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SUMMARY

There are numerous statistical methods for quantitative trait linkage analysis in human studies.
An ideal such method would have high power to detect genetic loci contributing to the trait,
would be robust to non-normality in the phenotype distribution, would be appropriate for general
pedigrees, would allow the incorporation of environmental covariates, and would be appropriate
in the presence of selective sampling. We recently described a general framework for quantitative
trait linkage analysis, based on generalized estimating equations, for which many current methods
are special cases. This procedure is appropriate for general pedigrees and easily accommodates
environmental covariates. In this paper, we use computer simulations to investigate the power and
robustness of a variety of linkage test statistics built upon our general framework. We also
propose two novel test statistics which take account of higher moments of the phenotype
distribution, in order to accommodate non-normality. These new linkage tests are shown to have
high power and to be robust to non-normality. While we have not yet examined the performance
of our procedures in the context of selective sampling via computer simulations, the proposed

tests satisfy all of the other qualities of an ideal quantitative trait linkage analysis method.
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INTRODUCTION

Many human disease phenotypes are inherently quantitative (e.g., hypertension). Others are
generally viewed as dichotomous (e.g., diabetes) but are closely associated with intermediate
guantitative phenotypes (e.g., glucose tolerance). Numerous statistical methods have been
developed for linkage analysis of quantitative traits in human studies (reviewed in Feingold 2001,
2002). Haseman-Elston regression (Haseman and Elston 1972) was one of the first such methods
and remains widely used. In this approach, the squared differences between the quantitative
phenotypes in sibling pairs are regressed upon the estimated proportion of alleles that they share
identical by descent (IBD). A statistically significant negative slope in the regression indicates
linkage to a quantitative trait locus (QTL). Based on an observation by Wright (1997), a number
of extensions to Haseman-Elston regression, which extract additional information from the
sibling pairs’ phenotypes, have been proposed (Drigalenko 1998; Elston et al. 2000; Xu et al.
2000; Forrest 2001; Sham and Purcell 2001). Haseman-Elston regression has also been extended
for use with larger sibships (Olson and Wijsman 1993).

A second approach for quantitative trait linkage analysis in human pedigrees involves the use
of variance components models (Amos 1994, Almasy and Blangero 1998). The quantitative
phenotypes for the individuals in a pedigree are assumed to follow a multivariate normal
distribution, with the correlation between relatives’ phenotypes depending on the proportion of
alleles IBD at a putative QTL. The variance components approach has been shown to have
essentially optimal power in the case that the normal model is correct (Feingold 2001), but is not
robust to departures from normality: when the normal model is not correct, the type | error rate

for the test of linkage can be greatly inflated (Allison et al. 1999).
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A third approach involves the use of score tests (Tang and Siegmund 2001, Putter et al. 2002,
Wang and Huang 2002a). Such score tests have the advantage that, while they are based on a
normal model, they can be made robust to departures from normality. Finally, Sham et al. (2002)
described a regression-based approach in which the roles of the phenotype and IBD status are
interchanged: IBD status is regressed upon the quantitative phenotype. This approach has been
shown to be both powerful and robust.

Chen et al. (in press) described a general framework for quantitative trait linkage analysis in
human pedigrees, for which many of the above approaches are special cases. The framework
makes use of generalized estimating equations (GEE; Liang and Zeger 1986), in which one must
specify a working covariance matrix. Different choices of this working covariance matrix lead to
different methods, and, in particular, one may specify working covariance matrices so that this
GEE method is identical to Haseman-Elston regression, certain extensions to Haseman-Elston
regression (including those of Sham and Purcell (2001) and Olson and Wijsman (1993)), and the
variance components approach. Under the GEE framework one obtains estimates of the various
genetic parameters, with different choices of the working covariance matrix leading to different
estimates. There is additional flexibility in the choice of linkage test statistic.

Cuenco et al. (2003) and Szatkiewicz et al. (2003) used computer simulations to investigate
the relative performance, in terms of power and robustness, of essentially all available approaches
for quantitative trait linkage analysis in sibling pairs, with particular emphasis on the case of
selected samples. In this paper, we extend their research to investigate a variety of approaches for
guantitative trait linkage analysis in sibships and extended pedigrees, though we focus exclusively

on the case of random ascertainment. We make use of the general GEE framework of Chen et al.
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(in press), and investigate the power and robustness of a wide variety of test statistics, including
the likelihood ratio test, Wald tests, score tests, and robust versions of these statistics.

In addition, we propose two additional test statistics which take account of the higher
moments (skewness and kurtosis) of the phenotype distribution, in order to accommodate
non-normality. These new linkage tests are shown to be robust to non-normality but maintain the

power of the variance components method.
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METHODS

Chen et al. (in press) described a general framework for quantitative trait linkage analysis in
general pedigrees which makes use of generalized estimating equations (GEE) and for which
many of the current quantitative trait linkage methods are special cases, corresponding to different
choices for a working covariance matrix. The approach has considerable flexibility, both in the
choice of working covariance matrix and in the ultimate choice of test statistic. In this section, we
describe a variety of linkage tests based on this general framework. In the following section, we
present the results of computer simulations to investigate the power and robustness of these
statistics.

Consider a set of general pedigrees with no inbreeding, ang;ldenote the quantitative
phenotype for théth individual in thekth pedigree. Le®,;; andA;;; denote the kinship and
fraternity coefficients, respectively, for individualand; in pedigreet, and letr,;; andsy;;
denote their expected proportion of alleles shared IBD and the probability that they share 2 alleles
IBD, respectively, at a putative QTL, given multipoint marker data.d4’sando? denote the
additive and dominance variance, respectively, due to a putative QTL, anfj let,;, o ando?
denote the additive polygenic variance, dominance polygenic variance, shared environmental
variance and non-shared residual environmental variance, respectively. Define
pa = (07 +00,)/20%, pa = (0] + 024)/40?, andp, = o2 /o*. Note thatp, + p, is the phenotypic
correlation for parent-child pairs, and + p; + ps is the phenotypic correlation for sibling pairs.

While our general GEE method allows the easy incorporation of environmental covariates, we
will focus here on the simple case of no covariates, and we further assume that the population

mean phenotype is known. Without loss of generality, we assumg)E= E(yx:| M ;) = 0,
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whereM ,; denotes the available multipoint marker data for individualpedigreek. The

covariance of the phenotypes for individuabend; in pedigreek is

o? 1=
Qo =
kij —

(4®pijpa + 40 kijpa + ps)o® i F
The covariance of the phenotypes for individuadsd; in pedigreet, conditioned on the

available marker data, is

o? i=3
Qrij =

02 (Thij — 2®hij) + 03 (Rrij — Drig) + Qy; 147

The parameters used are linkage parameteendc?, and segregation parameters py, ps, o>
This parameterization is equivalent to the more commonly used parameters
{02,03,00,,02,02%, 02}, but results in somewhat simplified calculations. In the case of data
exclusively on sibships., p4, andp, cannot be separately estimated, and so we consider the
reduced parameter set?, o2, p, o?).

In the GEE method of Chen et al. (in press), one considers, for pedigtke vector
Sy = ( yh (Y2 — 02 Veclyuyl — Q) )/, where Ve€A) is a vector consisting of the upper

off-diagonal elements of a matri%, and a matrix,D;, whose columns consist of the derivatives
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of Sy with respect to each of the parameters, as follows:

Dy = 0 0 0 0 0 1

T — 201 R — Ap 40’2(I>k 40‘2Ak o? 4p, P + 4pdAk + Ps

Here thery, ki, i, Ay are vectors of length(n, — 1)/2, and the Os and 1s in the first two rows
are vectors of length,. One then chooses a working covariance matifiy,(that is, an assumed

form for the conditional covariance matrix 6f), and takes as parameter estimates the solutions

of the equations
> DIW'S = 0 1)
k

Different choices of the working covariance matni¥;,, lead to different estimates. In

particular, one may choose the following Gaussian working covariance matrix (Prentice and Zhao

1991):

Q. 0 0
G, = 0 2Q7,] (2% 2kim)

0 [QQkuijvj] [kaulezvm + Qkqukvl]

forl1 <i,j<ng1<u<v<ngandl <[ < m < ng, wheren, is the number of individuals in

pedigreek, and[29;, ;] denotes a matrix consisting of eleme2¥ .. This is the conditional

covariance matrix of}, if ¥, given the available marker data is assumed to follow a multivariate
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normal distribution. Whertr,, is used as the working covariance matfii,, in the estimating
equations (1), then the GEE estimates correspond exactly to the maximum likelihood estimates
(MLESs) for the variance components model with the usual normality assumption.

The GEE method, as described so far, provides estimates of the parameters
(02,02, pa, pa, Ps, o2). In the remainder of this section, we describe a number of possible linkage

a’

test statistics, including likelihood ratio tests, Wald tests, and score tests.

Likelihood ratio tests

In the traditional variance components model (Amos 1994; Almasy and Blangero 1998), the
trait values of pedigreg, conditional on the marker data, are assumed to follow a multivariate
normal distribution with covariance matriy; (defined above). The test statistic for the likelihood

ratio test is

TR = Y O+ ) e — Y I = D e @
k k k k

where(), and)) are the MLESs of the covariance matrix under the full model and under the null
model, respectively.

In previous investigations (e.g., Almasy and Blangero 1998), the putative QTL was assumed
to exhibit no dominance (i.es? = 0). The null distribution of the likelihood ratio test statistic is
then asymptotically a 50:50 mixture of@(0) (that is, a point mass at 0) and¢&(1) distribution
(Self and Liang 1987). If dominance is considered in forming the test statistic, which we will
denotel™R P, the null distributionis d /2 — p : 1/2 : p mixture of x?(0), x*(1) andx?(2) (Self

and Liang 1987). In Appendix A, we describe a general procedure for calculating the mixing
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proportion,p, which had not previously been determined (Pratt et al. 2000). For sibship data, the
null distribution is around.4 : 0.5 : 0.1 mixture of x%(0), x*(1) andx?(2), independent of the
size of the sibship.

Use of the likelihood ratio test statistic has previously been shown to exhibit an inflated type |
error rate in the case that the multivariate normal model is incorrect (Allison et al. 1999). This
problem may be corrected by estimating the true null distribution of the statistic either through an
analytical approach (e.g., Blangero et al. 2000) or an empirical approach such as a Monte Carlo or
permutation procedure. In the simulation study in the next section, we consider the following
Monte Carlo procedure. We fix the genotypes for all founding individuals in each pedigree and
generate random inheritance vectors for the remaining individuals in each pedigree, calculate the
likelihood ratio test statistic, and repeat the process multiple times. The null distribution of the
test statistic is estimated based on these simulated data; in particular, an appropriate critical value
for the statistic is estimated. This procedure is denoted either LR-MC or LR-MC-D, depending on

whether dominance is considered.

Wald tests

Due to the complexity of taking appropriate account of the dominance effect in the Wald and
score tests, all of the remaining linkage tests assume that the putative QTL acts strictly additively,
and the parameter set is reduceddd, p., pa, ps, o*) for general pedigrees @2, p, o) for

sibships. We will discuss the influence of ignoring the dominance effect in the simulation section.
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11
The test statistic for the Wald test is

~4

TWaId — Oq ) (3)
{(Z D6 o

11

where the 11 subscript indicates to take the (1,1) element of the matrix.

A robust Wald test (Liang and Zeger 1986) has test statistic

TWald-R _

(4)

{(Z4 DL D) SUDLGE S)(DLGE 1) (50, DG D)

Under the null hypothesis of no linkage, both Wald tests are distributed asymptotically as a 50:50

mixture of x2(0) andx?(1).

Score tests

Putter et al. (2002) described the theory of score test for quantitative trait linkage analysis.
Wang and Huang (2002a) proposed a robust score test specifically for sibships. We first

summarize these previously-described score tests.

, /
Define D¢ = ( 0 0 7} — 2% ) Sk = ( Yi (i — o) Veclyyi — B ) and

QY 0 0

Gh = | 0o @

kij

)] 2% L]

0 [29211]921)]] [qulggvm + qumggvl]
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forl <i,7<ng1<u<v<ngandl <[ < m < ny. The test statistic for the score test is

Tscore (Zk DZ,<G2:>_1S/(3)2

= _ 5
>, DY) D} ©

A more robust version of the score test is the following:
Tscore-R — (Zk Dg/(Gg)_ISlg)Q ) (6)

2 k(DR (GR)H50)?

The test proposed by Sham et al. (2002) and implemented in the software MERLIN (Abecasis et
al. 2002) has been shown to be equivalent to another robust score test (Chen et al. in press),

corresponding to the statistic

al (10\—1 Q0\2
TMERLIN - _ (Zk Dk (sz) Sk) (7)
0 O
Sefsrent| o [ 6ns
0 Eﬁk

where the elements in the covariance maltjx have the form

CoV(Tyis, Thim) — (E[TkijTrim| Mk] — ThijTrim ), Where CoVmy,;, mm) Can be calculated given
only the structure of théth pedigree, an& |7, | M}] can be calculated based on the
posterior distribution conditional on marker informatidf,.

Wang and Huang (2002a) described a robust score test specific for sibship data; their statistic
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can be rewritten in matrix form (see Appendix B) as

Tscore-S — (Zk Dg/(Gg)_ISlg)Q (8)
- 0 0
(.. =20 )2 x 3, | SP(G)™ (GRS
0 I

ng(ng—1

5 ) The robustness of this test relies on the

wherel is an identity matrix of siz@“(";_l) X
independence of allele-sharing between different sibling pairs, and so it is generally not
applicable for pedigrees of more complex structure (Wang 2002). Wang and Huang (2002a)
described a further approach, in which the phenotypes are converted to ranks which are then
transformed to follow a normal distribution; a robust score test (e.g. score-S used by Wang and
Huang 2002a) can then be applied on the transformed data.

Note that, under the null hypothesis of no linkage, all of the score test statistics are distributed

as a 50:50 mixture of?(0) andy?(1).

Higher moment score tests

The above score tests are derived from the conditional likelihood under the assumption of
normality. The only difference among them is in the method for estimating the variance of the
score (the denominator in the statistic). Here we propose an alternative approach: novel score
tests based on a quasi-likelihood that incorporates information on the higher moments of the

phenotype distribution.
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Rather than using the Gaussian working covariance maflxyve use the following:

Q0 4503 T 0
M= 0"l () + 30" ] (200 ©)
0 [29211]9211]] [qulﬂgvm + qumggvl]

wherel! is an identity matrix of size,;, x ny, andy; andy, are empirical moment estimates for
skewness and kurtosis parameters of the distribution of each phenotype, respectively, which are
both O for the case of a normal distribution. To be more specific, défire (Y — Y)2, where

overline represents the sample mean, then

G- V=T

I o ST

We consider two different test statistics based on the working covariance nidftix;he first

is a score statistic analogous to the statit¢€in equation (5):

THM _ (Zk DZ/(]\A{S)_ISIE))2 (10)
> DY (M) Dy

We can also apply the MERLIN-type robust estimator for the variance of the estimating function,
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to make the higher moment approach even more robust

~ ~ N\ 2
(0 Dy () 15¢)
= . (11)
N 0 0 . .
> | SY ) (M)~ 5

0 i

THM-R

k
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COMPUTER SIMULATIONS

In order to investigate the power and robustness of the linkage methods described in the
previous section, we conducted a computer simulation study. While the methods may
accommodate pedigrees of varying size and structure, we considered the simple case that all
pedigrees in a study were of the same structure: either sibling pairs, sibships of size four, sibships
of size six, or the three-generation cousin pedigree with 10 individuals investigated by Sham et al.
(2002) and displayed in Figure 1.

A quantitative phenotype was simulated with a single major, diallelic QTL, with minor allele
frequency 0.3 and explaining 10% of the total phenotypic variance, plus 10 additive, unlinked
diallelic polygenes. The alleles at the QTL either acted additively, or the more-frequent allele was
fully recessive. In the simulations of sibships, the polygenes accounted for 30% of the total
phenotypic variance, and there was an additional shared environment effect accounting for 20%
of the phenotypic variance. In the simulations with the cousin pedigree, the polygenes accounted
for 50% of the total phenotypic variance and there was no shared environment effect. The
remaining phenotypic variation was due to an unshared environment effect that was either
normally distributed or followed &?(1) distribution.

A single marker was simulated to be either completely linked to the QTL (recombination
fraction,#=0) or unlinked ¢=0.5). For most simulations, the marker was fully informative,
though in one set of simulations, with sibships of size four, the marker had four equally frequent
alleles.

The number of families were chosen so that, analytically, the variance components method

would have 80% power to detect the QTL. There were either 2999 sibling pairs, 440 sibships of
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size four, 168 sibships of size six, or 387 cousin pedigrees. All simulations were performed with
5000 replicates, so that the results have standard erfo007.

The simulation results are presented in Tables 1-5. The methods studied include the
likelihood ratio test (LRT, LRT-D), the likelihood ratio test with 100 Monte Carlo simulations
used to determine the appropriate critical value (LR-MC, LR-MC-D), the Wald test (Wald), a
robustified Wald test (Wald-R), the score test (score), a robust score test (score-R), the robust
score test for sibships (score-S; Wang and Huang 2002a), the method implemented in
MERLIN-REGRESS (MERLIN; Sham et al. 2002), our higher moment approach (HM) and a
robust version of the higher moment approach (HM-R).

Table 1 corresponds to the case of a normal model with the alleles at the major QTL acting
additively and with a fully informative marker. All methods are seen to have appropriate type |
error rate, though the robust score test (score-R) is somewhat conservative in the case of a smaller
number of larger sibships. All methods have similar power, though the Wald tests and the robust
score test have somewhat lower power, especially for sibships of size six. Note that the robust
score test of Wang and Huang (2002a) is appropriate only for sibships, and so was not
investigated for the case of the cousin pedigree. The LR-MC method also has somewhat reduced
power, which may be due to the quite limited number of simulations used to estimate the critical
value. The allowance for dominance in the likelihood ratio test (LR-D and LR-MC-D) gave
slightly reduced power in the case of no dominance, but the type | error rate remained correct.

Table 2 corresponds to the case that the unshared environment effect follqWed a
distribution. Here the likelihood ratio, Wald, and score tests are all seen to have inflated type |

error rates (as high as 0.1), and so the power of these methods was not investigated further. The
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robust tests were generally seen to have type | error under control, though the robust Wald test
appears to have an inflated type | error rate in the case of sibling pairs, and the robust score test
was again seen to be conservative for the case of a small number of larger sibships. The power of
the two higher moment approaches are seen to be higher than the other methods in this
non-normal situation, the other approaches all having approximately the same power.

Tables 3 and 4 are analogous to Tables 1 and 2, though with the more-frequent allele at the
QTL being fully recessive. The Wald tests had very poor performance and so were not shown in
tables. Only the likelihood ratio test takes account of the non-additivity at the QTL, and it is seen
to have somewhat higher power than other methods under the normal model (Table 3). For the
likelihood ratio test LRT-D and LR-MC-D, the gain of the power by taking account of the
non-additivity is much larger than the loss of power for the case of no dominance shown in
Table 1. In the case of a non-normal model (Table 4), the likelihood ratio and score tests again
have inflated type | error. The robust versions of the test statistics (including the use of Monte
Carlo simulation to identify an appropriate critical value for the likelihood ratio test) have
appropriate type | error rates; among these, the higher moment approaches are again seen to have
greatest power.

Table 5 displays the results for the case that the marker is not fully informative (having four
equally frequent alleles) and for 440 sibships of size four. The results are similar to those seen in
Tables 1-4. In particular, our higher moment approach is seen to be both robust and powerful.

Figure 2 contains the results of further simulations to investigate the effect of the QTL allele
frequency on power in the case of non-normality with the more-frequent QTL allele being fully

recessive, and for 440 sibships of size four. Here we include results for the transformation
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procedure proposed by Wang and Huang (2002a) and denoted NORM. Figure 2A corresponds to
the case that the environment effect followg?d1) distribution, analogous to Table 4, while

Figure 2B corresponds to the case that the environment effect follo¢s distribution. Use of

the transformation performs extremely well in the case that the QTL alleles are approximately
equally frequent, but performs poorly in the case that the dominant allele has frequ@0€g.

Note Wang and Huang (2002a) showed this transformation approach reduces the power of the
score test when the trait values are approximately normally distributed and the alleles at the major
QTL act non-additively. Special attentions should be paid when this empirical approach is

applied.
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DISCUSSION

Chen et al. (in press) described a general framework for quantitative trait linkage analysis,
based on generalized estimating equations (GEE), for which many current methods are special
cases. The method has considerable flexibility, both in the choice of working covariance matrix
and in the choice of test statistic. In this paper, we have expanded upon that work: we proposed
two novel higher moment statistics and investigated, through computer simulations, the power
and robustness of these new methods relative to previously described approaches, including the
variance components method (Amos 1994; Almasy and Blangero 1998), the score test proposed
by Wang and Huang (2002a), and the method implemented in MERLIN-REGRESS (Sham et al.
2002).

The computer simulations described here were conducted using computer software that we
developed, LinkageExplorer (LE). This program is able to simulate general pedigrees and
multipoint marker data, perform all of the linkage tests described in this paper, and provide
analytical sample size calculations (unpublished data). As part of our testing of this software, we
compared the results, for simulated data, from our software with those from GeneHunter (Pratt et
al. 2000), SOLAR (Almasy and Blangero 1998), and MERLIN-REGRESS (Sham et al. 2002).
The likelihood ratio test implemented in LinkageExplorer has similar results to GeneHunter and
SOLAR in the case that the QTL alleles acted additively; our implementation of the method of
Sham et al. (2002) gave results identical to those of MERLIN-REGRESS.

As has been shown previously (Feingold 1999), the variance components approach has high
power in the case that the normal model is correct, but has greatly inflated type | error rates in the

case of a non-normal phenotype. Several robust approaches are found to have similar power and
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robustness. Further simulations (data not shown) showed that while Haseman-Elston regression
(Haseman and Elston 1972) and its derivatives have proper type | error rate, they have much
lower power. Our higher moment approaches have power similar to the variance components
method in the case that the normal model is correct and have a properly controlled type | error
rate in the case that the normal model is not correct. Further, in the case that the normal model is
not correct, the higher moment approaches are the most powerful methods investigated here.

The method of Sham et al. (2002), implemented in MERLIN-REGRESS, with segregation
parameters specified as MLEs of the unconditional likelihood of phenotypes, also performed
extremely well. By using samples selected from normally distributed population, Sham et al.
(2002) showed their approach is robust to selective sampling, as long as one can correctly specify
the segregation parameters in the random population. This robustness also applies to the higher
moment approach HM-R. To see this property, note that with higher momeatsl~, being
estimated as 0 in the random population, HM-R is equivalent to Sham et al.’s approach. The
practical performance of our higher moment approaches in the context of selective sampling
deserves further investigation.

It should be noted that Amos et al. (1996) also proposed a quantitative trait linkage analysis
that made use of higher moments of the phenotype distribution, but their approach was based on a
Wald test, and they found it did not perform well. In addition, Blangero et al. (2000) made use of
higher moments of the phenotype distribution in order to correct the type | error rate of the
variance components method, but did not consideration a modification of the test statistic itself.

An ideal method for quantitative trait linkage analysis in human studies would have high

power to detect a QTL, would be robust to departures from normality (i.e., it would maintain the
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appropriate type | error rate yet maintain reasonable power to detect a QTL), would be applicable
for general pedigrees rather than simply sibling pairs, could incorporate information from
environmental and other covariates, and would be appropriate in the presence of selective
sampling (e.g., the selection of discordant sibling pairs). While we not yet examined the
performance of our proposed procedures in the context of selective sampling via computer
simulations, the higher moment score tests, implemented within the GEE framework of Chen et

al. (in press), satisfy all of the other qualities of an ideal quantitative trait linkage analysis method.

ACKNOWLEDGMENTS

This work was supported by National Institutes of Health grant GM49909.

Electronic Database | nfor mation

The URL for computer program LinkageExplorer is

http://www.biostat.jhsph.edu/"wmchen/le.html

http://biostats.bepress.com/jhubiostat/paper28



23

APPENDIX A

Self and Liang (1987) showed for the situation when 2 parameters of interest are on the
boundary of the parameter space, the asymptotic distribution for the likelihood ratio test statistic

isai —p: 3 :pmixture of x?(0), x*(1), andx?(2) , where

p = icos_l e
2 \/111]227

and/,y, I», I>; are elements of the information matrix. Now we show how to apply this theory to
obtain the null distribution of the likelihood ratio test of the variance components analysis when
the dominance effect is considered.

In a variance components model, suppose a matiras(u : v, [ : m) element
() om + (2 um (51w, WhereQy is the covariance matrix under the null hypothesis

of no linkage. Then the information is

IH = (ﬂ' — 2(I)>/B(7T — 2(1))
112 = (Ii — A)/B(’TF — 2(1))

]22 = (K—A)/B(H—A)

Therefore, for a general pedigree, we have the following formula to calculate the mixing

probabilities

1 BIQs il (k — A)YB(m — 20)
frch Ase V(m —20YB(r — 2®) x (5 — AYB(r — A) (12)
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For sibship data, since Cow;, m;,,,| = CoVik;;, ki) = 0 Wheni = [ or j # m, the B matrix can

be canceled out, and thus (12) can be further simplified as

1 iy Bl(my = 1/2) (kg — 1/4)
@K] Bl(m; = 1/2) e El(sig — 1/4))

The critical value corresponding to the 0.05 nominal levél487. When the marker has two

alleles with equal frequency, following a procedure similar to Wang and Huang (2002b), we have
p = 0.083 and critical value becomes 3.32. In a multipoint linkage analysis, markers tend to be
much more informative. Therefore0at : 0.5 : 0.1 mixture of x?(0), x*(1), andx?(2) is a

reasonable approximation for the null distribution of likelihood ratio test for sibship data.
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APPENDIX B

Supposev;, = ;.Y andb, = ZKj[erj — E(7yij) | [wriwr; — E(wrkiwy;)]. Under the null

hypothesis, the variance estimate Jof, by is (7. — E(%..))% x 32, >~ (wrkiwr; — E(wriwi;))?.
Then the test statistic proposed by Wang and Huang (20028) is )2/Var (> b ) is identical to

statistic (8) following the next two equalities:

Z DY(G)LSY
= Z SN lwig — EGrrin) (@5 a5 Y lyd — Ed))

k i<y 1
+ Z Z Z Trij — EGri) (D ( QD jm + (i (1) 0) [Vki¥km — E(Yrivem)]

k i<jl<m

= D> [niy — E(ap) 2 YY)y — E(Q Y, i)l
k i<j

- Z Z Trij — E(frij)] [(wrwy)ij — E((wpwy)is)]

k i<y

= Z Z szg 771%] wkiwkj - E(wkiwkj)]>

k i<y

and similarly

(’ﬁ' — E(7AT Z Z wklwkj — E wk,wkj))

1<j
0 0
__ G W) XZZ SY( (G715
<j 0 I
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Table 5: sizeand power using 440 sib quads and a marker having 4 equally-frequent alleles

model LRT LR-MC score-R score-S MERLIN HM HM-R

0 =0.5
N/add .053  .053 .046 .054 .054 .057 .055
N/rec .052  .047 .045 .054 .055 .058 .057
x*/add .076  .045 .039 .050 .050 .057 .055
X’lrec .083  .049 .041 .052 .053 .056 .053
0=0
N/add .673  .651 .644 .678 .676 .680 .674
N/rec .667  .642 591 .629 .630 .635 .627
x*/add N/A 555 .562 578 579 .647 .645
X’lrec  N/A 549 .519 .548 .551 .613 .603
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FIGURE LEGEND

Figure 1: The first-cousin pedigree considered in the simulation study.

Figure 2: Power for 440 sibships of size 4, for five different linkage analysis methods. A. Power
as a function of the frequency of the dominant allele when the unshared environmental effect
follows ax?(1) distribution. B. Power as a function of the frequency of the dominant allele

when the unshared environmental effect follo\is) distribution.
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