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Abstract

In longitudinal studies, outcomes ascertained at follow-up are typically undefined for individuals

who die prior to the follow-up visit. In such settings, outcomes are said to be truncated by death

and inference about the effects of a point treatment or exposure, restricted to individuals alive at

the follow-up visit, could be biased even if as in experimental studies, treatment assignment were

randomized. To account for truncation by death, the survivor average causal effect (SACE), defines

the effect of treatment on the outcome for the subset of individuals that would have survived

regardless of exposure status. In this paper, the author nonparametrically identifies SACE by

leveraging post-exposure longitudinal measurements that simultaneously mediate the effects of

exposure on survival and on the outcome of interest. Nonparametric identification is achieved by

supposing that the longitudinal data arise from a certain nonparametric structural equations model

(NPSEM), and by making the monotonicity assumption that the effect of exposure on survival

agrees in its direction across individuals. A novel weighted analysis involving a consistent estimate

of the survival process, is shown to produce consistent estimates of SACE. A data illustration

is given and the methods are extended to the context of time-varying exposures. We discuss a

sensitivity analysis framework that relaxes assumptions about independent errors in the NPSEM,

and may be used to assess the extend to which inference may be altered by a violation of key

identifying assumptions.

1 Introduction

In longitudinal studies, it sometimes happens that individuals die between follow-up visits, in

which case, unobserved outcomes that would have been ascertained during follow-up are said to

be truncated by death. It is well known that inference about the effects of a point treatment

2 http://biostats.bepress.com/harvardbiostat/paper167



or exposure, restricted to individuals alive at a follow-up visit, could be biased even if as in

experimental studies, treatment assignment were randomized. Similarly, it may be that a vaccine

studied in a randomized trial, has a protective effect against a viral infection for some but not all

individuals in the study. Then, viral load associated with the infection would not be observed unless

a person became infected, which is a post-randomization event. As for truncation by death, an

evaluation of the effects of the vaccine on viral load among infected individuals in the study likewise

could be biased. Such bias may be present, if as we expect is likely the case in the aforementioned

settings, there are downstream effects of the exposure or treatment, that independently affect

survival or post-randomization infection, and the outcome of interest. A more fundamental issue

is that the outcome may not be well defined for individuals who die, or remain un-infected by the

virus, under either exposure status, and therefore, it is not clear that a causal effect of the exposure

can be defined for such individuals. In order to appropriately account for truncation by death,

one can define the survivor average causal effect (SACE), which is the effect of exposure on the

outcome for the subset of individuals that would have survived regardless of [exposure status [1,2].

SACE is an instance of what is sometimes referred to as a principal strata causal effect [2,3,4]. An

analogous principal strata causal effect is likewise defined for the effect of vaccine on viral load,

among infected individuals for whom the vaccine has no protective effect against infection [5-8].

Throughout the paper, we refer to these two types of effects as SACE without further distinguishing

between their respective contexts. In this paper, SACE is shown to be nonparametrically identified

by leveraging post-exposure longitudinal measurements that simultaneously mediate the effects of

exposure on survival and on the outcome of interest. Nonparametric identification is achieved

by supposing that the longitudinal data arise from a certain nonparametric structural equations

model [9], and by making the monotonicity assumption that the effect of exposure on survival

agrees in its direction across individuals. Under these assumptions, a novel yet simple weighted
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analysis with weights involving the survival process, is shown to produce consistent estimates of

SACE, provided that the survival process is estimated consistently. A number of alternative

estimators are also described, some with interesting theoretical properties. However, it is argued

these other estimators may be more diffi cult to implement in practice, particularly in studies with

longer follow-up, where the simple weighted analysis extends with little additional computational

diffi culty. An illustration of the simple weighted analysis is given in an application concerning

the effects of smoking history on decline of cognitive function in an aging population subject to

truncation by death. A general sensitivity analysis technique is described, to assess the extent

to which inference might be affected by a violation of an assumption that all common causes of

survival and the outcome are fully observed. Finally, in the context of time-updated exposures, the

survivor marginal structural model (SMSM) is introduced, which amounts to a standard marginal

structural model for the subpopulation that would survive irrespective of treatment history. A

weighted approach is described for estimating the parameters of an SMSM.

2 A simple three-occasion study

2.1 Causal diagram interpretation of biased analyses

By way of introduction, first consider a simplified version of the study of the effects of smoking on

cognitive function decline, here restricted to only three longitudinal occasions, as depicted in the

causal diagram in Figure 1.

Insert Figure 1.

The simplified design consists of a baseline j = 0 at which binary smoking status A is observed,

and two follow-up contacts, with cognitive function and other covariates assessed at each j = 1, 2.
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Until otherwise stated, assume that all respondents participate at the first follow-up and thus data

C1 are collected for all subjects at j = 1, but some individuals die before the second follow-up,

with S = 1 indicating survival. Suppose that besides for cognitive function, C1 includes all other

effects of smoking, that may simultaneously affect survival and the outcome Y corresponding to

cognitive decline between j = 1 and j = 2; examples of such variables are listed in Section 4. In

addition, assume that survival may be directly affected by A and further assume that death is the

only source of attrition in this study. Throughout, we assume no measurement error. The double-

headed arrow between C1 and Y encodes possible unmeasured common causes of say cognitive

function at follow-up and change in cognitive function Y, the presence of which cannot be ruled

out with certainty. For instance, there is evidence for genetic determinants of Alzheimer’s disease

that suggests a genetic basis for an individual’s cognitive function over time [10]; however, such

genetic information is not available in this study. Although such a genetic component would not

be directly affected by smoking behavior, unmeasured common causes of cognitive function C1

and subsequent decline of cognitive function Y , might also include unknown epigenetic effects of

smoking behavior on future cognitive function, and therefore, could be directly affected by smoking.

For simplicity, we further assume until later sections that all analyses are stratified by pre-exposure

confounders of A, which is suppressed in the notation, such that the effects of A on (C1, Y, S) are

unconfounded, and therefore A behaves as if it were randomized.

The causal diagram in Figure 1 can be used to formalize the bias associated with an analysis

of the effects of baseline smoking status A on cognitive function decline Y , conditional on being

alive at the end of follow-up. To understand how this bias arises, it suffi ces to note that by d-

separation [9], such an analysis would unblock the non-causal pathways A → S ← C1 → Y and

A → C1 ↔ Y , thus indicating an effect of smoking on cognitive decline even if there were none.

One should also note that further conditioning on C1 does not resolve the diffi culty, since doing
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so does not block the pathway A → C1 ↔ Y. Both of these strategies essentially fail because

conditioning on S implies conditioning on a collider on the pathway A→ S ← C1 → Y as in the

first strategy, but also implies conditioning on a direct descendant of a collider on the pathway

A → C1 ↔ Y , which induces non-causal associations between A and Y [9]. Further conditioning

on C1 as in the second strategy above does not really help resolve this issue since it also implies

conditioning on a collider on the pathway A→ C1 ↔ Y. Collider bias is invariably the pitfall, and

thus a source of bias, for most analyses involving conditioning on a post-exposure event.

2.2 Nonparametric structural equations model

The following exposition is framed around a structural equation theory of causal inference, de-

scribed by Pearl [9]. Structural equations provide a nonparametric algebraic interpretation of the

diagram of Figure 1 corresponding to four functions, one for each variable on the causal graph:

A = gA (εA) ; (1)

C1 = gC1(A, εC1); (2)

S = gS (A,C1, εS) ; (3)

Y =


gY (A,C1, εY ) if S = 1

undefined if S = 0

(4)

Each of the nonparametric functions {gA, ..., gY } represents a causal mechanism that determines

the value of the left variable, known as the output, from variables on the right, known as the

inputs [9]. The errors (εA, εC1 , εS, εY ) stand for all factors not included on the graph that could

possibly affect their corresponding outputs when all other inputs are held constant. For instance,
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εS includes all causes of death unrelated to cognitive function decline. To be consistent with the

causal graph presented in Figure 1, we require that the errors (εA, εS) be mutually independent,

and we require that they be jointly independent of (εC1 , εY ). However, as indicated by the double

arrow edge in Figure 1, εC1 may not be independent of εY . We allow all error distributions to

otherwise remain arbitrary. Lack of a causal effect of a given variable on an output is encoded by

an absence of the variable from the right-hand side. For example, the absence of a direct effect of

smoking on cognitive function at the first follow-up would imply removing A from the arguments

of gC1 encoding the assumption that variations in A leave C1 unchanged, as long as εC1 remains

constant, which is consistent with the assumption that there is no unmeasured common cause of

smoking and cognitive function.

The last equation makes explicit the fact that Y is observed only among survivors with (S = 1),

with corresponding structural equation gY (A,C1, εY ). As stated by Pearl [9], the invariance of

structural equations permits their use as a basis for modeling causal effects and counterfactuals.

In fact, to emulate the intervention in which one sets {A = a} for all individuals simply amounts

to replacing the equation for A with A = a, producing the following set of modified equations:

A = a; (5)

C1 (a) = gC1(a, εC1); (6)

S (a) = gS (a,C1 (a) , εS) ; (7)

Y (a) =


gY (a,C1 (a) , εY ) if S (a) = 1

undefined if S (a) = 0

(8)

with (C1 (a) , S (a) , Y (a)) denoting the counterfactual outcomes had smoking status been set to a

(possibly contrary to fact). We emphasize that while the model specifies a structural equation for
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survival, survival is not manipulable, and, together with Y, should be understood as part of the

outcome produced by the system of equations. As previously observed [11], structural equations are

particularly helpful to clarify the diffi culty with interpreting the effect of smoking when truncation

by death is present. Specifically, we note that the individual effect of smoking is recovered by

taking the contrast Y (a = 1) − Y (a = 0), which clearly is defined only for individuals in the

principal stratum {S(0) = S(1) = 1} and is equal to

gY (1,C1 (1) , εY )− gY (0,C1 (0) , εY )

and the associated population average gives the SACE estimand denoted β:

β = E {Y (a = 1)− Y (a = 0)|S(a = 0) = S(a = 1) = 1}

= E {gY (1,C1 (1) , εY )− gY (0,C1 (0) , εY ) |S(a = 0) = S(a = 1) = 1}

SACE is generally not identified without additional assumptions, even under an NPSEM. At

one end of the spectrum of possible identifying assumptions, one might assume that the sharp null

hypothesis holds, that for all individuals in the population, A has no individual causal effect on

survival,.i.e. S(a = 1) = S(a = 0) = 1 almost surely. The assumption implies that individuals who

survive under an exposure status constitute a random sample of individuals who would survive

irrespective of exposure value. Then, it is straightforward to verify that:

β = E (Y |S = 1, A = 1)− E (Y |A = 0, S = 1) .

In light of existing scientific evidence about the harmful effects of smoking on human health,

the above identifying assumption of no individual causal effect of smoking on survival is clearly
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inappropriate, and therefore the above equation is unlikely to be correct.

At the opposite end of the spectrum of possible identifying assumptions, a strategy that is

sometimes adopted entails performing a sensitivity analysis, using data on (A, SY, S) [7,12,13,14],

possibly also incorporating pre-exposure covariates [9]. A sensitivity analysis then typically in-

volves recovering an estimate of SACE upon making a monotonicity assumption about the effects

of exposure on survival, and by fixing certain non-idendified parameters involving the joint dis-

tribution of potential outcomes to some hypothetical value, which is then varied over a certain

range to assess the degree to which the effect estimate of SACE changes as a function of these

parameters. Worst-case scenarios of a sensitivity analysis give rise to bounds for SACE, but such

bounds typically only apply in rather simple settings [3,15].

An alternative identifying assumption that is sometimes made in the principal strata literature,

and that falls somewhere in between the above extremes, involves assuming that certain potential

outcome independencies about the outcome of interest and survival, can be obtained upon con-

ditioning on enough pre-exposure covariates, such that SACE becomes identified within levels of

such covariates [16,17] proposed to identify SACE under a parametric model and presented the

maximum likelihood estimation. They discussed identifiability for a mixture normal model; how-

ever as pointed out by Ding et al [18], the mixture normal model may not be identifiable under

the extreme case that the probability of each latent component is the same . When the outcome of

interest is binary, even with a parametric binary mixture model, the causal parameter of interest

is still not identifiable without some further assumptions [18]. An alternative approach is given by

Ding et al [18] who exploit a form of exclusion restriction assumption for an observed pre-exposure

covariate to obtain nonparametric identification of SACE. Nolen and Hudgens [19] proposed an

elegant randomization-based approach about causal effects within principal strata -possibly within

pre-exposure covariate levels- that is particularly useful for testing the null hypothesis of no prin-
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cipal strata causal effect but relies for identification and estimation away from the null, on the

assumption of a constant individual principal strata causal effect.

The aforementioned methods all share a notable limitation, in that none appears to appropri-

ately incorporate risk factors of survival available in post-exposure follow-up. In our hypothetical

example, it is unclear whether these methods, including sensitivity analysis techniques, can make

use of follow-up data collected in C1 such as post exposure cognitive function, a correlate of sur-

vival that is likely affected by smoking status. A somewhat related context to ours is considered

by Dai et al [20], who develop a partially hidden markov model for time-varying principal strat-

ification in HIV prevential trials. Their proposed approach however relies on a categorization of

the intermediate variables into discrete event types and therefore does not easily generalize for

continuous or high dimensional intermediate variables. Tchetgen Tchetgen et al [11] provide an

alternative interpretation of standard inverse probability weighting for dependent censoring, incor-

porating time-updated covariates. They show that under the NPSEM defined by equations (1-4),

the causal effect identified by inverse-probability weighting survivors, in fact, naturally incorpo-

rates principal-strata causal effects, therefore, formally establishing a previously unknown relation

between inverse-probability weighting and principal stratification, two seemingly unrelated analytic

frameworks. However, their proposed model does not identify SACE exactly without an additional

assumption. In the next section, an alternative approach is proposed that does not suffer from

these possible limitations. But first, we refine the usual definition of SACE, to rule out certain

pathological situations. As discussed above, SACE is typically defined to be the average exposure

effect for individuals that would survive irrespective of exposure. One might further refine the de-

finition of SACE by considering a person’s survival status S(e = 1,C1(e = 0)) in the hypothetical

scenario where the person smoked, but C1 behaved as if the individual did not smoke; likewise

one could consider a person’s survival status S(e = 0,C1(e = 1)) in the hypothetical scenario
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where the person did not smoke but C1 behaved as if the person smoked. Such "cross-world"

potential outcomes feature prominently in recent literature on causal mediation analysis, where

they are used for formal causal definitions of direct and indirect effects of an exposure (see [21,22]).

Consider the following combination of an individual’s potential outcomes


S(e = 0) = S(e = 0,C1(e = 0)), S(e = 1,C1(e = 0)),

S(e = 0,C1(e = 1)), S(e = 1) = S(e = 1,C1(e = 1))


which allows further distinction between individuals who would survive irrespective of exposure,

i.e. S(e = 0) = S(e = 1) = 1. For instance, it may be that a person that would survive whether

exposed or not, would not survive in certain cross-world situations S(e = 1,C1(e = 0)) = S(e =

0,C1(e = 1)) = 0. Such an individual would be considered rather unusual and hereafter the causal

effect of exposure for such a person is not further considered, and SACE is redefined to be the

causal effect of exposure for individuals that would survive regardless of exposure, including under

cross-world situations:

ψ = E {Y (a = 1)− Y (a = 0)|S(a,C1(a
∗)) = 1; a, a∗ ∈ {0, 1}} .

If one were to a priori rule out the possibility that an individual that would survive irrespective

of exposure status, could die under cross-world conditions, then it would also be that ψ = β, and

therefore the more stringent definition of SACE would match the more common definition.

2.3 Identification of SACE

Identification of SACE requires, in addition to the NPSEM assumptions, that we make the following

assumptions:
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Monotonicity Assumption:

S(a = 1,C1(a
∗)) ≤ S(a = 0,C1(a

∗)) almost surely, a∗ = 0, 1

The contrast S(a = 1,C1(a
∗)) − S(a = 0,C1(a

∗)) is known in the causal mediation literature as

the pure or natural direct effect of exposure, in a hypothetical situation where C1 is set to what

it would be under smoking status a∗, and captures the direct effects of exposure not mediated by

C1. Thus, the assumption states that there is no individual in the population, for whom smoking

provides a protective individual direct effect on survival.

In order to state the second assumption, consider the following subsets of individuals. Let

P0 denote the subset of individuals that would survive regardless of smoking, in a hypothetical

situation where C1 would behave as if they did not smoke i.e. S(a = 0,C1(a = 0)) = S(a =

1,C1(a = 0)) = 1, and let P1 denote the subset of individuals that would survive irrespective

of smoking, in a hypothetical situation where C1 would behave as if they smoked, i.e. S(a =

0,C1(a = 1)) = S(a = 1,C1(a = 1)) = 1.

Concordant Survivorship Assumption : P0 = P1 almost surely.

This second assumption states that individuals that would survive irrespective of smoking status,

in a hypothetical situation where C1 behaved as if they smoked, would also survive irrespective

of smoking status, in the hypothetical situation where C1 behaved as if they did not smoke, and

that the converse also holds.

Then we have the following result:

Theorem 1 Under the NPSEM given by equations (1) − (4) , and under the Monotonicity As-
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sumption, and the Concordant Survivorship Assumption, we have that SACE :

ψ = E {Y (a = 1)− Y (a = 0)|S(a = 0,C1(a
∗)) = S(a = 1,C1(a

∗)) = 1, a∗ = 0, 1}

is nonparametricaly identified and is given by µ1 − µ0, where

µ1 = E {Y (a = 1)|S(a = 0,C1(a
∗)) = S(a = 1,C1(a

∗)) = 1, a∗ = 0, 1}

= E {Y (a = 1)|S(a = 0,C1(a = 1)) = S(a = 1,C1(a = 1)) = 1}

= E {Y |A = 1, S = 1}

and

µ0 = E {Y (a = 0)|S(a = 0,C1(a
∗)) = S(a = 1,C1(a

∗)) = 1, a∗ = 0, 1}

= E {Y (a = 0)|S(a = 0,C1(a = 0)) = S(a = 1,C1(a = 0)) = 1}

=

∫
E (Y |A = 0, S = 1,C1 = c) Pr(S = 1|A = 1,C1 = c)dF (c|A = 0)∫

Pr(S = 1|A = 1,C1 = c)dF (c|A = 0)
, (9)

where F (u1|u2) stands for the cumulative distribution function of U1 given U2,evaluated at U1 = u1,

U2 = u2, and it is assumed that Pr(S = 1|A = 1,C1 = c)/Pr(S = 1|A = 0,C1 = c) <∞.

According to the theorem, estimation of the average survivor outcome for smoking presents no

particular diffi culty, and can be achieved by a simple average outcome of exposed individuals that

survived. The situation is quite different for the average survivor outcome for nonsmoking. The

theorem states that this average value can be obtained by using the expression given in equation

(9). Intuition for this expression is gained by comparing it to that of the average outcome for
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unexposed individuals that actually survived:

E (Y |A = 0, S = 1) =

∫
E (Y |A = 0, S = 1,C1 = c) Pr(S = 1|A = 0,C1 = c)dF (c|A = 0)∫

Pr(S = 1|A = 0,C1 = c)dF (c|A = 0)
.

Then, one may note that the principal distinction between these two expressions is that the con-

ditional survival probability for the unexposed used in both numerator and denominator of the

second expression is replaced by that for the exposed in the first expression. This substitution

essentially amounts to a form of standardization of unexposed individuals who survived, by the

survival probability of exposed individuals with similar covariate history. One should note as well

that in the special instance where C1 and A are both unrelated to survival, then, as one might

expect, the two above expressions coincide. However, in general, the two functionals do not coin-

cide, and the subtle difference between them has nontrivial implications for statistical inference. In

particular, whereas estimation of E (Y |A = 1, S = 1) is fairly straightforward and does not require

a first stage estimation of nuisance parameters, estimation of µ0 is somewhat more involved.

2.4 Estimation of SACE

As explained in the previous section, we need only to consider estimation of µ0. Ideally, we may

wish to estimate this quantity nonparametrically, so as to reduce the risk of bias due to modeling

error; however, this may not be possible in practice. That is because, as shown below, estimation

of µ0 is generally not possible without involving an estimate of a subset of the following quantities

{E (Y |A, S = 1,C1) ,Pr(S = 1|A,C1), dF (C1|A)}. In practice, one would probably seek to enrich

as much as possible the set of covariates in C1 so as to ensure that all variables are included, that

potentially simultaneously mediate the effects of exposure on survival and on the outcome. As

a result, our primary interest concerns settings where C1 potentially includes a large number of
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covariates, a subset of which are possibly continuous, such that nonparametric methods for esti-

mating the above density and regression models, such as smoothing techniques, may be of limited

value. Consequently, next, we present three simple estimation strategies based on low dimensional

models using iid data (A,C1, S, SY ). Let {Ê (Y |A, S = 1,C1) , P̂r(S = 1|A,C1), dF̂ (C1|A)} denote

estimates obtained using parsimonious parametric working models for the unknown conditional

mean and the two unknown conditional densities. The first strategy entails direct substitution of

unknown quantities in (9) by their corresponding estimate, which gives

µ̂10 =

∫
Ê (Y |A = 0, S = 1,C1 = c) P̂r(S = 1|A = 1,C1 = c)dF̂ (c|A = 0)∫

P̂r(S = 1|A = 1,C1 = c)dF̂ (c|A = 0)

This estimator depends heavily on correct specification of all three models. An alternative estima-

tor that makes fewer assumptions is based on the following equivalent representation of µ0

∫
E (Y |A = 0, S = 1,C1 = c) Pr(S = 1|A = 1,C1 = c)dF (c|A = 0)∫

Pr(S = 1|A = 1,C1 = c)dF (c|A = 0)

=
E {E (Y |A = 0, S = 1,C1)ASdF (C1|A = 0)/dF (C1|A = 1)}

E {ASdF (C1|A = 0)/dF (C1|A = 1)}

where, throughout, it is assumed that dF (C1|A = 0)/dF (C1|A = 1) < ∞ almost surely, a 6= a∗,

which gives the estimator:

µ̂20 =
Pn
[
Ê (Y |A = 0, S = 1,C1)AS

{
dF̂ (C1|A = 0)/dF̂ (C1|A = 1)

}]
Pn
[
AS
{
dF̂ (C1|A = 0)/dF̂ (C1|A = 1)

}]
where Pn (·) = n−1

∑
i (·)i . This second approach improves over the first in terms of robustness,

since it does not directly involve an estimate of the survival process. Finally, consider yet another
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representation of µ0 :

∫
E (Y |A = 0, S = 1,C1 = c) Pr(S = 1|A = 1,C1 = c)dF (c|A = 0)∫

Pr(S = 1|A = 1,C1 = c)dF (c|A = 0)

=
E {Y (1− A)S Pr(S = 1|A = 1,C1)/Pr(S = 1|A = 0,C1)}
E {(1− A)S Pr(S = 1|A = 1,C1)/Pr(S = 1|A = 0,C1)}

(10)

which motivates the estimator :

µ̂30 =
E
{
Y (1− A)SP̂r(S = 1|A = 1,C1)/P̂r(S = 1|A = 0,C1)

}
E
{

(1− A)SP̂r(S = 1|A = 1,C1)/P̂r(S = 1|A = 0,C1)
}

This last estimator has the advantage that it only requires an estimate of the survival process,

and both the outcome regression and the covariates distribution are left unrestricted. Thus of the

three approaches presented above, the last is most appealing in terms of modeling requirement,

since it involves a single model versus the other two approaches that involve using more than

one model. Furthermore, as shown in the next section, the third strategy naturally extends to a

general longitudinal context with arbitrary follow-up time, with little extra diffi culty. We do not

further consider the first two approaches on the above theoretical grounds, although in Section 5,

a doubly robust approach is given, that combines some of the above strategies such that consistent

estimation of µ0 remains possible even under partial model mis-specification, i.e. when only some

but not all required models are correctly specified.
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3 Longitudinal studies of arbitrary length

3.1 Longitudinal NPSEM and identification of SACE

We turn to the more general context of a longitudinal study with potentially more than two

follow-up visits j = 0, ...J , where J ≥ 2 is fixed, and at each occasion j, one observes (Sj, SjCj) ,

where Sj indicates survival status at time j, and Cj includes covariates measured at time j. We

suppose that S0 = S1 = 1, and therefore, a vector of pre-exposure covariates C0 is measured on all

individuals in the target population; and exposure A is measured concurrently with covariates C1

on all individuals in the target population. The variable CJ = Y encodes the outcome measured

at the end of follow-up. We consider the general NPSEM:

For j = 0, (11)

C0 = gC0 (εC0) ;

for j = 1,
C1 = gC1 (εC1 ,C0) ;

A = gA (εA,C0) ;

(12)

and for j = 2, ..., J

Sj =


gSj
(
A,Cj−1, εSj

)
if Sj−1 = 1;

0 if Sj−1 = 0;

(13)

Cj =


gCj(A,Cj−1, εCj) if Sj = 1;

undefined if Sj = 0.

(14)
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We assume that

εA ⊥⊥
{
εsj : j = 2, ..., J

}
,

and we also assume that:

{
εA, εsj : j = 2, ..., J

}
⊥⊥
{
εCj : j ≥ 2

}

However, εCj and εCj′ may be dependent, and εsj and εsj′ may be dependent, j 6= j′. The causal

diagram of Figure 2 depicts the observed data, generated under such an NPSEM for an individual

alive at the end of follow-up, in the special case where J = 4. We allow all error distributions to

otherwise remain arbitrary.

Insert Figure 2.

This more general NPSEM extends the previous model, to accommodate, both confounding by

pre-exposure covariates C0, and longitudinal data CJ , where Cj denotes the history (C0, ...,Cj) .

Note that because C0 and C1 are respectively prior to and concurrent with exposure A, they

cannot be affected by exposure, and thus C0(a) = C0 and C1(a) = C1. Technically, C0 confounds

the effects of A, but C1 is not considered a confounder even though it may be correlated with

A, and may be used to account for the bias due to truncation by death. Crucially, independence

of εCj−1 and εsj implies that for individuals alive at time j − 1,
(
Cj−2, A

)
intercepts or block all

non-causal pathways between Cj−1 and Sj; in the language of causal graphs,
(
Cj−2, A

)
is said to

block all back-door paths from Cj−1 to Sj.

SACE is defined to be the causal effect of exposure on an outcome measured at the end of

follow-up, among individuals that would survive whether exposed or not, and with the covariate
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history they would experience under possibly conflicting exposure status:

ψJ = E
{
Y (a = 1)− Y (a = 0)|SJ(a,CJ−1(a

∗)) = 1; a, a∗ ∈ {0, 1}
}

As previously mentioned in the 3-occasion case, here we again have that SJ(0,CJ−1(0))SJ(1,CJ−1(1)) =

1 implies that SJ(0,CJ−1(1))SJ(1,CJ−1(0)) = 1 almost surely, then

ψJ = E
{
Y (a = 1)− Y (a = 0)|SJ(a,CJ−1(a)) = SJ(a) = 1; a ∈ {0, 1}

}

which matches SACE as commonly defined in the literature.

Identification requires an extension of the Monotonicity and Concordant Survivorship assump-

tions:

Sequential Monotonicity Assumption for Point Exposure:

if Sj−1(1,Cj−2(a))Sj−1(0,Cj−2(a)) = 1 then Sj(1,Cj−1(a)) ≤ Sj(0,Cj−1(a))

almost surely; a = 0, 1, j = 1, ..., J

Let P0,J denote the subset of individuals that would survive until the end of follow-up regardless

of smoking, in a hypothetical situation where CJ would behave as if they did not smoke, and let

P1,J denote the subset of individuals that would survive irrespective of smoking, in a hypothetical

situation where CJ would behave as if they smoked.

Concordant Survivorship Assumption for Point Exposure :

P0,J = P1,J almost surely.
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The Sequential Monotonicity Assumption states that for a person that would survive up to time

j − 1 irrespective of smoking status, in the hypothetical situation where his covariate history

behaves as if smoking status were fixed to a, if the person were to survive at time j when exposed

and with covariate history as if smoking status were equal to a, the person would also survive

at time j, with similar covariate history, if he were not to smoke. The Concordant Survivorship

Assumption essentially states that

SJ(1,CJ−1(0))SJ(0,CJ−1(0)) = 1 ⇐⇒ SJ(1,CJ−1(1))SJ(0,CJ−1(1)) = 1 almost surely

which is the natural extension of the previous Concordant Survivorship Assumption. Throughout,

we further assume that
J∏
k=2

πk
(
1,Ck−1

)
/

J∏
k=2

πk
(
0,Ck−1

)
<∞

almost surely and 0 < p (C0) < 1 almost surely.

Then we have the following result:

Theorem 2 Under the NPSEM given by equations (11)− (14) , the Sequential Monotonicity As-

sumption and the Concordant Survivorship Assumption for point exposure; we have that ψJ is

nonparametricaly identified and is given by µ1,J − µ0,J , where

µ1,J = E
{
Y (a = 1)|SJ(a,CJ−1(a

∗)) = 1; a, a∗ ∈ {0, 1}
}

= E (Y |A = 1, SJ = 1) ,

20 http://biostats.bepress.com/harvardbiostat/paper167



and

µ0,J = E
{
Y (a = 0)|SJ(a,CJ−1(a

∗)) = 1; a, a∗ ∈ {0, 1}
}

=

∫
...
∫
E
(
Y |A = 0, SJ = 1,CJ−1 = cJ−1

)∏J
j=2 πj (1, cj−1)

∏J−1
j=0 dG0,j(cj; cj−1)∫

...
∫ ∏J

j=2 πj (1, cj−1)
∏J−1

j=0 dG0,j(cj; cj−1)
, (15)

where

πj (a, cj−1) = Pr(Sj = 1|A = a,Cj−1 = cj−1, Sj−1 = 1), j = 2, ...J ;

Ga,j(cj; cj−1) = F (cj|A = a,Cj−1 = cj−1, Sj = 1), j = 2, ..., J − 1;

G0,1(c1; c0) = G1,1(c1; c0) = F (c1|c0);

G0,0(c0; c−1) = G1,0(c0; c−1) = F (c0).

According to the theorem, as was the case in the 3-occasion example, estimation of the average

survivor outcome for smoking likewise presents no particular diffi culty, and can be achieved by a

simple average of the outcomes of exposed individuals that survived until the end of follow-up.

The theorem states that the average survivor outcome for nonsmoking is given by the functional

in equation (15) . This formula is a generalization of equation (9) that appropriately accounts

for more lengthy follow-up, but also accounts for pre-exposure confounding by C0. Instead of a

marginal SACE parameter, a conditional SACE parameter might be of interest, say:

ψJ(v) = E
{
Y (a = 1)− Y (a = 0)|V = v, SJ(a,CJ−1(a

∗)) = 1; a, a∗ ∈ {0, 1}
}

where V ⊂ C0 is a vector of pre-exposure confounders, such that C0 = (V,W). Then, it is
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straightforward to verify that a corollary of Theorem 2 gives under the same set of assumptions:

ψJ(v) = µ1,J(v)− µ0,J(v)

where

µ1,J(v) = E {Y |A = 1,V = v, SJ = 1}

µ0,J(v) =

∫
...
∫
E
(
Y |A = 0, SJ = 1,CJ−1 = cJ−1

)∏J
j=2 πj (1, cj−1)

∏J−1
j=1 dG0,j(cj; cj−1)dG0,0(w; v)∫

...
∫ ∏J

j=2 πj (1, cj−1)
∏J−1

j=1 dG0,j(cj; cj−1)dG0,0(w; v)

and

G0(w; v) =


F (w|v) if W is not empty

1 if W is empty

3.2 Weighted estimation of models of SACE

A simple weighted approach is given, that is consistent under correct models for the survival

process, as well as for the exposure process. Let {π̂j (·) , j = 2, ...J} denote an estimated model

for the survival process, using a standard parametric approach; likewise, let p(C0) = Pr(A =

1|C0) denote the propensity score for exposure, and p̂(C0) denotes its estimator using a standard

parametric approach. Define the following estimated weights for individuals who survive until the

end of follow-up:

ŴS =

∏J
k=2 π̂k

(
1,Ck−1

)∏J
k=2 π̂k

(
A,Ck−1

)
ŴA =

[
p̂ (C0)

A {1− p̂ (C0)}1−A
]−1
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Then, let ψ̂J denote the weighted ordinary least squares estimator of the marginal effect of A on

Y using only data on individuals who survived until the end of follow-up, with individual weight

equal to ŴS × ŴA. Then we have the following result:

Theorem 3 Suppose that the assumptions of Theorem 2 hold, and that {π̂j (·) , j = 2, ...J} and

P̂ (·) are consistent, then ψ̂J is consistent for ψJ .

The theorem states that ψJ may be estimated consistently, by applying the weights ŴS × ŴA

in weighted least-squares estimation of a standard linear regression of Y on A among individu-

als alive at the end of follow-up. Furthermore, the estimator ψ̂J is asymptotically normal under

standard regularity conditions. The weights component given by ŴA corresponds to standard

inverse-probability-of-treatment weighting a well-known propensity score technique to control for

confounding [23,24]. Intuitively, treatment weights create possibly fractional copies of each individ-

ual with complete follow-up, such that in the weighted sample, C0 no longer predicts A and there-

fore is not a confounder. The other component of the weights ŴS corrects for selective survival of

unexposed individuals. Intuitively, monotonicity of the effects of exposure on survival implies that

unexposed survivors may be over-represented relative to the exposed, and thus if C0 were empty

so that ŴA could be set to 1, then since 0 < WS =
∏j

k=2 πk
(
1,Ck−1

)
/
∏j

k=2 πk
(
A,Ck−1

)
≤ 1,

we would have that the survival weight essentially adjusts the contribution of unexposed survivors

downwards, and does so continuously as a function of CJ .

While the Theorem states the result for SACE measured on the additive scale, weighted esti-

mation with weight ŴS × ŴA is an universal strategy for estimating SACE on a variety of scales

often of scientific interest. For instance, the approach could be used to estimate SACE on the

multiplicative scale, or for other choice of link function, such as logit or probit link functions. This

could be achieved by simply replacing the normal equations by the appropriate set of estimating
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equations one would have used in the absence of selective truncation by death and confounding.

The approach could also be used for quantile regression, or to weight other standard likelihood or

quasi-likelihood methods as a means to jointly account for selective survival and confounding. For

instance, weighted partial likelihood could be used to estimate a Cox proportional hazards regres-

sion model, producing SACE estimates on the hazards ratio scale. This could be done by simply ap-

plying individuals weights within risk sets. Finally, suppose that instead of marginal causal effects,

a conditional causal effect, say ψJ(C0) were in view. Then suppose that one were to use a para-

metric or semiparametric model E
{
Y (a)|C0 = c0, SJ(a′,CJ−1(a

∗)) = 1; for all a′, a∗ ∈ {0, 1} ; θ
}

to describe the survivor average causal effect of A within levels of Co. Then assuming the model

were correct, θ could then be estimated via a weighted approach, using only the survival compo-

nent of the weight ŴS, since the regression model would already account for baseline confounding

by conditioning on C0. This strategy is in fact adopted in the data illustration of the next Section.

For inference about ψJ or ψJ(C0), in general, one could use the nonparametric bootstrap such

that the extra variation due to first stage estimation of the weights is appropriately accounted

for. Alternatively, one could use a consistent estimate of the large sample variance of the weighted

estimator of SACE to construct Wald-type confidence intervals; such an estimator of the large

sample variance can be computed in a manner similar to the variance estimator given in Section

5.

4 A data application

We illustrate the methods developed in the previous section in an analysis of the effects of smoking

on cognitive decline in an aging population subject to substantial attrition due to death and drop-

out for other reasons [25]. In their paper, Weuve et al [25] noted that selective attrition in this
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population may introduce bias into analyses of the effects of smoking status measured at the start

of follow-up on cognitive decline, mainly due to the facts that:

(1) an individual’s evolving health status is likely to be a common cause for attrition and cogni-

tive decline among survivors who do not drop out.

(2) an individual’s evolving health status is likely to mediate the causal effect of smoking on

cognitive decline.

To appropriately account for (1) and (2) Weuve et al used inverse-probability-of-attrition weights

and examined the influence of selective attrition on the estimated association of current smoking

(versus never smoking) with cognitive decline in participants of the Chicago Health and Aging

Project (n=3,713), aged 65-109, who were current smokers or never-smokers, and underwent cog-

nitive assessments up to 5 times at 3-year intervals. Only 20% of the original sample remained

at the fourth follow-up, and mortality accounted for most (∼70%) of the attrition. Weuve et

al used separate pooled logistic regression to fit predictive models of attrition due to death or

study drop-out across the follow-up waves using both baseline and time-updated data to construct

inverse-probability-of-attrition weights. We refer the reader to Weuve et al for additional details on

their design and analysis of the study, also see [11,22] for additional discussion. Similar to Weuve et

al [25], we estimated a linear mean regression model contrasting rates of change in cognitive scores

in current versus never-smokers, adjusting for the following pre-exposure confounders in the regres-

sion: age, sex, race, education, and alcohol consumption. As recommended by Tchetgen Tchetgen

et al [26], the analysis assumed an independence correlation structure for the 5 serial measurements

of cognitive function (coded as z-scores). Death and dropout for other reasons denoted Dj, were

respectively modeled as discrete time hazard models via logistic models that included main effects

for the following baseline and time-updated variables: age, race (African American vs. white), sex
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(male vs. female), education (0—8 years, 9—12 years referent, 13—16 years, 17—30 years), alcohol

consumption at the previous visit (none referent, up to 1 drink/d, 1 drink/d), social network score

at the previous visit, cognitive activity at the previous visit, disability score at the previous visit,

self-rated health at the previous visit (per unit worsening in rating), chronic cardiovascular condi-

tions, diabetes, global cognitive score at the previous visit, and smoking status (current vs. never).

A logistic model for non-death related censoring was also estimated using only baseline variables.

These predictive models were combined as in Weuve et al to account for selective censoring other

than death via stabilized weights [25]:

Ŵ ‡
j =

∏j
k=2 P̂r (Dk = 0|C0, A, Sk = 1)∏j

k=2 P̂r
(
Dk = 0|Ck−1, A, Sk = 1

)
An additional set of weights was estimated to account for truncation by death using the ap-

proach developed in Section 3.2

ŴS,j =

∏j
k=2 π̂k

(
1,Ck−1

)∏j
k=2 π̂k

(
A,Ck−1

)
and the final weight Ŵ ‡

j × ŴS,j was applied at the level of observations within individuals, such

that for each person wave contribution to our analysis at wave j, the weight was the products of

censoring weights and survival weights

Confidence intervals were obtained via the bootstrap. In un-weighted analyses, current smokers’

cognitive scores declined 0.11 standard units per decade more rapidly than never-smokers’(95%

CI= -0.20 to -0.02). Weighting for attrition due to drop out or death using Ŵ ‡
j × ŴS,j for weight

gave an estimate that was considerably larger, with smoking’s estimated 10-year rate of decline

compared with nonsmoking 55% larger than in the un-weighted analysis (95% CI=—0.27 to -0.07).
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Under the assumptions of Theorem 2, this latter estimate may be interpreted as the survival average

effect of smoking on cognitive decline conditional on pre-exposure covariates. Monotonicity in the

current setting is uncontroversial, as it essentially states that smoking does not offer any survival

benefits. The concordant survivorship assumption here essentially states that always survivors

would remain as such, whether their history of covariates were set to what it would be as smokers,

or as non-smokers. This in a sense clarifies that there can be neither a direct nor an indirect effect

of smoking on survival in the survivors. Finally we should note that similar results were obtained

for SACE when dropout for other reasons was simply ignored and the SACE weight ŴS,j was

applied, suggesting that most of the selection bias due to attrition was related to death.

5 Results on double robustness and sensitivity analysis

5.1 Double robustness

Consider the simple setting of Section 2 where iid realizations are observed on (A,C1, S, SY ) . The

following result gives a doubly robust estimator of µ0 in the three-occasion setting, that essentially

combines µ̂20 and µ̂
3
0 of Section 2.4, such that consistency is obtained under a union model where

either Ê (Y |A = 0, S = 1,C1) and dF̂ (C1|A = 0) are both consistent, or P̂r(S = 1|A = 0,C1) is

consistent, but all models are not necessarily consistent. To state the result, consider the following

estimating function:

U(µ0) = (1− A)S
Pr(S = 1|A = 1,C1)

Pr(S = 1|A = 0,C1)
{Y − E (Y |A = 0, S = 1,C1)}

+ AE (Y |A = 0, S = 1,C1)
dF (C1|A = 0)

dF (C1|A = 1)
{S − Pr(S = 1|A = 1,C1)}

+ {(1− A)E (Y |A = 0, S = 1,C1) Pr(S = 1|A = 1,C1)− µ0} ,
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and define Û(µ0) similarly, evaluated at {Ê (Y |A, S = 1,C1) , P̂r(S = 1|A,C1), dF̂ (C1|A)} instead

of {E (Y |A, S = 1,C1) ,Pr(S = 1|A,C1), dF (C1|A = 0)}.

Theorem 4 Under the assumptions of Theorem 1, µ̂dr0 is doubly robust and therefore converges to

µ0 and is asymptotically normal if one but not necessarily both of the following conditions hold.

1. Ê (Y |A, S = 1,C1) and dF̂ (C1|A = 0)/dF̂ (C1|A = 1) are both consistent;

2. P̂r(S = 1|A,C1) is consistent;

where µ̂dr0 satisfies the estimating equation Pn
{
Û(µ̂dr0 )

}
= 0. Furthermore, at the intersection

submodel where all estimators are consistent, µ̂dr0 is semiparametric effi cient in the nonpara-

metric model where no model assumption is made, at the intersection submodel where both

of the above conditions 1. and 2. hold;

The theorem gives an estimator of µ0 that is doubly robust and that is semiparametric ef-

ficient in the nonparametric model where no modeling assumption is made, at the intersection

submodel where all working models are correct. This last property is sometimes called semi-

parametric local effi ciency. At the intersection submodel, the asymptotic variance of µ̂dr0 can be

estimated by the simple expression Pn
{
Û(µ̂dr0 )2

}−1
. Interestingly, one may note that, this ex-

pression is invariant to the choice of working models and associated estimators. This property

does not apply outside of the intersection submodel, nonetheless, it remains possible to estimate

the asymptotic variance of µ̂dr0 outside the intersection submodel. To do so, let γ̂Y , γ̂C1 and γ̂S

denote the estimates of γY , γC1 and γS, the parameters indexing models for E (Y |A, S = 1,C1) ,

F (C1|A = 0) and Pr(S = 1|A,C1) respectively. Suppose that such estimates are obtained by

solving a set of score equations with respective scores MY (γY ) ,MC1 (γC1) and MS (γS) . Let

M (γY , γC1 , γS) =
(
MT

Y (γY ) ,MT
C1

(γC1) ,M
T
S (γS)

)T
, and define U(µ0, γY , γC1 , γS) to equal U(µ0)
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under the parametric model, such that Û(µ0) = U(µ0, γ̂Y ,γ̂C1 ,γ̂S). Then a standard Taylor series

expansion can be used to show that the large sample variance of µ̂dr0 is consistently estimated by

Γ̂−1Ω̂ Γ̂−1, where

Γ̂−1 = Pn
(
∂U(µ0, γ̂Y , γ̂C1 , γ̂S)

∂µ0
|µ̂dr0

)
Ω̂ = Pn

(
L̂L̂T

)
L̂ = U(µ̂dr0 , γ̂Y , γ̂C1 , γ̂S)− Pn

(
∂U(µ̂dr0 , γY , γC1 , γS)

∂
(
γTY , γ

T
C1
, γTS
)T |

(γ̂TY ,γ̂TC1 ,γ̂
T
S )

T

)

× Pn

(
∂M(γY , γC1 , γS)

∂
(
γY , γC1 , γS

)t |(γ̂TY ,γ̂TC1 ,γ̂TS )
T

)−1
M (γ̂Y ,γ̂C1 ,γ̂S)

5.2 Sensitivity analysis

A key assumption for identification of SACE has been that there is no unmeasured common cause

of survival and the outcome Y, as encoded say in the causal diagram of Figure 1, and its associated

NPSEM (1) − (4) . In the current section, a sensitivity analysis technique is developed to assess

the extent to which a violation of the assumption might affect results. Unlike previous sensitivity

analysis techniques for truncation by death and related contexts [7,8,12,13], the proposed sensitivity

analysis technique makes explicit use of post-exposure covariates and therefore extends previous

methods to the current more general longitudinal context. We begin by describing the approach

in the simple setting from Section 2, of a 3-occasion study. Define the selection bias function:

t(c1) = E {Y (a = 0)|A = 0,C1(a = 0) = c1, S(a = 0) = S(a = 1,C1(a = 0) = c1) = 1}

− E {Y (a = 0)|A = 0,C1(a = 0) = c1, S(a = 0) = 1, S(a = 1,C1(a = 0) = c1) = 0}
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We have that t(·) = 0 under the independence assumptions encoded in the NPSEM (1) − (4) ,

however if there were an unmeasured common cause of S and Y, such that εY and εS were no

longer independent, then we would expect that t(c1) 6= 0 for some value of c1, even though

all other independencies of the NPSEM were to continue to hold. Thus, we propose to recover

inferences about SACE by assuming that the selection bias function t(c1) is known, that encodes

the magnitude and direction of the unmeasured common cause of S and Y . To motivate the

proposed approach, suppose for the moment that π (a,C1) = Pr(S|a,C1) is known, then we show

in the appendix that:

E {Y (a = 0)|A = 0,C1(a = 0) = c1, S(a = 0) = S(a = 1,C1(a = 0) = c1) = 1} (16)

= E {Y (a = 0)|A = 0,C1(a = 0) = c1, S(a = 0) = 1}+ t(c1)×
{

1− π (1, c1)

π (0, c1)

}
= E {Y |A = 0,C1 = c1, S = 1}+ t(c1)×

{
1− π (1, c1)

π (0, c1)

}

therefore, knowing t(c1) allows one to recover the average potential outcome when unexposed in the

principal strata of survivors {S(a = 0) = S(a = 1,C1(a = 0) = c1) = 1}, by adjusting the average

observed outcome in the unexposed that survived, using the above expression. The above result

can then be combined with the representation of µ0 = E {Y (a = 0)| S(a,C1(a
′)) = 1; a, a′ = 0, 1}

given by equation (10) of Section 2, to obtain the following modified estimator:

µ̂0 (t) =
Pn
{

(1− A) π̂(1,C1)
π̂(0,C1)

[
Y + t(C1)×

{
1− π̂(1,C1)

π̂(0,C1)

}]
S
}

Pn
{

(1− A)S π̂(1,C1)
π̂(0,C1)

}
A formal sensitivity analysis can be obtained by repeating this process and reporting inferences

about µ1−µ0 using µ̂1− µ̂0 (t) and a corresponding confidence interval for each choice of t (·) say in

a finite set of user—specified functions T = { tλ (·) : λ} indexed by a finite dimensional parameter

30 http://biostats.bepress.com/harvardbiostat/paper167



λ with t0 (·) ∈ T corresponding to the assumption of no unmeasured common cause of Y and S,

i.e. t0 (·) ≡ 0.

As is shown next, the above approach readily extends to the more general context of a longi-

tudinal study with J > 3 occasions described in Section 3. Define the selection bias function:

tJ(cJ−1) = E
{
Y (a = 0)|A = 0,CJ−1(a = 0) = cJ−1, SJ(a = 0) = SJ(a = 1,CJ−1(a = 0) = cJ−1) = 1

}
− E

{
Y (a = 0)|A = 0,CJ−1(a = 0) = cJ−1, SJ(a = 0) = 1, SJ(a = 1,CJ−1(a = 0) = cJ−1) = 0

}

We have that, similar to the 3-occasion scenario, tJ(·) = 0 under the independence assumptions

encoded in the NPSEM (11)− (14) , however if there were an unmeasured common cause of the

survival process and Y among indiviuduals that survive follow-up, such that εY and {εSj : j}

were no longer independent, then we would expect that tJ(cJ−1) 6= 0 for some value of cJ−1, even

though all other independencies of the NPSEM were to continue to hold.Then, similar to the three

occasion derivation, one obtains the following relation which is derived in the appendix:

E
{
Y (a = 0)|A = 0,CJ−1(a = 0) = cJ−1, SJ(a = 0) = SJ(a = 1,CJ−1(a = 0) = cJ−1) = 1

}
(17)

= E
{
Y (a = 0)|A = 0,CJ−1(a = 0) = cJ−1, SJ(a = 0) = 1

}
+ tJ(cJ−1)×

{
1−

∏J
j=2 πj (1, cj−1)∏J
j=2 πj (0, cj−1)

}

= E
{
Y |A = 0,CJ−1 = cJ−1, SJ = 1

}
+ tJ(cJ−1)×

{
1−

∏J
j=2 πj (1, cj−1)∏J
j=2 πj (0, cj−1)

}

The above result can then be combined with the representation of µ0,J from Section 3, to obtain

the following modified expression, that incorporates the selection bias function:

E {(1− A)WSWA [Y + tJ(cJ−1)× (1−WS)]SJ}
E {(1− A)SJWSWA}
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where recall that

WS =

∏J
k=2 πk

(
1,Ck−1

)∏J
k=2 πk

(
A,Ck−1

)
WA =

[
p (C0)

A {1− p (C0)}1−A
]−1

which in turn can be used to obtain a consistent estimator. A sensitivity analysis then simply

proceeds similar to the three-occasion setting described above.

6 Survivor Marginal Structural Models

It is now well known that within the context of a time-varying exposure with time-varying con-

founding, standard confounding adjustment techniques, such as stratification or standard regres-

sion analysis in general cannot appropriately account for time varying-confounding and therefore

can be biased for the joint causal effects of the exposure, even under the causal null hypothesis of

no exposure effect over time. In fact, the standard use of regression models to estimate the causal

effect of a time varying exposure, can be biased even in the absence of unmeasured confounders

whether or not one adjusts further for the past history of measured covariates in the analysis,

when (a) there exists a time-dependent risk factor for the outcome that also predicts subsequent

exposure, and (b) past exposure history predicts subsequent risk factor level. The reason is, when

both conditions (a) and (b) hold, an analysis that does not adjust for past covariates is biased due

to uncontrolled confounding, yet an analysis that includes current covariates is also biased as it

adjusts for a variable affected by past exposure.

Marginal Structural Models (MSMs) were introduced by Robins [27] to estimate the joint

causal effect of a time-dependent exposure in the presence of time-dependent confounders that
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are themselves intermediate variables, affected by previous exposure. MSMs were proposed as

an alternative approach to the semiparametric g-computation algorithm estimator [1] and to g-

estimation of structural nested models (SNMs) [27]. Robins [27] and subsequently Hernan et al [28]

described inverse probability-of-treatment-weighted (IPTW) estimation of MSMs, a method which

in contrast to standard methods, provides consistent estimates of causal effects when unmeasured

confounding, model misspecification and truncation by death are absent. We extend the results of

previous sections to the context of MSMs.

First, we redefine the NPSEM to allow for a time-updated exposure, and we assume no other

form of loss to follow-up is present. Let A0 = 0, such that individuals are assumed to be unexposed

at start of follow-up, and let C−1 = 0; then, for j = 0, ..., J :

Cj =


gCj(Aj,Cj−1, εCj) if Sj = 1;

undefined if Sj = 0.

(18)

Sj+1 =


gSj+1

(
Aj,Cj, εSj+1

)
if Sj = 1;

0 if Sj = 0;

(19)

Aj+1 =


gAj+1

(
Aj,Cj, εAj+1

)
if Sj+1 = 1;

undefined if Sj+1 = 0;

(20)

Let Y = CJ denote the outcome. We assume that

{
εAj : j ≥ 1

}
⊥⊥
{
εsj : j ≥ 1

}
,

and we also assume that: {
εAj , εsj : j ≥ 1

}
⊥⊥
{
εCj : j ≥ 0

}
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However, as before εCj and εCj′ may be dependent,and εsj and εsj′ may be dependent, j 6= j′. The

NPSEM in the above display and the associated error independencies essentially states that Cj−1

is suffi ciently enriched so that (Aj−1,Cj−1) accounts for potential association between Sj and Cj

and likewise so that (Aj−1,Cj−1) accounts for confounding of the causal effects of Aj.

To account for truncation by death, consider the average potential outcome in the survivors:

µJ (a)

= E
{
Y (a)|SJ(a∗,CJ−1(a

∗))SJ(0,CJ−1(a
∗))SJ(0,CJ−1(0))SJ(a∗,CJ−1(0)) = 1; for all a∗ ∈ {0, 1}J

}

The conditioning event of the above expectation would be satisfied if an individual would sur-

vive irrespective of exposure history, including under certain cross-world situations where the

covariate history behaves as if under an exposure history that possibly conflicts with that in-

fluencing the outcome. Thus, SMSMs give a natural generalization of standard MSMs to ac-

count for truncation by death. In the special case where SJ(a∗,CJ−1(a
∗))SJ(0,CJ−1(0)) = 1 ⇒

SJ(0,CJ−1(a
∗))SJ(a∗,CJ−1(0)) = 1 almost surely, then µJ (a) simplifies and may be written

E
{
Y (a)|SJ(a∗,CJ−1(a

∗)) = SJ(a∗) = 1; a∗ ∈ {0, 1}J
}

which extends the standard definition of SACE to time-updated exposure settings.

Identification of µJ (a) requires a modification of the Monotonicity and Concordant Survivor-

ship assumptions:

Sequential Monotonicity Assumption for Time-dependent Exposure:For any treatment history
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aj−1 ∈ {0, 1}J−1 , if

Sj−1(aj−2,Cj−2(aj−3))Sj−1(0j−2,Cj−2(aj−3)) = 1 almost surely

then

Sj(0j−1,Cj−1(aj−2)) ≤ Sj(aj−1,Cj−1(aj−2)) almost surely

where S0(·, ·) = 1 almost surely; and if

Sj−1(aj−2,Cj−2(0j−3))Sj−1(0j−2,Cj−2(0j−3)) = 1 almost surely

then

Sj(0j−1,Cj−1(0)) ≤ Sj(aj−1,Cj−1(0j−2)) almost surely

Concordant Survivorship Assumption for Time-dependent Exposure :

if either SJ(a∗,CJ−1(a
∗))SJ(0J−1,CJ−1(a

∗)) = 1 or SJ(0,CJ−1(0
∗
))SJ(a∗,CJ−1(0)) = 1

almost surely, for some exposure history a∗, then

SJ(a∗∗,CJ−1(a
∗∗))SJ(0J−1,CJ−1(a

∗∗)) = 1

and SJ(0,CJ−1(0))SJ(a∗∗,CJ−1(0)) = 1 for all a∗∗, almost surely.

We should note that the Sequential Monotonicity Assumption essentially states that receiving a

dose of exposure can never be harmful for survival relative to remaining unexposed over time, and
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therefore in contrast with previous sections where exposure was taken to be smoking history and

therefore harmful for survival, here exposure is imagined to be a protective treatment with respect

to survival, such as say highly active antiretroviral therapy for HIV patients [21]. Specifically, the

condition states that for a person that would survive up to time j − 1 if either untreated or with

treatment history a, in the hypothetical situation where his covariate history behaves as if his

treatment history were set to a, and the person were to survive at time j when untreated and with

covariate history as if treatment followed regime a, then the person would also survive at time j,

with similar covariate history, if his treatment history were set to a.

The Concordant Survivorship Assumption essentially states that a person that would survive

under a given treatment history a∗, as well as if he were never exposed, in the hypothetical situation

where his covariate history behaves as if his exposure history were set to a∗, then he would also

survive under any other treatment history a∗∗, and would likewis survive if he were never exposed, in

the hypothetical situation where his covariate history behaves as if his exposure history were set to

a∗∗. A similar assumption is made for an individual for whom SJ(0,CJ−1(0
∗
))SJ(a∗,CJ−1(0)) = 1

for some a∗. Throughout, we make the following positivity assumptions that

J∏
k=2

πk
(
0k−1,Ck−1

)
/

J∏
k=2

πk
(
ak−1,Ck−1

)
<∞ almost surely,

and if

f(Aj = aj,Cj = cj, Sj = 1) > 0 then f(Aj+1 = aj+1|Aj = aj,Cj = cj, Sj = 1) > 0 almost surely,

Then we have the following result:

Theorem 5 Under the NPSEM given by equations (11)− (14) , the Sequential Monotonicity As-
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sumption for time-dependent exposure, the Concordant Survivorship Assumption for time-dependent

exposure and the positivity assumptions, we have that µJ (a) is nonparametricaly identified and is

given by

µJ (a) =

∫
...
∫
E
(
Y |A = a, SJ = 1,CJ−1 = cJ−1

)∏J
j=2 πj

(
0j−1, cj−1

)∏J−1
j=0 dGj(cj; aj−1, cj−1)∫

...
∫ ∏J

j=2 πj
(
0j−1, cj−1

)∏J−1
j=0 dGj(cj; aj−1, cj−1)

where

πj (aj−1, cj−1) = Pr(Sj = 1|Aj−1 = aj−1,Cj−1 = cj−1, Sj−1 = 1), j = 2, ...J ;

Gj(cj; aj, cj−1) = F (cj|Aj = aj,Cj−1 = cj−1, Sj = 1), j = 0, ..., J − 1;

For inference about µJ (a) , in practice, one could proceed as in Hernan et al [21] and one could

specify a model µJ (a;λ) indexed by an unknown parameter λ.We shall refer to such a model as a

Survivor Marginal Structural Model (SMSM), since it is an MSM for individuals that would survive

under any treatment history, including under certain cross-world situations where the covariate

history behaves as if under a possibly conflicting exposure history to that influencing the outcome.

For instance, consider the simple linear SMSM:

µJ (a;λ) = (1, cum(a))λ

where cum(a)) =
∑J

j=1 aj. Then, as in the weighted least squares approach developed in Section

3.2, one can likewise show that a consistent weighted least squares estimator of the SMSMparameter

λ can be obtained by using the following modified weights Ŵ#
S × Ŵ

#
A to jointly account for time-
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dependent exposure, time-dependent confounding, and death related attrition:

Ŵ#
S =

∏J
j=2 π̂j

(
0j−1,Cj−1

)∏J
j=1 π̂j

(
Aj−1,Cj−1

)
Ŵ#
A =

J∏
j=1

[
p̂j
(
Aj−1,CJ−1

)Aj {
1− p̂j

(
Aj−1,CJ−1

)}1−Aj]−1

where π̂j (·, ·) is a consistent estimator of πj and p̂j
(
Aj−1,CJ−1

)
is a consistent estimator of

pj
(
Aj−1,CJ−1

)
= Pr(Aj|Aj−1,CJ−1). For inference, one may use the nonparametric bootstrap

to compute standard errors and corresponding confidence intervals.

7 Discussion

A general approach is proposed in this paper for identification and estimation of causal effects

when the outcome in view is subject to truncation by death. The proposed approach is shown

to equally apply in the context of a point treatment or exposure, but also if joint effects of a

time-updated exposure are in view. A simple weighted approach is described for estimation, that

easily scales with follow-up of increasing length and applies irrespective of whether the exposure is

time-updated or occurs at a single point in time. Doubly robust estimation is shown to be possible

in the simple context of a three-occasion follow-up study with point exposure. However, it is not

clear that similar doubly robust estimation is possible in the more general context of a longitudinal

study of arbitrary length, however, such generalizations are of definite interest and deserve further

investigation. Also, a sensitivity analysis technique is developed for the general framework of a

longitudinal study of arbitrary length, that can be used to evaluate the extent to which a violation

of the assumption that observed post-exposure covariates fully explain the association between the

outcome and attrition due to death, may bias the results.
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A key assumption for identification is best illustrated in the simple setting of Figure 1, that

encodes an assumption that there can be no unmeasured common cause of C1 and S, which may be

diffi cult to ensure in certain settings. However, if such confounders were observed, simply adding

them to C1 would allow for the methods to continue to apply. Furthermore, one should note that

causes of death that do not also cause the outcome in those that survive, are not strictly required

to be in C1 which makes the assumption somewhat less restrictive, particularly in settings where

C1 only contains relatively few important causes of death. Although, an appropriate sensitivity

analysis technique for the assumption of no unmeasured common cause of C1 and S needs to be

developed and is a current subject of active research.
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Appendix

Proof of Theorem 1: We can write

ψ = E {Y (a = 1)− Y (a = 0)|S(a = 0,C1(a
∗)) = S(a = 1,C1(a

∗)) = 1, a∗ = 0, 1}

= E {Y (a = 1)|S(a = 0,C1(a
∗)) = S(a = 1,C1(a

∗)) = 1, a∗ = 0, 1}

− E { Y (a = 0)|S(a = 0,C1(a
∗)) = S(a = 1,C1(a

∗)) = 1, a∗ = 0, 1}

Then, note that by the Concordant Survivorship Assumption

E {Y (a = 1)|S(a = 0,C1(a
∗)) = S(a = 1,C1(a

∗)) = 1, a∗ = 0, 1}

= E {Y (a = 1)|S(a = 0,C1(1)) = S(a = 1,C1(1)) = 1}

=
E {Y (a = 1)S(a = 0,C1(1))S(a = 1,C1(1))}

E {S(a = 0,C1(1))S(a = 1,C1(1))}

and by the Monotonicity Assumption

E {Y (a = 1)S(a = 0,C1(1))S(a = 1,C1(1))}

= E {Y (a = 1)S(a = 1,C1(1))}

=

∫
E {Y (a = 1)|S(a = 1,C1(1) = c1) = 1,C1(1) = c1)}Pr(S(a = 1,C1(1) = c1) = 1|C1(1) = c1)dFC1(1)(c1)

=

∫
E {Y |A = 1, S = 1,C1 = c1)}Pr(S = 1|C1 = c1, A = 1)dFC1|A=1(c1|A = 1)
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by the independence assumptions associated with the NPSEM; and similarly

E {S(a = 0,C1(1))S(a = 1,C1(1))}

=

∫
Pr(S = 1|C1 = c1, A = 1)dFC1|A=1(c1|A = 1)

and therefore

E {Y (a = 1)|S(a = 0,C1(a
∗)) = S(a = 1,C1(a

∗)) = 1, a∗ = 0, 1}

= E {Y |A = 1, S = 1)}

Next consider

E {Y (a = 0)|S(a = 0,C1(a
∗)) = S(a = 1,C1(a

∗)) = 1, a∗ = 0, 1}

= E {Y (a = 0)|S(a = 0,C1(0)) = S(a = 1,C1(0)) = 1}

=
E {Y (a = 0)S(a = 0,C1(0))S(a = 1,C1(0))}

E {S(a = 0,C1(0))S(a = 1,C1(0))}

Note that

E {Y (a = 0)S(a = 0,C1(0))S(a = 1,C1(0))}

=
∫
E {Y (a = 0)|S(a = 0,C1(0) = c1) = S(a = 1,C1(0) = c1) = 1,C1(0) = c1)}

×Pr(S(a = 1,C1(0) = c1)S(a = 0,C1(0) = c1) = 1|C1(0) = c1)dFC1(0)(c1)

=
∫
E {Y (a = 0)|S(a = 0, c1) = 1,C1(0) = c1)}

×Pr(S(a = 1, c1) = 1|A = 1,C1(0) = c1)dFC1|A(c1|A = 0) (monotonicity & NPSEM indepen-

dence)

=
∫
E {Y (a = 0)|S(a = 0, c1) = 1,C1(0) = c1)}
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×Pr(S(a = 1, c1) = 1|A = 1,C1(1) = c1)dFC1|A(c1|A = 0) (NPSEM independence)

=
∫
E {Y |A = 0, S = 1,C1 = c1)} (NPSEM independence)

×Pr(S = 1|A = 1,C1 = c1)dFC1|A(c1|A = 0).

Likewise,

E {S(a = 0,C1(0))S(a = 1,C1(0))}

=
∫

Pr(S = 1|A = 1,C1 = c1)dFC1|A(c1|A = 0), which proves the theorem.

�

Proof of Theorem 2: Similarly to the proof of Theorem 1, note that

µ1,J = E
{
Y (a = 1)|SJ(a,CJ−1(a

∗)) = 1; a, a∗ ∈ {0, 1}
}

=
E
{
Y (a = 1)SJ(1,CJ−1(1))SJ(0,CJ−1(1))

}
E
{
SJ(1,CJ−1(1))SJ(0,CJ−1(1))

}
by the Concordant Survivorship Assumption, furthermore, by the Sequential Monotonicity As-

sumption:

E
{
Y (a = 1)SJ(1,CJ−1(1))SJ(0,CJ−1(1))

}
E
{
SJ(1,CJ−1(1))SJ(0,CJ−1(1))

}
=
E
{
Y (a = 1)SJ(1,CJ−1(1))

}
E
{
SJ(1,CJ−1(1))

}
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Then, note that

E
{
Y (a = 1)SJ(1,CJ−1(1))

}
= E

[
E
{
Y (a = 1)SJ(1,CJ−1(1))|C1

}]
= E

[
E
{
E
{
Y (a = 1)SJ(1,CJ−1(1))|S2(1,CJ−1(1)) = 1,C1

}
Pr
(
S2(1,CJ−1(1)) = 1|C1

)
|C1

}]
...

=

∫
...

∫
E
{
Y (a = 1, cJ−1(1))|SJ(1, cJ−1) = 1,CJ−1(1) = cJ−1

}
×

J∏
j=2

Pr
(
Sj(1, cj−1) = 1,Cj−1(1) = cj−1, Sj−1(1, cj−2) = 1

)
×

J−1∏
j=0

dFCj(1,cj−1)|Cj−1(1),Sj(1,Cj−1(1))=1
(
cj|Sj(1, cj−1) = 1,Cj−1(1) = cj−1

)
=

∫
...

∫
E
{
Y (a = 1, cJ−1(1))|A = 1, SJ(1, cJ−1) = 1,CJ−1(1) = cJ−1

}
J∏
j=2

Pr
(
Sj(1, cj−1) = 1|A = 1,Cj−1(1) = cj−1, Sj−1(1, cj−2) = 1

)
×

J−1∏
j=0

dFCj(1,cj−1)|A,Cj−1(1),Sj(1,Cj−1(1))=1
(
cj|A = 1, Sj(1, cj−1) = 1,Cj−1(1) = cj−1

)
=

∫
...

∫
E {Y |A = 1, SJ = 1, cJ−1}

J∏
j=2

Pr (Sj = 1|A = 1, cj−1, Sj−1 = 1)×
J−1∏
j=0

dF (cj|A = 1, Sj = 1, cj−1)

= E {Y SJ |A = 1}

A similar argument shows that

E
{
SJ(1,CJ−1(1))

}
= E {SJ |A = 1}

and therefore

E
{
Y (a = 1)SJ(1,CJ−1(1))

}
E
{
SJ(1,CJ−1(1))

} = E {Y |SJ , A = 1}
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Next, note that

µ0,J = E
{
Y (a = 0)|SJ(a,CJ−1(a

∗)) = 1; a, a∗ ∈ {0, 1}
}

=
E
{
Y (a = 0)SJ(0,CJ−1(0))SJ(1,CJ−1(0)

}
E
{
SJ(0,CJ−1(0))SJ(1,CJ−1(0)

}
by the Concordant Survivorship Assumption. We then have that

E
{
Y (a = 0)SJ(0,CJ−1(0))SJ(1,CJ−1(0)

}
= E

[
E
{
Y (a = 0)SJ(0,CJ−1(0))SJ(1,CJ−1(0)|C1

}]
...

=

∫
...

∫
E
{
Y (a = 0, cj−1)|SJ(1, cJ−1) = SJ(0, cJ−1) = 1,CJ−1(0) = cJ−1

}
×

J∏
j=2

Pr
(
Sj(1, cj−1) = Sj(0, cj−1) = 1Cj−1(0) = cj−1, Sj−1(1, cj−2) = Sj−1(0, cj−2) = 1

)
×

J−1∏
j=0

dFCj(0,cj−1)|Cj−1(0),Sj(1,Cj−1(0)),Sj(0,Cj−1(0))=1
(
cj|Sj(1, cj−1) = Sj(0, cj−1) = 1,Cj−1(0) = cj−1

)
=

∫
...

∫
E
{
Y (a = 0, cj−1)|SJ(0, cJ−1) = 1,CJ−1(0) = cJ−1

}
(NPSEM independence)

×
J∏
j=2

Pr
(
Sj(1, cj−1) = 1|Cj−1(0) = cj−1, Sj−1(1, cj−2) = 1

)
(Sequential Monotonicity)

×
J−1∏
j=0

dFCj(0,cj−1)|Cj−1(0),Sj(0,Cj−1(0))=1
(
cj|Sj(0, cj−1) = 1,Cj−1(0) = cj−1

)
(NPSEM independence)

=

∫
...

∫
E
{
Y (a = 0, cj−1)|A = 0, SJ(0, cJ−1) = 1,CJ−1(0) = cJ−1

}
(NPSEM independence)

×
J∏
j=2

Pr
(
Sj(1, cj−1) = 1|A = 1,Cj−1(1) = cj−1, Sj−1(1, cj−2) = 1

)
(NPSEM independence)

×
J−1∏
j=0

dFCj(0,cj−1)|A,Cj−1(0),Sj(0,Cj−1(0))=1
(
cj|A = 0, Sj(0, cj−1) = 1,Cj−1(0) = cj−1

)
(NPSEM independence)

=

∫
...

∫
E
(
Y |A = 0, SJ = 1,CJ−1 = cJ−1

) J∏
j=2

πj (1, cj−1)

J−1∏
j=0

dG0,j(cj; cj−1)
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One can show using similar arguments that

E
{
SJ(0,CJ−1(0))SJ(1,CJ−1(0)

}
=

∫
...

∫ J∏
j=2

πj (1, cj−1)
J−1∏
j=0

dG0,j(cj; cj−1)

proving the result.

�

Proof of Theorem 3: ψ̂J converges in probability to the solution of the following population

weighted normal equations:

E
{
SJWSWA (1, A)T

(
Y − µ0,J − ψJA

)}
= 0

where WA =
[
p (C0)

A {1− p (C0)}1−A
]−1

. It is straightforward to verify that under the assump-

tions of Theorem 3, the left hand-side of the equation in the above display is equal to:

1∑
a=0

E∗a
{
SJ (1, a)T

(
Y − µ0,J − ψJa

)}
= 0

where E∗a is the expectation with respect to the law


f
(
Y |A = 0, SJ = 1,CJ−1

)∏J
j=2 πj

(
1,Cj−1

)∏J−1
j=0 dG0,j(Cj; Cj−1) if a = 0

f (Y,A = 1, SJ = 1) if a = 1

giving the result.

�

Proof of Theorem 4: Let π1 (a,C1) = Π (a) = Pr(S = 1|A = 0,C1), Ba = E (Y |A = a, S = 1,C1) ,
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Ga(C1) = F (C1|A = a). To prove the theorem, it suffi ce to show that E
{
U(µ0, π

†
1, B

†
1)
}

= 0 if

either π†1 = π1, or B
†
1 = B1 and G†a(c1) = Ga(c1), but not necessarily both hold, where

U(µ0, π
†
1, B

†
1) = (1− A)S

Π† (1)

Π† (0)

{
Y −B†0

}
+ AB†0

dG†0

dG†1

{
S − Π† (1)

}
+
{

(1− A)B†0Π
† (1)− µ0

}
,

First assume that π†1 = π1, then

E
{
U(µ0, π1, B

†
1)
}

= E

[
(1− A)S

Π (1)

Π (0)

{
Y −B†0

}
+ AB†0

dG†0

dG†1
{S − Π (1)}+

{
(1− A)B†0Π (1)− µ0

}]

= E
[
(1− A)S

Π (1)

Π (0)

{
Y −B†0

}
+
{

(1− A)B†0Π (1)− µ0
}]

= E
[
(1− A)S

Π (1)

Π0 (0)
Y − µ0

]
= 0

Next, suppose that B†1 = B1 and G†a(c1) = Ga(c1), then

E
{
U(µ0, π1, B

†
1)
}

= E
[
(1− A)S

Π† (1)

Π† (0)
{Y −B0}+ AB0

dG0
dG1

{
S − Π† (1)

}
+
{

(1− A)B0Π
† (1)− µ0

}]
= E

[
AB0

dG0
dG1

S − µ0
]

= 0
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proving the result.

�

Proof of Theorem 5: The proof is similar to that of Theorem 2; suppose that a 6= 0, then

µJ (a) = E
{
Y (a)|SJ(a,CJ−1(a))SJ(0,CJ−1(a)) = 1

}
(Concordant Survivorship)

=
E
{
Y (a)SJ(a,CJ−1(a))SJ(0,CJ−1(a))

}
E
{
SJ(a,CJ−1(a))SJ(0,CJ−1(a))

}
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and, we have

E
{
Y (a)SJ(a,CJ−1(a))SJ(0,CJ−1(a))

}
= E

[
E
{
Y (a)SJ(a,CJ−1(a))SJ(0,CJ−1(a))|C0

}]
...

=

∫
...

∫
E
{
Y (a, cJ)|SJ(a, cJ−1) = SJ(0, cJ−1) = 1,CJ (a) = cJ

}
×

J∏
j=2

Pr
(
Sj(aj−1, cj−1) = Sj(0j−1, cj−1) = 1|Cj−1 (aj−2) = cj−1, Sj−1(aj−2, cj−2) = Sj−1(0j−1, cj−2) = 1

)
×

J∏
j=0

dFCj(aj−1,cj−1)|Cj−1(aj−2),Sj(aj−1,Cj−1(aj−2))Sj(0j−1,Cj−1(aj−2))=1 (cj|Sj(aj−1, cj−1)

= Sj(0j−1, cj−1) = 1,Cj−1(aj−2) = cj−1
)

=

∫
...

∫
E
{
Y (a, cJ)|SJ(a, cJ−1) = 1,CJ (a) = cJ

}
(NPSEM independence)

×
J∏
j=2

Pr
(
Sj(0j−1, cj−1) = 1|Cj−1 (aj−2) = cj−1, Sj−1(0j−1, cj−2) = 1

)
(Sequential Monotonicity)

×
J∏
j=0

dFCj(aj−1,cj−1)|Cj−1(aj−2),Sj(aj−1,Cj−1(aj−2))=1
(
cj|Sj(aj−1, cj−1) = 1,Cj−1(aj−2) = cj−1

)
(NPSEM independence)

=

∫
...

∫
E
{
Y |AJ = aJ , SJ = 1,CJ = cJ

}
(NPSEM independence)

×
J∏
j=2

Pr
(
Sj = 1|Aj−1 = 0j−1, cj−1, Sj−1 = 1

)
(NPSEM independence)

×
J∏
j=0

dFCj |Cj−1,Aj−1,Sj=1
(
cj|Aj−1 = aj−1, Sj = 1, cj−1

)
(NPSEM independence)

giving the result for

E
{
Y (a)SJ(a,CJ−1(a))SJ(0,CJ−1(a))

}
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The expression for

E
{
SJ(a,CJ−1(a))SJ(0,CJ−1(a))

}
is similarly obtained. The result for µJ

(
0
)
is obtained by noting that

µJ
(
0
)

= E
{
Y (0)|SJ(0,CJ−1(0))SJ(a∗,CJ−1(0)) = 1 for all a∗

}
(Concordant Survivorship)

=
E
{
Y (0)SJ(0,CJ−1(0)) ) = 1

}
E
{
SJ(0,CJ−1(0)) ) = 1

} (Sequential Monotonicity)

and it is straightforward to verify that:

E
{
Y (0)SJ(0,CJ−1(0)) ) = 1

}
=

∫
...

∫
E
{
Y |AJ = 0, SJ = 1,CJ = cJ

}
×

J∏
j=2

Pr
(
Sj = 1|Aj−1 = 0j−1, cj−1, Sj−1 = 1

)
×

J∏
j=0

dFCj |Cj−1,Aj−1,Sj=1
(
cj|Aj−1 = 0j−1, Sj = 1, cj−1

)

and the expression for E
{
SJ(0,CJ−1(0)) ) = 1

}
is similarly derived.

�
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Derivation of equation (17) :

E
{
Y |A = 0,CJ−1 = cJ−1, SJ = 1

}
= E

{
Y (a = 0)|A = 0,CJ−1(a = 0) = cJ−1, SJ(a = 0) = SJ(a = 1,CJ−1(a = 0) = cJ−1) = 1

}
× Pr

(
SJ(a = 1,CJ−1(a = 0) = cJ−1) = 1|A = 0,CJ−1(a = 0) = cJ−1, SJ(a = 0) = 1

)
+ E

{
Y (a = 0)|A = 0,CJ−1(a = 0) = cJ−1, SJ(a = 0) = 1, SJ(a = 1,CJ−1(a = 0) = cJ−1) = 0

}
× Pr

(
SJ(a = 1,CJ−1(a = 0) = cJ−1) = 0|A = 0,CJ−1(a = 0) = cJ−1, SJ(a = 0) = 1

)
=
[
E
{
Y (a = 0)|A = 0,CJ−1(a = 0) = cJ−1, SJ(a = 0) = 1, SJ(a = 1,CJ−1(a = 0) = cJ−1) = 0

}
− E

{
Y (a = 0)|A = 0,CJ−1(a = 0) = cJ−1, SJ(a = 0) = SJ(a = 1,CJ−1(a = 0) = cJ−1) = 1

}]
× Pr

(
SJ(a = 1,CJ−1(a = 0) = cJ−1) = 0|A = 0,CJ−1(a = 0) = cJ−1, SJ(a = 0) = 1

)
+ E

{
Y (a = 0)|A = 0,CJ−1(a = 0) = cJ−1, SJ(a = 0) = SJ(a = 1,CJ−1(a = 0) = cJ−1) = 1

}
= E

{
Y (a = 0)|A = 0,CJ−1(a = 0) = cJ−1, SJ(a = 0) = SJ(a = 1,CJ−1(a = 0) = cJ−1) = 1

}
− tJ(cJ−1)× Pr

(
SJ(a = 1,CJ−1(a = 0) = cJ−1) = 0|A = 0,CJ−1(a = 0) = cJ−1, SJ(a = 0) = 1

)
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Then, note that

Pr
(
SJ(a = 1,CJ−1(a = 0) = cJ−1) = 1|A = 0,CJ−1(a = 0) = cJ−1, SJ(a = 0) = 1

)
= Pr

(
SJ(a = 1,CJ−1(a = 0) = cJ−1) = 1|A = 0,CJ−1(a = 0) = cJ−1, SJ(a = 0) = 1

)
=

Pr
(
SJ(a = 1, cJ−1)SJ(a = 0) = 1|A = 0,CJ−1(a = 0) = cJ−1, SJ−1(a = 1, cJ−2)SJ−1(a = 0, cJ−2) = 1

)
Pr
(
SJ(a = 0) = 1|A = 0,CJ−1(a = 0) = cJ−1, SJ−1(a = 0) = 1

)
× Pr

(
SJ−1(a = 1,CJ−2(a = 0) = cJ−2) = 1|A = 0,CJ−1(a = 0) = cJ−1, SJ−1(a = 0) = 1

)
=

Pr
(
SJ(a = 1, cJ−1) = 1|A = 1,CJ−1(a = 1) = cJ−1, SJ−1(a = 1, cJ−2) = 1

)
Pr
(
SJ(a = 0) = 1|A = 0,CJ−1(a = 0) = cJ−1, SJ−1(a = 0) = 1

) (Sequential monotonicity

and NPSEM independence)

× Pr
(
SJ−1(a = 1,CJ−2(a = 0) = cJ−2) = 1|A = 0,CJ−2(a = 0) = cJ−2, SJ−1(a = 0) = 1

)
(NPSEM

independence)

thus by iterating, one obtains

Pr
(
SJ(a = 1,CJ−1(a = 0) = cJ−1) = 1|A = 0,CJ−1(a = 0) = cJ−1, SJ(a = 0) = 1

)
=

J∏
j=2

Pr
(
Sj(a = 1, cj−1) = 1|A = 1,Cj−1(a = 1) = cj−1, Sj−1(a = 1, cj−2) = 1

)
Pr
(
Sj(a = 0) = 1|A = 0,Cj−1(a = 0) = cJ−1, Sj−1(a = 0) = 1

)
=

∏J
j=2 πj (1, cj−1)∏J
j=2 πj (0, cj−1)

which gives:

E
{
Y |A = 0,CJ−1 = cJ−1, SJ = 1

}
= E

{
Y (a = 0)|A = 0,CJ−1(a = 0) = cJ−1, SJ(a = 0) = SJ(a = 1,CJ−1(a = 0) = cJ−1) = 1

}
− tJ(cJ−1)×

{
1−

∏J
j=2 πj (1, cj−1)∏J
j=2 πj (0, cj−1)

}
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proving the result.Equation (16) is obtained by setting J = 2.
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