














time of measurement as a covariate in a model with a common unspecified baseline hazard. A general

form for this model is

λik(t
∗ | Zik, 0 ≤ sik ≤ Ti) = λ0(t

∗)exp
{
αααT

1 Zi·a + ααα2
T [fj(sik)]

p
j=1 + β(t∗)Zikb

}
, t∗ > 0 (2.3)

where [fj(s)]
p
j=1 = [f1(s), f2(s), . . . , fp(s)], and fj(sik) represent basis functions for some parametric

but flexible function of sik, such as a cubic spline with fixed knots. The modelling procedure thus

does not rely on the partition of measurement stratum anymore.

Estimation procedures for partly conditional models depend on whether we allow the influence of

covariates to vary with time, β(t∗), or assume a constant covariate effect β(t∗) = β. We distinguish

among three classes of partly conditional models: parametric; non-parametric; and partly parametric

hazard models. For a parametric hazard model, the effects of all covariates, including the longitudinal

marker, are assumed constant. For a non-parametric varying-coefficient hazard model, the effects of

all covariates vary with time, and are estimated non-parametrically. Finally, for a partly parametric

hazard model, the influence of only a few covariates varies non-parametrically over time, while the

remaining covariates have time-invariant effects.

3. Estimation

To estimate the regression parameters and the baseline hazard function we propose use of “working

independence” estimating equations applied to the derived failure time data (Xik,∆ik, Rik,Zik). Since

we have chosen to directly model the partly conditional hazard function for these multiple correlated

failure times, a likelihood-based estimation approach would be analytically and computationally dif-

ficult. First, in a likelihood approach a joint model would be required for the event time and the

repeated measures process. Parameterization of the joint model in terms of the partly conditional

hazards would be analytically difficult as the regression structure we adopt is for pairwise marginal

distributions induced by the joint model. Second, a likelihood-based approach would generally re-

quire proper parametric specification of the longitudinal covariate distribution, and the validity of the

induced partly conditional regression estimates would depend on correct marker model specification.

As an alternative, we develop a direct estimating equation approach that proves computationally

simple and yields consistent estimators under correct specification of the partly conditional regres-
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sion structure without reliance on any distributional assumptions for the marker process. Sandwich

variance estimators permit valid asymptotic inference.

In the subsections below we discuss the estimation of regression parameters for three specific

model classes. We first discuss estimation under a standard proportional hazards assumption, and

then discuss relaxation to allow a non-parametric varying-coefficient specification. Finally, we discuss

a model that allows both parametric and non-parametric components.

3.1 Parametric Proportional Hazards Model

For the situation where the proportional hazard assumption holds, estimation procedures for the

partly conditional models are similar to those for marginal survival models (Wei et al. 1989; Lee

et al. 1992). We assume that the baseline hazard is a function of the time since measurement,

t∗ = t − s, (hereafter referred to as the identical baseline model), or more generally, a function of

both t∗ and s (hereafter referred to as the stratified baseline model), and the effect of marker on the

failure time is constant over time. Specifically, the hazard function for the ith subject and the failure

corresponding to the measurement at sik is

λik(t
∗ | Zik, 0 ≤ sik ≤ Ti) = λ0(t

∗)exp(βββTZik)

or in the stratified model

λik(t
∗ | Zik, 0 ≤ sik ≤ Ti) = λ0g(t

∗)exp(βββTZik)

where either λ0(t
∗) or λ0g(t

∗), g = 1, ..., G denote unspecified baseline hazard functions. The unknown

parameter βββ can be obtained by solving the “working independence” estimating equation:

n∑

i

K∑

k

∫ τ

0

[
Zik − Z̄(u)

]
dNik(u) = 0

where τ < inf{t∗ : E[Rik(t∗)] = 0}, Z̄(u) =
∑G

g=1 S
(1)
g (βββ, u)/

∑G
g=1 S

(0)
g (βββ, u) under the identical

baseline model and Z̄(u) =
∑G

g=1 S
(1)
g (βββ, u)1(sik ∈ Ig)/

∑G
g=1 S

(0)
g (βββ, u)1(sik ∈ Ig) under the stratified

baseline model, with

S(j)
g (β, u) =

1

n

n∑

l=1

K∑

m=1

Rlm(u)exp(βββTZlm)Z⊗j
lm · 1(slm ∈ Ig) .
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For a column vector a, a⊗0 refers to a scalar 1, a⊗1 refers to the vector a and a⊗2 refers to the matrix

aaT .

Large sample distributional theory and robust variance-covariance estimation can be developed

along the lines of the marginal survival model of Lee et al. (1992) for the identical baseline models,

or Wei et al. (1989) for the stratified baseline models.

3.2 Non-parametric Varying-Coefficient Hazard Model

The partly conditional regression model decouples the marker measurement time, sik, from the time

scale for the hazard model, t∗ = t − sik for t > sik. Therefore, the hazard ratio corresponding to

the longitudinal marker, λik(t
∗ | Zi·a, Zikb = (z + 1), sik)/λik(t

∗ | Zi·a, Zikb = z, sik) = HR(t∗) may

not be constant over time, and methods that allow relaxation of the standard proportional hazards

assumption will be important in practice. For example, Hastie and Tibshirani (1993) studied a

varying-coefficient model of the form:

λik(t
∗ | Zik) = λ0g(t

∗)exp
[
βββ(t∗)TZik

]
(3.1)

A parametric spline basis can be adopted to characterize βββ(t∗), or non-parametric smoothing methods

can be used. Here we modify local linear estimation described by Cai and Sun (2003) for use in the

partly conditional setting. The idea of local linear estimation is that for a neighborhood around each

time point t∗, u ∈ N (t∗, ε), by Taylor series approximation, we have

βββ(u) ≈ βββ(t∗) + βββ ′(t∗)(u− t∗) .

Based on a local “working independence” partial likelihood function, we can estimate β(t∗) using a

weighted estimating equation:

n∑

i

K∑

k

∫ τ

0
Kh(u− t∗)

[
Z̃ik(1, u− t∗) − Z̄(u)

]
dNik(u) = 0 (3.2)

where K(·) is a kernel function with bounded support on [−1, 1], h is the bandwidth, Kh(x) =

K(x/h)/h, and Z̃ik(1, u − t∗) = Zik ⊗ (1, u− t∗) with ⊗ denotes the Kronecker product. Under the

stratified baseline model, Z̄(u) =
∑G

g=1 S
(1)
g [βββ(t∗), u]1(sik ∈ Ig)/

∑G
g=1 S

(0)
g [βββ(t∗), u]1(sik ∈ Ig) , with

S(j)
g [β(t∗), u] =

1

n

n∑

l=1

K∑

m=1

Rlm(u)exp[bbb(t∗)T Z̃lm(1, u− t∗)]Z̃lm(1, u − t∗)⊗j · 1(slm ∈ Ig)
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where bbb(t∗) = [bbb0(t
∗), bbb1(t

∗)] = [βββ(t∗), βββ′(t∗)]. The coefficient function βββ(t∗) is then estimated for

each t∗ using β̂ββ(t∗) = b̂bb0(t
∗).

Cai and Sun (2003) show the pointwise consistency and asymptotic normality of β̂ββ(t∗) in the

univariate case. We modify their results for the partly conditional setting. The consistency of β̂ββ(t∗)

in the multivariate setting can be established in the same way as in the marginal parametric hazard

model discussed in the previous section and thus the proof is omitted here. By imposing a stronger

condition, we establish the uniform consistency of βββ(t∗) in Theorem 3.1. The result is useful for the

derivation of the large sample distribution for the survival functions and for estimators in the partly

conditional survival models presented in the next section. We also derive the large sample distribution

of βββ(t∗) in Theorem 3.2 for derived data.

Theorem 3.1 ( Uniform Consistency of βββ(t∗) ) Assume regularity conditions given in the Ap-

pendix, let 0 < t∗1 < t∗2 < τ be fixed numbers, and assume that as n→ ∞, h→ 0 and nh2 → ∞, then

as n→ ∞,

sup
t∗∈[t∗1 ,t∗2 ]

|β̂ββ(t∗) − βββ(t∗)| →p 0

Theorem 3.2 (Asymptotic normality) Under the above conditions,

√
nh
[
β̂ββ(t∗) − βββ(t∗) − ∆(t∗, h, n)

]
→ N(0,Σ−1(t∗)ΠΣ−1(t∗))

where ∆(t∗, h, n) = h2µ2

2 βββ′′(t∗) + op(h
2) denotes the finite sample bias, and µ2 =

∫
u2K1(u)du. We

give the definition of Σ(t∗) and Π in the proof found in the Appendix.

Following Cai and Sun (2003), the theoretical optimal bandwidth can be obtained by minimizing

the asymptotic weighted mean integrated squared error. In the multivariate situation, this quantity

depends on the robust variance estimator and the second derivative of the coefficient function at point

t∗, which are unknown in advance. Data-dependent procedures for selecting the optimal bandwidth

have been suggested in the literature for nonparametric function estimation (Hall and Carroll 1989;

Eubank and Speckman 1993; Ducharme, Gannoun, Guertin and Jéquier 1995). Further research on

adapting data-driven automatic procedures to the multivariate survival setting is warranted, and in

practice a sensitivity analysis is suggested.
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3.3 Partly Parametric Hazard Model

Finally we consider a class of models that accommodates the time-varying effect of a longitudinal

marker in addition to other covariates whose effects are assumed independent of time. For presentation

in this section, we only consider identical baseline hazard models. These models are essentially partly

parametric hazard models as described by McKeague and Sasieni (1994) and have the following form

for the hazard function:

λik(t
∗ | Zik, 0 ≤ sik ≤ Ti) = λ0(t

∗)exp
{
αααT

1 Zi·a + αααT
2 [fj(sik)]

p
j=1 + β(t∗)Zikb

}
, t∗ > 0 (3.3)

To estimate the parameters under this model, we use two sets of estimating equations. Let θθθ =

[ααα, β(t∗)], where ααα = [ααα1, ααα2] is a vector of time-invariant coefficients for Zika = [Zi·a, f1(sik), . . . , fp(sik)],

and β(t∗) is the time-varying coefficient for Zikb. In general one can obtain θ̂θθ by simultaneously solv-

ing the pair of estimating equations for ααα and β(t∗). A standard approach to solving these equations

would involve backfitting (Hastie and Tibshirani 1995) and therefore require iterative solution to the

equations. A computationally simple “one-step” alternative can yield an asymptotically equivalent

estimator. The alternative estimator is defined by the following steps:

(i) Fit a nonparametric Cox model with all the covariates Zik. Here the model is of a purely time-

varying form: λik(t
∗ | Zik, 0 ≤ sik ≤ Ti) = λ0(t

∗)exp
[
αααT (t∗)Zika + β(t∗)Zikb

]
. The resulting estima-

tor β̃(t∗) is consistent for β(t∗) (see Zheng (2002) for details).

(ii) Fit a parametric Cox model with Zika as covariate, using a time-dependent offset β̃(t∗)Zikb. The

estimator α̂αα obtained from this model is consistent for ααα (see Zheng (2002) for details).

(iii) Fit a time-varying coefficient Cox model with Zikb, using offset α̂ααTZika. The new estimate β̂(t∗)

is the final estimate for β(t∗).

3.4 Predictive Survival Functions with a Partly Conditional Survival Model

Here we present an estimation procedure for predicting the survival function for patients with a

marker measurement zb obtained at a certain specific measurement time s, in addition to a vector of

time-invariant covariates za. Let P (Ti > t∗ + s | Zi = z0, s) = S(t∗ | Zi = z0, s) = e−Λ(z0,s). Λ0(t
∗)
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can be estimated by the natural Breslow-type estimator: Λ̂0(t
∗) =

∫ t∗

0
1

Ĵ∗

n,0(u)
dN̄ (u), where

Ĵ∗
n,0(t

∗) =
n∑

i=1

K∑

k=1

Rik(t
∗)exp

{
αααT

1 Zi·a + αααT
2 [fj(sik)]

p
j=1 + β(t∗)Zikb

}

then

Ŝ(t∗ | Zi = z0, s) = exp

(
−
∫ t∗

0
exp

{
αααT

1 za + αααT
2 [fj(s)]

p
j=1 + β(t∗)zb

}
dΛ̂0(u)

)
.

4. Simulations

We conduct simulations to investigate several aspects of the proposed partly conditional survival

estimation procedure. First, we consider the small and large sample bias (and coverage) of the partly

conditional regression estimates. Second, estimation using the derived survival data requires careful

attention to mechanisms that lead to unbalanced cluster sizes (i.e., death and censoring). Theoretical

results imply that the proposed risk-set based estimating equations provide valid inference. However,

a second goal of our simulation study is to empirically demonstrate that the proposed methods do

indeed lead to asymptotically unbiased estimation when the number of contributing observations per

cluster is stochastic. Third, when the longitudinal marker values are exchangeable, a single marker

measurement per subject can be selected and standard independent data methods can be used to

estimate the regression parameters of interest. We compare the asymptotic relative efficiency of our

multivariate procedure to the simple univariate analysis.

Our partly conditional model does not completely specify the joint distribution for the event time

and the longitudinal marker process. Additional distributional assumptions are required to construct

a joint distribution that can be used to simulate data. In the related multivariate survival literature it

has been noted that it is surprisingly difficult to construct joint distributions that satisfy the marginal

proportional hazards assumptions (Wei et al. 1989; Yang and Ying 2001). We show that it is possible

to construct a valid joint distribution where derived survival times simultaneously satisfy the partly

conditional hazards assumption.

4.1 Data Generation

Below we outline one algorithm for simulating marker and event time data that has the desired semi-

parametric structure. Consider data with a single binary treatment group indicator, Zi·a = 0 or
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Zi·a = 1, and a single longitudinal marker Zi(sk) measured at a common set of times s1, s2, . . ., sK .

Data { Ti, Zi·a, Zib = vec[Zi(sk)] } are generated as follows:

(1) Generate a time independent binary covariate, Zi·a ∼ bernoulli(0.5).

(2) Generate Zib0 = bi +
∑m

j=1 log(Vij)/γ2 where bi ∼ N (µ, σ2) and Vij ∼ P (ρ), independent positive

stable random variables with index ρ (Hougaard 1986).

(3) Generate a failure time Ti as: H(Ti) = −(γ1Zi·a + γ2Zib0) + εi, where εi is an extreme value

random variable, and H(t) can be arbitrarily specified as long as it leads to an increasing cumulative

hazard. For the Cox model H(t) = log[Λ0(t)].

(4) Let Zi(sk) = Zib0− log(Vik)/γ2. This creates a form of exchangeable marker measurements. For a

partly conditional model, we only include for analysis those Zi(sk) with sk < Ti. Based on properties

of positive stable random random variables it can be shown that (1)-(4) leads to partly conditional

hazards of the form:

λ[t∗|Zi·a, Zi(sk), Ti > sk] = λ0(t
∗ + sk)ρ[Λ0(t

∗ + sk)]
(ρ−1)exp[ργ1Zi·a + ργ2Zi(sk)]. (4.1)

Using this construction the hazard for Tik = Ti − sk will generally depend on sk and therefore

stratified models similar to those considered by Wei et al. (1989) would be appropriate. However,

if we choose Λ0(t) = (t/a)1/ρ then λ0(t + sk)ρ[Λ0(t + sk)]
(ρ−1) = 1/a, and thus a common baseline

hazard obtains. By varying ρ and σ we can create marker measurements with differing amounts of

within- and between-person variation. For similarity to the MACS CD4 data analyzed in section

5, we used µ = 600 and σ = 30. For the induced partly conditional hazards model the regression

coefficients are α = ρ · γ1 and β = ρ · γ2.

4.2 Parametric Hazard Model

We evaluate samples with n = 100, 500, 1000 clusters using a uniform censoring distribution to obtain

approximately 0%, 25%, 50% and 75% censoring. We consider a study where the markers can be

measured up to 10 times per subject. We perform 500 replications for each simulation scenario.

The parameter for the positive stable random variables is chosen to be 0.6. Although we considered

different values of the regression parameters, we only present results using α = −2 and β = −0.02

(Note: we use this coefficient value (scale) since we create simulations to approximate analysis of CD4
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where the marker ranges from less than 200 to greater than 1000).

With clusters of size 10, the average number of observations per subject ranges from 1.7 to 6.1, de-

pending on the censoring level. Table 1 presents the simulations results for a partly conditional model

using a single common baseline hazard. The relative bias is less than 4.3% for all situations, and tends

to decrease with increasing sample size. Coverage probabilities using the robust variance estimator

are very close to the nominal 95% level, whereas coverage probabilities from a naive independence

model are generally below the nominal level.

4.3 Non-parametric Varying-coefficient Hazard Model

We also use simulation studies to assess the performance of local linear estimation for a time-varying

coefficient partly conditional Cox model. We simulated data according to the scenario described

in section 4.1, and use a local linear Cox model with Epanechnikov kernel. We investigate the

performance at two different time points, namely, t∗ = 25 and t∗ = 75. At each time point, we choose

bandwidth h such that 30% of the data points are included in the local linear estimation. As a result,

at t∗ = 25, the average bandwidth h is about 15, whereas at t∗ = 75, the average bandwidth h is

about 30. The actually bandwidth may vary slightly from sample to sample. The results presented in

Table 2 indicate that estimates can be obtained with small bias using the partly conditional approach.

We find -1.17% bias at t∗ = 25 and -3.06% bias at t∗ = 75. In addition, using robust standard errors

to create 95% pointwise confidence intervals yielded empirical converage rates of 93.2% and 95.2% at

t∗ = 25, 75 respectively.

Finally, we also compare the multivariate approach with a valid univariate procedure that ran-

domly chooses a single marker measurement for analysis. In Table 2 we display the bias and the

standard deviation for β̂(t∗) at t∗ = 25 and t∗ = 75. The estimates based on the partly conditional

model have a variance that is 1/2.44 times the variance of the univariate estimator for t∗ = 25 and

1/3.43 times smaller for t∗ = 75, demonstrating the potential gain in efficiency through use of all

marker measurements.
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5. Example

Here we apply the partly conditional survival model to data from the Multicenter AIDS Cohort Study

(MACS) which was reported in detail by Kaslow, Ostrow, Detels, Phair, Polk and Rinaldo (1987).

Of the 5622 homosexual/bisexual men enrolled, 3426 were seronegative at baseline and 479 of these

became seropositive between 1984 and 1996. Because we focus on the relationship between T-cell levels

and AIDS diagnosis, we adopt the 1987 CDC definition of AIDS, which relies on symptoms rather

than CD4 lymphocyte counts to define AIDS. Under this definition, 211 seroconverters developed

AIDS during the study period. The mean time from seroconversion to the onset of AIDS among these

subjects with observed times is 72 months (sd= 28 months, median=71 months). The present analysis

uses data from the 438 seroconverters with dates of seroconversion known to within ±4.5 months.

These subjects have an average of 13 measurements per person (N = 3807 total observations).

The objective of the present analysis is to investigate the relationship between a biomarker such

as CD4 count and the risk of AIDS. We define the measurement time (s) as the time from serocon-

version to the time that the CD4 count is recorded, and survival time as the time from CD4 count

measurement to the AIDS diagnosis time (t∗ = t − s). We seek to quantify the predictive value of

serially measured CD4 counts. In all analyses we use CD4(s) equal to the raw CD4 count divided by

300 (approximate standard deviation).

5.1 Partly Conditional Regression Function Estimation

We start by investigating the simplest model that assumes a common baseline hazard but allows

a time-varying coefficient (model 1): λik(t
∗) = λ0(t

∗)exp[β(t∗)CD4i(sik)]. Subsequent analysis will

relax this model to allow dependence on the measurement time s. For estimation we use all CD4

measurements after seroconversion and before AIDS diagnosis as the time-varying predictor, CD4(s).

Estimates of the function β(t∗) are obtained by fitting a partly conditional Cox model using local

linear estimation. We use the Epanechnikov kernel K(u) = 0.75(1 − U 2)+ with a bandwidth of 30.

The bandwidth is selected to ensure that we have substantial data available at each data point for

stable estimation. We also consider other values of the bandwidth to assess the sensitivity of the

results to this choice. Eubank and Speckman (1993) suggest use of an undersmoothed bandwidth
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h, i.e., one that satisfies n1/3h → 0, so that the inherent bias (given as ∆(t∗, h, n) in section 3.2)

is negligible asymptotically. The function β(t∗) is estimated at the grid points t∗ = 4 × j months,

j = 1, ..., 32. In Figure 1 the estimate of β(t∗) shows a strong time trend, with diminishing relative

risk as t∗ increases. For example, at any time 0 < s < T , for two individuals whose CD4 difer

by 300, the log relative hazard is the highest immediately after the measurement is taken (t∗ = 1),

with β̂(1) ≈ −3, and then attenuates steadily over the next 60 months to β̂(60) ≈ −1. Finally, the

predictive capacity of CD4 wanes to nearly 0 when the measurement is more than 60 months old.

To explore the potential gain in efficiency that arises from using all of the longitudinal data we

compare results from estimation using only a single randomly selected CD4 measurement per individ-

ual. Figure 1 also shows the local linear estimates using these 438 independent observations. We find

similar point estimates yet narrower confidence intervals when all 3807 longitudinal measurements are

used to estimate β(t∗). As suggested by our simulation studies, estimation based on all the available

longitudinal data is apparently more efficient.

Next we investigate whether the effect of CD4 depends on the measurement time s by adopting a

model where both the baseline hazard and the form of the coefficient function, β(t∗) may depend on

s (model 2). We create 3 groups of data (Xik,∆ik, Zi(sik), sik) based on the CD4 measurement time,

sik: group 1 is comprised of CD4 measurements within the first year after seroconversion (0 ≤ s ≤ 12,

n=392 and N=686); group 2 is comprised of measurements between the second and the third year

(24 < s ≤ 36, n = 321 and N = 577); and group 3 contains data from between the fourth and

fifth year post-seroconversion (48 < s ≤ 60, n = 229 and N = 396). Figure 2 shows the coefficient

functions estimated separately for these three groups. It appears that CD4 measured earlier after

seroconversion loses its predictive power more rapidly than CD4 measured at later times. For example,

for CD4 observed within the first year the log relative hazard at t∗ = 4 months is β̂(t∗ = 4) ≈ −3,

and then quickly decays to β̂(t∗) = −1 by 20 months. In contrast, for measurements taken in the fifth

year after conversion we find somewhat weaker short-term association, β̂(t∗ = 4) ≈ −2, but a longer

follow-up time is required before the log relative hazard decays to -1, with the point estimate crossing

-1 after 30 months of follow-up. Essentially, this analysis approach estimates the coefficient function

β(t∗, s) in the model λ0(t
∗, s)exp[β(t∗, s)CD4(s)]. If a parametric form for β(t∗, s) were adopted the
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simplifying assumption β(t∗, s) = β(t∗) used in model 1 could be formally tested.

We also consider two intermediate models that differ in the way they model the measurement

time s while retaining a common estimate for β(t∗). Model 3 assumes different, but unspeci-

fied, baseline functions for CD4 measured at different followup times. Since subjects in MACS

are followed semi-annually, we divide observations into G = 11 strata. An observation belongs

to the gth stratum if it is measured within the gth year since seroconversion. Specifically, the

model takes the form λik(t
∗) = λ0g(t

∗)exp[β(t∗)CD4i(sik)]. Alternatively, model 4 uses both the

CD4 count and the measurement time as covariates in a partly parametric Cox model, namely,

λik(t
∗) = λ0(t

∗)exp
{
αααT [fj(s)]

p
j=1 + β(t∗)CD4i(sik)

}
. We specify a flexible parametric model for

measurement time, s, using natural cubic spline basis functions, fj(s), with a single knot at s = 48.

We also conduct analyses with a single knot at s = 36 and with a pair of knots at s = 16, 36 respec-

tively. These alternative choices for fj(s) result in very minor differences in the estimated coefficient

function β̂(t∗). Since later follow-up times tend to have shorter survival time due to administra-

tive censoring, in order to obtain stable estimates, we restrict the analysis to a time interval of

0 ≤ t− s ≤ 60. Figure 2 shows the estimated coefficient functions for CD4 along with 95% pointwise

confidence intervals from both the stratified and the partly parametric models. The two methods

give very similar estimated coefficient functions.

5.2 Partly Conditional Survival Function Estimation

One important objective of our partly conditional survival model is to estimate the updated survival

probability P [Ti > t | CD4i(s), Ti > s] for an arbitrary pair of survival and measurement times,

(s, t), where s < t. Figure 3 shows the predictive survival probabilities given in terms of years since

measurement, P [Ti > t∗ + s | CD4i(s), Ti > s], based on models 2 and 4 described above. Recall

that in our application the survival probability is equivalent to the probability of being free of AIDS.

Figure 3 illustrates estimated probabilities for two hypothetical individuals: one with a high CD4

value (725); and one with a low CD4 value (340). We also consider measurement times of one year

post seroconversion, s = 12, and the third, s = 36, and fifth year, s = 60, after seroconversion.

In Figure 3 panel (a) we use model 2 which allows the baseline hazard and the coefficient function
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to depend on the measurement time s. We see that for both individuals, the chance of being free

of AIDS decreases steadily with time, but the individual with a higher CD4 value is less likely to

develop AIDS during the follow-up period. Furthermore, the predictive survival functions appear to

depend on the time at which CD4 count is measured. For example, an individual with a CD4 value

of 340 measured at the 1st year after seroconversion has a chance of developing AIDS within 4 years

of approximately 30%, whereas if the same value of CD4 is obtained at 3 years post seroconversion,

then his chance of getting AIDS within the next 4 years is approximately 60%.

To assess the sensitivity of survival predictions to the choice of model we also display estimates

based on a more structured model that assumes a common coefficient function, and uses the measure-

ment time s as a covariate (model 4). In Figure 3 panel (b) we find estimated survival probabilities

that are qualitatively similar to those from the less structured model, but specific estimates differ,

particularly for longer follow-up times.

If the ultimate goal is to create accurate predictions then the trade-off between a potentially less

biased but more variable approach (model 2) and a less variable but potentially biased approach

(model 4) may be empirically evaluated using cross-validation methods if a meaningful measure of

the discrepancy between data and prediction can be adopted. Unfortunately there is no well accepted

summary of predictive model accuracy for survival models, although alternatives have been proposed

(Schemper and Henderson 2000; Heagerty, Lumley and Pepe 2000). In addition, empirical evaluation

of accuracy for varying-coefficient models would be computationally demanding.

6. Discussion

We have proposed a new approach that can quantify the risk of a key clinical event at time t as a

function of the marker process accumulated through time s, for any pair of times (s, t) with s < t.

In contrast to the standard time-varying covariate regression model for the event time, our method

decouples the time scale for modeling the hazard from the time scale for accrual of available lon-

gitudinal covariate information, and thus directly facilitates the calculation of quantities such as

P [Ti > t|Zi(s), 0 ≤ s < t] without assumptions regarding the longitudinal marker distribution.

One important feature of our partly conditional model is that we allow regression parameters

to depend on both the time of measurement for the predictor and the time of measurement for the

19

http://biostats.bepress.com/uwbiostat/paper221



outcome. In specific applications a varying coefficient model of the form β(t, s) = β(t − s) may be

used which assumes that the association between the survival outcome and the covariate depends

only on their time separation. For estimation, we extended local linear estimation for the univariate

Cox model (Cai and Sun 2003) to the partly conditional setting, and we provided detailed estimation

procedures for three classes of partly conditional survival models. One issue that arises with use of a

partly conditional hazard model is the need to model the measurement time s. We have introduced

alternative models that differ in the way the effect of the measurement time, s, is specified. In

general, the choice of model may depend on the aim of the study and the specific features of the data

structures such as the frequency and spacing of visits. Our example analysis explored the extent to

which results were sensitive to model choice. Further research to develop methods for model checking

and to define appropriate criteria for selecting models would be useful.

In this article we make fairly strong assumptions regarding both measurement timing and marker

missingness. In particular, we assume that each individual provides a sequence of measurements at

either a set of fixed times, or at times that occur in a completely random fashion. However, in some

observational studies, individuals are not necessarily followed at scheduled intervals. Furthermore, the

timing at which individuals are measured may depend on the previous value of the marker measure-

ment. In the repeated measures setting with outcome-dependent follow-up it has been demonstrated

that potential bias could be associated with the use of an estimating equation approach (Lipsitz,

Fitzmaurice, Ibrahim, Richard and Steven 2002). Further work is needed to evaluate the robustness

of our estimation procedure to the timing assumptions, or to develop a more general method that

can relax the measurement timing assumptions.

Instead of employing a likelihood-based estimation procedure, we develop non-parametric and

semi-parametric methods. One advantage of using a semi-parametric approach is that it provides a

computationally simple and robust solution. One potential weakness is that our methods are based a

working independence assumption, and as such, may be less efficient than a full-likelihood approach.

Future work that compares our semi-parametric approach with specific likelihood-based alternatives

in terms of both efficiency and robustness would be valuable.
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Table 1: Simulation Results for Identical Baseline Models, K = 10. The partly conditional hazard
model is λ0(t

∗)exp[αZi·a + βZi(sik)].
n % α = −2 β = −0.02

censored AN RBias SE CP(N) CP(R) RBias SE CP(N) CP(R)
×102 ×10−3 ×102 ×10−5

100 0 4.2 1.63 11.31 0.656 0.906 0.13 3.55 0.838 0.942
100 25 3.7 2.18 13.95 0.690 0.924 0.87 4.22 0.888 0.958
100 50 1.5 1.47 14.59 0.940 0.932 2.07 5.95 0.952 0.940
100 75 1.0 2.08 22.39 0.958 0.914 4.21 9.45 0.954 0.924
200 0 4.2 0.63 7.17 0.678 0.930 0.05 2.67 0.794 0.936
200 25 3.7 0.26 9.16 0.724 0.944 0.54 2.97 0.858 0.940
200 50 1.5 0.26 10.58 0.918 0.926 0.68 3.99 0.936 0.930
200 75 1.0 0.61 15.13 0.940 0.934 2.01 5.78 0.956 0.930
500 0 4.2 0.33 4.54 0.652 0.928 0.09 1.53 0.818 0.966
500 25 3.7 0.20 6.27 0.698 0.922 0.07 1.92 0.836 0.932
500 50 1.5 0.47 6.19 0.930 0.948 0.33 2.48 0.934 0.932
500 75 1.0 0.18 9.30 0.940 0.934 0.84 3.48 0.946 0.924

1000 0 4.2 0.20 2.96 0.700 0.956 0.08 1.19 0.782 0.930
1000 25 3.7 0.04 3.83 0.712 0.946 0.01 1.42 0.838 0.944
1000 50 1.5 0.66 4.30 0.942 0.960 0.08 1.63 0.952 0.956
1000 75 1 0.36 6.27 0.960 0.962 0.23 2.33 0.948 0.942

Note: AN is the average number of measurements per subject that is used in the partly conditional
model. RBias (Relative Bias) is the sampling mean of the ratio |β̂−β0|/β0. SE is the sampling mean
of the robust standard error estimator for β̂. CP(N) and CP(R) are the coverage probabilities of the
95% confidence intervals corresponding to the naive and robust variance estimates.

Table 2: Simulation Results for β(t∗) = −0.02 with Identical Baseline Models. n=200, K=10. The
partly conditional hazard model is λ0(t

∗)exp[αZi·a + β(t∗) · Zi(sik)].
Univariate Model Partly Conditional Model

t RBias SEemp SEest CP RBias SEemp SEest CP(R) EF
×102 ×10−3 ×10−3 ×102 ×10−3 ×10−3

25 -3.525 2.247 2.547 0.938 -1.170 1.630 1.427 0.932 2.442
75 8.035 4.681 3.801 0.938 -3.055 2.203 2.052 0.952 3.432

Note: RBias (Relative Bias) is the sampling mean of the ratio |β̂(t∗) − β0(t
∗)|/β0(t

∗). SEest is the
mean of the standard error estimates; SEemp is the standard error of the estimates of β; EF is the
relative efficiency of multivariate model vs. univariate model (σ̂2

univ/σ̂
2
mult).
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Figure 1: Coefficient functions and pointwise 95% confidence intervals for the time-varying coefficient
of standardized CD4 cell counts.
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(a) Coefficient functions and pointwise 95% confidence intervals for standardized CD4 cell counts measured
within the first (s ≤ 1), between the second and the third (1 < s ≤ 3), and between the fourth and fifth
year (3 < s ≤ 5) following seroconversion based on separate non-parametric partly conditional Cox models.
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(b) Coefficient functions and pointwise 95% confidence intervals for standardized CD4 cell counts based
on a non-parametric and a partly parametric Cox model.

Figure 2: Coefficient functions for standardized CD4 cell counts using different partly conditional
survival models.
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Figure 3: Partly conditional survival functions for hypothetical subjects with CD4 cell counts of 725
and 340 at the time of measurement.
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Appendix A. Large Sample Properties for Proposed Estimators

A.1 Preliminary

Following the notation of Cai and Sun (2003), we denote P (t∗|Z) = E[I(X ≥ t∗)|Z = z], Qj =

E{P [t∗|Z]λ(t∗|Z)Z⊗j}, and Σ(t) = Q2(t)−Q1(t)
TQ1(t)/Q0(t). In addition, let µj =

∫
ujK(u)du and

νj =
∫
ujK2(u)du for 0 ≤ j ≤ 2. We require the same conditions as in Condition A of Cai and Sun

(2003).

We also introduce some notation that is used within this section. For any fixed bbb0(t
∗), let b̂bb(t∗) be

the estimator that solves equation 3.2. Suppose b̂bb(t∗) is of dimension q × 2. Let H = diag{Iq, hIq},

γγγ(t∗) = H[bbb(t∗) − bbb0(t
∗)], γ̂γγ(t∗) = H[b̂bb(t∗) − bbb0(t

∗)] and Ũik(1, u − t∗) = H−1Z̃ik(1, u − t∗). For

0 ≤ j ≤ 2, 1 ≤ g ≤ G and ng =
∑n

i=1

∑K
k=1 1(sik ∈ Ig) ,

S(j)
g (u) = n−1

g

n∑

i=1

K∑

k=1

Rik(u)exp
[
bbb(t∗)T Z̃ik(1, u− t∗)

]
Ũik(1, u − t∗)⊗j1(sik ∈ Ig)

S(j)
g [γγγ(t∗), u] = n−1

g

n∑

i=1

K∑

k=1

Rik(u)exp
[
bbb(t∗)T Z̃ik(1, u− t∗) + γγγ(t∗)T Ũik(1, u − t∗)

]
Ũik(1, u− t∗)⊗j1(sik ∈ Ig)

S(j)∗
g (u) = n−1

g

n∑

i=1

K∑

k=1

Rik(u)exp
[
βββ0(u)

T Zik

]
Ũik(1, u− t∗)⊗j1(sik ∈ Ig)

S̃1
g (u) = n−1

g

n∑

i=1

K∑

k=1

Rik(u)exp
[
bbb(t∗)T Z̃ik(1, u− t∗)

]
Zik1(sik ∈ Ig)

Furthermore, Let sss
(j)
g (u), sss

(j)
g [γγγ(t∗), u], sss

(j)∗
g (u), and s̃ss

(1)
g (u) be the expected values of S (j)

g (u), S(j)
g [γγγ(t∗), u],

S(j)∗
g (u), and S̃(1)

g (u). For example, for Sg(u) = n−1
g

∑n
i=1

∑K
k=1Rik(u)h(u,Zik), sssg(u) = E[P (u|Z)h(u,Z)].

A.2 Proof of theorem 3.1

Let the filtration Ft∗ be the statistical information accruing up to time [0, t∗], i.e.,

Ft∗ = σ{Zik, Nik(u), Rik(u), i = 1, ..., n, k = 1, ...,Ki, 0 ≤ u ≤ t∗}

Then by the independent censoring assumption,

Mik(t
∗) = Nik(t

∗) −
∫ t∗

0
Rik(u)λik[u|Zik]du (A.1)

is an Ft∗ -martingale, with λik[u|Zik]du as defined in equation 3.1.
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Now, define N̄(u) = n−1
g

∑n
i=1

∑K
k=1Nik(u)1(sik ∈ Ig), for any t∗ ∈ [t∗1, t

∗
2], let `[bbb(t∗)] denote a

local “working independence” partial likelihood function, then the process

`[γγγ(t∗), t∗] − `(0, t∗) =

∫ τ

0
Kh(u− t∗)n−1

n∑

i=1

K∑

k=1

γγγ(t∗)T Z̃ik(1, u − t∗)dNik(u)

−
∫ τ

0
Kh(u− t∗)log

{
S(0)

g [γγγ(t∗), u]

S(0)
g (0, u)

}
dN̄ (u)

has compensator

An[γγγ(t∗), t∗] =

∫ τ

0
Kh(u− t∗)

{
γγγ(t∗)TS(1)∗

g (u) − log

{
S(0)

g [γγγ(t∗), u]

S(0)
g (0, u)

}
S(1)∗

g (u)

}
λ0(u)du,

with their difference

Xn[γγγ(t∗), t∗] =

∫ τ

0
Kh(u− t∗)

1

n

n∑

i=1

K∑

k=1

{
γγγ(t∗)T Ũik(1, u− t∗) − log

{
S(0)

g [γγγ(t∗), u]

S(0)
g (0, u)

}}
dMik(u),

being a local square integrable martingale. By modifying the arguments in Cai and Sun (2003) for the

multivariate case, we can show that An[γγγ(t∗), t∗] converges to a strictly concave function A[γγγ(t∗), t∗]

with a maximum at point γγγ(t∗) = 0. In addition, the concave function `[γγγ(t∗), t∗]− `(0, t∗) converges

to A[γγγ(t∗), t∗], and thus β̂ββ(t∗) →p βββ0(t
∗) pointwise for any 0 < t∗ < τ .

To show that the convergence is uniform, we first show that An[γγγ(t∗), t∗] is stochastically equicon-

tinuous. Let γγγ∗(t∗) denotes H[bbb∗(t∗) − bbb0(t
∗)], where bbb∗(t∗) lies between bbb0(t

∗) and bbb∗(t∗). We note

that

An[γγγ(t∗), t∗] = γγγ(t∗)

∫ τ

0
Kh(u− t∗)

{
S(1)∗

g (u) −
{
S(0)

g [γγγ∗(t∗), u]

S(0)
g [γγγ∗(t∗), u]

}
S(1)∗

g (u)

}
λ0(u)du

≤ sup
t∗∈[t∗1 ,t∗2 ]

|γγγ(t∗)|V (K)

{
S(1)∗

g (t∗) −
{
S(0)

g [γγγ∗(t∗), t∗]

S(0)
g [γγγ∗(t∗), t∗]

}
S(1)∗

g (t∗)

}∫
λ0(s)ds

Since V(K) is bounded,
∫
λ0(s)ds is finite, S (1)∗

g (t∗), S(0)
g [γγγ∗(t∗), t∗] and S(0)

g (γγγ∗(t∗), t∗) are bounded

on B ∗ [0, τ ], we have An[γγγ(t∗), t∗] ≤ supt∗∈[t∗1 ,t∗2 ] |γγγ(t∗)| · C, with C bounded in probability. It then

follows that supt∗∈[t∗1 ,t∗2 ] |An[b̂bb(t∗), t∗] − A[bbb0(t
∗), t∗]| →p 0 by Lemma 2.9 of Newey and McFadden

(1994).

Finally to show the uniform consistency of βββ(t∗), we only need to focus on the first p components
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of Xn[γγγ(t∗), t∗], which is,

X∗
n[βββ(t∗), t∗] =

∫ τ

0
Kh(u− t∗)

1

n

n∑

i=1

K∑

k=1

{
[βββ(t∗) − βββ0(t

∗)]TZik − log
S(0)

g [γγγ(t∗), u]

S(0)
g (0, u)

}
dMik(u)

≡
∫ τ

0
Kh(u− t∗)dH(u)

with

H(u) =

∫ u

0
n−1

n∑

i=1

K∑

k=1

{
[βββ(v) − βββ0(v)]

T Zik − log
S(0)

g [γγγ(t∗), v]

S(0)
g (0, v)

}
dMik(v),

a locally square integrable martingale since n−1∑n
i=1

∑K
k=1

{
[βββ(t∗) − βββ0(t

∗)]TZik − log

{
S

(0)
g [γγγ(t∗),u]

S
(0)
g (0,u)

}}

is predictable. Because we assume Kh to be of bounded variation, then for t∗ ∈ [t∗1, t
∗
2] and n large

enough, we have

|X∗
n[βββ(t∗), t∗]| ≤ 2h−1V (Kh) sup

u∈[0,s]
|H(u)| (A.2)

where V (Kh) denotes the total variation of Kh. By Lenglart’s inequality (Andersen et al. (1995),

equation 2.5.18), we get for any δ, η > 0

P

{
sup

u∈[0,s]

∣∣∣h−1H(u)
∣∣∣ > η

}
≤

δ

η2
+ P



(nh)−2

∫ s

0

n∑

i=1

K∑

k=1

{
[βββ(t∗) − βββ0(t

∗)]T Zik − log
S(0)

g [γγγ(t∗), u]

S(0)
g (0, u)

}2

Rik(u)λik[u|Zik(u)]du > δ





where n−1
∫ s
0

∑n
i=1

∑K
k=1

{
[βββ(t∗) − βββ0(t

∗)]T Zik − log

{
S

(0)
g [γγγ(t∗),u]

S
(0)
g (0,u)

}}2

Rik(u)λik[u|Zik(u)]du converges

in probability to a finite function. Thus the right hand side of A.2 converges to zero in probability if

nh2 → ∞ as n→ ∞. This shows that supt∗∈[t∗1 ,t∗2 ] |X∗
n[βββ(t∗), t∗]| →p 0.

Coupling this result with the pointwise consistency of β̂ββ(t∗) gives uniform consistency. We see

here that the bandwidth must tend toward zero more slowly to obtain uniform consistency than to

obtain pointwise consistency.

A.3 Proof of theorem 3.2

The proof of 3.2 consists of the following main steps.

STEP 1. Consistency: γ̂γγ(t∗) →p 0. This is shown in theorem 3.1.

STEP 2. Asymptotic normality of ∂`[γγγ(t∗),τ ]
∂γγγ(t∗) |γγγ(t∗)=0 = `′(0, τ).
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Now,

`′(0, τ) =

∫ τ

0
Kh(u− t∗)n−1

n∑

i=1

K∑

k=1

[
Ũik(u, u− t∗) − S(1)

g (u)

S(0)
g (u)

]
dNik(u)

=

∫ τ

0
Kh(u− t∗)n−1

n∑

i=1

K∑

k=1

[
Ũik(u, u− t∗) − S(1)

g (u)

S(0)
g (u)

]
dMik(u)

+

∫ τ

0
Kh(u− t∗)n−1

n∑

i=1

K∑

k=1

[
Ũik(u, u− t∗) − S(1)

g (u)

S(0)
g (u)

]
Rik(u)exp[βββ0(u)

T Zik]λ0(u)du

= Wn +Bn,

First note that

Bn =

∫ τ

0
Kh(u− t∗)n−1

n∑

i=1

K∑

k=1

[
Ũik(u, u− t∗) − S(1)

g (u)

S(0)
g (u)

]

Rik(u)
{
exp[βββ0(u)

T Zik] − exp[bbb0(t
∗)T Z̃ik(1, u− t∗)]

}
λ0(u)du

=

∫ τ

0
Kh(u− t∗)n−1

n∑

i=1

K∑

k=1

[
Ũik(u, u− t∗) − S(1)

g (u)

S(0)
g (u)

]

Rik(u)exp[βββ0(u)
T Zik]

{
1

2
(u− t∗)2βββ

′′

0(t∗)Zikλ0(u)du+ op[(u− t∗)2]

}

=
βββ

′′

0(t∗)h2

2

∫ 1

−1
K(w)(w2, w3)Tdw ⊗

n−1
n∑

i=1

K∑

k=1

[
Zik − S̃(1)

g (t∗)

S(0)∗
g (t∗)

]
Rik(t

∗)exp[βββ(t∗)T Zik]Zikλ0(t
∗)dt∗ + op(1)

.
=

1

2
βββ

′′

(t∗)h2
∫ 1

−1
K(w)(w2, w3)T dw ⊗ Σ(t∗) ≡ bn

We now consider the process n−1/2Vn(τ) =
√
nhWn(τ). In the independent situation, it is a local

square integrable martingale and thus one can apply Rebolledo’s Central Limit Theorem to show

asymptotic normality. When the event times are possibly correlated, we first approximate Vn(τ) with

Ṽn(τ),

Ṽn(τ) =
n∑

i=1

K∑

k=1

√
h

∫ τ

0
Kh(u− t∗)

[
Ũik(1, u − t∗) − sss

(1)
g (u)

sss
(0)
g (u)

]
dMik(u)

Note that Ṽn(τ) is a sum of n independent and identically distributed random vectors, whose ith
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element is

Ṽi(τ) =
K∑

k=1

√
hζik(τ)

with

ζik(τ) =

∫ τ

0
Kh(u− t∗)

[
Ũik(1, u − t∗) − S(1)

g (u)

S(0)
g (u)

]
dMik(u).

To prove the asymptotic normality by multivariate Central Limit Theorem, we need to check that

E
{
[Ṽi(τ)]

2
}
<∞. now,

E
{
[Ṽi(τ)]

2
}

= hE

(
K∑

k=1

K∑

l=1

ζikζil

)
≤ h

K∑

k=1

K∑

l=1

[
Eζ2

ikEζ
2
il

]1/2

The last inequality follows from Cauchy-Schwarz inequality. Now, ζik(v) is a local square integrable

martingale with predictable variation process, i.e.,

E[ζik(v)
2] = var[ζik(v)] = 〈ζik, ζik〉(v)

=





∫ v

0
K2

h(u− t∗)

[
Ũik(1, u − t∗) − S(1)

g (u)

S(0)
g (u)

]⊗2

Rik(u)λ[u|Zik(u)]du





=
1

h

(
1 w
w w2

)
K2(w)dw ⊗

[
Q0(t

∗)Q2(t
∗) −Q1(t

∗)⊗2
]
/Q0(t

∗) + op(1)

=
1

h
ς ⊗ Σ(t∗) + op(1)

It then follows that E
{
[Ṽi(τ)]

2
}
≤ h 1

h ς⊗Σ(t∗) <∞. By Multivariate Central Limit Theorem, the

process n−1/2Vn(v) =
√
nhWn(v) converges to a normal random vector with mean 0 and covariance

Π, which can be consistently estimated by

Π̂ = n−1
n∑

i=1

K∑

k=1

K∑

l=1

ζ̂ikζ̂il

with

ζ̂ik[b̂bb(t
∗)] = ∆ikKh(Xik − t∗)



Zik −

∑G
g=1 S

(1)
g [b̂bb(t∗);Xik]1(sik ∈ Ig)

∑G
g=1 S

(0)
g [b̂bb(t∗);Xik]1(sik ∈ Ig)



⊗ ψ(Xik)

−
n∑

j=1

∆jkRik(Xjk)exp[β̂ββ(Xik)TZik]
∑G

g=1 S
(0)
g [b̂bb(t∗);Xjk]1(sik ∈ Ig)

×


Zik −

∑G
g=1 S

(1)
g [b̂bb(t∗);Xjk]1(sik ∈ Ig)

∑G
g=1 S

(0)
g [b̂bb(t∗);Xjk]1(sik ∈ Ig)





×Kh(Xjk − t∗) ⊗ ψ(Xjk),
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Here ψ(u) denotes [1, (u− t∗)/h], and for j = 0, 1,

S(j)
g [b̂bb(t∗);u] =

n∑

i=1

K∑

k=1

Rik(u)exp[b̂bb(t
∗)T Z̃ik(1, u− t∗)]Z⊗j

ik 1(sik ∈ Ig)

Therefore, in STEP 2 we establish that:

√
nh[`′(0, τ) − bn(τ)] →d N [0,Π(τ)] (A.3)

STEP 3. for any γγγ(t∗)∗ →p 0, `
′′

[γγγ(t∗)∗, τ ] →p Ξ(τ), a finite quantity.

We have for any consistent estimator γγγ(t∗)∗ →p 0, since all the involved random variables are bounded

by assumption, it can be shown that

`
′′

[γγγ(t∗), τ ] = `
′′

(0, τ) + op(1).

and

`
′′

(0, τ) =

∫ τ

0
Kh(u− t∗)n−1

n∑

i=1

K∑

k=1

S(2)
g (u)sss

(0)
g (u) − sss

(1)
g (u)sss

(1)
g (u)T

sss
(0)
g (u)2

dNik(u)

=

∫ τ

0
Kh(u− t∗)n−1

n∑

i=1

K∑

k=1

S(2)
g (u)sss

(0)
g (u) − sss

(1)
g (u)sss

(1)
g (u)T

sss
(0)
g (u)2

dMik(u)

+

∫ τ

0
Kh(u− t∗)n−1

n∑

i=1

K∑

k=1

S(2)
g (u)sss

(0)
g (u) − sss

(1)
g (u)sss

(1)
g (u)T

sss
(0)
g (u)2

S∗(u)λ0(u)du

= I + II,

By considering the second moment of I, we have

I = Op[(nh)
−1]

It can be shown that

II = Σ(t∗) ⊗
∫
K(w)

(
1 w
w w2

)
dw + op(1)

Therefore,

`
′′

(0, τ) →p Σ(t∗) ⊗
∫
K(w)

(
1 w
w w2

)
dw ≡ Ξ(τ) (A.4)

STEP 4. Asymptotic normality of γ̂γγ(t∗).

It follows from a Taylor series expansion around 0 that

0 = `
′

[γ̂γγ(t∗), τ ] = `
′

(0, τ) + `
′′

[γ̂γγ(t∗)∗, τ ]γ̂γγ(t∗),
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where γ̂γγ(t∗)∗ lies between 0 and γ̂γγ(t∗). By A.3 and A.4 and Slutsky’s theorem, we have

√
nh
[
γ̂γγ(t∗) + Ξ(τ)−1bn(τ)

]
→d N [0,Ξ(τ)−1Π(τ)Ξ(τ)−1]

when K is symmetric, i.e., when t∗ is an interior point of [0, τ ],
∫ 1
−1K(u)du = 1 and

∫ 1
−1 uK(u)du = 0,

thus the distribution of β̂ββ(t∗) can be simplified as:

√
nh

[
β̂ββ(t∗) − βββ0(t

∗) − h2µ2

2
βββ′′(t∗) + op(h

2)

]
→ N [0,Σ−1(t∗)ΠqΣ−1(t∗)]

where Πq is the upper q× q submatrix of Π. A consistent estimator for Σ(t∗) is given in Cai and Sun

(2003). In the multivariate situation, an estimator takes the following form:

Σ̂(t∗) =
n∑

i=1

K∑

k=1

∆ikKh(Xik − t∗)
G

(0)
g [u, β̂ββ(t∗)]G

(2)
g [u, β̂ββ(t∗)] − {G(1)

g [u, β̂ββ(t∗)]}⊗2

{G(0)
g [u, β̂ββ(t∗)]}2

with

G(j)
g [u, β̂ββ(t∗)] =

n∑

i=1

K∑

k=1

Rik(u)exp[β̂ββ(t∗)TZik]Z
⊗j
ik 1(sik ∈ Ig).
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