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SUMMARY

There are numerous statistical methods for quantitative trait linkage analysis in human studies.

An ideal such method would have high power to detect genetic loci contributing to the trait,

would be robust to non-normality in the phenotype distribution, would be appropriate for general

pedigrees, would allow the incorporation of environmental covariates, and would be appropriate

in the presence of selective sampling. We recently described a general framework for quantitative

trait linkage analysis, based on generalized estimating equations, for which many current methods

are special cases. This procedure is appropriate for general pedigrees and easily accommodates

environmental covariates. In this paper, we use computer simulations to investigate the power and

robustness of a variety of linkage test statistics built upon our general framework. We also

propose two novel test statistics which take account of higher moments of the phenotype

distribution, in order to accommodate non-normality. These new linkage tests are shown to have

high power and to be robust to non-normality. While we have not yet examined the performance

of our procedures in the context of selective sampling via computer simulations, the proposed

tests satisfy all of the other qualities of an ideal quantitative trait linkage analysis method.
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INTRODUCTION

Many human disease phenotypes are inherently quantitative (e.g., hypertension). Others are

generally viewed as dichotomous (e.g., diabetes) but are closely associated with intermediate

quantitative phenotypes (e.g., glucose tolerance). Numerous statistical methods have been

developed for linkage analysis of quantitative traits in human studies (reviewed in Feingold 2001,

2002). Haseman-Elston regression (Haseman and Elston 1972) was one of the first such methods

and remains widely used. In this approach, the squared differences between the quantitative

phenotypes in sibling pairs are regressed upon the estimated proportion of alleles that they share

identical by descent (IBD). A statistically significant negative slope in the regression indicates

linkage to a quantitative trait locus (QTL). Based on an observation by Wright (1997), a number

of extensions to Haseman-Elston regression, which extract additional information from the

sibling pairs’ phenotypes, have been proposed (Drigalenko 1998; Elston et al. 2000; Xu et al.

2000; Forrest 2001; Sham and Purcell 2001). Haseman-Elston regression has also been extended

for use with larger sibships (Olson and Wijsman 1993).

A second approach for quantitative trait linkage analysis in human pedigrees involves the use

of variance components models (Amos 1994, Almasy and Blangero 1998). The quantitative

phenotypes for the individuals in a pedigree are assumed to follow a multivariate normal

distribution, with the correlation between relatives’ phenotypes depending on the proportion of

alleles IBD at a putative QTL. The variance components approach has been shown to have

essentially optimal power in the case that the normal model is correct (Feingold 2001), but is not

robust to departures from normality: when the normal model is not correct, the type I error rate

for the test of linkage can be greatly inflated (Allison et al. 1999).
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A third approach involves the use of score tests (Tang and Siegmund 2001, Putter et al. 2002,

Wang and Huang 2002a). Such score tests have the advantage that, while they are based on a

normal model, they can be made robust to departures from normality. Finally, Sham et al. (2002)

described a regression-based approach in which the roles of the phenotype and IBD status are

interchanged: IBD status is regressed upon the quantitative phenotype. This approach has been

shown to be both powerful and robust.

Chen et al. (in press) described a general framework for quantitative trait linkage analysis in

human pedigrees, for which many of the above approaches are special cases. The framework

makes use of generalized estimating equations (GEE; Liang and Zeger 1986), in which one must

specify a working covariance matrix. Different choices of this working covariance matrix lead to

different methods, and, in particular, one may specify working covariance matrices so that this

GEE method is identical to Haseman-Elston regression, certain extensions to Haseman-Elston

regression (including those of Sham and Purcell (2001) and Olson and Wijsman (1993)), and the

variance components approach. Under the GEE framework one obtains estimates of the various

genetic parameters, with different choices of the working covariance matrix leading to different

estimates. There is additional flexibility in the choice of linkage test statistic.

Cuenco et al. (2003) and Szatkiewicz et al. (2003) used computer simulations to investigate

the relative performance, in terms of power and robustness, of essentially all available approaches

for quantitative trait linkage analysis in sibling pairs, with particular emphasis on the case of

selected samples. In this paper, we extend their research to investigate a variety of approaches for

quantitative trait linkage analysis in sibships and extended pedigrees, though we focus exclusively

on the case of random ascertainment. We make use of the general GEE framework of Chen et al.
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(in press), and investigate the power and robustness of a wide variety of test statistics, including

the likelihood ratio test, Wald tests, score tests, and robust versions of these statistics.

In addition, we propose two additional test statistics which take account of the higher

moments (skewness and kurtosis) of the phenotype distribution, in order to accommodate

non-normality. These new linkage tests are shown to be robust to non-normality but maintain the

power of the variance components method.
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METHODS

Chen et al. (in press) described a general framework for quantitative trait linkage analysis in

general pedigrees which makes use of generalized estimating equations (GEE) and for which

many of the current quantitative trait linkage methods are special cases, corresponding to different

choices for a working covariance matrix. The approach has considerable flexibility, both in the

choice of working covariance matrix and in the ultimate choice of test statistic. In this section, we

describe a variety of linkage tests based on this general framework. In the following section, we

present the results of computer simulations to investigate the power and robustness of these

statistics.

Consider a set of general pedigrees with no inbreeding, and letyki denote the quantitative

phenotype for theith individual in thekth pedigree. LetΦkij and∆kij denote the kinship and

fraternity coefficients, respectively, for individualsi andj in pedigreek, and letπ̂kij andκ̂kij

denote their expected proportion of alleles shared IBD and the probability that they share 2 alleles

IBD, respectively, at a putative QTL, given multipoint marker data. Letσ2
a andσ2

d denote the

additive and dominance variance, respectively, due to a putative QTL, and letσ2
pa, σ2

pd, σ2
s andσ2

e

denote the additive polygenic variance, dominance polygenic variance, shared environmental

variance and non-shared residual environmental variance, respectively. Define

ρa = (σ2
a + σ2

pa)/2σ2, ρd = (σ2
d + σ2

pd)/4σ2, andρs = σ2
s/σ

2. Note thatρa + ρs is the phenotypic

correlation for parent-child pairs, andρa + ρd + ρs is the phenotypic correlation for sibling pairs.

While our general GEE method allows the easy incorporation of environmental covariates, we

will focus here on the simple case of no covariates, and we further assume that the population

mean phenotype is known. Without loss of generality, we assume E(yki) = E(yki|M ki) = 0,
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whereM ki denotes the available multipoint marker data for individuali in pedigreek. The

covariance of the phenotypes for individualsi andj in pedigreek is

Ω0
kij =















σ2 i = j

(4Φkijρa + 4∆kijρd + ρs)σ
2 i 6= j

The covariance of the phenotypes for individualsi andj in pedigreek, conditioned on the

available marker data, is

Ωkij =















σ2 i = j

σ2
a(π̂kij − 2Φkij) + σ2

d(κ̂kij − ∆kij) + Ω0
kij i 6= j

The parameters used are linkage parametersσ2
a andσ2

d, and segregation parametersρa, ρd, ρs, σ
2.

This parameterization is equivalent to the more commonly used parameters

{σ2
a, σ

2
d, σ

2
pa, σ

2
pd, σ

2
s , σ

2
e}, but results in somewhat simplified calculations. In the case of data

exclusively on sibships,ρa, ρd, andρs cannot be separately estimated, and so we consider the

reduced parameter set(σ2
a, σ

2
d, ρ, σ2).

In the GEE method of Chen et al. (in press), one considers, for pedigreek, the vector

Sk =

(

y′

k (y2
k − σ2)′ Vec(yky

′

k − Ωk)
′

)

′

, where Vec(A) is a vector consisting of the upper

off-diagonal elements of a matrixA, and a matrix,Dk, whose columns consist of the derivatives
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of Sk with respect to each of the parameters, as follows:

Dk =

















0 0 0 0 0 0

0 0 0 0 0 1

π̂k − 2Φk κ̂k − ∆k 4σ2Φk 4σ2∆k σ2 4ρaΦk + 4ρd∆k + ρs

















Here thêπk, κ̂k, Φk, ∆k are vectors of lengthnk(nk − 1)/2, and the 0s and 1s in the first two rows

are vectors of lengthnk. One then chooses a working covariance matrix,Wk (that is, an assumed

form for the conditional covariance matrix ofSk), and takes as parameter estimates the solutions

of the equations

∑

k

D′

kW
−1
k Sk = 0 (1)

Different choices of the working covariance matrix,Wk, lead to different estimates. In

particular, one may choose the following Gaussian working covariance matrix (Prentice and Zhao

1991):

Gk =

















Ωk 0 0

0 [2Ω2
kij] [2ΩkilΩkim]

0 [2ΩkujΩkvj ] [ΩkulΩkvm + ΩkumΩkvl]

















for 1 ≤ i, j ≤ nk, 1 ≤ u < v ≤ nk and1 ≤ l < m ≤ nk, wherenk is the number of individuals in

pedigreek, and[2Ω2
kij] denotes a matrix consisting of elements2Ω2

kij . This is the conditional

covariance matrix ofSk if yk given the available marker data is assumed to follow a multivariate
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normal distribution. WhenGk is used as the working covariance matrix,Wk, in the estimating

equations (1), then the GEE estimates correspond exactly to the maximum likelihood estimates

(MLEs) for the variance components model with the usual normality assumption.

The GEE method, as described so far, provides estimates of the parameters

(σ2
a, σ

2
d, ρa, ρd, ρs, σ

2). In the remainder of this section, we describe a number of possible linkage

test statistics, including likelihood ratio tests, Wald tests, and score tests.

Likelihood ratio tests

In the traditional variance components model (Amos 1994; Almasy and Blangero 1998), the

trait values of pedigreek, conditional on the marker data, are assumed to follow a multivariate

normal distribution with covariance matrixΩk (defined above). The test statistic for the likelihood

ratio test is

T LR =
∑

k

ln |Ω̂0
k| +

∑

k

y′

k(Ω̂
0
k)

−1yk −
∑

k

ln |Ω̂k| −
∑

k

y′

kΩ̂
−1
k yk (2)

whereΩ̂k andΩ̂0
k are the MLEs of the covariance matrix under the full model and under the null

model, respectively.

In previous investigations (e.g., Almasy and Blangero 1998), the putative QTL was assumed

to exhibit no dominance (i.e.,σ2
d = 0). The null distribution of the likelihood ratio test statistic is

then asymptotically a 50:50 mixture of aχ2(0) (that is, a point mass at 0) and aχ2(1) distribution

(Self and Liang 1987). If dominance is considered in forming the test statistic, which we will

denoteT LR-D, the null distribution is a1/2 − p : 1/2 : p mixture ofχ2(0), χ2(1) andχ2(2) (Self

and Liang 1987). In Appendix A, we describe a general procedure for calculating the mixing
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proportion,p, which had not previously been determined (Pratt et al. 2000). For sibship data, the

null distribution is around0.4 : 0.5 : 0.1 mixture ofχ2(0), χ2(1) andχ2(2), independent of the

size of the sibship.

Use of the likelihood ratio test statistic has previously been shown to exhibit an inflated type I

error rate in the case that the multivariate normal model is incorrect (Allison et al. 1999). This

problem may be corrected by estimating the true null distribution of the statistic either through an

analytical approach (e.g., Blangero et al. 2000) or an empirical approach such as a Monte Carlo or

permutation procedure. In the simulation study in the next section, we consider the following

Monte Carlo procedure. We fix the genotypes for all founding individuals in each pedigree and

generate random inheritance vectors for the remaining individuals in each pedigree, calculate the

likelihood ratio test statistic, and repeat the process multiple times. The null distribution of the

test statistic is estimated based on these simulated data; in particular, an appropriate critical value

for the statistic is estimated. This procedure is denoted either LR-MC or LR-MC-D, depending on

whether dominance is considered.

Wald tests

Due to the complexity of taking appropriate account of the dominance effect in the Wald and

score tests, all of the remaining linkage tests assume that the putative QTL acts strictly additively,

and the parameter set is reduced to(σ2
a, ρa, ρd, ρs, σ

2) for general pedigrees or(σ2
a, ρ, σ2) for

sibships. We will discuss the influence of ignoring the dominance effect in the simulation section.
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The test statistic for the Wald test is

T Wald =
σ̂4

a
{

(
∑

k D′

kĜ
−1
k Dk)−1

}

11

. (3)

where the 11 subscript indicates to take the (1,1) element of the matrix.

A robust Wald test (Liang and Zeger 1986) has test statistic

T Wald-R =
σ̂4

a
{

(
∑

k D′

kĜ
−1
k Dk)−1

∑

k(D
′

kĜ
−1
k Ŝk)(D

′

kĜ
−1
k Ŝk)′(

∑

k D′

kĜ
−1
k Dk)−1

}

11

(4)

Under the null hypothesis of no linkage, both Wald tests are distributed asymptotically as a 50:50

mixture ofχ2(0) andχ2(1).

Score tests

Putter et al. (2002) described the theory of score test for quantitative trait linkage analysis.

Wang and Huang (2002a) proposed a robust score test specifically for sibships. We first

summarize these previously-described score tests.

DefineDa
k =

(

0 0 π̂′

k − 2Φ′

k

)

′

, S0
k =

(

y′

k (y2
k − σ2)′ Vec(yky

′

k − Ω0
k)

′

)

′

, and

G0
k =

















Ω0
k 0 0

0 [2(Ω0
kij)

2] [2Ω0
kilΩ

0
kim]

0 [2Ω0
kujΩ

0
kvj ] [Ω0

kulΩ
0
kvm + Ω0

kumΩ0
kvl]
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for 1 ≤ i, j ≤ nk, 1 ≤ u < v ≤ nk and1 ≤ l < m ≤ nk. The test statistic for the score test is

T score =
(
∑

k Da
k
′(G0

k)
−1S0

k)
2

∑

k Da
k
′(G0

k)
−1Da

k

. (5)

A more robust version of the score test is the following:

T score-R =
(
∑

k Da
k
′(G0

k)
−1S0

k)
2

∑

k(D
a
k
′(G0

k)
−1S0

k)
2
. (6)

The test proposed by Sham et al. (2002) and implemented in the software MERLIN (Abecasis et

al. 2002) has been shown to be equivalent to another robust score test (Chen et al. in press),

corresponding to the statistic

T MERLIN =
(
∑

k Da
k
′(G0

k)
−1S0

k)
2

∑

k









S0
k

′

(G0
k)

−1









0 0

0 Σ̂π̂k









(G0
k)

−1S0
k









(7)

where the elements in the covariance matrixΣ̂π̂k
have the form

Cov(πkij, πklm) − (E[πkijπklm|Mk] − π̂kijπ̂klm), where Cov(πkij , πklm) can be calculated given

only the structure of thekth pedigree, andE[πkijπklm|Mk] can be calculated based on the

posterior distribution conditional on marker informationMk.

Wang and Huang (2002a) described a robust score test specific for sibship data; their statistic
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can be rewritten in matrix form (see Appendix B) as

T score-S =
(
∑

k Da
k
′(G0

k)
−1S0

k)
2

(π... − 2Φ...)2 ×
∑

k









S0
k

′

(G0
k)

−1









0 0

0 I









(G0
k)

−1S0
k









(8)

whereI is an identity matrix of sizenk(nk−1)
2

× nk(nk−1)
2

. The robustness of this test relies on the

independence of allele-sharing between different sibling pairs, and so it is generally not

applicable for pedigrees of more complex structure (Wang 2002). Wang and Huang (2002a)

described a further approach, in which the phenotypes are converted to ranks which are then

transformed to follow a normal distribution; a robust score test (e.g. score-S used by Wang and

Huang 2002a) can then be applied on the transformed data.

Note that, under the null hypothesis of no linkage, all of the score test statistics are distributed

as a 50:50 mixture ofχ2(0) andχ2(1).

Higher moment score tests

The above score tests are derived from the conditional likelihood under the assumption of

normality. The only difference among them is in the method for estimating the variance of the

score (the denominator in the statistic). Here we propose an alternative approach: novel score

tests based on a quasi-likelihood that incorporates information on the higher moments of the

phenotype distribution.
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Rather than using the Gaussian working covariance matrix,G0
k, we use the following:

M0
k =

















Ω0
k γ̂3σ

3I 0

γ̂3σ
3I [2(Ω0

kij)
2] + γ̂4σ

4I [2Ω0
kilΩ

0
kim]

0 [2Ω0
kujΩ

0
kvj ] [Ω0

kulΩ
0
kvm + Ω0

kumΩ0
kvl]

















(9)

whereI is an identity matrix of sizenk × nk, andγ̂3 andγ̂4 are empirical moment estimates for

skewness and kurtosis parameters of the distribution of each phenotype, respectively, which are

both 0 for the case of a normal distribution. To be more specific, defineσ̂2 = (Y − Y )2, where

overline represents the sample mean, then

γ̂3 = (Y − Y )3/σ̂3

γ̂4 = (Y − Y )4/σ̂4 − 3

We consider two different test statistics based on the working covariance matrix,M0
k . The first

is a score statistic analogous to the statisticT score in equation (5):

T HM =
(
∑

k Da
k
′(M̂0

k )−1Ŝ0
k)

2

∑

k Da
k
′(M̂0

k )−1Da
k

(10)

We can also apply the MERLIN-type robust estimator for the variance of the estimating function,
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to make the higher moment approach even more robust

T HM-R =

(

∑

k Da
k
′(M̂0

k )−1Ŝ0
k

)2

∑

k









Ŝ0
k

′

(M̂0
k )−1









0 0

0 Σ̂π̂k









(M̂0
k )−1Ŝ0

k









. (11)
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COMPUTER SIMULATIONS

In order to investigate the power and robustness of the linkage methods described in the

previous section, we conducted a computer simulation study. While the methods may

accommodate pedigrees of varying size and structure, we considered the simple case that all

pedigrees in a study were of the same structure: either sibling pairs, sibships of size four, sibships

of size six, or the three-generation cousin pedigree with 10 individuals investigated by Sham et al.

(2002) and displayed in Figure 1.

A quantitative phenotype was simulated with a single major, diallelic QTL, with minor allele

frequency 0.3 and explaining 10% of the total phenotypic variance, plus 10 additive, unlinked

diallelic polygenes. The alleles at the QTL either acted additively, or the more-frequent allele was

fully recessive. In the simulations of sibships, the polygenes accounted for 30% of the total

phenotypic variance, and there was an additional shared environment effect accounting for 20%

of the phenotypic variance. In the simulations with the cousin pedigree, the polygenes accounted

for 50% of the total phenotypic variance and there was no shared environment effect. The

remaining phenotypic variation was due to an unshared environment effect that was either

normally distributed or followed aχ2(1) distribution.

A single marker was simulated to be either completely linked to the QTL (recombination

fraction,θ=0) or unlinked (θ=0.5). For most simulations, the marker was fully informative,

though in one set of simulations, with sibships of size four, the marker had four equally frequent

alleles.

The number of families were chosen so that, analytically, the variance components method

would have 80% power to detect the QTL. There were either 2999 sibling pairs, 440 sibships of
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size four, 168 sibships of size six, or 387 cousin pedigrees. All simulations were performed with

5000 replicates, so that the results have standard error< 0.007.

The simulation results are presented in Tables 1–5. The methods studied include the

likelihood ratio test (LRT, LRT-D), the likelihood ratio test with 100 Monte Carlo simulations

used to determine the appropriate critical value (LR-MC, LR-MC-D), the Wald test (Wald), a

robustified Wald test (Wald-R), the score test (score), a robust score test (score-R), the robust

score test for sibships (score-S; Wang and Huang 2002a), the method implemented in

MERLIN-REGRESS (MERLIN; Sham et al. 2002), our higher moment approach (HM) and a

robust version of the higher moment approach (HM-R).

Table 1 corresponds to the case of a normal model with the alleles at the major QTL acting

additively and with a fully informative marker. All methods are seen to have appropriate type I

error rate, though the robust score test (score-R) is somewhat conservative in the case of a smaller

number of larger sibships. All methods have similar power, though the Wald tests and the robust

score test have somewhat lower power, especially for sibships of size six. Note that the robust

score test of Wang and Huang (2002a) is appropriate only for sibships, and so was not

investigated for the case of the cousin pedigree. The LR-MC method also has somewhat reduced

power, which may be due to the quite limited number of simulations used to estimate the critical

value. The allowance for dominance in the likelihood ratio test (LR-D and LR-MC-D) gave

slightly reduced power in the case of no dominance, but the type I error rate remained correct.

Table 2 corresponds to the case that the unshared environment effect followed aχ2(1)

distribution. Here the likelihood ratio, Wald, and score tests are all seen to have inflated type I

error rates (as high as 0.1), and so the power of these methods was not investigated further. The
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robust tests were generally seen to have type I error under control, though the robust Wald test

appears to have an inflated type I error rate in the case of sibling pairs, and the robust score test

was again seen to be conservative for the case of a small number of larger sibships. The power of

the two higher moment approaches are seen to be higher than the other methods in this

non-normal situation, the other approaches all having approximately the same power.

Tables 3 and 4 are analogous to Tables 1 and 2, though with the more-frequent allele at the

QTL being fully recessive. The Wald tests had very poor performance and so were not shown in

tables. Only the likelihood ratio test takes account of the non-additivity at the QTL, and it is seen

to have somewhat higher power than other methods under the normal model (Table 3). For the

likelihood ratio test LRT-D and LR-MC-D, the gain of the power by taking account of the

non-additivity is much larger than the loss of power for the case of no dominance shown in

Table 1. In the case of a non-normal model (Table 4), the likelihood ratio and score tests again

have inflated type I error. The robust versions of the test statistics (including the use of Monte

Carlo simulation to identify an appropriate critical value for the likelihood ratio test) have

appropriate type I error rates; among these, the higher moment approaches are again seen to have

greatest power.

Table 5 displays the results for the case that the marker is not fully informative (having four

equally frequent alleles) and for 440 sibships of size four. The results are similar to those seen in

Tables 1–4. In particular, our higher moment approach is seen to be both robust and powerful.

Figure 2 contains the results of further simulations to investigate the effect of the QTL allele

frequency on power in the case of non-normality with the more-frequent QTL allele being fully

recessive, and for 440 sibships of size four. Here we include results for the transformation

http://biostats.bepress.com/jhubiostat/paper28
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procedure proposed by Wang and Huang (2002a) and denoted NORM. Figure 2A corresponds to

the case that the environment effect follows aχ2(1) distribution, analogous to Table 4, while

Figure 2B corresponds to the case that the environment effect follows at(5) distribution. Use of

the transformation performs extremely well in the case that the QTL alleles are approximately

equally frequent, but performs poorly in the case that the dominant allele has frequency< 20%.

Note Wang and Huang (2002a) showed this transformation approach reduces the power of the

score test when the trait values are approximately normally distributed and the alleles at the major

QTL act non-additively. Special attentions should be paid when this empirical approach is

applied.
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DISCUSSION

Chen et al. (in press) described a general framework for quantitative trait linkage analysis,

based on generalized estimating equations (GEE), for which many current methods are special

cases. The method has considerable flexibility, both in the choice of working covariance matrix

and in the choice of test statistic. In this paper, we have expanded upon that work: we proposed

two novel higher moment statistics and investigated, through computer simulations, the power

and robustness of these new methods relative to previously described approaches, including the

variance components method (Amos 1994; Almasy and Blangero 1998), the score test proposed

by Wang and Huang (2002a), and the method implemented in MERLIN-REGRESS (Sham et al.

2002).

The computer simulations described here were conducted using computer software that we

developed, LinkageExplorer (LE). This program is able to simulate general pedigrees and

multipoint marker data, perform all of the linkage tests described in this paper, and provide

analytical sample size calculations (unpublished data). As part of our testing of this software, we

compared the results, for simulated data, from our software with those from GeneHunter (Pratt et

al. 2000), SOLAR (Almasy and Blangero 1998), and MERLIN-REGRESS (Sham et al. 2002).

The likelihood ratio test implemented in LinkageExplorer has similar results to GeneHunter and

SOLAR in the case that the QTL alleles acted additively; our implementation of the method of

Sham et al. (2002) gave results identical to those of MERLIN-REGRESS.

As has been shown previously (Feingold 1999), the variance components approach has high

power in the case that the normal model is correct, but has greatly inflated type I error rates in the

case of a non-normal phenotype. Several robust approaches are found to have similar power and
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robustness. Further simulations (data not shown) showed that while Haseman-Elston regression

(Haseman and Elston 1972) and its derivatives have proper type I error rate, they have much

lower power. Our higher moment approaches have power similar to the variance components

method in the case that the normal model is correct and have a properly controlled type I error

rate in the case that the normal model is not correct. Further, in the case that the normal model is

not correct, the higher moment approaches are the most powerful methods investigated here.

The method of Sham et al. (2002), implemented in MERLIN-REGRESS, with segregation

parameters specified as MLEs of the unconditional likelihood of phenotypes, also performed

extremely well. By using samples selected from normally distributed population, Sham et al.

(2002) showed their approach is robust to selective sampling, as long as one can correctly specify

the segregation parameters in the random population. This robustness also applies to the higher

moment approach HM-R. To see this property, note that with higher momentsγ3 andγ4 being

estimated as 0 in the random population, HM-R is equivalent to Sham et al.’s approach. The

practical performance of our higher moment approaches in the context of selective sampling

deserves further investigation.

It should be noted that Amos et al. (1996) also proposed a quantitative trait linkage analysis

that made use of higher moments of the phenotype distribution, but their approach was based on a

Wald test, and they found it did not perform well. In addition, Blangero et al. (2000) made use of

higher moments of the phenotype distribution in order to correct the type I error rate of the

variance components method, but did not consideration a modification of the test statistic itself.

An ideal method for quantitative trait linkage analysis in human studies would have high

power to detect a QTL, would be robust to departures from normality (i.e., it would maintain the
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appropriate type I error rate yet maintain reasonable power to detect a QTL), would be applicable

for general pedigrees rather than simply sibling pairs, could incorporate information from

environmental and other covariates, and would be appropriate in the presence of selective

sampling (e.g., the selection of discordant sibling pairs). While we not yet examined the

performance of our proposed procedures in the context of selective sampling via computer

simulations, the higher moment score tests, implemented within the GEE framework of Chen et

al. (in press), satisfy all of the other qualities of an ideal quantitative trait linkage analysis method.

ACKNOWLEDGMENTS

This work was supported by National Institutes of Health grant GM49909.

Electronic Database Information

The URL for computer program LinkageExplorer is

http://www.biostat.jhsph.edu/˜wmchen/le.html

http://biostats.bepress.com/jhubiostat/paper28



23

APPENDIX A

Self and Liang (1987) showed for the situation when 2 parameters of interest are on the

boundary of the parameter space, the asymptotic distribution for the likelihood ratio test statistic

is a 1
2
− p : 1

2
: p mixture ofχ2(0), χ2(1), andχ2(2) , where

p =
1

2π
cos−1 I12√

I11I22

,

andI11, I12, I22 are elements of the information matrix. Now we show how to apply this theory to

obtain the null distribution of the likelihood ratio test of the variance components analysis when

the dominance effect is considered.

In a variance components model, suppose a matrixB has(u : v, l : m) element

(Ω−1
0 )ul(Ω

−1
0 )vm + (Ω−1

0 )um(Ω−1
0 )vl, whereΩ0 is the covariance matrix under the null hypothesis

of no linkage. Then the information is

I11 = (π − 2Φ)′B(π − 2Φ)

I12 = (κ − ∆)′B(π − 2Φ)

I22 = (κ − ∆)′B(κ − ∆)

Therefore, for a general pedigree, we have the following formula to calculate the mixing

probabilities

p =
1

2π
cos−1 (κ − ∆)′B(π − 2Φ)

√

(π − 2Φ)′B(π − 2Φ) × (κ − ∆)′B(κ − ∆)
. (12)
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For sibship data, since Cov[πij , πlm] = Cov[κij , κlm] = 0 wheni 6= l or j 6= m, theB matrix can

be canceled out, and thus (12) can be further simplified as

p =
1

2π
cos−1

∑

i<j E[(πij − 1/2)(κij − 1/4)]
√

∑

i<j E[(πij − 1/2)2]
∑

i<j E[(κij − 1/4)2]

=
1

2π
cos−1

√

2

3
≈ 0.1.

The critical value corresponding to the 0.05 nominal level is3.417. When the marker has two

alleles with equal frequency, following a procedure similar to Wang and Huang (2002b), we have

p = 0.083 and critical value becomes 3.32. In a multipoint linkage analysis, markers tend to be

much more informative. Therefore, a0.4 : 0.5 : 0.1 mixture ofχ2(0), χ2(1), andχ2(2) is a

reasonable approximation for the null distribution of likelihood ratio test for sibship data.
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APPENDIX B

Supposeωk = ΩkYk andbk =
∑

i<j[π̂kij − E(π̂kij)][ωkiωkj − E(ωkiωkj)]. Under the null

hypothesis, the variance estimate for
∑

k
bk is (π̂... − E(π̂...))2 × ∑

k

∑

i<j
(ωkiωkj − E(ωkiωkj))

2.

Then the test statistic proposed by Wang and Huang (2002a) is(
∑

bk)
2/ ˆV ar(

∑

bk) is identical to

statistic (8) following the next two equalities:

∑

k

Da
k
′(G0

k)
−1S0

k

=
∑

k

∑

i<j

∑

l

[π̂kij − E(π̂kij)](Ω
−1
k

)il(Ω
−1
k

)jl[y
2
kl − E(y2

kl)]

+
∑

k

∑

i<j

∑

l<m

[π̂kij − E(π̂kij)]((Ω
−1
k )il(Ω

−1
k )jm + (Ω−1

k )im(Ω−1
k )jl)[yklykm − E(yklykm)]

=
∑

k

∑

i<j

[π̂kij − E(π̂kij)][(Ω
−1
k YkY

′

kΩ
−1
k )ij − E((Ω−1

k YkY
′

kΩ
−1
k )ij)]

=
∑

k

∑

i<j

[π̂kij − E(π̂kij)][(ωkω′

k)ij − E((ωkω
′

k)ij)]

=
∑

k

∑

i<j

[π̂kij − E(π̂kij)][ωkiωkj − E(ωkiωkj)],

and similarly

(π̂... − E(π̂...))2 ×
∑

k

∑

i<j

(ωkiωkj − E(ωkiωkj))
2

= (π̂... − E(π̂...))2 ×
∑

k

∑

i<j









S0
k

′

(G0
k)

−1









0 0

0 I
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Table 5: size and power using 440 sib quads and a marker having 4 equally-frequent alleles

model LRT LR-MC score-R score-S MERLIN HM HM-R

θ = 0.5

N/add .053 .053 .046 .054 .054 .057 .055

N/rec .052 .047 .045 .054 .055 .058 .057

χ2/add .076 .045 .039 .050 .050 .057 .055

χ2/rec .083 .049 .041 .052 .053 .056 .053

θ = 0

N/add .673 .651 .644 .678 .676 .680 .674

N/rec .667 .642 .591 .629 .630 .635 .627

χ2/add N/A .555 .562 .578 .579 .647 .645

χ2/rec N/A .549 .519 .548 .551 .613 .603
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FIGURE LEGEND

Figure 1: The first-cousin pedigree considered in the simulation study.

Figure 2: Power for 440 sibships of size 4, for five different linkage analysis methods. A. Power

as a function of the frequency of the dominant allele when the unshared environmental effect

follows aχ2(1) distribution. B. Power as a function of the frequency of the dominant allele

when the unshared environmental effect followst(5) distribution.
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