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Recurrent and Terminal Events

Yining Ye, Jack Kalbfleisch, and Doug E. Schaubel

Abstract

In clinical and observational studies, recurrent event data (e.g. hospitalization)
with a terminal event (e.g. death) are often encountered. In many instances, the
terminal event is strongly correlated with the recurrent event process. In this ar-
ticle, we propose a semiparametric method to jointly model the recurrent and
terminal event processes. The dependence is modeled by a shared gamma frailty
that is included in both the recurrent event rate and terminal event hazard function.
Marginal models are used to estimate the regression effects on the terminal and
recurrent event processes and a Poisson model is used to estimate the dispersion of
the frailty variable. A sandwich estimator is used to achieve additional robustness.
An analysis of hospitalization data for patients in the peritoneal dialysis study is
presented to illustrate the proposed method.
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Semiparametric Analysis for Correlated

Recurrent and Terminal Events

Summary. In clinical and observational studies, recurrent event data (e.g.

hospitalization) with a terminal event (e.g. death) are often encountered. In many instances,

the terminal event is strongly correlated with the recurrent event process. In this article, we

propose a semiparametric method to jointly model the recurrent and terminal event

processes. The dependence is modeled by a shared gamma frailty that is included in both

the recurrent event rate and terminal event hazard function. Marginal models are used to

estimate the regression effects on the terminal and recurrent event processes and a Poisson

model is used to estimate the dispersion of the frailty variable. A sandwich estimator is used

to achieve additional robustness. An analysis of hospitalization data for patients in the

peritoneal dialysis study is presented to illustrate the proposed method.

Key Words: Frailty; Proportional hazard model; Rate function; Recurrent event;

Survival analysis.
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1. Introduction

Data on recurrent events frequently arise in clinical and observational studies. Examples

include repeated hospitalizations, the occurrence of new tumors in patients with superficial

bladder cancer and the occurrences of opportunistic infections in HIV-infected subjects. Vari-

ous methods have been considered for the analysis of recurrent events. These methods include

the complete intensity approach (e.g. Prentice, Williams and Peterson, 1981) and the marginal

rate approach (e.g. Pepe and Cai, 1993; Lawless and Nadeau, 1995; Lin, Wei, Yang, and Ying,

2000). In these approaches, it is assumed that, conditional on the covariates in the model,

the censoring is independent of the recurrent events. In many instances, however, there ex-

ists a terminal event, death for example, which precludes the occurrence of further events.

Further, it is often the case that the terminal event is strongly correlated with the recurrent

event process. More explicitly, if the rate of the recurrent event is unusually high (low) in an

individual, that individual is also subject to increased (decreased) rate of death.

Methods of analysis of repeated events in the presence of a terminal event can also be

classified into two categories. There are analyses that focus on the marginal rates of the

recurrent and terminal events and complete intensity approaches in which frailties are used

to account for the correlation between the rates of recurrent and terminal events.

Marginal models have been considered by several authors. In these, the rate functions

are not taken to be complete intensity functions but rather correspond to average rates that

would arise across the population (e.g. Ghosh and Lin, 2002). The correlation between the

recurrent event process and the terminal event is left unspecified in these models. Frailty

models or shared random effects models specify the dependence between the recurrent events

and the terminal event by allowing a common frailty variable to have a multiplicative effect on

their respective rates. Thus, they assume that the complete intensity of the recurrent events

and the terminal event is fully specified by the observed covariates and the unobserved frailty
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(e.g. Wang, Qin and Chiang, 2001; Huang and Wang, 2004; Liu, Wolfe and Huang, 2004). In

all of the frailty models, it is assumed that given the frailty, the recurrent event process is a

nonhomogeneous Poisson process and this plays a central role in all aspects of the estimation.

It is to be expected, therefore, that the estimation procedures will be sensitive to deviations

from the Poisson assumption.

We propose a joint semiparametric model in which the correlation between the terminal

event and the recurrence event is incorporated through the frailty. Our model for the event

rates has the spirit of a marginal model, however, in that it is conditional only on the covariates

(and the frailty) and not on the previous history of the process. The estimation of the

regression coefficients is based on the estimating functions for marginal rate models. Different

from the marginal rate model proposed previously, the proposed method provides a way to

estimate the degree of dependence between the two processes.

The remaining of the article is organized as follows. In Section 2, the model is specified.

A series of estimating equations are specified to estimate the parameters in the models and

numerical methods are described. In Section 3, the proposed approach is compared with the

method of Huang and Wang (2004). Section 4 gives results of some simulation studies and

the method is applied to the data from a prospective study of peritoneal dialysis patients in

Section 5. The paper concludes with some discussion in Section 6.

2. Model

Let Ci and Di be the censoring and death (or terminal event) time and Tik be the kth recurrent

event time for the ith subject, i = 1, 2, . . . , n; k = 1, . . . , mi. Let NR∗
i (t) =

∫ t
0 dNR∗

i (u)

be the actual number of recurrent events in the time interval (0, t] for the ith subject and

ND∗
i (t) = I(Di ≤ t) =

∫ t
0 dND∗

i (u). Let Xi = min(Ci, Di, τ) and let Yi(t) = I(Xi ≥ t) be the

at-risk indicator, where τ is the study ending time. Two processes are observed during the

time interval [0, min(Xi, τ)], namely NR
i (t) =

∫ t
0 Yi(u)dNR∗

i (u) and ND
i (t) =

∫ t
0 Yi(u)dND∗

i (u),

2
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where NR
i (t) and ND

i (t) are the observed numbers of recurrent events and deaths respectively.

The observed data for subject i at time t is denoted by Oi(t) = {Yi(u), NRi(u), NDi(u), 0 ≤
u ≤ t}. Let Z̃(t) = {Z̃(u), 0 ≤ u < t} be the covariate history for an individual and

Z(t)T = {Z1(t), Z2(t), . . .} comprise functions of Z̃(t). For simplicity, we consider that Z

is time-independent, but the proposed joint model can easily incorporate time-dependent

covariates.

We consider a (partial) marginal rate of the recurrent event given D = s and γ, which is

defined as dΛR(t|γ) = E[dNR∗(t)|Z, D = s, γ], s ≥ t. It is the average rate of the recurrent

events at time t associated with Z for those individuals with frailty γ and whose survival

time is s, where s ≥ t. Note that dΛR(t) may depend on Z and the frailty γ, but does not

depend on death time s. This in effect assumes that γ accounts for the correlation between

the recurrent events and death. Our method explicitly acknowledges the fact that death stops

further recurrent events in that, given t > D, dNR∗(t) takes the value 0.

The joint semi-parametric model that we consider can be expressed as,

dΛR(t|γ) = γ exp(βT Z)dΛ0R(t), (1)

dΛD(t|γ) = γ exp(αT Z)dΛ0D(t), (2)

where dΛD(t|γ) = P (dND∗(t) = 1| D ≥ t, γ, Z) is the hazard function for D and dΛ0D(t) and

dΛ0R(t) are the unspecified baseline hazard function for death and the baseline recurrent event

rate respectively. For convenience, we assume that the frailty γ has a gamma distribution with

mean 1, variance θ, and density fθ(γ) = 1
Γ(1/θ)θ1/θ exp(−γ/θ)γ1/θ. As is the usual convention for

frailty models, the mean E[γ] = 1 is fixed for identifiability an the distribution of γ is assumed

to be independent of Z. It should be noted that the joint model can handle different covariate

vectors in the recurrent event and death rate model by fixing the appropriate elements of α

and β to 0. The above model can also be generalized to allow different effects of frailty on the

recurrent event process and death as in Liu et al. (2004).

3
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The following additional assumptions are made for the joint model:

1. Censoring is independent. Thus the distribution of censoring time C may depend on Z

but not on γ, NR∗(.) or ND∗(.); i.e.,

lim
h→0

1

h
P (t ≤ C < t + h|Z, NR∗(u), ND∗(u), γ, 0 < u < t) = lim

h→0

1

h
P (t ≤ C < t + h|Z).

2. The recurrent event process and death process are continuous. As such, the recurrent

event and death cannot happen at the same time.

3. For the purpose of estimating the distribution of γ, we assume that given Z and γ, the

recurrent event process NR∗(·) before death follows a non-stationary Poisson process

with intensity function γ exp(βT Z)dΛ0R(t).

If the frailty, γ, is known, the estimating equations for α and β are as discussed in Lin et

al (2000) and are identical to those that arise from the usual partial likelihood (Cox, 1972).

However, γi is not observed. Therefore we consider an induced marginal model for α and β,

dΛR(t) = E[dNR∗(t)|Z, D ≥ t],

dΛD(t) = E[dND∗(t)|Z,D ≥ t].

Taking the conditional expectation of (1) and (2) given Z and D ≥ t, we obtain,

dΛR(t) = w(t) exp(βT Z)dΛ0R(t), (3)

dΛD(t) = w(t) exp(αT Z)dΛ0D(t), (4)

where w(t) = E[γ|D ≥ t, Z] = {1 + Λ0D(u) exp(αT Z)θ}−1 under the assumed gamma distri-

bution for γ. Given w(t), the models (3) and (4) have a standard proportional rate/hazard

form. Estimating equations for α and β can be obtained by taking the first derivatives of

the pseudo partial likelihood arising from (3) and (4), treating w(t) as a known function. To

4
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estimate Λ0D and Λ0R, we use the Nelson-Aalen type estimators. In order to estimate θ, we

use likelihood methods and introduce the assumption that conditional on γ, the recurrent

event process follows a nonhomogeneous Poisson process with intensity dΛR(t|γ). Let δik be

the indicator of the recurrent event at time tik. The likelihood based on γi and the observed

data Oi(τ) is,

L(Oi(τ), γi) = {γi exp(αT Zi)dΛ0D(Xi)}∆i × exp{−γidi}

× exp{−γiri} ×
mi∏

k=1

{γi exp(βT Zi)dΛ0R(tik)}fθ(γi).

where ∆i = I(Di ≤ min(Ci, τ)), ri =
∫∞
0 Yi(u) exp(βT Zi)dΛ0R(u), di =

∫∞
0 Yi(u) exp(αT Zi)dΛ0D(u)

and mi is the number of recurrent events experienced by the ith subject.

Integrating over γi and taking a product over i gives the likelihood,

L(θ) =
n∏

i=1

L(Oi(τ)) ∝
n∏

i=1

Γ(mi + ∆i + 1/θ)

Γ(1/θ)θ1/θ(ri + di + 1/θ)(ci+1/θ)
. (5)

Differentiating the logarithm of (5) with respect to θ gives the estimating equation for θ. As

noted earlier, the Poisson assumption is only utilized in the estimating equation for θ but not

directly in the estimation of α and β.

Let η = (β, α, θ, dΛ0D, dΛ0R) and for a parameter φ (e.g. φ = α), define

S
(k)
1 (φ, t) = n−1

n∑

i=1

Yi(t)wi(t)Z
⊗k
i exp(φT Zi),

(k=0,1,2), where a⊗0 = 1, a⊗1 = a and a⊗2 = aaT . Further, let tR1, . . . , tRm be the or-

dered distinct recurrent event times and tD1, . . . , tDf be the ordered failure times. Esti-

mates of the intensities are discrete with jumps at the distinct event times. We let λ0R =

(λ0R1, λ0R2, . . . , λ0Rm)T and λ0D = (λ0D1, λ0D2, . . . , λ0Df )
T , where λ0Rj = dΛ0R(tRj), j =

1, . . . , m and λ0Dj = dΛ0D(tDj), j = 1, . . . , f . Define dRj and dDj as the number of recurrent

events at tRj and the number of death at tDj respectively. Note that the ties are being han-

dled using the Breslow approximation (Kalbfleisch and Prentice, 2002, Section 4.2.3). The

5
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unbiased estimating equations are U(η) = (UT
1 , UT

2 , U3, U
T
4 , UT

5 )T = 0, where the components

of U respectively correspond to β, α, θ, λ0D and λ0R. We have

U1 =
n∑

i=1

∫ ∞

0



Zi − S

(1)
1 (β, u)

S
(0)
1 (β, u)



 dNR

i (u),

U2 =
n∑

i=1

∫ ∞

0



Zi − S

(1)
1 (α, u)

S
(0)
1 (α, u)



 dND

i (u).

U3 =
∂ log L(θ)

∂θ
.

Finally, the jth elements of U4 and U5 are,

U4j = dDj − nS
(0)
1 (α, tDj)λ0Dj, j = 1, . . . f. (6)

U5j = dRj − nS
(0)
1 (β, tRj)λ0Rj, j = 1, . . .m (7)

Our numerical approach to solve U(η) = 0 converges quickly and can be summarized as

follows:

1. Let θ(0), α(0) and Λ
(0)
0D(u) be initial estimates. Typically, we can set θ(0) = 1, α(0) = 0

and let Λ
(0)
0D(u) be the Nelson-Aalen type estimate of the cumulative death hazard for

the sample.

2. Let w
(0)
i (u) = wi(u; Λ

(0)
0D, α(0), θ(0)).

3. Replace wi(u) with w
(0)
i (u) in U1, U2, U4 and U5 and solve the resulting equations U1 = 0,

U2 = 0, U4 = 0 and U5 = 0 respectively for updated estimates β(1), α(1), λ
(1)
0D and λ

(1)
0R.

4. Given α(1), β(1), λ
(1)
0D and λ

(1)
0R, update estimate of θ to θ(1) from U3(θ).

5. Replace θ(0), α(0), Λ
(0)
0D(u) with θ(1), α(1) and Λ

(1)
0D(u). Repeat step (2) to (4) until the

estimates of θ, α and β converge.

In order to establish the asymptotic results for this approach, it seems that we shall need

at a minimum the following four conditions for i = 1, . . . , n:

6
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• {NR
i (.), ND

i (.), Zi(.), γi} are independently and identically distributed.

• Pr(Ci ≥ τ) > 0.

• NR
i (τ) is bounded by a constant.

• A = −n−1∂U(η)/∂ηT is positive definite with probability 1.

These regularity conditions are similar to those of Lin et al. (2000). Under these conditions,

the proposed procedure should lead to consistent estimation of all parameters (α, β, θ, Λ0D(u),

Λ0R(u), u < τ) and the profiled scores for α, β, θ should be asymptotically normal. Following

the approach of Lin et al (2000), it can be seen that the components of U1, U2 and U3 are

asymptotically uncorrelated random variables, and by arguments developed there, a central

limit theorem would apply. These estimating equations, however, also contain the functions

Λ0D and Λ0R which are estimated using the Nelson-Aalen type estimators as in equations (7)

and (6). Uncertainty in these estimates would need to be accounted for in the asymptotic

results for β̂, α̂ and θ̂.

Following Murphy (1995), we consider a discrete version of the baseline hazard and rate

functions with jumps only at the distinct event times. Let A(η) be defined as above and

let Σ(η) = n−1 ∑n
i=1 Ui(η)⊗2. Let η̂ be the estimate of η and let Â = A(η̂) and Σ̂ = Σ(η̂).

Analogous to the results of Murphy (1995) and Parner (1998), we expect that the asymptotic

distribution of α̂, β̂ and θ̂ should be asymptotically normal with covariance estimated by

the appropriate submatrix of Â−1Σ̂(Â−1)T . By using the sandwich estimator our estimation

should be robust to deviations from the Poisson process assumption and also should account

for possible correlations induced by only making marginal assumptions on the death and

recurrent event rates. Additional work is needed in developing a full asymptotic treatment of

this approach.

7
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The dimension of A will increase as the sample size increases, which might lead to calcu-

lation difficulties for large samples. However, it is possible to simplify the calculation so that

we need only numerically invert a matrix of smaller dimension. Let ηT
1 = (βT , αT , θ, λT

0D),

η2 = λ0R, U (1)(η) = (UT
1 , UT

2 , U3, U
T
4 )T and U (2)(η) = U5, and write

A =

(
A11 A12

A21 A22

)
= n−1



−∂U(1)(η)

∂ηT
1

−∂U(1)(η)

∂ηT
2

−∂U(2)(η)

∂ηT
1

−∂U(2)(η)

∂ηT
2


 .

The dimension of A is 2p + 1 + f + m, which may be large as the sample size increases. The

direct numerical inversion may be time consuming. Since A22 is a diagonal (m×m) matrix,

however, calculation is simplifed by noting that

A−1 =

(
A11 A12

A21 A22

)−1

=

(
J−1 −J−1F2

−F1J
−1 A−1

22 + F1J
−1F2

)

where F1 = A−1
22 A21, F2 = A12A

−1
22 and J = A11 − A12F1. It follows that only a matrix of

dimension 2p + 1 + f need to be inverted directly. One could also let η1 = (β, α, θ) and

η2 = (λ0D, λ0R). In this case, a matrix of dimension 2p + 1 need to be inverted directly in

addition to the relatively straightforward inversion of an upper triangular matrix of dimension

m + f corresponding to the partial derivatives, −∂U (2)(η)/∂ηT
2 . Another possible approach

is to use bootstrapping methods to estimate the standard errors of the estimators so that no

matrix inversion is needed. Finally, in very large samples, a piece-wise constant model for

the baseline hazard and rate functions with a fixed number of jump points could be fitted to

avoid computational difficulties.

3. Comparison

Wang et al. (2001) considered the analysis of recurrent events in a case where the censoring

may be dependent. Let Cdi be the dependent censoring time for subject i (i = 1, 2, . . . , n) and

let γ† be a nonnegative latent frailty type variable with mean µ. No parametric assumption

is made on the distribution of γ†. Conditional on γ† and Z, it is assumed that NR∗(t) is a

8
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nonhomogeneous Poisson process with intensity,

dΛR(t) = γ†dΛ†0R(t) exp(βT Z), (8)

where dΛ†0R(t) is the continuous baseline intensity function with
∫ τ
0 dΛ†0R(u) = 1 and β mea-

sures the covariate effect on the average rate of the recurrent event. Their crucial assumption

is that conditional on γ†, Cd is independent of NR∗(t).

The estimation procedure of Wang et al. (2001) relies on the Poisson assumption. Specifi-

cally, it is noted that given (γ†i , Cdi, Zi,mi), the observed times (Ti1, Ti2, . . . , Timi
) are the order

statistics of a set of independent and identically distributed random variables with density

function πi(t) = λ†0R(t)/Λ†0R(Xi), 0 ≤ t ≤ Xi. Here, mi is the number of events occurring

before Xi = min(Cdi, τ).

Note that the conditional density πi(t) does not depend on γ†i or zi and πi(t) is a truncated

density function of λ†0R(t). The cumulative distribution of λ†0R(t), Λ†0R(t) can be estimated by

a nonparametric maximum likelihood estimator, which has a simple product-limit form,

Λ̂†0R(t) =
∏

tRj>t

(
1− d(Rj)

R(j)

)
, (9)

where R(j) is the total number of events with event time and observed terminating time

satisfying {tik ≤ tRj ≤ Xi}, k = 1, . . . , mi and j = 1, . . . , m. Therefore the estimating

equation of β can be formed by applying the information obtained from Λ†0R(t). The class of

estimating equation is defined as,

n−1
n∑

i=1

Z̄T
i {miΛ

†
0R(Xi)

−1 − exp (βT
a Z̄i)} = 0,

where Z̄i = (1, Zi)
T and the augmented βT

a = {ln(µ), βT}.

Huang and Wang (2004) extended the method to incorporate situations where one aspect

of informative censoring is associated with a terminal event (e.g. death). By adding a model

9
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for the intensity of the death process to (8), their joint complete intensity model can be

expressed as,

dΛR(t) = γ†dΛ†0R(t) exp(βT Z),

dΛD(t) = γ†dΛ†0D(t) exp(αT Z), (10)

where Λ†0D is the baseline cumulative hazard. Thus, they assume that conditional on Z and γ†,

(NR∗(t),Cd,D) are mutually independent and NR∗(t) is a nonhomogeneous Poisson process.

Note that this model is based on an assumed latent process of recurrent events that continues

past the death time D so that the methods of Wang et al. (2001) can be directly applied to

obtain an estimate of β. It is then proposed to estimate γ†i by,

γ̂†i =
mi

Λ̂†0R(Xi) exp β̂T Zi

,

and plugging γ̂†i into the score function from (10), α can be estimated. Empirical process

theory was used to study the large-sample properties of α̂ and Λ̂†0D(t).

The differences from our suggested model (MR model) and this non-parametric frailty

approach (NPF model) proposed by Huang and Wang (2004) can be summarized as follows:

1. The NPF model assumes that conditional on the frailty variable γ†, the recurrent event

process is independent of the death process. In the MR model, we recognize the fact

that death stops further recurrent events and the marginal rate is defined as dΛR(t) =

E[dNR∗(t)|Z,D = s, γ], for s ≥ t, which incorporates a kind of conditional independence.

This gives the rate of recurrent events among individuals who are alive at time t. The

recurrent event process is not independent of the death process even conditional on the

frailty. The NPF model could be redefined in a similar manner to avoid the need for

assuming a latent recurrent event process.

2. The independent censoring assumption is relaxed via the use of frailty in the NPF

model. The assumption, however is required for the MR model. It can be relaxed,

10
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but it requires modeling of the censoring distribution or the use of an inverse weighting

method to adjust for the dependence.

3. For both models, the frailty is assumed to act as a multiplicative factor on both the

hazard and the rate functions and thus induces the dependence between the recurrent

event process and the death process. The frailty distribution is left nonparametric in

the NPF model whereas it is modeled in the MR model. As a consequence,

• Direct inferences about the relationship between the recurrent event process and the

death process are not made in the NPF model. In the MR model, the correlation

is modeled by the parameters of the frailty distribution, for example the variance

θ in the gamma frailty model. Let r1(t) = E[NR∗
i (t)|Yi(t) = 1, Zi, dND∗

i (t) = 1]

and r2(t) = E[NR∗
i (t)|Yi(t) = 1, Zi, dND∗

i (t) = 0]. Then r1(t)
r2(t)

= θ +1. For instance,

if θ = 1, the expected number of recurrent events in (0, t] for individuals who die

at time t is twice the expected number for individuals with identical covariates

who are known to survive until time t. On the other hand, if θ = 0, the expected

number of recurrent events would be the same no matter whether the individual

is known to die at time t or survive until time t. In this way, θ = 0 indicates the

independence of the two processes.

• The parametric assumption made in the MR model may not be robust to the mis-

specification of the frailty distribution though the efficiency should be increased.

We performed some simulations in Section 5 to assess the performance of the pro-

posed estimators when the gamma distribution is correct and when it is misspeci-

fied.

4. Time-dependent covariates are not allowed in the NPF model, but can be easily handled

by the MR model.

11
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5. Though the correlation between the recurrent event and the death processes is modeled

by the frailty, the NPF approach uses separate procedures for the estimation. Informa-

tion from the death process is not used in the estimation of β, and extra variation is

brought to the estimation of α by γ̂†. The MR model takes advantage of the assumed

correlation and more efficiency should be expected. On the other hand, because the

estimating equations in the MR model are more complicated in the way that the non-

parametric and parametric components interact, asymptotic properties are more difficult

to establish.

6. The Poisson assumption is made in both models for the recurrent event process. It is

the key to estimation of the baseline rate the NPF model, whereas in the MR model,

the assumption is only applied for updating θ. Thus, it is expected that the MR could

be be more robust to the departures from the Poisson assumption.

7. The nonparametric estimator of the baseline rate function in the NPF model (9) does

not use the assumption that ΛR(t) = γdΛ0R(t) exp(βT Z) as the Nelson-Aalen estimator

does in the MR model. As a consequence, we expect the NPF model to be less efficient

than the MR model.

4. Simulation Study

Simulations were carried out to evaluate our proposed method and to compare the MR model

to the NPF model. One single binary covariate, Z, was generated taking value 1 or 0 with

probability 0.5. The censoring time was taken to follow a continuous uniform distribution on

[1, 10]. Given the frailty γ and the covariate Z, a subject’s recurrent event process was a nonho-

mogeneous Poisson process with the corresponding intensity function dΛR(t) = γ exp(βZ)dt.

Similarly, the terminal event time was generated from an exponential distribution with hazard

dΛD(t) = 0.2γ exp(αZ)dt. Thus Λ0R(t) = t and Λ0D(t) = 0.2t.
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Simulations were carried out for the settings described in Table 1. In all settings, except Ie

and If , γ follows a gamma distribution with unit mean and variance θ. In setting Ie, γ follows

a lognormal distribution with unit mean and variance 0.65; in setting If , γ is generated as

one tenth of a Poisson variable with mean 10. This has a variance of 0.10, which is close to

independence. It is the same as one of the settings in the simulation study of Huang and

Wang (2004). We increased the variance of the Poisson frailty on the suggestion of a reviewer,

and obtained similar results with respect to bias (simulation not shown).

Table 2 presents results from the MR model and the NPF model for settings Ia, Ib, Ie and

If . In the first two settings, the frailty distribution is correctly specified for the MR model. In

settings Ie and If , the gamma frailty distribution is misspecified and the goal is to compare

the results from the two models when the parametric assumption for γ is violated in the MR

model. The empirical bias and the empirical standard deviation of the estimators for the four

settings are shown. The simulation study is based on 1000 simulated samples. Also in setting

Ia and Ib, the estimators of α and β from the MR and NPF model both perform well in that

the empirical bias is small for the both models. There seems to be some small bias in the

estimation of θ in the MR model. The empirical standard errors for the estimates from the

MR model are smaller than those from the NPF model suggesting that the MR model is a

more efficient approach as expected. There is no evidence of bias in the estimation of α and

β for either model in any of the cases considered and, in particular, for the MR model when γ

does not follow a gamma distribution. This lack of sensitivity to mispecificaton of the frailty

model is consistent with the simulation studies carried out by Glidden and Vittinghoff (2004)

for frailty models for clustered survival data.

We also carried out a number of simulations to assess the performance of the proposed

sandwich estimators. In this case, we considered different sample sizes (n=100 and 200),

different coefficient values and different distributions for γ. The results are shown in the Tables

13
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3 and 4. It can be seen that the variance estimates are accurate and the associated coverage

probabilities are close to the nominal level of 0.95 for α and β. The coverage probabilities for

θ seem to be slightly lower than the nominal level. When the frailty does not follow a gamma

distribution as in Ie and If , the variance estimators are very close to the empirical ones and

the coverage probabilities of the intervals for α and β still are close to the nominal level.

5. Application

We now fit the proposed MR model to the CANUSA study (Canada-U.S.A. peritoneal dialysis

study group, 1998), a prospective cohort study of end-stage renal disease patients receiving

peritoneal dialysis in Canada and the USA. Patients were enrolled and followed between

September 1, 1990 and December 31, 1992. The recurrent event of interest is hospitalization

and the terminal event is the failure of peritoneal dialysis, which occurs at the minimum of

the time until death, technique failure or withdrawal from peritoneal dialysis.

A total of 680 patients were enrolled in this study; forty-two percent were female, 82% were

Caucasian and the average age was 54. The number of hospitalizations per patient ranged from

0 to 23 with an average of about 1.7. About two-thirds of the patients were hospitalized at

least once. Kidney transplantation was performed on 19.1% of the patients and was considered

as random censoring. It is probably reasonable to treat kidney transplantation as random

censoring since patients are not prioritized on the transplantation waiting list according to

their disease severity. By the end of the study, 50% of the patients experienced the terminal

event.

The covariates of interest include country (USA or Canada), age, gender, race, the causes of

renal failure (polycystic kidney disease, diabetes, renal vascular, glomerulonephritis and other

causes), baseline renal clearance measure, non-protein catabolic rate, percent lean body mass,

serum albumin, subjective global assessment, cardiovascular disease and Karnofsky score.

The results of the analysis are summarized in Table 5. The frailty parameter was estimated
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to be θ̂ = 0.990 with an estimated standard error 0.12 (P < 0.001). According to this estimate,

a patient who is known to fail from peritoneal dialysis at time t is expected to have almost

twice as many hospitalizations for a patient who hasn’t failed by time t. As one might expect,

therefore, the rate of hospitalization is highly associated with the rate of failure from peritoneal

dialysis. That is, patients with a high (low) hospitalization rate tend to have a larger (smaller)

chance of failure from peritoneal dialysis.

After adjusting for the other covariates, the USA patients tend to have a higher rate of

hospitalization than the Canadian patients (P < 0.05). However, no difference is found with

respect to the failure rate. Percent lean body mass has a significant effect on both the failure

rate and hospitalization rate; the higher percent of a patient’s lean body mass is, the lower

failure rate and hospitalization rate. Female patients have a lower failure rate, but gender is

not found to be related to the hospitalization rate. In addition, patients whose renal failure is

caused by diabetes, renal vascular disease failure or other have a higher rate of hospitalization

than the patients whose renal failure is from glomerulonephritis; the cause of renal failure,

however, does not seem to affect the failure rate. Having a high Karnofsky score decreases

the estimated hospitalization rate but surprisingly not the failure rate.

We also carried out a naive analysis of the hospitalization rates, treating failure from

peritoneal dialysis as a form of independent censoring. We fitted a marginal rate model and

obtained robust sandwich type estimators as in Lin et al. (2000). The failure process was

treated independently and analyzed using an ordinary Cox model. The results are shown in

Table 6. Compared to the results in Table 5, and the coefficient the parameter estimates

are smaller in magnitude under the naive model, which doesn’t account for the dependence

between the two processes. This attenuation seems to be the result of a positive correla-

tion between the processes and the fact that the effect of each covariate on the death and

hospitalization processes is in the same direction.
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6. Discussion

In this article, we have developed and analyzed a shared frailty model for the recurrent events

in the presence of a terminal event. The model is similar to the nonparametric frailty model

proposed by Huang and Wang (2004) and the analysis leads to a notable increase of efficiency.

Though a parametric assumption for the frailty is made in the MR model, simulation studies

suggest that the model is robust to deviations from that assumption, at least in those cases

considered. Time-dependent covariates can be easily handled in the model and the analysis we

propose. Thus, departures from proportional hazards could be incorporated by introducing

interactions with time. One advantage of our method is that the degree of association between

the recurrent and terminal event processes can be estimated through the estimation of the

variance of γ. The empirical variance of the γ̂w in the NPF model would tend to over-estimate

the frailty variance since it would incorporate both the frailty variance and the variation due

to the underlying recurrent event process.

Liu et al. (2004) carried out maximum likelihood estimation in their frailty model by

assuming that the recurrent events follow a nonhomogeneous Poisson process conditional on

the frailty. A Monte Carlo EM algorithm with a Metropolis-Hasting sampler in the E-step

is adapted to obtain the maximum likelihood estimator. The frailty effect is allowed to be

different for the two processes and time-dependent covariates can be incorporated. As is often

the case, however, the EM algorithm is slow to converge and the method is computationally

much more intensive than the method proposed here. The estimation method of Liu et

al. (2004) is based on a complete intensity model for recurrent events, and may therefore

be expected to be sensitive to departures from this assumption. On the other hand, the

proposed estimating equations combined with the use of the sandwich estimator should make

our method more robust. Finally, the computational procedure converges relatively fast with

the MR method, which makes bootstrapping a practical option for standard error estimation.

Liu et al. (2004) also allow for different but related frailty effects on the recurrent and
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the terminal event processes. Our methods could be similarly generalized to fit their model

although some numerical integration methods would likely be needed. Alternative models

that allow separate frailties could also be investigated.

In this paper, we have assumed nonparametric forms of Λ0R and Λ0D. The large sample

properties are therefore difficult to verify fully. Murphy (1995) and Parner (1998) studied the

asymptotic properties of the shared gamma frailty model. They provide a general approach

which could possibly establish the asymptotic properties of our proposed parameter estimators,

but detailed arguments are still to be given. Simulation results suggest, however, that the

proposed variance estimators are accurate and we expect the proposed method to be valid in

many practical settings.

The estimation of θ in the proposed method requires the assumption that conditional on

frailty, the recurrent event follows a nonhomogeneous Poisson process. It would be desirable

to develop an estimation procedure which can relax this assumption.
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Appendix

The partial derivatives of the joint estimating equation U(η) are listed in this section.

For a parameter φ (e.g. φ = α), we define S
(k)
1 (φ, t) = n−1 ∑n

i=1 Yi(t)wi(t)Z
⊗k
i exp(φT Zi) and

S
(k)
2 (φ, t) = n−1 ∑n

i=1 Yi(t)wi(t)
2Z⊗k

i exp(φT Zi).
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The partial derivatives of U1(β) are,

∂U1(β)

∂β
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n∑
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dNR
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0
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
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S
(0)
1 (β, u)2



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=
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∫ τ

0
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
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S
(1)
2 (α + β, u)

S
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S
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

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

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i (u), j = 1, . . . , f.

The partial derivatives of U2(α) are,

∂U2(α)

∂α
=

n∑

i=1

∫ τ

0



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S
(1)
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The partial derivatives of U3(θ) are,

∂U3(θ)

∂θ
=

n∑

i=1

∂2 log(L(Oi(τ); Zi)

∂2θ
,

∂U3(θ)

∂α
=

n∑

i=1

diZi

riθ2 + diθ2 + θ
− (mi + ∆i + 1/θ)θ2diZi

(θ2ri + θ2di + θ)2
,

∂U3(θ)

∂β
=

n∑

i=1

riZi

riθ2 + diθ2 + θ
− (mi + ∆i + 1/θ)θ2riZi

(θ2ri + θ2di(Xi) + θ)2
,

∂U3(θ)

∂λ0Rj

=
n∑

i=1

Yi(tRj)

{
exp(βT Zi)

θ2ri + θ2di + θ
− (mi + ∆i + 1/θ)θ2 exp(βT Zi)

(θ2ri + θ2di + θ)2

}
, j = 1, . . . ,m,

∂U3(θ)

∂λ0Dj

=
n∑

i=1

Yi(tDj)

{
exp(αT Zi)

θ2ri + θ2di + θ
− (mi + ∆i + 1/θ)θ2 exp(αT Zi)

(θ2ri + θ2di + θ)2

}
, j = 1, . . . , f.

The partial derivatives of the jth element of U4(λ0R), j = 1, . . . , m and U5(λ0D), j =

1, . . . , f are straightforward and are not shown here.
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Table 1: Settings for the Simulation Study

Setting I: n=200 Setting II: n=100

Settings Ia Ib Ic Id Ie If IIa IIb IIc IId

α 0.5 0.5 0 0 0.5 0.5 0.5 0.5 0 0
β 0.5 0.5 0 0 0.5 0.5 0.5 0.5 0 0
θ 0.5 1 0.5 1 NA NA 0.5 1 0.5 1

E[mi] 3.05 2.73 2.72 2.45 3.05 3.38 3.06 2.75 2.73 2.47
E[∆i] 61.2% 54.5% 54.3% 49% 61.1% 67.4% 61.2% 54.8 % 54.3% 49%

E[mi]: average number of recurrent events per subject;

E[∆i]: average percentage of subjects who experience the terminal event
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Table 2 : Comparison of MR Model with NPF Model Based on

1000 Simulated Samples

Setting Ia: γ ∼ Γ, θ = 0.5 Setting Ib: γ ∼ Γ, θ = 1
MR Model H&W Model MR Model H&W Model

Parameter Bias ESE Bias ESE Bias ESE Bias ESE
β = 0.5 -0.003 0.152 0.0052 0.201 -0.005 0.213 0.0037 0.249
α = 0.5 0.011 0.232 0.014 0.262 0.002 0.278 0.006 0.293

θ -0.022 0.087 N/A N/A -0.031 0.147 N/A N/A

Setting Ie: γ ∼ log-Normal Setting If : γ ∼ Poisson
MR Model H&W Model MR Model H&W Model

Parameter Bias ESE Bias ESE Bias ESE Bias ESE
β = 0.5 -0.010 0.145 0.003 0.248 0.005 0.103 0.003 0.173
α = 0.5 -0.002 0.213 0.008 0.275 0.002 0.189 -0.000 0.225

Bias: Empirical Bias; ESE: Empirical Standard Error
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Table 3: Simulation Results for the MR Model under Settings Ia to If

Based on 1000 Simulated Sample

Setting I (n=200)

Setting Ia Setting Ib

MR model Bias CSE ESE 95% C.P. Bias CSE ESE 95% C.P.

β̂ -0.004 0.154 0.149 0.956 0.004 0.209 0.220 0.937
α̂ 0.002 0.227 0.229 0.943 0.012 0.275 0.275 0.948

θ̂ -0.01 0.085 0.091 0.916 -0.022 0.145 0.154 0.925

Setting Ic Setting Id

MR model Bias CSE ESE 95% C.P. Bias CSE ESE 95% C.P.

β̂ -0.004 0.152 0.160 0.935 -0.013 0.204 0.206 0.946
α̂ -0.011 0.231 0.242 0.94 -0.007 0.274 0.277 0.95

θ̂ -0.012 0.088 0.091 0.934 -0.022 0.148 0.154 0.919

Setting Ie Setting If

MR model Bias ESE CSE 95% CI Bias ESE CSE 95%CI
β = 0.5 -0.010 0.145 0.147 0.954 0.005 0.103 0.098 0.936
α = 0.5 -0.002 0.213 0.222 0.959 0.002 0.189 0.185 0.943

CSE: mean of calculated standard error; ESE: empirical standard error; 95% C.P.: 95% confidence interval

coverage probability
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Table 4: Simulation Results for the MR Model under Settings IIa to IId

Based on 1000 Simulated Sample

Setting II (n=100)

Setting IIa Setting IIb

MR model Bias CSE ESE 95% C.P. Bias CSE ESE 95% C.P.

β̂ -0.006 0.214 0.224 0.946 0.019 0.291 0.304 0.94
α̂ 0.015 0.321 0.333 0.936 0.034 0.390 0.400 0.958

θ̂ -0.026 0.117 0.121 0.890 -0.046 0.202 0.207 0.902

Setting IIc Setting IId

MR model Bias CSE ESE 95% C.P. Bias CSE ESE 95% C.P.

β̂ -0.011 0.212 0.220 0.939 -0.015 0.281 0.275 0.953
α̂ -0.007 0.327 0.353 0.935 -0.005 0.387 0.385 0.955

θ̂ -0.020 0.123 0.127 0.903 -0.06 0.204 0.216 0.891

CSE: mean of calculated standard error; ESE: Empirical standard error; 95% C.P.: 95% confidence interval

coverage probability
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Table 5: Analysis of CANUSA Study

Peritoneal Dialysis Failure Hospitalization

Covariate α̂ ŜE P β̂ ŜE P

Country
USA 0.316 0.233 0.175 0.33 0.168 0.0499
Canada 0 . . 0 . .

Gender
Female -0.454 0.173 0.009 -0.097 0.13 0.456
Male 0 . . 0 . .

Race
Non-Caucasian -0.365 0.225 0.104 -0.261 0.153 0.089
Caucasian 0 . . 0 . .

Causes of Renal Failure
Polycystic kidney disease 0.330 0.352 0.349 0.199 0.270 0.463
Diabetes 0.160 0.248 0.518 0.818 0.198 < 0.001
Vascular 0.388 0.358 0.278 0.803 0.283 0.005
Other 0.226 0.242 0.350 0.543 0.193 0.005
Glomerulonephritis 0 . . 0 . .

Age (per year) -0.006 0.006 0.365 -0.007 0.005 0.166
Non-Protein catabolic rate 0.096 0.367 0.794 0.382 0.269 0.155
Percent lean body mass -0.026 0.008 0.001 -0.014 0.005 0.010
Subjective global assessment -0.058 0.056 0.297 -0.066 0.041 0.107
Cardiovascular disease 0.141 0.169 0.402 0.162 0.130 0.213
Karofsky score -0.081 0.069 0.242 -0.114 0.053 0.031
Baseline renal clearance measure 0.122 1.081 0.910 -0.143 0.861 0.868
(per 10 units)
Serum albumin -0.311 0.174 0.073 -0.238 0.122 0.051
(per 10 gram per liter)
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Table 6: Analysis of CANUSA Study

(Naive Method)

Peritoneal Dialysis Failure Hospitalization

Covariate α̂ ŜE P β̂ ŜE P

Country
USA 0.225 0.158 0.160 0.254 0.127 0.045
Canada 0 . . 0 . .

Gender
Female -0.331 0.123 0.007 0.010 0.103 0.920
Male 0 . . 0 . .

Race
Non-Caucasian -0.258 0.159 0.110 -0.164 0.117 0.162
Caucasian 0 . . 0 . .

Causes of Renal Failure
Polycystic kidney disease 0.242 0.251 0.340 0.123 0.215 0.568
Diabetes 0.125 0.170 0.46 0.789 0.163 < 0.001
Vascular 0.285 0.241 0.24 0.789 0.218 0.001
Other 0.174 0.168 0.300 0.499 0.160 0.002
Glomerulonephritis 0 . . 0 . .

Age (per year) -0.004 0.005 0.400 -0.006 0.004 0.192
Non-Protein catabolic rate 0.085 0.265 0.750 0.375 0.224 0.094
Percent lean body mass -0.019 0.006 < 0.001 -0.007 0.005 0.100
Subjective global assessment -0.042 0.041 0.300 -0.052 0.032 0.111
Cardiovascular disease 0.092 0.121 0.450 0.116 0.101 0.251
Karofsky score -0.056 0.047 0.230 -0.091 0.040 0.023
Baseline renal clearance measure 0.090 0.877 0.920 -0.168 0.782 0.830
(per 10 units)
Serum albumin -0.215 0.119 0.071 -0.155 0.096 0.107
(per 10 gram per liter)
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