n
1
2
D��̂−�0� is asymptotically equivalent to

n
− 1

2
D �−1

{
nD∑
i=1
Ui��0�+

nD+n�D∑
j=nD+1

Uj��0�

}



where � is defined in (A.7),

Ui��0�=
Ki∑
k=1

∫ b
a
w�Xik
 u��Xik−��u-�0��eik�u�dv�u�

for i = 1
 � � � 
 nD


Uj��0�=− nD
N�D

Kj∑
l=1

∫ b
a
��u��−1

�D
2Zjl�Yjl−� ′
0Zjl�

× Ṡ0
{
S−10 �u�

}
dv�u� for j = nD+1
 � � � 
 nD+n�D


��u-�� is the limit of �X�u-��, defined in (A.5), eik�u� =
I�Yik > S

−1
�D
Zik �u��−g�h0�u�+�′

0Xik�, v�u� is the limit of v̂�u�,

aik�u� is defined in (A.8), and ��u� is the limit of �̂�u� =
n−1D

∑nD
i=1

∑Ki
k=1�Xik−��u-�0��aik�u����D
1−Zik�

′ḣ0�u�.

Therefore, the distribution of n
1
2
D��̂ − �0� can be

approximated by a normal random vector with mean 0
and covariance matrix �̂ = n−1D �̂−1��̂��

∑nD
i=1 Ûi��̂�Ûi��̂�

′ +∑nD+n�D
j=nD+1 Ûj��̂�Ûj��̂�

′��̂−1��̂�, where �̂−1��� is defined in

Hosted by The Berkeley Electronic Press
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(A.6) and Ûi and Ûj are obtained by replacing all the-
oretical quantities in Ui and Uj by their empirical coun-
terparts. One possible approach to obtain an estimate for

Ṡ0�·� and ḣ0�·� is to use ̂̇S0�c� = 1
bs

∫ c2
c1
�s�

c−x
bs
� dŜ0�x� and

ˆ̇h�u�= 1
bh

∫ u2
u1

�h�
u−x
bh
� dĥ�x�, where bs and bh are some posi-

tive bandwidth parameters and the kernel functions �s and �h

are bounded functions with support !−1
1" and that integrate
to 1. The Epanechnikov kernel function K�x�= �75�1−x2�×
I��x� ≤ 1� was used for the kernel estimates of both Ṡ0�·� and
ḣ0�·� through our numerical studies. The bandwidth was cho-
sen to be bs = bh = 4/max�min�nD
 n�D�4/5
50�.

3.2 Estimating the Receiver Operating
Characteristic Curve

Based on ��̂
 ĥ�u��, the ROC curve for a test with covariates
x can be estimated by R̂OC�u-x�= g��̂′x+ ĥ�u��. To obtain
the distribution of R̂OC�u-x�, in Appendix D we prove the
following theorem.

Theorem 3. Q�u-x� = n
1
2
D!g

−1�R̂OC�u-x�� − g−1�ROC
�u-x��" has the same asymptotic distribution as

Q̃�u-x�= n− 1
2

D

{
nD∑
i=1
Q̃i�u-x�+

nD+n�D∑
j=nD+1

Q̃j�u-x�

}



and Q̃�u-x� converges weakly to a zero-mean Gaus-
sian process, where Q̃i�u-x� = �x−��u-�0��

′�−1Ui��0�+∑Ki
k=1w�Xik
 u�eik�u�/a�u�,

Q̃j�u-x�= �x−��u-�0��
′�−1Uj��0�

− nD
N�D
ḣ0�u�

Kj∑
l=1

[
I
{
Yjl−�0

′Zjl > S
−1
0 �u�

}−u
+ az�u�

′

a�u�
�−1

�D
2Zjl�Yjl−� ′
0Zjl�Ṡ0

{
S−10 �u�

}]



a�u� is the limit of n−1D
∑nD
i=1

∑Ki
k=1 aik�u�, and az�u� is the

limit of n−1D
∑nD
i=1

∑Ki
k=1 aik�u����D
1−Zik�.

In practice, to approximate the distribution of Q̂�u-x�, we
consider the following resampling technique (Parzen, Wei, and
Ying 1994). First, let

Q̂�u-x�= n− 1
2

D

{
nD∑
i=1
Q̂i�u-x��i+

nD+n�D∑
j=nD+1

Q̂j�u-x��j

}

 (6)

where Q̂i�u-x� and Q̂j�u-x� are obtained by replacing all
of the theoretical quantities in Q̃i�u-x� and Q̃j�u-x� by
their empirical counterparts. Conditional on the observations
��Yik
Zik
ZDik�
 k = 1
 � � � 
Ki- i = 1
 � � � 
 nD+n�D�, the pro-
cess Q̂�u-x� has the same limiting covariance function as that
of Q̃�u-x�. Furthermore, conditional on the data, the process
Q̂�u-x� is tight (Billingsley 1986). It follows that the distri-
bution of Q�u-x� can be approximated by the conditional dis-
tribution of Q̂�u-x�.
We can then approximate the distribution of Q�u-x� by gen-

erating M independent samples of ��i
 i = 1
 � � � 
 nD + n�D�.

For the mth sample, we obtain a realization q̂�m��u-x� of
Q̂�u-x�, m= 1
 � � � 
M . For any given u, we can use

3̂2�u�x�= 1
M

M∑
m=1
q̂�m��u-x�

2

to estimate the variance of Q�u-x�. Then a �1− 4� pointwise
confidence interval for ROC�u-x� is given by

g
[
g−1

{
R̂OC�u-x�

}± c4/2n−1/2D 3̂�u-x�
]



where c4 is the 1004 upper percentile point of the standard
normal distribution. To construct a �1− 4� simultaneous con-
fidence band for �ROC�u-x�
 a≤ u≤ b�, we first find d4 such
that

pr
{
sup
u∈!a
b"

�Q̂�u-x��
3̂�u-x�

≤ d4
}
= 1− 4�

Then a �1− 4� confidence band for ROC�u-x� for a ≤ u ≤ b
is given by

g
[
g−1

{
R̂OC�u-x�

}±d4n−1/2D 3̂�u-x�
]
�

The probability and the quantile d4 can be approximated with
these M realizations of Q̂�u-x�.

4. SIMULATION STUDIES

4.1 Flexible Modeling Confers Robustness

We would expect the newly proposed semiparametric pro-
cedure to be more robust than a procedure that specifies a
parametric form for h0�·�. In particular, we would expect infer-
ence about covariate effects and the baseline ROC curve to be
more reliable in the model that does not require specification
of a parametric form for h0�·�. To investigate this, we simu-
late data and fit a misspecified parametric model to these data.
For nD diseased subjects, we generate random variables z and
6 following uniform �0
10� and standard normal distributions,
and let

Yi = 7�8zi+ 6i�+2zi
 i = 1
 � � � 
 nD�

Similarly, we generate z and 6 for n�D diseased subjects and
construct

Yj = 6+2zj+ 6j
 j = nD+1
 � � � 
 nD+n�D

where 7�x� = 6+ log�−6 log��−x��/2, ��·� is the stan-
dard normal cumulative distribution function, and 8= 1. The
induced ROC curve is then

ROC�u-T 
 z�=�!−7−1�6−�−1�u��+8z"

which follows the GLM model with

h0�u�=−7−1�6−�−1�u���

We fit the following parametric model to the data, using the
method of Pepe (1997):

ROCz�u�=���0+�1�−1�u�+8z�

http://biostats.bepress.com/uwbiostat/paper185
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Figure 1. Estimated ROC Curve at Baseline Using the Semipara-
metric ( ) and the Misspecified Parametric Approaches (- - - -)
(– – –, Truth).

thus misspecifying the baseline function as having the
form h0�t� = �0 +�1�−1�u�. The semiparametric procedure
described in this article is also implemented. Figure 1 dis-
plays fitted baseline ROC curves (at z= 0), based on one sim-
ulated dataset. The semiparametric method provides an esti-
mated ROC curve much closer to the truth than the parametric
approach, suggesting that it is more robust.
Table 1 presents the empirical bias and mean squared error

of �̂ based on 500 simulated datasets. The parametric estima-
tor is severely biased on average. In contrast, the semipara-
metric approach yields an estimator with essentially no bias.
This example, albeit somewhat extreme, demonstrates that the
less-restrictive model assumptions made in the semiparamet-
ric approach confer some robustness to the estimates of both
the ROC curve and of the covariate effect. This robustness
is particularly important given that formal procedures are not
yet available for checking the fit of the parametric model. We
next investigate whether the added robustness in the semipara-
metric approach is gained at the expense of reduced statistical
efficiency.

4.2 Relative Efficiency

We simulated data to include both a covariate common to
diseased and nondiseased subjects and a covariate relevant
only for diseased subjects. These are denoted by z and T . In
particular, data for diseased subjects were generated from the
linear model

Yi = 12+8tTi+ �2+8z�zi+ 6i
 i = 1
 � � � 
 nD


Table 1. Estimates of � Compared With Its Actual Value, �= 1, Based
on a Semiparametric Model and on a Misspecified Parametric Model

Semiparametric Parametric

Bias �031 �128
Mean squared error �019 �042

NOTE: Results are based on 500 simulated datasets of nD = n�D = 200.

Table 2. Estimates of Covariate Effects From Correctly Specified
Parametric and Semiparametric Models

Semiparametric Parametric

nD = n�D �t =−1 �z = 3 �t =−1 �z = 3

Bias �082 �375 �055 �320
100

Mean squared error �056 1�522 �047 1�486

Bias �027 �108 �012 �082
200

Mean squared error �019 �184 �017 �170

and data for diseased subjects followed the model

Yj = 10+2zj+ 6j
 j = nD+1
 � � � 
 nD+n�D


where 6, T , and z are random variables with probability dis-
tribution that are standard normal, exponential (rate = 1) and
Bernoulli (probability = .5). This configuration for the data
induces the ROC curve

ROC�u-T 
 z�=���−1�u�+2+8tt+8zz��

We use an ROC curve model of this form for the PSA data
analysis (Sec. 5), where z represents subject age and T repre-
sents the time between serum sampling for the PSA biomarker
and onset of clinical symptoms of cancer.
For each simulated dataset, we obtained point estimates of

8t and 8z with our semiparametric approach and the paramet-
ric approach of Pepe (1997). Table 2 presents the bias and
mean squared error based on 500 simulations.
The results in Table 2 show that even though estimates from

the semiparametric model are not as efficient as those cal-
culated using the fully parametric approach, their efficiency
is very close. The empirical efficiency of the semiparametric
method relative to the parametric method is 95% for 8z and
90% for 8t at a sample size of 200.

4.3 Asymptotic Inference in Finite Samples

We also conducted simulation studies to examine the valid-
ity of the large-sample approximations for making inference
in finite sample sizes. We simulated 1,000 sets of data with
nD = n�D = n = 50, 100, 200, and 400 from the same models
described in Section 4.2. Here we let 8t = −1 and 8z = 2.
Table 3 presents the bias, average of the standard error esti-
mators, the sampling standard error, and the coverage proba-
bility of the 95% confidence intervals for 8t and 8z. The stan-
dard error estimator are reasonably close to the true sampling
standard errors, at least for sample size n ≥ 100. In addition,
for confidence intervals, the empirical coverage probabilities
are close to their nominal counterparts. For a small sample,
n= 50, it appears that the estimated standard errors based on
large-sample approximations tend to be smaller than the sam-
pling standard errors. The bootstrap standard error may be
used instead when the sample size is small.
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Table 3. Bias, Average of the Standard Error Estimator (Ave(ŜE)), Standard Error (SE), and the Coverage
Probability (Coverage) of the 95% Confidence Interval

�t =−1 �z = 2

nD = n�D Bias Ave(ŜE) SE Coverage Bias Ave(ŜE) SE Coverage

50 �101 �256 �316 �914 �245 �604 �828 �908
100 �034 �161 �175 �932 �072 �397 �433 �932
200 �026 �113 �112 �947 �052 �267 �280 �941
400 �014 �078 �078 �945 �010 �183 �186 �945

NOTE: Each entry is based on 1,000 simulation samples.

5. EXAMPLE: EARLY DETECTION OF PROSTATE
CANCER WITH SERUM PROSTATE-SPECIFIC

ANTIGEN LEVELS

PSA levels in serum are used to screen men for prostate
cancer. However, considerable controversy exists as to its
value. A longitudinal case-control study of PSA as a screening
marker for prostate cancer was nested in the Beta-Carotene
and Retinol Efficacy Trial (CARET) (Thornquist et al. 1993),
in an effort to quantify the capacity of PSA for discriminating
men with prostate cancer from those without before the onset
of clinical symptoms.
Briefly, CARET enrolled more than 12,000 men and ran-

domized them to intervention or placebo to prevent lung can-
cer. As part of the protocol for the trial, serum was periodically
drawn and stored from study participants. All 88 subjects who
developed prostate cancer over the course of the trial were
included in the PSA case-control study. Serum samples stored
before diagnosis with cancer were analyzed for PSA. An age-
matched set of 88 control subjects also had their stored serum
samples analyzed for PSA. Etzioni, Pepe, Longton, Hu, and
Goodman (1999) have provided a complete description of the
study design and plots of the data.
Increasing age is associated with increasing serum PSA

level and can potentially affect the discriminatory capacity of
PSA. Thus we used z= age (years) as a covariate in our ROC
model for PSA. In addition, among subjects who develop can-
cer, it is likely that PSA measured closer to the time of onset
of clinical symptoms is more predictive of disease than are
measures taken earlier in time. We included a covariate T ,
defined as the time between the onset of symptoms and the
time at which the serum sample was drawn. We then fit the
following model to the data:

ROCT
 z�u�=��h0�u�+8tT +8zz��

Using our semiparametric approach, the estimate of 8t is
−�120 per year with standard error .041, and the coefficient
for age, 8z, is estimated as −�014 per year of age with stan-
dard error .020. The negative coefficient for T implies that
discrimination improves as T decreases, that is, when PSA
is measured closer to diagnosis. The negative coefficient for
age suggests that discrimination is better in younger men than
in older men, but the evidence is not conclusive (p value =
.484). Figure 2 shows the estimated ROC curves and their 95%
confidence bands at different times for patients who were 60
years old when the serum for measuring PSA was obtained.

Also shown are curves estimated using the parametric binor-
mal model

ROCT
 z�u�=���0+�1�−1�u�+8tT +8zz��
Observe that the curves are similar for the parametric and semi-
parametric methods. The regression coefficients and their esti-
mated standard errors for the parametric method in this example
are almost identical to the semiparametric ones, 8̂t = −�119,
se�8̂t� = �041 and 8̂z = −�014, se�8̂z� = �019. It appears that
the binormal model does fit the data adequately in this exam-
ple and that the semiparametric methods fit the model with effi-
ciency comparable to that of the fully parametric approach.

6. DISCUSSION

This article extends the parametric ROC regression method
of Pepe (1997, 2000a) to a semiparametric approach. The re-
ductions in requirements for model specification and increased
robustness are attractive features. Other approaches to ROC
regression have been proposed. One popular method is to model
the distributions of test results (Tosteson and Begg 1998; Pepe
1998). Covariates whose associations with Y differ in diseased
and non-diseased populations (i.e., interactions with D) induce
effects on the ROC curve. Another approach is to model a
summary measure of the ROC curve and to use derived vari-
ables, estimated summary measures, for fitting regression mod-
els (Thompson and Zucchini 1989; Dorfman, Berbaum, and
Metz 1992). Pepe (1998) contrasted these regression models
with those considered in this article that directly model the ROC
curve itself. Our preference is for this latter approach, primarily
because it directly models the quantities of interest.
Asymptotic distribution theory has been derived. In con-

trast to earlier work (Pepe 1997), the theory allows clustered
data which in practice arises frequently, as evidenced by our
two examples. We proposed a simulation method for making
inference about ROC curves. This technique avoids the need
to derive explicit analytic expressions for variance-covariance
processes, which seem intractable in our setting. Moreover,
relative to other resampling methods such as the bootstrap, the
computational burden is minimal.
The application presented in this article concerns a

biomarker for prostate cancer. We used a probit link function
in our model,

ROCx�u�= g�h0�u�+:x�

where g = �. Other choices of link function might be pre-
ferred. A logistic link allows the interpretation of exp�:� as
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Figure 2. Estimated ROC Curve Using Semiparametric ( ) and Parametric (– – –) Approaches for PSA as a Biomarker of Prostate Cancer
in 60-Year-Old Men. Shown also are 95% Confidence Bands (thin solid lines, semiparametric; shaded regions, parametric) (a) Serum sample
taken at diagnosis; (b) Serum sample taken 2 years before diagnosis; (c) Serum sample taken 4 years before diagnosis; (d) Sample taken 8 years
before diagnosis.

an odds ratio, for example. A log link implies that exp�:�
is the increase in the true-positive rate per unit increase in
x when the false-positive rate is held constant (Pepe 1997).
These interpretations do not depend on the baseline function
h0, and this method now enables inference about � without
specifying a form for h0.

APPENDIX A: PROOF OF THEOREM 1

The strong law of large numbers ensures consistency of �̂ and that
Ŝ−10 �u� converges to S

−1
0 �u� uniformly in u ∈ !a
 b". It follows that

Ŝ−1�D
 z�u�= Ŝ−10 �u�+ ;̂ ′z converges to S−1�D
 z�u� uniformly in u ∈ !a
 b"
and z ∈Dz( = �Z < �Z� ≤ (� for any ( ≥ 0, almost surely, as n→
.
It then follows from the uniform law of large numbers that for any
(≥ 0, 6 > 0, uniformly in u∈ !a
 b" and � ∈D:( = �� < ��−�0�≤(�,

1
nD

nD∑
i=1

Ki∑
k=1
w�Xik
 u�

[
I
{
Yik > Ŝ

−1
�D
Zik �u�

}−g�h0�u�+�′Xik− 6�
]

→ kDE
[
w�X1k
 u��g�h0�u�+�0X1k�−g�h0�u�+�X1k− 6��

]
almost surely as nD → 
 and n�D → 
, where kD is the limit of∑nD
i=1Ki/nD. It follows that for large nD and n�D, u ∈ !a
 b", � ∈ D:(,

and sufficiently large 6,

1
nD

nD∑
i=1

Ki∑
k=1
w�Xik
 u�

[
I
{
Yik > Ŝ

−1
�D
Zik �u�

}−g�h0�u�+�′Xik− 6�
]
> 0

(A.1)

and

1
nD

nD∑
i=1

Ki∑
k=1
w�Xik
 u�

[
I
{
Yik > Ŝ

−1
�D
Zik �u�

}−g�h0�u�+�′Xik+ 6�
]
< 0�

(A.2)

This, coupled with the monotonicity and continuity of g for large nD
and n�D, u ∈ !a
 b", and � ∈ D:(, implies that there exists a unique
ĥ�u-�� such that

1
nD

nD∑
i=1

Ki∑
k=1
w�Xik
 u�

[
I
{
Yik > Ŝ�D
Zik �u�

}−g�ĥ�u-��+�′Xik�
]= 0�

(A.3)

By differentiating both sides of (A.3) with respect to �, we obtain
the identity

− >

>�
ĥ�u-��=�X�u-��
 (A.4)

where

�X�u-��=
∑nD
i=1

∑Ki
k=1w�Xik
 u�ġ�ĥ�u-��+�′Xik�Xik∑nD

i=1
∑Ki
k=1w�Xik
 u�ġ�ĥ�u-��+�′Xik�

� (A.5)

To show the existence and uniqueness of �̂, we let V ��� be the left
side of (5), with h0�u� replaced by ĥ�t
��. It follows from (A.4) that
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1
nD

>
>�
V ���=−�̂���, where

�̂���= 1
nD

nD∑
i=1

Ki∑
k=1

∫ b
a
w�Xik
 u��Xik−�X�u-���⊗2

× ġ�ĥ�u-��+�′Xik� dv̂�u�
 (A.6)

for any vector or matrix b, b⊗0 = 1, b⊗1 = b, and b⊗2 is defined as
bb′. Furthermore, because only when �= �0 do (A.1) and (A.2) hold
for any 6 > 0, we have that ĥ�u-�0�→ h0�u� uniformly in u ∈ !a
 b"
and 1

nD

>
>�
V ��0�→−�, where

�= E
∫ b
a
�Xik−��u-�0��

⊗2aik�u�dv�u�
 (A.7)

aik�u�= w�Xik
 u�ġ�h0�u�+�′
0Xik�
 (A.8)

and ��u-�� is the limit of �X�u-��. It is easy to see that � is positive
definite.
Now, because 1

n
V ��0�→ 0, by the standard inverse function the-

orem there exists a unique solution �̂ to the equation V ��� = 0 in
a neighborhood of �0. This, coupled with the nonnegativity of �̂���
for large n, ensures uniqueness of the root of V ���= 0 in the entire
domain of � asymptotically. The foregoing proof also implies that
�̂ is strongly consistent and that ĥ�u- �̂�→ h0�u� almost surely uni-
formly in u ∈ !a
 b".

APPENDIX B: PROOF OF LEMMA 1

By the standard central limit theorem, n
1
2
�D ��̂ − �0� =

n
− 1

2
�D �−1

�D
2
∑nD+n�D
j=nD+1

∑Kj
l=1Zjl�Yjl −� ′

0Zjl� converges in distribution to
a mean 0 multivariate normal random variable. It follows from the
functional central limit theorem (Pollard 1990) that for any ( > 0,

n
− 1

2
�D

nD+n�D∑
j=nD+1

Kj∑
l=1

[
I�Yjl−� ′Zjl > c�−S0�c+ ��−�0�

′Zjl�
]



�c
;� ∈ !S−10 �b�
 S
−1
0 �a�"×D;(


converges in distribution to a Gaussian process, where D;( = �� <
��−�0�≤(�. It then follows from the equicontinuity (Pollard 1990)
of the foregoing process and the consistency of �̂ that

sup
c∈!S−10 �b�
S−10 �a�"

∣∣∣∣∣n− 1
2

�D

nD+n�D∑
j=nD+1

Kj∑
l=1

[
I�Yjl−�̂ ′Zjl >c�

−S0�c+��̂−�0�
′Zjl�

]
−n− 1

2
�D

nD+n�D∑
j=nD+1

Kj∑
l=1
�I�Yjl−� ′

0Zjl >c�−S0�c��
∣∣∣∣∣→0 (B.1)

in probability. This implies that

n
1
2
�D
{
Ŝ0�c�−S0�c�

}≈ n
1
2
�D
N�D

nD+n�D∑
j=nD+1

Kj∑
l=1

[
I�Yjl−�0

′Zjl > c�−S0�c�

+S0�c+ ��̂−�0�
′Zjl�−S0�c�

]
≈ n

1
2
�D
N�D

nD+n�D∑
j=nD+1

Kj∑
l=1

{
I�Yjl−�0

′Zjl > c�−S0�c�

+ Ṡ0�c�
(
�′

�D
1�
−1
�D
2Zjl

)
�Yjl−� ′

0Zjl�
}
�

From the functional central limit theorem, we see that n
1
2
�D�Ŝ0�c�−

S0�c�� converges in distribution to a mean 0 Gaussian process. It then
follows from a Taylor series expansion and the stochastic equiconti-

nuity of n
1
2
�D�Ŝ0�c�−S0�c�� that

n
1
2
�D
[
S�D
 z

{
Ŝ−1�D
 z�u�

}−u]≈ n 1
2
�D
[
S0
{
Ŝ−10 �u�

}−u]
+n 1

2
�D Ṡ0�Ŝ

−1
0 �u����̂−�0�

′z≈ �̃�u
 z�


where

�̃�u
 z�=− n
1
2
�D
N�D

nD+n�D∑
j=nD+1

Kj∑
l=1

[
I
{
Yjl−�0

′Zjl > S
−1
0 �u�

}−u
+ Ṡ0�S−10 �u��

{
���D
1− z�′�−1

�D
2Zjl
}
�Yjl−� ′

0Zjl�
]
�

The functional central limit theorem implies that �̃�u
 z� converges in

distribution to a Gaussian process and hence that n
1
2
�D�S�D
 z�Ŝ

−1
�D
 z�u��−

u� converges in distribution to a Gaussian process.

APPENDIX C: PROOF OF THEOREM 2

By the consistency of �̂ and a Taylor series expansion of V ��̂�
around �0, we obtain

n
1
2
D ��̂−�0�≈ �̂−1��0�n

− 1
2

D V ��0�� (C.1)

Note that

n
− 1

2
D V ��0�≈ n−

1
2

D

nD∑
i=1

Ki∑
k=1

∫ b
a

[
w�Xik
 u�Xikêik�u�

+Xik�ĥ�u
�0�−h0�u��aik�u�
]
dv�u�


where êik�u�= I�Yik > Ŝ−1�D
Zik �u��−g�h0�u�+�′
0Xik�. Using a Taylor

series expansion of ĥ�u-�0� around h0�u�,

n
− 1

2
D V ��0�≈ n−

1
2

D

nD∑
i=1

Ki∑
k=1

∫ b
a
w�Xik
 u�

{
Xik−

∑nD
@=1

∑K@
A=1 a@A�u�X@A∑nD

@=1
∑K@
A=1 a@A�u�

}
× êik�u�dv�u��

It follows from a Taylor series expansion and (B.1) that

n
− 1

2
D

nD∑
i=1

Ki∑
k=1
w�Xik
 u�êik�u�≈ n−

1
2

D

nD∑
i=1

Ki∑
k=1
w�Xik
 u�eik�u�

+p 1
2
10n

−1
D

nD∑
i=1

Ki∑
k=1
aik�u�ḣ0�u��̃�u
Zik�


where p10 = nD/n�D. This, coupled with the uniform convergence

of �X�u-�0� and the weak convergence of n
1
2
D�S�D
 z�Ŝ

−1
�D
 z�u��− u�,

ensures that

n
− 1

2
D V ��0�≈ n−

1
2

D

nD∑
i=1
Ui��0�+ p̂

1
2
10n

−1
D

nD∑
i=1

Ki∑
k=1

∫ b
a
�Xik−��u-�0��

×aik�u�ḣ0�u��̃�u
Zik� dv�u��
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Because supu∈!a
b"
∣∣n−1D ∑nD

i=1
∑Ki
k=1�Xik−��u-�0��aik�u�

∣∣→ 0 almost
surely, we have

p̂
1
2
10n

−1
D

nD∑
i=1

Ki∑
k=1

∫ b
a
�Xik−��u-�0��aik�u�ḣ0�u��̃�u
Zik� dv�u�

≈ n− 1
2

D

nD+n�D∑
j=nD+1

Uj��0��

It follows from the almost sure convergence of �̂��0�→� that

n
1
2
D ��̂−�0�≈ n−

1
2

D �−1
{
nD∑
i=1
Ui��0�+

nD+n�D∑
j=nD+1

Uj��0�

}



From the central limit theorem, we see that the distribution of
n

1
2
D ��̂−�0� can be approximated by a normal vector with mean 0
and covariance matrix

n−1D �−1
{
nD∑
i=1
Ui��0�Ui��0�

′ +
nD+n�D∑
j=nD+1

Uj��0�Uj��0�
′
}
�−1�

APPENDIX D: PROOF OF THEOREM 3

Note that Q�u-x� = n 1
2
D ��̂− �0�

′x+ n 1
2
D�ĥ�u- �̂�− h0�u��. By a

Taylor series expansion of ĥ�u- �̂� around �0, we obtain

n
1
2
D�ĥ�u- �̂�−h0�u��

≈−��u-�0�
′�−1n

− 1
2

D V ��0�+n
1
2
D�ĥ�u-�0�−h0�u���

Furthermore, by expanding the estimating function in (4), evaluated
at ��0
 ĥ�u-�0��, around h0�u�, it follows that

Q�u-x�≈ �x−��u-�0��
′�−1n

− 1
2

D V ��0�+n
1
2
D�ĥ�u-�0�−h0�u��

≈ �x−��u-�0��
′�−1n

− 1
2

D V ��0�+
n
− 1

2
D

a�u�

×
nD∑
i=1

Ki∑
k=1

{
w�Xik
 u�eik�u�+n−

1
2

�D aik�u�ḣ0�u��̃�u
Zik�
}
�

Therefore, Q�u-x� has the same asymptotic distribution as

Q̃�u-x�= n− 1
2

D

{
nD∑
i=1
Q̃i�u-x�+

nD+n�D∑
j=nD+1

Q̃j�u-x�

}
�

To show that Q̃�u-x� converges weakly to a zero-mean Gaussian
process, let

Q1 = n−
1
2

D

{
nD∑
i=1
Ui��0�+

nD+n�D∑
j=nD+1

Uj��0�

}



Q2�u�= n−
1
2

D

nD∑
i=1

Ki∑
k=1
w�Xik
 u�eik�u�


and

Q3�u�=− n
1
2
D

N�D

nD+n�D∑
j=nD+1

Kj∑
l=1

[
I
{
Yjl−�0

′Zjl > S
−1
0 �u�

}−u
+ az�u�

′

a�u�
�−1

�D
2Zjl�Yjl−� ′
0Zjl�Ṡ0�S

−1
0 �u��

]
�

Then Q̃�u-x� = �x−��u-�0��
′�−1Q1+Q2�u�/a�u�+ ḣ0�u�Q3�u�.

It is straightforward to show that for any finite number of points
�u1
 � � � 
 um1

�, the joint distribution of �Q̃�uk-x�
 k= 1
 � � � 
m1�
′ is

asymptotically normal with mean 0. To prove that Q̃�u-x� is tight
(Billingsley 1986), because �x−��u-�0��

′�−1 and a�u� and ḣ0�u�
are nonrandom functions, it is sufficient to show that Q1, Q2�u�, and
Q3�u� are tight. Now because Q1 does not involve u, Q1 is tight. The
tightness of Q2�u� follows from some basic properties of empirical
processes (Shorack and Wellner 1986, p. 109). The functional central
limit theorem implies the weak convergence of �̃�u
 z� and hence
the tightness of Q3�u�. The finite-dimensional convergence and tight-
ness of Q̃�u-x� imply that Q̃�u-x� converges to a mean 0 Gaussian
process.

[Received April 2001. Revised March 2002.]
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