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Abstract

There is tremendous scientific interest in the analysis of gene expression data
in clinical settings, such as oncology. In this paper, we describe the importance
of adjusting for confounders and other prognostic factors in order to select for
differentially expressed genes for followup validation studies. We develop two ap-
proaches to the analysis of microarray data in nonrandomized clinical settings.
The first is an extension of the current significance analysis of microarray pro-
cedures, where other covariates are taken into account. The second is a novel
covariate-adjusted regression modelling based on the receiver operating charac-
teristic curve for the analysis of gene expression data. The ideas are illustrated
using data from a prostate cancer molecular profiling study.

Keywords: Differential Expression, Gene Expression, Multiple Comparisons, Simul-

taneous Inference.
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1. Introduction

With the advent of high-throughput gene assay technologies, scientists are now
able to measure genomewide mRNA expression levels in a variety of settings. An
example of this are DNA microarrays (Schena, 2000). One of the major tasks in
studies involving these technologies is to find genes that are differentially expressed
between two experimental conditions. The simplest example is to find genes that
are up- or down-regulated in cancerous tissue relative to healthy tissue. Typically in
these experiments, the number of genes, represented as spots on the biochip, is much
larger than the number of independent samples in the study. Consequently, assessing
differential expression in this setting leads to performing several thousand hypothesis
tests, which leads to the problem of multiple comparisons.

Our work is motivated by a gene expression profiling study in prostate cancer. The
goal is to determine if gene expression profiles can be used to classify various types of
prostate cancer. In our studies (Dhanasekaran et al., 2001; Varambally et al., 2002),
we have profiled tissue samples from various stages of prostate cancer (normal adjacent
prostate, benign prostatic hyperplasia, localized prostate cancer, advanced metastatic
prostate cancer) using 10K ¢cDNA microarrays. This gene expression database is linked
to a clinical and tissue microarray database and housed in the Chinnaiyan lab at the
University of Michigan. Consequently, in addition to the gene expression profiles for
a sample, the investigators have access to several other clinical parameters, such as
Gleason score, survival time and status, and time to PSA recurrence. Throughout the

profiling studies, investigators have made the following hypotheses:

1. There exists a set of genes that distinguish lethal prostate cancer from non-lethal

prostate cancer;

2. Distinct sets of genes and proteins dictate progression from precursor lesion, to

localized disease, and finally to metastatic disease.

The importance of the first hypothesis is for prognostic purposes. Distinguishing in-

dolent prostate cancer from aggressive disease will impact treatment decisions. The
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hypotheses addresses the potential of microarray technologies to develop a molecular
classification for cancer that has a higher resolution than traditional histopathological
staging systems. The second hypothesis is more biological in nature and is focused
upon learning about which genes are involved in cancer progression. The cDNA mi-
croarrays also serve a screening role in that a subset of the genes that show significant
differential expression will be assayed on a proteomic level using tissue microarrays
(Kononen et al., 1998). Because of the fact that our gene expression database is linked
to the tissue microarray database, it is relatively easy to validate the gene expression
results at the protein level using tissue microarrays.

The analyses in our previous studies have focused on comparing gene expression
profiles from two conditions. In the setting of a single study, differential expression
for microarray data is a well-studied problem; see, for example, the work of Efron
et al. (2001), Dudoit et al. (2002), Lonnestedt and Speed (2002) and Ibrahim et
al. (2002). Recently, several authors have advocated use of the false discovery rate
(FDR) (Benjamini and Hochberg, 1995) for the problem of testing multiple hypotheses
simultaneously (Efron et al., 2001, Storey, 2002). This quantity is different from the
familywise error rate (FWER) that is typically controlled in multiple testing problems
(Westfall and Young, 1993).

While much of this multiple testing literature is geared towards controlling the rate
of false positives using a proper calibration, in practice the outputs of these analyses
are used as a screening procedure to investigators in order to find candidate biomarkers
to validate on a protein level. A related argument was also given by Pepe et al. (2003),
who suggested a method of ranking genes based on measures of discrimination using
the receiver operator characteristic (ROC) curve.

A feature common in cancer studies is the availability of additional clinical infor-
mation, such as a staging variable, survival time, baseline covariates and treatment.
In virtually all of the scientific literature dealing with microarrays, the major com-
parison that is done is between cancerous and noncancerous tissue. However, if the

biomarker does not offer an improvement in terms of discriminative ability relative
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to the usual staging systems, then it does not serve well as a diagnostic biomarker.
Potential biomarkers will be of benefit if they can provide this additional information.

More generally, the samples used for microarray profiling are typically collected
in the context of an observational study. Unlike a clinical trial, where subjects are
randomized to a treatment group, no such randomization assignment occurs in ob-
servational studies. In most published analyses of microarray data, the assessment of
differential expression is not adjusted for potential confounders such as age and race.
While this is commonly done in epidemiological studies, it has not been utilized very
much in the analysis of microarray data. If the potential confounders are not adjusted
for, then differences in gene expression between cancerous and noncancerous samples
will be confounded with differences between tumor sample characteristics.

In this paper, we discuss the importance of covariate adjustment in the analysis of
microarray data from clinical experiments and develop some new analytical method-
ologies for selecting genes. The structure of this paper is as follows. In Section 2,
we give a brief background on the data used to illustrate the ideas in the paper. We
describe the concept of false discovery rate and develop its link to quantities from the
diagnostic testing literature in Section 3. In Section 4, we present two methods for gene
selection. The first is a covariate-adjusted false discovery rate estimation procedure.
The second is estimation of a covariate-adjusted receiver operating characteristic curve.
The methods are applied to data from the prostate cancer study in Section 5. Finally,

we conclude with some brief discussion in Section 6.

2. Data Description

The dataset we will be using to illustrate the ideas in the paper is from an ongoing
molecular profiling study in prostate cancer. The benign and malignant prostate tissues
were analyzed using a 9984 element (10K) human ¢cDNA microarray. The glass slide
cDNA microarrays developed for this study include approximately 5000 known, named
genes from the Research Genetics human ¢cDNA clone set, 4400 ESTs, and 500 control

elements (which include genomic human, rat, and yeast DNAs, yeast genes). As is
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common with other spotted cDNA microarrays, the test and reference samples were
labelled with Cy5 and Cy3 dyes and competitively hybridized to the microarray.

While there are 9984 genes on the original array, we did some preprocessing to
reduce the number of genes considered. We removed genes that were missing on more
than 10% of the samples as well as those having variance across all samples less than
0.05. This left a total of G = 4880 genes profiled on n = 78 samples. The data consist
of (Y, Zi, Si, A;) , where Yy, is the gene expression measurement on the gth gene for
the ith subject, Z; is the tissue type (1 denotes cancerous, 0 denotes non-cancerous),
S; is the clinical staging of the tumor, and A; is the age of the patient that provided
the ith sample, (i =1,...,78), g =1,...,4880. We have n = 22 healthy samples (i.e.,
samples for which Z; = 0) and n = 56 cancer samples (i.e., samples for which Z; = 1).
The stage variable, which we define later, is actually collected on all samples and is
slightly different from the usual clinical stage variable used in clinical samples. Such a
stage variable would only exist for localized and metastatic cancer samples.

We include age in the analysis because it might be a potential confounder that we
will want to adjust for in the analysis. We now describe the stage covariate further. The
standard prostate cancer staging system is provided by the American Joint Committee
on Cancer (2002, pp. 337 — 345). It consists of scoring the primary tumor (T), the
regional lymph nodes (N) and distant metastases (M). The tumor falls into one of
four stages based on the combination of T, N and M scores. In Table 1, we provide
the definitions of the values of this variable. In our analyses here, we will focus on an
alternative value of stage that is measured for all samples. Going back to the hypotheses
formulated by the investigators, it is reasonable that biomarkers of interest should be
those that have predictive power above and beyond the existing staging system. In
Section 4, we describe methods for adjusting for covariates in the analysis. We first

describe some multiple testing methods and their links to classification ideas.
3. Multiple Testing Procedures

In most analyses of microarray data in cancer studies, the major inferential tool for
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assessing differential expression using multiple testing procedures. Examples include

the methods of Efron et al. (2001) and Dudoit et al. (2002).
3.1. Background

Suppose we are interested in testing a set of m hypotheses. Of these m hypotheses,
suppose that for my of them, the null is true. To guard against making too many type
I errors, the familywise error rate (FWER) has typically been controlled. A review
of methods for controlling this quantity can be found in Shaffer (1995). To better
understand the FWER and FDR, we consider the following 2 x 2 contingency table:

[Note: Table 2 about here.]

Using the definitions from Table 2, the FWER is defined to be P(V > 1), which is
the probability that the number of false positives is greater than 1. The definition of
FDR as put forward by Benjamini and Hochberg (1995) is

FDREE[%\Q>O} P(Q>0).

The conditioning on the event [@ > 0] is needed because the fraction V/R is not
well-defined when @ = 0. Storey (2002) points out the problems with controlling this

quantity and suggests use of the positive false discovery rate (pFDR), defined as
V
pFDR=F 0 |Q>0].

Conditional on rejecting at least one hypothesis, the pFDR is defined to be the fraction
of rejected hypotheses that are in truth null hypotheses. In words, the pFDR is the
rate at which discoveries are false. This quantity is analogous to type I error rates in
single hypothesis testing problems.

The FDR and pFDR refer to one type of mistake that can be made during the
hypothesis testing process. The other class of mistake that can be made is that while

the alternative hypothesis is true, in practice we fail to reject the null hypothesis. This
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is similar to making a type II error. Thus, we define the false non-discovery rate (FNR)

and positive false non-discovery rate (pFNR) to be
T
FNR=FE {W |W>O] P(W > 0)

and
pFNR=F [2 |W>O] :
w
Conditional on failing to reject at least one hypothesis, the pFNR is the fraction of
accepted hypotheses that are in truth alternative hypotheses. As with pFDR, we
condition on [W > 0] because T/W is not well-defined when W = 0. Heuristically,
pFNR can be thought of as the rate at which discoveries are missed.

Suppose we have independent test statistics 77, ...,7,, for testing m hypotheses.
Define corresponding indicator variables Hy, ..., H,, where H; = 0 if the null hypothesis
is true and H; = 1 if the alternative hypothesis is true. We assume that Hy,..., H,,
are a random sample from a Bernoulli distribution where for i = 1,...,m, P(H; =
0) = mp. We assume that T;|H; = 0 ~ fo and T;|H; = 1 ~ f; for densities f; and f;
(t=1,...,m). Suppose we use the same rejection region R for testing each of the m

hypotheses. By a theorem from Storey (2002), we have that

pFDR(R) = P(H=0|T € R)
P(T € R)

This development has assumed that expression measurements were independent across
genes. This is not very realistic, as we expect dependence between genes to occur
because of involvement in common pathways. Storey (2002) mentions that FDR esti-
mation procedures are not very sensitive to dependence among genes.

For a fixed R, we see that pFDR and pFNR as being related to well-known quantities
in diagnostic testing. If we define the events [T’ =1] = [T € R] and [T = 0] = [T € R,
then the positive and negative predictive values of T are given by PPV = P(H =
1|7 =1) and NPV = P(H = 0|T = 0). Note that we have suppressed dependence
of PPV and NPV on R. Then simple algebra yields pFDR(R) = 1 — PPV and

8
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pFNR(R) = 1—NPV. Thus, the procedures of Storey (2002) for estimating pF DR(R)
can be thought of as estimating a type of positive predictive value. This link has also
been observed by Storey (2003). However, we do not know ahead of time the ” diseased”
and ”"undiseased” populations, which are the set of true alternative and null alternative
hypotheses. Note that 7 in these formulae is analogous to prevalence in PPV and
NPV calculations. We have to estimate this quantity here as well. There are several
approaches one can consider. In the work of Efron et al. (2001) and Storey (2001), 7g is
estimated via permutation methods. A natural Bayesian method is to place a prior on
mo; this corresponds to the biologist’s knowledge as to the percentage of differentially
expressed genes in the experiment. The prior for 7y will depend very much on the
setting in which the investigator is applying microarrays. For the cancer data we are
considering here, the investigators expect many genes to be differentially expressed.

While the pFDR and pFNR are useful quantities for estimation in high-throughput
studies, their values depend on the estimated proportion of non-differentially expressed
genes, similar to the manner in which estimates of PPV and NPV depend on estimated
prevalence.

Another useful quantity for discriminating between diseased and healthy popula-
tions is the receiver operating characteristic (ROC) curve. An advantage of the ROC
curve is that its estimation does not require having to estimate the proportion of non-
differentially expressed genes. Suppose YgD represents the gene expression measurement
for the gth gene for a typical cancer specimen, i.e.D = 1, and YgD is the correspond-
ing measurement for a randomly chosen benign specimen, i.e. D = 0. Assume that
higher values of Y} correspond to having the disease. One relevant quantity is the false
positive rate based on a cutoff ¢, defined to be FP(c) = P(Y, > ¢|D = 0). Similarly,
the true positive rate is TP(c) = P(Y, > ¢[D = 1). The true and false positive rates
can be summarized by the receiver operating characteristic (ROC) curve, which is a
graphical presentation of {T'P(c), FP(c) : —oo < ¢ < oo}. The ROC curve shows
the tradeoff between increasing true positive and false positive rates. Tests that are

have {T'P(c), FP(c)} values close to (0,1) indicate perfect discriminators, while those
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with {T'P(c), FP(c)} values close to the 45° degree line in the (0,1) x (0, 1) plane are
tests that are unable to discriminate between the diseased and healthy populations.
Examples of ideal and noninformative ROC curves are given in Figures 1(a) and 1(b).

In the next section, we develop two procedures for assessing the explanatory power
of biomarkers over and above existing clinical information. The first involves a gener-
alization of false discovery rate estimation procedures, while the second deals with use

of the ROC curve, adjusting for covariates.
4. Statistical Methods
4.1. Linear Model-based False Discovery Rate

We now present a method for assessing differential expression based on direct esti-

mation of the FDR where potential confounders are adjusted for. We fit the model

E[Yi,] = Bog + B1gZi + BagAi + B34S (1)

Our scientific focus in (1) is making inference about 4, which represents the difference
in gene expression between cancerous and healthy tissue for the gth gene, adjusting
for age and staging of the specimen. It is obvious that fitting (1) is equivalent to
fitting univariate linear models on a gene-by-gene basis. Model (1) can be fit using
ordinary least squares (OLS), yielding a set of statistics 111, ..., T1¢, where Tj, is the
least squares estimator of 3;, divided by its estimated standard error. If we use a
normal distribution with mean 0 and variance 1 as the null distribution for testing
Hgyg : p1g = 0, then we have G p-values p,...,pg. We then can apply Algorithm 1 of
Storey (2002) to estimate the gene-specific FDR; it is summarized in Box 1.

Note that because we are working with the t-statistics, this is a conditional method,
where the conditioning is on the t-statistic values themselves. The unconditional
method involves permuting the Z labels and refitting (1) to the permuted dataset.
There are two potential problems with the use of the unconditional approach here.

First, for large sample sizes, permutation methods on the full dataset may be quite

10
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computationally intensive. Second, the validity of permutation tests relies on the fact
that under the null hypothesis of no differential expression, the distribution of per-
muted group assignments is exchangeable. Because we are explicitly incorporating
the observational nature of the study through covariate adjustment in (1), it is not
clear whether the distribution will be exchangeable. Thus the validity of permutation

techniques for the gene expression data is questionable.

4.2. Receiver Operating Characteristic Curve Estimation

Pepe et al. (2003) discussed the use of ROC methods for finding candidate genes in the
two-sample problem. In this section, we extend their method to allow for adjustment
with covariates. Pepe (2000) showed that the ROC curve at a value ¢ (¢ € [0, 1]) has
an interpretation as P(Y,” > Y;]D |Fpy(Yp,) = t). Based on this fact, we can formulate

the following approach for ranking genes based on the ROC curve.

1. Estimate the residuals from fitting (1) for each gene; this yields the estimates é;,,
1=1,...,78, g =1,...,4880. This will determine the appropriate direction to

consider for calculating the ROC curve.

2. Determine if the sample mean of é;, for the cancer samples are higher or less than

éis for the healthy samples.
3. Estimate the ROC curve based on the residuals.

We work by estimating the residuals based on (2) and calculating univariate ROC
curves based on them. It should be mentioned that because of the form of the model,
the mean residuals will not be zero within tumor type. If we generalized (1) to allow
for interactions between A and S with tissue type, then the average of residuals would
be zero. Based on estimating the ROC curves for each gene, we can consider ranking
the genes on several possible quantities. One is the area under the curve:

1
AUC = /‘ROC@Mt

:&@>Wy (2)

11

Hosted by The Berkeley Electronic Press



A second quantity is the partial area under the curve, restricted in the range from 0
to t():
to

pAUC(t) = [ ROC(t)dt, (3)

where £, is some small false positive rate. This is typically done because the value of
the entire ROC curve is typically not of interest to investigators for the purposes of
selecting genes. Instead, what is of interest is the value of ROC for small false positive
rates, or equivalently, for small sensitivity values. Another measure that focuses the

ROC curve for small false positive rates is ROC(tp):
ROC(ty) = P(Yy” >y (1 —to)). (4)

One way in which the ROC values (2) - (4) provide complementary information to
that given by the p-values for 1, in (2) is that ROC-based quantities summarize the

potential discriminative abilities of biomarkers.
5. Results

We now describe the application of the proposed methodology to the prostate cancer
data described in Section 2. We first began by performing a simple analysis using two
sample t-tests and estimating the gene-specific false discovery rate (Storey, 2002); the
results are provided in Figure 2. Based on this plot, we see that approximately 43.3%
of genes are being estimated as non-differentially expressed between cancerous and
healthy samples. Based on the plot, it also appears that the false positive rate is fairly
low even for moderately large number of significance tests; this information is provided
by the figure in the bottom right corner of Figure 1.

In the next analysis, we fit (1) and estimate the gene-specific false discovery rates
using the methods of Section 4.1; the resulting plot is given in Figure 2. We find
that a greater percentage of genes are estimated as nondifferentially expressed. We
see that the reduction is number of genes called significant between the two analyses
ranges from about 30-50%. This suggests that differences in gene expression from the

previous analysis were partially due to differences in clinical stage and or age of the
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tissue specimen. If we were to focus our attention on individual gene lists and rank the
genes based on the p-values, we find that there is some overlap between the two. The
top twenty gene lists are provided in Tables 4 and 5. There is 80% overlap between
the two lists. This overlap drops to 74% for the top 100 genes and 69.5% for the top
1000 genes.

We next ranked genes based on AUC, pAUC and ROC(¢y), where we took t, = 0.1.
The lists of top 20 genes based on these scores are given in Tables 7 - 9. If we compare
them to those in Tables 5 and 6, we now find minimal overlap. In fact, there is only one
gene common to both. The overlap between genes based on the ROC measures and
p-values is about 5% for the top 100 and 18.5% for the top 1000. This is suggesting the
p-value is not adequately able to capture the discriminative power of the biomarker.
Using arguments similar to those in Pepe et al. (2003), what is happening is that he
linear model method is picking up the genes that show the smallest variation, while

the ROC method is picking up the genes with higher discrimatory power.
6. Discussion

In this manuscript, we have stressed two ideas in the analysis of microarray data.
The first is adjustment for variables that might be confounders or that might increase
precision of the estimated difference in gene expression between samples from different
conditions (e.g., cancer versus non-cancer tissue). This is important because in most
settings, the samples are collected in an observational study, which is subject to various
biases. In most analyses of gene expression data, confounders and precision variables
are not usually taken into account in assessing differential expression. We have done
this through use of model (1). Alternative methods for achieving the adjustment
include matching and stratification.

The second idea emphasized here is the use of receiver operating characteristic
curves for gene selection in microarray experiments. ROC curves have been utilized
heavily in classification problems. One of the advantages of its use here is that it does

not depend on the estimated proportion of non-differentially expressed genes, while the
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approaches of Efron et al. (2001) and Storey (2002) do. The methodology we have
described here is a generalization of that given in Pepe et al. (2003).

The analytic approaches described in the paper were primarily based on (1). This
model can be generalized in several ways. First, we could include additional covariates
on the right-hand side of (1), along with interactions with cancer status. Second, the
linear model can be extended to the class of generalized linear models (McCullagh and
Nelder, 1999; Fahrmeir and Tutz, 2001) in a normal fashion in order to accommodate
other types of clinical responses.

For example, an alternative analysis to the one proposed here would be to fit a
logistic regression model where the dependent variable is presence or absence of cancer,
and the predictors are the gene expression level , age, and stage. They can then apply
their method to the coefficient of Y. This model should achieve the same end that the
authors seek, namely, to account for the effects of age and stage on the discovery of
biomarkers.

While we have focused on the analysis of gene expression data, it is also useful to
incorporate statistical considerations in the design of gene expression experiments. It
is an area we are currently pursuing.

In a recent paper, Pepe et al. (2001) provide guidelines as to the development of new
biomarkers for the early detection of cancer. They argue eloquently for the use of the
ROC curve. In addition, they make the case that the potential exists for confounders
to obscure the relationship between candidate biomarkers with clinical outcome. This

work serves as a practical implementation of some of those ideas.

14
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Table 1: Primary Tumor Clinical Definitions

Value Definition

X Primary tumor cannot be assessed
TO No evidence of primary tumor
T1 Clinically inapparent tumor neither
palpable nor visible by imaging
Tla Tumor incidental histologic finding in 5%
or less of tissue resected
T1b Tumor incidental histologic finding in 5%
or more of tissue resected
Tlc Tumor identified by needle biopsy
T2 Tumor confined within prostate
T2a Tumor involves one-half of one lobe or less
T2b Tumor involves more than one-half of one lobe
but not both lobes
T2c Tumor involves both lobes
T3 Tumor extends through the prostate
capsule
T3a Tumor invades seminal vesicles
T4 Tumor is fixed or invades adjacent structures other

than seminal vesicles: bladder neck, external sphincter
rectum, levator muscles, and/or pelvic wall

Note: Taken from American Joint Committee on Cancer (2002, p. 340).
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Table 2: Outcomes of m tests of hypotheses

Accept | Reject | Total
True Null U \Y my
True Alternative T S my
W Q m
18

http://biostats.bepress.com/umichbiostat/paper31



Table 3: Top 20 differentially genes based on unadjusted g-values

Unigene ID

Gene Name

Hs.85155 -OR- Hs.33905

zinc finger protein 36,
C3H type-like 1 -OR- ESTs

Hs.83951 Hermansky-Pudlak syndrome 1
Hs.342874 transforming growth factor,
beta receptor III (betaglycan, 300kD)
Hs.139851 caveolin 2
Hs.343522 ATPase, Ca++ transporting, plasma membrane 4
Hs.4909 dickkopf homolog 3 (Xenopus laevis)
Hs.171731 solute carrier family 14 (urea transporter),
member 1 (Kidd blood group)
Hs.352554 Homo sapiens cDNA FLJ31353 fis, clone MESAN2000264
Hs.374441 Human calmodulin-I (CALM1) mRNA, 3’UTR, partial sequence
Hs.6838 ras homolog gene family, member E
Hs.301853 RAB34, member RAS oncogene family
Hs.342874 transforming growth factor, beta receptor III (betaglycan, 300kD)
Hs.76252 endothelin receptor type A
Hs.104105 Meis1, myeloid ecotropic viral integration site 1 homolog 2 (mouse)
Hs.100554 ESTs
Hs.356605 ESTs
Hs.75350 vinculin
Hs.78909 zinc finger protein 36, C3H type-like 2
Hs.93005 snail homolog 2 (Drosophila)
Hs.250692 hepatic leukemia factor

Note: Differential expression was assessed between cancer and noncancer samples,
with no adjustment for stage.

19
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Table 4: Top 20 differentially genes based on adjusted g-values

Unigene ID

Gene Name

Hs.85155 -OR- Hs.33905

zinc finger protein 36,
C3H type-like 1 -OR- ESTs

Hs.83951 Hermansky-Pudlak syndrome 1
Hs.139851 caveolin 2
Hs.76252 endothelin receptor type A
Hs.171731 solute carrier family 14 (urea transporter),
member 1 (Kidd blood group)
Hs.342874 transforming growth factor, beta receptor III (betaglycan, 300kD)
Hs.352554 Homo sapiens cDNA FLJ31353 fis, clone MESAN2000264
Hs.343522 ATPase, Ca++ transporting, plasma membrane 4
Hs.4909 dickkopf homolog 3 (Xenopus laevis)
Hs.6838 ras homolog gene family, member E
Hs.374441 Human calmodulin-I (CALM1) mRNA, 3'UTR, partial sequence
Hs.124029 inositol polyphosphate-5-phosphatase, 40kD
Hs.93005 snail homolog 2 (Drosophila)
Hs.301853 RAB34, member RAS oncogene family
Hs.75350 vinculin
Hs.342874 transforming growth factor, beta receptor III (betaglycan, 300kD)
Hs.272927 Sec23 homolog A (S. cerevisiae)
Hs.104105 Meis1, myeloid ecotropic viral integration site 1 homolog 2 (mouse)
Hs.100554 ESTs
Hs.79339 lectin, galactoside-binding, soluble, 3 binding protein

Note: The data were fit using model (1) so that an adjustment for age and stage was
made.
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Table 5: Top 20 differentially genes based on AUC

Unigene ID Gene Name

Hs.351622 Pyruvate dehydrogenase complex, lipoyl-containing
component X; E3-binding protein

Hs.325825 Homo sapiens cDNA FLJ20848 fis, clone ADKA01732

Hs.279798 placenta-specific 7

Hs.86437 Homo sapiens gastric cancer-related protein
GCYS-20 (gecys-20) mRNA, complete cds

Hs.170285 nucleoporin 214kD (CAIN)

Hs.30120 ESTs, Weakly similar to NUCL_HUMAN NUCLEOLIN [H.sapiens]

Hs.287820 -OR- Hs.211579 fibronectin 1 -OR- melanoma cell adhesion molecule

Hs.165216 ESTs

Hs.301451 ESTs, Weakly similar to GNMSLL retrovirus-related
reverse transcriptase homolog - mouse
retrotransposon [M.musculus]

Hs.2910 phosphoribosyl pyrophosphate synthetase 2

Hs.28700 Homo sapiens, clone IMAGE:3685952, mRNA

Hs.19377 ESTs, Highly similar to B30142 pepsin A [H.sapiens]

Hs.43910 CD164 antigen, sialomucin

Hs.99423 -OR- Hs.145020

Hs.9663

Hs.301612

Hs. 70704

Hs.143434

Hs.46849

Hs.278385 -OR~ Hs.6088

ATP-dependent RNA helicase -OR- ESTs,
Weakly similar to KIAA1205 protein [H.sapiens]
programmed cell death 6 interacting protein
FOS-like antigen 2

chromosome 20 open reading frame 129
contactin 1

ESTs

ESTs -OR- a disintegrin

and metalloproteinase domain 11
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Table 6: Top 20 differentially genes based on pAUC

Unigene ID Gene Name
Hs.351622 Pyruvate dehydrogenase complex, lipoyl-containing
component X; E3-binding protein
Hs.279798 placenta-specific 7
Hs.86437 Homo sapiens gastric cancer-related protein
GCYS-20 (gcys-20) mRNA, complete cds
Hs.170285 nucleoporin 214kD (CAIN)
Hs.30120 ESTs, Weakly similar to NUCL_HUMAN NUCLEOLIN [H.sapiens]
Hs.287820 -OR- Hs.211579 fibronectin 1 -OR- melanoma cell adhesion molecule
Hs.325825 Homo sapiens cDNA FLJ20848 fis, clone ADKA01732
Hs.165216 ESTs
Hs.28700 Homo sapiens, clone IMAGE:3685952, mRNA
Hs.9663 programmed cell death 6 interacting protein
Hs.19377 ESTs, Highly similar to B30142 pepsin A [H.sapiens]
Hs.301451 ESTs, Weakly similar to GNMSLL retrovirus-related

Hs.99423 -OR- Hs.145020

Hs.2910
Hs.143434
Hs.78065
Hs.21594
Hs.70704
Hs.43910
Hs.301612

reverse transcriptase homolog -

mouse retrotransposon [M.musculus]
ATP-dependent RNA helicase -OR- ESTs,
Weakly similar to KIAA1205 protein [H.sapiens]
phosphoribosyl pyrophosphate synthetase 2
contactin 1

complement component 7

RAS-like, estrogen-regulated, growth-inhibitor
hromosome 20 open reading frame 129

CD164 antigen, sialomucin

FOS-like antigen 2

Note: The AUC was restricted to false positive rates less than or equal to 0.1.
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Table 7: Top 20 differentially genes based on ROC(0.1)

Unigene ID Gene Name
Hs.107000 hypothetical protein FLJ11294
Hs.13997 ESTs

Hs.288057 -OR- Hs.351291  hypothetical protein FL.J22242 -OR-
Homo sapiens cDNA FLJ32731 fis, clone TESTI2001134

Hs.348955 ESTs, Weakly similar to A43932 mucin 2
precursor, intestinal [H.sapiens]

Hs.172788 ALEX3 protein

Hs.256398 Homo sapiens mRNA; cDNA DKFZp434E0528
(from clone DKFZp434E0528)

Hs.13993 TBP-like 1

Hs.107707 -OR- Hs.78436  mitochondrial ribosomal protein S15 -OR~ EphB1
Hs.155560 calnexin

Hs.39982 ESTs

Hs.106728 Homo sapiens, clone IMAGE:4686377, mRNA

Hs.175955 ESTs, Weakly similar to hypothetical protein FLJ11267
[Homo sapiens| [H.sapiens]

Hs.50966 carbamoyl-phosphate synthetase 1,
mitochondrial

Hs.5822 Homo sapiens cDNA: F1.J22120 fis,
clone HEP18874

Hs.39785 ESTs

Hs.24654 Homo sapiens, clone MGC:10198
IMAGE:3909581, mRNA, complete cds

Hs.75360 carboxypeptidase E

Hs.194140 ESTs

Hs.74346 -OR- Hs.144240  hypothetical protein MGC14353 -OR- EST

Hs.49727 ESTs

23

Hosted by The Berkeley Electronic Press



Box 1. Proposed Algorithm for estimating pFDR and FDR

(a) Fit (1) for each gene g, g =1,...,G.

(b) Calculate a p-value using Blg/SF(Blg), g=1,...,G.

(c) Let py,...,pg denote the G p-values. Estimate 7y, the proportion of differentially

expressed genes and Fp(x), the cdf of the p-values by

. W
o= (1—-Xm
and
[ _ mln{R(/Y)v 1}
Fp(z) = —a

where R(y) = #{p; < 7} and W(}) = #{p; > A}.

(d) For any rejection region of interest [0, ], estimate pFDR as

FaY oY
pFDR(7) = = :
Fp(y){1 -1 -7)"}
(e) Estimate FDR as
FDR(R) = —*
Fp(v)

Note: For details on choosing 7, see Section 9 of Storey (2002).
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Figure 1: Receiver operating characteristic (ROC) curves for ideal (a) and noninfor-
mative (b) tests.
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Figure 2: Results from multiple testing analyses between cancer and non-cancer sam-
ples using method of Storey (2002).
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Figure 3: Results from multiple testing analyses assessing differential expression be-
tween cancer and no cancer adjusting for age and clinical stage of tumor.
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