Bayesian Model Averaging for Clustered Data: Imputing Missing Daily Air Pollution Concentration

Howard H. Chang
Johns Hopkins University, hhchang@jhsph.edu

Francesca Dominici
The Johns Hopkins Bloomberg School of Public Health, fdominic@jhsph.edu

Roger D. Peng
Johns Hopkins University, rpeng@jhsph.edu

Suggested Citation
http://biostats.bepress.com/jhubiostat/paper177
Bayesian Model Averaging for Clustered Data: Imputing Missing Daily Air Pollution Concentrations

Howard H. Chang¹, Francesca Dominici¹, and Roger D. Peng¹

Abstract

The presence of missing observations is a challenge in statistical analysis especially when data are clustered. In this paper, we develop a Bayesian model averaging (BMA) approach for imputing missing observations in clustered data. Our approach extends BMA by allowing the weights of competing regression models for missing data imputation to vary between clusters while borrowing information across clusters in estimating model parameters. Through simulation and cross-validation studies, we demonstrate that our approach outperforms the standard BMA imputation approach where model weights are assumed to be the same for all clusters. We then apply our proposed method to a national dataset of daily ambient coarse particulate matter (PM₁₀−₂.₅) concentration between 2003 and 2005. We impute missing daily monitor-level PM₁₀−₂.₅ measurements and estimate the posterior probability of PM₁₀−₂.₅ nonattainment status for 95 US counties based on the Environmental Protection Agency’s proposed 24-hour standard.

KEY WORDS: Bayesian model averaging; Missing data; Imputation; Air pollution; Particulate matter

¹ Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health. 516 North Wolfe Street Baltimore MD 21205 USA Phone: 410-955-3067; Fax: 410-955-0958
1 INTRODUCTION

The presence of missing observations is a challenge in statistical analysis especially when data are clustered. Examples of clustered data include repeated measurements of subject-specific outcomes in longitudinal analysis, geographical locations in multi-site air pollution studies, and strata in sample survey. Excluding clusters with incomplete data often results in considerable loss in sample size. When the missing data do not arise completely at random (Little and Rubin 1987), appropriate interpretations of analysis results also become difficult.

In this paper, we consider a missing data imputation problem for clustered data where the observations are partially or completely missing in some clusters. After imputing the missing data, standard complete-data techniques can be used in subsequent analysis and final parameter estimation can also reflect uncertainty in the imputation through data augmentation (Tanner and Wong 1987) or multiple imputation techniques (Rubin 1996).

However, the success of any imputation method relies on specifying a model that best describes the conditional distribution of the missing data given the observed data. Often several plausible imputation models are available for prediction and missing data imputation. Bayesian model averaging (BMA) (Raftery et al. 1997; Hoeting et al. 1999) can be used as a powerful prediction tool that accounts for model uncertainty. BMA assigns different weights to each competing model and prediction is obtained by taking a weighted average of predictions from the competing models. Even though BMA leads to larger prediction variance, it avoids the potential bias associated with choosing only a single model for prediction.

The typical application of BMA to clustered data determines model weights by comparing how data from all clusters fit each competing model. Therefore model uncertainty reflects model fit “globally” across clusters and missing data occurring in different clusters are imputed by averaging competing models using the same set of weights. However different
clusters may favor different sets of models possibly due to some unmeasured cluster-specific characteristics. Since the model optimal for imputation can differ between clusters, it may be beneficial to impute missing data within a cluster using only models that are “locally” optimal.

In this paper we develop a BMA-based approach for imputing missing data in a clustered design. Our approach allows the weights of competing models for missing data imputation to differ between clusters while borrowing information across clusters in estimating model parameters. To accomplish Bayesian predictive inference and posterior simulation we consider implementations using Markov chain Monte Carlo (MCMC) and a more computationally efficient approach.

The methodological development of this paper is motivated by the problem of imputing missing daily concentration of ambient particulate matter (PM). Toxicological and epidemiological studies have consistently found that increased level of ambient PM is associated with increased risks of adverse health outcomes (Pope and Dockery 2006; Schwarze et al. 2006). Ambient PM can be characterized into two size fractions, fine and coarse, that represent distinct pollutant mixtures of different sources and properties (Wilson and Suh 1997). Protecting public health from exposure to inhalable coarse particles (PM$_{10-2.5}$) of size between 2.5 and 10 μm aerodynamic diameter has endured considerable controversy and understanding the toxicity of coarse PM remains a top PM research priority (Committee on Research Priorities for Airborne Particulate Matter 2004).

Because of the lack of a national monitoring network for PM$_{10-2.5}$, the Environmental Protection Agency (EPA) measures PM$_{10-2.5}$ by taking the difference between daily PM$_{10}$ (10 μm or less in aerodynamic diameter) and daily PM$_{2.5}$ (2.5 μm or less in aerodynamic diameter) concentrations at monitors that are physically located in the same place (collocated monitor pairs). This leads to a significant loss in sample size because we can only calculate
PM$_{10-2.5}$ (1) at collocated monitor pairs of PM$_{10}$ and PM$_{2.5}$ and (2) on days when both PM$_{10}$ and PM$_{2.5}$ were measured at the collocated monitor pairs. Under this approach, daily measurements of PM$_{2.5}$ and PM$_{10}$ at monitors that are not collocated are excluded.

In our application, we define a cluster as the time series of PM measurements at a particular monitor. We apply the proposed method to impute the missing daily PM$_{10}$ or PM$_{2.5}$ concentrations needed to calculate PM$_{10-2.5}$ measurements whenever only one of PM$_{10}$ or PM$_{2.5}$ value is available. Specifically we substantially increase the number of PM$_{10-2.5}$ measurements in two ways. First, we increase the number of collocated monitor pairs by imputing the entire time series of PM$_{2.5}$ when a daily time series of PM$_{10}$ is available at any given monitor that is not collocated with a PM$_{2.5}$ monitor and vice versa. Second, we increase the number of daily measurements at each collocated monitor pair by imputing each missing daily PM$_{10}$ measurement at a given day when PM$_{2.5}$ is available and vice versa.

While a national network for coarse PM is currently planned in 2011, the data are unlikely to be available for large-scale scientific studies in the near future. Increasing the number of days and locations having PM$_{10-2.5}$ concentration has important implications. First, the imputed concentrations can help us determine nonattainment status for PM$_{10-2.5}$ in counties without collocated monitor pairs. Also, the level of PM$_{10-2.5}$ exhibits higher spatial heterogeneity compared to PM$_{2.5}$ and PM$_{10}$. Therefore, population average exposure to PM$_{10-2.5}$ may not be well-characterized by distant monitors. A more extensive PM$_{10-2.5}$ monitoring network allow us to better estimate the health effects of PM$_{10-2.5}$ with smaller exposure measurement error (Zeger et al. 2000; Sheppard 2005).

The remainder of the article is organized as follows. Section 2 describes the proposed method and in Section 3 we evaluate its performance by simulation studies. In Section 4 we describe the PM data and create a national dataset of daily PM$_{10-2.5}$ concentrations where
the missing data are imputed accounting for all the sources of uncertainty. From the imputed national data we estimate the nonattainment status of 95 US counties for the period 2003 to 2005. Finally, discussion and future work appear in Section 5.

2 METHODS

2.1 Bayesian Model Averaging for Clustered Data

Let y^m be the vector of n^m observations from cluster m for $m = 1, \ldots, N$. For example, y^m may represent the vector of n^m daily levels of PM at monitor m. Within each cluster, assume we can predict y^m using K competing linear regression models each having X^m_k as the $n^m \times p_k$ design matrix, where $k = 1, \ldots, K$. For example, X^m_k may include columns of time series data of temperature or other pollutants that are potential predictors of y^m.

In a standard BMA setting, we introduce global model indicators M_k where $M_k = 1$ denotes that model k is chosen for prediction in all clusters. Each model k has a corresponding vector of parameters θ_k that contains both the vector of regression coefficients β_k and the residual variance σ^2_k such that $[y^m | \theta_k, M_k] \sim \text{MVN}(X^m_k \beta_k, \sigma^2_k I_{n^m})$. Given a prior distribution $[\theta_k | M_k] [M_k]$, the posterior is $[\theta_k | y] \propto \prod_{m=1}^{N} [y^m | \theta_k, M_k] \times [\theta_k | M_k]$ where $y = (y^{m=1}, \ldots, y^{m=N})$. Hence for any given model M_k, we use data from all clusters to estimate θ_k. To impute a missing observation on day t^* in cluster m, we calculate the posterior predictive distribution $[y^{m}_{t^*} | y] = \sum_{k=1}^{K} [y^{m}_{t^*} | M_k, y] [M_k | y]$ where $[y^{m}_{t^*} | M_k, y] = \int [y^{m}_{t^*} | \theta_k, M_k] [\theta_k | M_k, y] d\theta_k$. Under this approach, we impute missing observations by assuming each model M_k has a posterior weight, $[M_k | y]$, which is assumed to be the same across all clusters.

Our main contribution is to introduce a local BMA-based approach that relaxes this
assumption by allowing the posterior model weights to differ among clusters. Let M^m_k be the cluster-specific model indicator where $M^m_k = 1$ denotes that model k is chosen in cluster m. For N clusters and K competing models, there are $1/N^K$ different model combinations. To facilitate notation, we introduce a reparameterization of the cluster-specific model indicators. Let S_k denote the subset of cluster indices, $\{1, \ldots, N\}$, that choose model k. If no cluster chooses model k, then S_k is empty. Unlike the global BMA approach, here the posterior distribution of θ_k can be defined as $[\theta_k | y] = \int [\theta_k | S_k, y] [S_k | y] dS_k$. More specifically, we estimate $[\theta_k | y]$ accounting for cluster-level model uncertainty by marginalizing over all combinations of S_k. Therefore in estimating θ_k we borrow information only across clusters that have a posterior probabilities for model k that is larger than zero.

Figure 1 illustrates our notation with 3 clusters and 3 competing models where clusters 1 and 2 choose Model 1 ($S_1 = \{1, 2\}$), no cluster chooses Model 2 ($S_2 = \emptyset$), and cluster 3 chooses Model 3 ($S_3 = \{3\}$). Therefore data from clusters 1 and 2 contribute to the estimation of θ_1, no data will contribute to the estimation of θ_2, and data from cluster 3 will contribute to the estimation of θ_3.

Using the local BMA for missing data imputation, the posterior predictive distribution of y^m_t is given by $[y^m_t | y] = \sum_{k=1}^K [y^m_t | M^m_k, y] [M^m_k | y]$. Imputation is carried out by sampling repeatedly from the posterior predictive distribution. Given J samples from $[\theta_1, \ldots, \theta_K, S_1, \ldots, S_K | y]$, to obtain a particular j^{th} sample of y^m_t, we first determine which $S_k^{(j)}$ does cluster m belong to. Since $S_k^{(j)}$ specifies which imputation model and the corresponding parameter vector to use, we can then draw a sample of y^m_t according to the data likelihood specified by imputation model k.

http://biostats.bepress.com/jhubiostat/paper177
2.2 Markov Chain Monte Carlo Computation

The unknown parameters in our local BMA approach include θ_k, $k = 1, \ldots, K$, and $P(M^m_k = 1) = \delta_k^m$, $k = 1, \ldots, K$, subject to $\sum_{k=1}^{K} \delta_k^m = 1$ for all m. Parameter estimation is accomplished within a Bayesian framework and the complete-data likelihood is given by

$$L(\theta_k, M^m_k) \propto \prod_{m=1}^{N} [y^m | \theta_k, M^m_k] \times \prod_{k=1}^{K} [\theta_k | S_k] \times [S_1, \ldots, S_K]. \quad (1)$$

More specifically, $[S_1, \ldots, S_K]$ represents the joint prior distribution on the groups of clusters that follow each model k. To reflect a lack of prior knowledge in model choice, we assume a priori that $P(M^m_k = 1) = \delta_k^m = 1/K$ for all m and k.

The prior distribution $[\theta_k | S_k]$ represents the prior for the parameters in model k. We assume that the model parameters are independent between models. Since θ_k may have different lengths, we adopt the product-space method of Carlin and Chib (1995) to avoid the change-of-dimension problem in posterior sampling. This “parameter saturation” approach requires sample of θ_k for every k at every iteration. Then the fixed-length parameter vector $(\theta_1, \ldots, \theta_K)$ can be used to update each cluster-specific model indicator. For each model k, we specify a proper and non-informative prior for θ_k if S_k is not empty and an informative “pseudo-prior” for θ_k if S_k is empty. Each θ_k given S_k requires a unique pseudo-prior from which to sample whenever its posterior distribution cannot be learned from the data. Since the sampled value will not be used for imputation at any particular Gibbs iteration, the choice of pseudo-prior distribution is arbitrary. The pseudo-prior can be viewed as a proposal distribution to fill $(\theta_1, \ldots, \theta_K)$ when no data is available for some θ_k‘s given S_k. In fact several connections between pseudo-priors and the dimension-matching proposal distribution for reversible jump MCMC have been noted (Godsill 1997). However, pseudo-priors should be dispersed enough such that all potential values in the parameter space are
explored and should propose sensible values to ensure mobility between models.

For linear regression without clustering, Carlin and Chib (1995) suggest using Normal distribution that mimics the marginal posterior distribution of θ_k as the pseudo-prior for θ_k. Intuitively, this distribution describes the best potential values of θ_k based on the observed data. Allowing model uncertainty for each cluster presents further complexity since the best and the most likely combination of S_k to estimate θ_k is not known. In Section 2.3 we describe a faster algorithm to sample from the approximate posterior distributions of all the unknown parameters. We then construct pseudo-priors using samples from the approximate marginal distribution of θ_k.

2.2.1 Computation Details

It follows from the complete-data likelihood in (1) that the full conditional distribution of θ_k is

$$
[\theta_k | S_k, y] \propto \begin{cases}
\prod_{m \in S_k} [y^m | \theta_k, M_k^m] \cdot [\theta_k | S_k] & \text{if } S_k \text{ is not empty} \\
[\theta_k | S_k] & \text{if } S_k \text{ is empty.}
\end{cases}
$$

(2)

The full conditional distributions for θ_k follow the standard form (Gelman et al. 1995) when S_k is not empty. At each Gibbs iteration, when at least one cluster chooses model k, we update θ_k using all data from clusters that choose model k and the non-informative priors. When no cluster chooses model k (S_k empty), we draw θ_k from a proper pseudo-prior distribution. Therefore the pseudo-priors ensure that every θ_k is updated at every Gibbs iteration.

Next we update the model indicator of each cluster. For example, if cluster m chooses model $k = 1$ at the j^{th} iteration, the probability of cluster m being updated to model k is
then

\[
[M_k^m | \theta_1, \ldots, \theta_K, S_1 \setminus \{m\}, \ldots, S_K] = A_k / \sum_{i=1}^{K} A_i,
\]

where \(A_i\) is the complete data likelihood in (1) evaluated at the current values of \(\theta_1, \ldots, \theta_K\) with model indicators \(S_1 = S_1^{(j)} \setminus \{m\}, S_2 = S_2^{(j)}, \ldots, S_i = \{S_i^{(j)}, m\}, \ldots, S_K = S_K^{(j)}\). Since each conditional prior for \(\theta_k\) depends on whether or not \(S_k\) is empty, the model indicators must be updated sequentially at each iteration.

2.3 Approximate Posterior Inference

We can decompose the posterior distribution as

\[
[\theta_1, \ldots, \theta_K, S_1, \ldots, S_K | y] = \prod_{k=1}^{K} [\theta_k | S_k, y] [S_1, \ldots, S_K | y].
\]

In this section we describe a faster MCMC approach for sampling from the posterior distribution of all the unknown parameters. We assume that for any cluster, data from all other clusters is negligible in determining its model preference. More specifically we assume that \([M_k^m | y] \approx [M_k^m | y^m]\). For linear regression models with appropriate conjugate priors, \([M_k^m | y^m]\) can be calculated directly (Raftery et al. 1997). Alternately, for clusters with large sample size we can approximate \([M_k^m | y^m]\) using the Bayesian information criterion (BIC) (Schwarz 1978).

Approximate posterior samples of \([\theta_k | S_k, y]\) are obtained as follows: (1) estimate the marginal cluster-specific model posterior probabilities, \(\hat{\delta}_1^m, \ldots, \hat{\delta}_K^m\) by using BIC or by calculating the Bayes factors; (2) for each cluster \(m\), draw \(J\) samples of the model indicator from a multinomial distribution with the estimated model probabilities that are assumed to be independent between clusters; (3) for each \(j\) and each \(k\) determine \(S_k^{(j)}\); (4) draw \(\theta_k^{(j)}\) from the conditional distribution \([\theta_k | \{y^m=1, \ldots, y^m=N : m \in S_k^{(j)}\}]\), using only data from
clusters that choose model k.

Note that this procedure does not consider posterior dependence between model indicators and does not borrow information across clusters in estimating the cluster-specific model probabilities. Unlike a full MCMC approach, once these model probabilities are estimated, they are assumed fixed and not updated.

3 SIMULATION STUDY

We performed simulation studies to assess the performance of the proposed method. Let $X^m_t = (X^m_{1t}, X^m_{2t}, X^m_{3t})$ denote the predictors for the tth missing observation in cluster m. We generate the vector X^m_t from a multivariate Normal distribution with mean zero, variances 1, and pairwise correlations ρ. We assume that there are 50 clusters and n observations within each cluster. We then generate y^m_t from the following two models:

Model A: $y^m_t \sim N(X^m_{1t}, 2)$ \quad $m = 1, \ldots, 25$ \quad $t = 1, \ldots, n$

Model B: $y^m_t \sim N(X^m_{2t}, 2)$ \quad $m = 26, \ldots, 50$ \quad $t = 1, \ldots, n$

We considered four simulation scenarios: (1) $n = 10$, $\rho = 0$; (2) $n = 25$, $\rho = 0.5$; (3) $n = 25$, $\rho = 0.8$; and (4) $n = 50$, $\rho = 0.8$. Three datasets were generated under each scenario. For each simulated dataset, we fitted the data under four competing models with different predictors. We denote the four linear regression models by A, B, C, and D. Each model has an intercept and model A has covariate X_1; model B has covariate X_2; model C has covariate X_3; and model D has covariates X_1 and X_2.

We compared the predictive power of the following three approaches: (1) using only one model at a time (model A, B, C, or D); (2) model averaging using identical weights across
clusters (global BMA) with competing model spaces: \(E = \{A, B\}, F = \{A, B, C\}, \) or \(G = \{A, B, D\} \) and (3) model averaging using cluster-specific weights (local BMA) with competing model spaces: \(E = \{A, B\}, F = \{A, B, C\}, \) or \(G = \{A, B, D\} \).

For model \(k \), let \(\beta_k \) be the corresponding vector of regression coefficients and \(\sigma^2_k \) be the residual variance. Under the local BMA approach, we use the following prior:

\[
[\beta_k | \sigma^2_k, S_k] \times [\sigma^2_k | S_k] \begin{cases}
\text{MVN}(0, \sigma^2_k V_0k) \times \text{IG}(v_0/2, v_0s_0^2/2) & \text{if } S_k \text{ is not empty} \\
\text{MVN}(\mu_k, V_k) \times \text{IG}(v_k/2, v_k s_k^2/2) & \text{if } S_k \text{ is empty}
\end{cases}
\]

where \(V_0k = \text{diag}(100^2, \ldots, 100^2) \) and \(v_0 = s_0^2 = 2 \). For cluster \(m \), we first estimate \(\delta^m_k \) by

\[
\hat{\delta}_k^m = p(M^m_k | y^m) = p(y^m | M^m_k) / \sum_{i=1}^K p(y^m | M^m_i)
\]

where

\[
p(y^m | M^m_k) = \frac{\Gamma((v_0+n)/2)\Gamma(v_0s_0^2/2)}{\pi^{v_0/2} \Gamma(v_0/2)|I_n + X^m_k V_0k^{-1} X^m_k, T|^2/2} \left(v_0s_0^2 + y^m, T (I_n + X^m_k V_0k^{-1} X^m_k), T^{-1} y^m \right)^{-\frac{(v_0+n)}{2}}
\]

Pseudo-prior parameters, \(\mu_k, V_k, v_k, s_k^2 \) in equation (3), were estimated by maximum likelihood using 5,000 approximate posterior samples of \(\theta_k \) obtained by first generating model indicator independently across clusters as described in Section 2.3.

We considered two implementations of local BMA: (1) full MCMC implementation via the product-space method; (2) approximate posterior sampling where the cluster-specific marginal probabilities are assumed independent. Each chain was initialized with random model indicators, and after 10,000 iterations burn-in, the chains were run for another 10,000 iterations. All Gibbs samplers were implemented in R 2.6.2. Gelman and Rubin convergence diagnostic in the R package CODA was used to evaluate the convergence of our chains.

For each simulated dataset, we then generated a test dataset with identical sample size, clustering, and simulation parameters. We calculated the prediction root mean square error (RMSE) between the true outcome values and their posterior predictive mean using 500
posterior samples of the model parameters.

Figure 3 shows the percent increase in RMSE of different modelling approaches compared to the RMSE if the correct model is used for each cluster. Each connected line represents a replicate dataset and the x-axis indicates model spaces used to make predictions. When considering one model at a time (model spaces A, B, C, D), model D performs the best under all scenarios since it contains both predictors of the two data-generating models. When considering multiple models at a time, overall we do not find the global BMA approach to improve RMSE. When RMSE of individual models differ, the global BMA approach often assigns weight close to 1 to the model with the lowest RMSE due to the large total sample size \((M \times n)\).

The lowest relative RMSE was achieved when both true models were included (model space E) using local BMA. The improvement in prediction using local BMA is particularly large when the cluster-size is small (Panel 1) and when the competing models are easily distinguished (Panel 2 where the correlation between covariates is low). Our simulation results also show that including extra models with low predictive power (model space F) or high predictive power (model space G) often slightly increases prediction error. This may be attributed to an increase in model uncertainty and data thinning. Unlike the usual model selection problem, we do not restrict all clusters to follow a particular model. Nonetheless, model averaging at the cluster-level improves prediction considerably compared to using only a single model. We also carried out approximate MCMC sampling algorithm as described in Section 2.3. This approach performs well with only slight increases in prediction error compared to the more computationally intensive MCMC approach.

Figure 4 shows the estimated cluster-specific posterior model probability of model A for one replicate dataset under the four simulation scenarios. Each \(\bullet\) denotes the posterior probability estimated via MCMC for a cluster when the competing model space is \(\{A,B\}\). Each \(\bullet\)
denotes the same model probability obtained in the approximate MCMC using equation (4). The correct model has higher posterior probability within each cluster when the correlation between covariates is low and when the sample size is large. There is also evidence that the full MCMC approach assigns more weight to the correct model for imputation compared to the approximate MCMC approach, especially for small cluster size.

4 DATA ANALYSIS

4.1 DATA

Daily average concentrations of PM$_{10}$ and PM$_{2.5}$ for the period 2003 to 2005 were obtained from the EPA’s National Air Pollution Monitoring Network. To build our imputation models, we identified 156 collocated PM$_{2.5}$ and PM$_{10}$ monitor pairs in 64 US counties with population greater than 200,000. We restricted our dataset to days with measurements of PM$_{2.5}$ and PM$_{10}$ from at least two monitors in the same county. Table 1 summarizes the median and IQR of PM$_{2.5}$, PM$_{10}$, and PM$_{10-2.5}$ monitor-level daily concentration across the 156 collocated monitor pairs. We also identified 217 PM$_{10}$ monitors and 226 PM$_{2.5}$ monitors that do not have a collocated monitor counterpart. Figure 2 shows three types of monitoring locations: (1) collocated PM$_{2.5}$ and PM$_{10}$ monitor pair (•), (2) PM$_{10}$ only monitor (○), and (3) PM$_{2.5}$ only monitor (●) for San Bernardino (CA) and Cook County (IL).

In total, 117,620 PM$_{10}$ and PM$_{2.5}$ daily concentrations are imputed, resulting in an approximate 5-fold increase in the total number of daily monitor-specific PM$_{10-2.5}$ measurements. Table 2 summarizes the number of imputed daily PM measurements. We consider two types of PM$_{10-2.5}$ imputation. First, PM$_{10}$ and PM$_{2.5}$ were often measured on different schedule despite being collocated (Row 2 and 3). Imputing PM$_{2.5}$ values (or PM$_{10}$ values) at a collo-
cated monitor pair, where only PM \(_{10}\) (or PM \(_{2.5}\)) measurement was available, constitutes 18\% (23\%) of the total imputed values. Second, imputing the entire time-series of PM\(_{2.5}\) (PM\(_{10}\)) at monitors, where by design only measured PM\(_{10}\) (or PM\(_{2.5}\)), constitutes 26\% (33\%) of the total number of PM values imputed (Row 4 and 5). This also provides 443 (217+226) additional imputed collocated monitor pairs to the PM\(_{10−2.5}\) network and increases the number of counties with PM\(_{10−2.5}\) measurements from 64 to 126.

We modelled values of PM\(_{2.5}\) and PM\(_{10}\) on the logarithmic scale to account for the strictly positive and right-skewed concentration measurements. Let PM\(_{2.5,t}^m\) denote the 24-hour average log PM\(_{2.5}\) concentration on day \(t\) at the monitor \(m\). Exploratory analyses suggest two predictors for imputing PM\(_{2.5,t}^m\): (1) PM\(_{10,t}^m\), the log PM\(_{10}\) concentration on the same day measured at the same location and (2) PM\(_{2.5,t}^m\), the averaged log PM\(_{2.5}\) concentration from other PM\(_{2.5}\) monitors within the same county on the same day. Similarly, for imputing PM\(_{10,t}^m\), we considered PM\(_{2.5,t}^m\) and PM\(_{10,t}^m\) as predictors. Pairwise correlations for the above variables are summarized in Table 3. Daily measurements of PM\(_{10}\) and PM\(_{2.5}\) are highly correlated when measured at collocated monitor pairs. The median correlation between log-transformed daily PM\(_{10}\) and PM\(_{2.5}\) concentration at collocated monitors was 0.74. PM\(_{10}\) and PM\(_{2.5}\) concentrations also showed considerable spatial homogeneity. The median correlation between daily log PM concentration and the average concentration of other monitors in the same county was 0.82 and 0.94 for PM\(_{10}\) and PM\(_{2.5}\), respectively.

4.2 Cross-validation Analysis

In this section we compare the prediction performance of local BMA using the PM data from the 156 collocated monitor pairs by cross-validation. Three linear regression models
were examined for predicting daily log PM$_{2.5}$ concentration:

Model A: \(PM_{2.5,t}^m \sim N(\beta_{01} + \beta_{11}PM_{10,t}^m, \sigma_1^2) \)

Model B: \(PM_{2.5,t}^m \sim N(\beta_{02} + \beta_{12}PM_{2.5,t}^m, \sigma_2^2) \)

Model C: \(PM_{2.5,t}^m \sim N(\beta_{03} + \beta_{13}PM_{10,t}^m + \beta_{23}PM_{2.5,t}^m, \sigma_3^2) \) (5)

Similarly, for predicting PM$_{10}$ the three models using collocated PM$_{2.5}$ and county-averaged PM$_{10}$ as predictors were examined.

We repeatedly partition the data into subsets such that analysis is only performed on a single subset (training dataset) and the other subsets (testing datasets) are used to assess prediction performance. We generated training and testing datasets as follows. First we randomly selected 100 monitors from the 156 collocated monitor pairs and half of the observations from each monitor were used to fit the missing data imputation models. The remaining half from the 100 monitors is used to calculate RMSE for within-sample prediction that resembles imputation at collocated monitor pairs. PM values from the 57 unselected collocated monitors is used to calculate RMSE for out-of-sample prediction that resembles imputation at monitors that only measured PM$_{2.5}$ or PM$_{10}$.

Prediction RMSE was calculated between the true log PM level and the posterior predictive mean based on 50,000 approximate posterior samples. To impute missing data at an out-of-sample monitor, we need to define the relation between the new monitor and the within-sample monitors. We assume that the new monitor is a random sample of the monitors in the training dataset. At each iteration, we impute PM values at the new monitor using Model \(k \) (\(k = A, B, C \)) with probability equals to the proportion of within-sample monitors that choose model \(k \).

Figure 5 shows the prediction RMSE for log PM$_{2.5}$ and log PM$_{10}$ at within-sample moni-
tors and out-of-sample monitors using single or multiple prediction models. Using the average measurements from other monitors within the same county on the same day (Model B) performs better compared to using its collocated counterpart PM (Model A). However, having both model A and B in the model space showed considerable improvement in prediction at both within-sample monitors and out-of-sample monitors. While using both predictors simultaneously (Model C) gives the lowest RMSE, enriching the model space further (eg \{A,B,C\}) improves prediction for PM$_{2.5}$ at within-sample monitors and does not increase prediction error in out-of-sample monitors.

4.3 Analysis of PM$_{10-2.5}$ Nonattainment Status

We applied our local BMA for imputing missing PM$_{10}$ and PM$_{2.5}$ concentrations. We obtained a national networks of daily PM$_{10-2.5}$ for 599 monitors located in 126 counties during the period 2003 to 2005. We estimated PM$_{10-2.5}$ nonattainment status for 95 US counties based on the 24-hour standard proposed by the EPA. (Environmental Protection Agency 2006b). Posterior distribution of missing PM$_{10-2.5}$ concentrations were imputed using the local BMA approach with the three competing prediction models for PM$_{10}$ and PM$_{2.5}$ described in Section 4.2. Marginal posterior model probabilities of the PM imputation models for the 156 collocated sites were first estimated and 50,000 approximate posterior samples were obtained for each missing PM$_{10}$ and PM$_{2.5}$ concentration. Posterior nonattainment probability for each county was defined as the proportion of time the county has any collocated monitor pair with its annual 98th percentile of daily PM$_{10-2.5}$ concentration averaged over 3 years exceeding 70 μg/m3. We followed the EPA’s data completeness proposal for PM$_{10-2.5}$ where a monitor is eligible if it contains at least 24 measurements per year.

Posterior nonattainment probability for each county and its location are shown in Figure 6 on a gray scale. We use □ to denote the 52 counties that had at least one collocated
monitor pair before imputation. Among these 52, 6 counties (∗) were in nonattainment based on the observed PM$_{10-2.5}$ values. We use ○ to denote the 43 counties without eligible collocated monitor pairs before imputation and among these counties, nonattainment status for 36 counties are based only on imputed PM$_{10-2.5}$ values.

We found evidence of nonattainment for the proposed 24-hour PM$_{10-2.5}$ standards for several counties, particularly in the southwest. Empirical evidence shows that PM$_{10}$ levels are higher in western US (Environmental Protection Agency 2006a). Since coarse particulates arise mainly from mechanical process such as dust suspension, grinding and crushing, a larger proportion of PM$_{10}$ mass may be due to PM$_{10-2.5}$ in western counties. Many of the counties with high PM$_{10-2.5}$ nonattainment posterior probability were also designated nonattainment for PM$_{10}$ by the EPA during same study period (Environmental Protection Agency 2007).

5 DISCUSSION

In this paper, we develop a BMA-based missing data imputation approach for clustered data that accounts for differences in the best fitting models among clusters. There are several advantages to carrying out model selection and Bayesian model averaging within each cluster. Our approach classifies clusters according to their model preference to optimize prediction while borrowing information across clusters in estimating model parameters. The traditional BMA approach assumes that model weights are identical across clusters. Therefore clusters with large sample size can dominate the model selection. While the coarse PM analysis served as the motivating example, the proposed method is widely applicable in many settings with clustered data and multiple prediction models. For example, in longitudinal analysis, missing data can be imputed cross-sectionally, longitudinally, or by ad-hoc approaches (e.g. last-value-carried-forward) (Kristman et al. 2005; Wood et al. 2005).
Allowing model uncertainty at the cluster level requires careful choice of competing models. Particularly, parameter estimation variance may increase due to a loss of sample size from thinning data between similar competing models. To avoid these problems, competing models should be chosen by the two heuristic criteria given by Draper (1995): (1) the model should have high posterior probability given non-zero prior probability, and (2) the model should have predictive consequences that differ substantially from other models being considered.

The methodological development in this paper is easily extended to competing generalized linear models by designing appropriate MCMC samplers for the model parameters and pseudo-priors. Also extension to accommodate competing mixed-effect models is currently being investigated to allow cluster-specific coefficients. Specifically, the fixed-effect coefficients and the mean and variance of the random effects can take similar prior and have the same full conditionals as those in the linear regression models. Only when no cluster chooses a particular model will these parameters be drawn from the pseudo-priors. However, at each Gibbs iteration, only a single model has its random effect updated within each cluster and all cluster-specific random effects from other competing models are drawn from the pseudo-priors.

Introducing a model indicator for each cluster increases the computation burden considerably in posterior simulation. In cases with large number of clusters or competing models, selecting pseudo-priors can also be cumbersome and updating each model indicator sequentially requires significant computation. Our simulation studies demonstrated that approximate posterior sampling approach described in Section 2.3 performs well. However a full MCMC approach can be especially beneficial for clusters of small sample size. To more accurately estimate the posterior predictive mean \(E[y_{i,m}^* | \mathbf{y}] \), importance reweighting can be used with the above approximate posterior distribution serving as the importance function.
Often the outcome of interest is completely missing in some clusters. In our application of imputing the complete time-series of PM levels at monitors that do not have a collocated counterpart, we naively assume that the monitor with missing outcome represents a random sample of all the collocated monitor pairs. A more sophisticated approach may examine monitor-level variables and determine the most likely model choice for that monitor. For example, when imputing PM$_{10}$ at a monitor that only measured PM$_{2.5}$, we may use the same set of model weights from the nearest PM$_{2.5}$ monitor with a collocated PM$_{10}$ monitor. It is also possible to utilize characteristics of the monitor’s location including landuse (residential, commercial, industrial, agricultural) or economic development (urban, suburban, rural) to determine the best imputation models.

In this paper, we choose linear models to impute log PM$_{10}$ and log PM$_{2.5}$ without modelling the temporal trends and spatial correlation explicitly. A multivariate space-time prediction model for PM$_{10}$ and PM$_{2.5}$ (Kibria et al. 2002; Fuentes et al. 2006) offers an alternative approach for imputing PM$_{10-2.5}$. This approach is especially attractive in applications such as estimating health effects when it is necessary to characterize the spatial gradient of PM$_{10-2.5}$ to minimize exposure measurement error. However, this increases model complexity considerably when considering PM monitors of a national coverage and incorporating model uncertainty for competing prediction models becomes challenging. PM$_{10}$ and PM$_{2.5}$ time series exhibit complex missing data structure and temporal trends are likely to be monitorspecific. Moreover, most PM$_{10-2.5}$ measured at collocated monitor pairs were only available every sixth day and we currently do not plan to impute PM$_{10}$ and PM$_{2.5}$ on days without any PM measurements. Therefore we expect the county-averaged PM$_{10}$ and PM$_{2.5}$ predictor to capture most of the spatial variability of the pollutants for same-day prediction purpose. However, predictive power of additional covariates including day of the week, weather variables, and monitor location characteristics should be explored further.
Acknowledgments

The research described in this article has been funded by grants RD-83241701 from the United States Environmental Protection Agency, ES012054-03 from the National Institute for Environmental Health Sciences, and P30 ES 03819 from the National Institute for Environmental Health Sciences Center in Urban Environmental Health. It has not been subjected to the funding agencies peer and policy review and therefore does not necessarily reflect the views of the agencies and no official endorsement should be inferred.

References

— (2006b), *National ambient air quality standards for particulate matter: proposed rule*.

Table 1: Median and IQR of PM$_{10}$, PM$_{2.5}$, and PM$_{10−2.5}$ daily concentration ($\mu g/m^3$) for the period 2003 to 2005 across 156 collocated monitor pairs.

<table>
<thead>
<tr>
<th>Monitor</th>
<th>Median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{10}$</td>
<td>22.0 (18.0, 28.0)</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>11.0 (8.6, 13.6)</td>
</tr>
<tr>
<td>PM$_{10−2.5}$</td>
<td>10.5 (7.4, 14.5)</td>
</tr>
</tbody>
</table>

Table 2: Number of daily PM levels ($\mu g/m^3$) at (1) collocated PM$_{2.5}$ and PM$_{10}$ monitor pair; (2) PM$_{10}$ only monitor; and (3) PM$_{2.5}$ only monitor between 2003 to 2005 (total of 1096 days).

<table>
<thead>
<tr>
<th>Monitor type</th>
<th>Number of monitors</th>
<th>PM Measured PM$_{10}$</th>
<th>PM Measured PM$_{2.5}$</th>
<th>Percentage of total imputed PM values†</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 PM${10}$ and PM${2.5}$</td>
<td>156</td>
<td>Yes</td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td>2 collocated</td>
<td></td>
<td>Yes</td>
<td>No</td>
<td>18</td>
</tr>
<tr>
<td>3 monitor pair</td>
<td></td>
<td>No</td>
<td>Yes</td>
<td>23</td>
</tr>
<tr>
<td>4 PM$_{10}$ only</td>
<td>217</td>
<td>Yes</td>
<td>No</td>
<td>26</td>
</tr>
<tr>
<td>5 PM$_{2.5}$ only</td>
<td>226</td>
<td>No</td>
<td>Yes</td>
<td>33</td>
</tr>
</tbody>
</table>

†Total number of daily PM$_{2.5}$ or PM$_{10}$ values imputed is 117,620.
Row 2 and 3 denote situations where PM$_{10}$ and PM$_{2.5}$ were measured on different schedule despite the monitor pairs being collocated.
Row 4 and 5 denote situations where by design all PM$_{10}$ observations were measured without a collocated PM$_{2.5}$ measurement and vice versa.
Table 3: Median and IQR of correlations between daily monitor-level and county-averaged PM$_{2.5}$ and PM$_{10}$ concentrations across 156 collocated monitor pairs. The correlations are calculated on the log-transformed PM concentration. PM$_{10,t}^m$ denotes the log PM$_{10}$ concentration on the day t measured at the monitor m and PM$_{10,t}^m$ denotes the average log PM$_{10}$ concentration on day t from PM$_{2.5}$ monitors within county, excluding monitor m. Similar notations apply to PM$_{2.5}^m$, and PM$_{2.5,t}^m$.

<table>
<thead>
<tr>
<th>Correlation</th>
<th>Median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cor (PM${2.5,t}^m$, PM${10,t}^m$)</td>
<td>0.74 (0.65, 0.81)</td>
</tr>
<tr>
<td>cor (PM${2.5,t}^m$, PM${2.5,t}^m$)</td>
<td>0.94 (0.87, 0.97)</td>
</tr>
<tr>
<td>cor (PM${10,t}^m$, PM${10,t}^m$)</td>
<td>0.82 (0.71, 0.89)</td>
</tr>
</tbody>
</table>
Figure 1: Illustration of notation with $N=3$ clusters and $K=3$ competing models. y^m denotes the outcome data for cluster m. θ_k denotes the model parameter for model k. M^m_k is the model indicator for cluster m and model k. S_k denotes the set of cluster indices for model k. Each arrow denotes model choice by the cluster.

Figure 2: Locations of PM monitors in (a) San Bernardino County, CA and (b) Cook County, IL: (1) collocated PM$_{10}$ and PM$_{2.5}$ monitor pair (●), (2) PM$_{10}$ only monitor (○), and (3) PM$_{2.5}$ only monitor (●).
Figure 3: Percent increase in root mean-squared error (RMSE) compared to the RMSE if the true model for each cluster is used. Each connected line represents a replicate dataset. The x-axis indicates model(s) used to make predictions: single model: A, B, C, D and multiple models: E = {A, B}, F = {A, B, C}, G = {A, B, D}. Global BMA: model weights are identical across clusters; Local BMA: cluster-specific model weights estimated via MCMC; Approx. Local BMA: cluster-specific model weights approximated as in Section 2.3.
Figure 4: Posterior model probability for choosing model A under local BMA with model space \{A, B\}. Legend: ■ = posterior model probability estimated via MCMC and □ = posterior model probability estimated by equation (4) for approximate MCMC. For each scenario, data were generated under model A for the first 25 clusters and under model B for the second set of 25 clusters.
Figure 5: Boxplots of prediction root mean-squared error (RMSE) for log PM$_{2.5}$ and log PM$_{10}$ concentrations at within-sample monitors and out-of-sample monitors for 100 cross-validation simulation.
Figure 6: The grey scale represents the county-specific posterior probability of PM$_{10-2.5}$ nonattainment status for the period 2003-2005 for 95 US counties. □ denotes counties with at least one collocated monitor pair before imputation and ◦ denotes counties without eligible collocated monitor pairs before imputation. × denotes that a county was in nonattainment without imputed PM$_{10-2.5}$ values.