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Estimation and Inference for the Mediation
Proportion

Daniel Nevo, Xiaomei Liao, and Donna Spiegelman

Abstract

In epidemiology, public health and social science, mediation analysis is often un-
dertaken to investigate the extent to which the effect of a risk factor on an outcome
of interest is mediated by other covariates. A pivotal quantity of interest in such an
analysis is the mediation proportion. A common method for estimating it, termed
the “difference method”, compares estimates from models with and without the
hypothesized mediator. However, rigorous methodology for estimation and statis-
tical inference for this quantity has not previously been available. We formulated
the problem for the Cox model and generalized linear models, and utilize a data
duplication algorithm together with a generalized estimation equations approach
for estimating the mediation proportion and its variance. We further considered
the assumption that the same link function hold for the marginal and conditional
models, a property which we term ”g-linkability”. We show that our approach
is valid whenever g-linkability holds, exactly or approximately, and present re-
sults from an extensive simulation study to explore finite sample properties. We
developed estimation and inference methods that reflect the fact the mediation
proportion is bounded between zero and one. In particular, we developed statis-
tical testing procedures for the existence of mediation that honors these bounds,
and compare the empirical behavior of crude and logit based confidence intervals.
The methodology is illustrated by an analysis of pre-menopausal breast cancer
incidence in the Nurses’ Health Study. User-friendly publicly available software
implementing those methods can be downloaded at the last author’s website.
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Abstract

In epidemiology, public health and social science, mediation analysis is often undertaken

to investigate the extent to which the effect of a risk factor on an outcome of interest is

mediated by other covariates. A pivotal quantity of interest in such an analysis is the me-

diation proportion. A common method for estimating it, termed the “difference method”,

compares estimates from models with and without the hypothesized mediator. However,

rigorous methodology for estimation and statistical inference for this quantity has not previ-

ously been available. We formulated the problem for the Cox model and generalized linear

models, and utilize a data duplication algorithm together with a generalized estimation

equations approach for estimating the mediation proportion and its variance. We further

considered the assumption that the same link function hold for the marginal and condi-

tional models, a property which we term “g-linkability”. We show that our approach is

valid whenever g-linkability holds, exactly or approximately, and present results from an

extensive simulation study to explore finite sample properties. We developed estimation

and inference methods that reflect the fact the mediation proportion is bounded between

zero and one. In particular, we developed statistical testing procedures for the existence of

mediation that honors these bounds, and compare the empirical behavior of crude and logit

based confidence intervals. The methodology is illustrated by an analysis of pre-menopausal

breast cancer incidence in the Nurses’ Health Study. User-friendly publicly available soft-

ware implementing those methods can be downloaded at the last author’s website.

1 Introduction

In many public health, biological, and biomedical systems, the mechanism that explains how

an intervention or exposure affects the outcome of interest is unknown, even after a causal

association between the exposure and the outcome is established. It is sometimes hypothesized

that there exists a mediator that connects the exposure and the outcome, sitting on the causal

pathway between the exposure and the outcome. In observational studies, identifying a plausible

ideally pre-specified, mediator can strengthen the casual inference of the findings. For example,

in an evaluation of the effectiveness of the ongoing, trillion dollar President’s Emergency Plan

for AIDS Relief (PEPFAR) in reducing HIV incidence and prevention in sub-Saharan Africa,

it would strengthen the evidence of a causal inference if it could be shown that a substantial

proportion of the reduction in disease incidence in time was mediated by increased programmatic

coverage in the region, thus diminishing exogenous time trends as the best explanation for any

observed decline.

Several methods have been proposed to assess whether mediation exists and to quantify its

magnitude [21, 9, 18, 20]. Baron and Kenny [2] described a sequence of hypothesis tests to asses

the evidence in the data for mediation by a specific covariate. They assumed a linear model for
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the relationship between the outcome and the exposure, both marginally and conditionally on the

mediator. They also assumed a linear model for the relationship between the exposure and the

mediator. Within the counterfactual framework, the building blocks of mediation analysis are

the natural direct effect (NDE), defined as the effect on the outcome when increasing the value of

the exposure in one unit while holding the mediator at a fixed level, and the natural indirect effect

(NIE), which is the effect on the outcome when the exposure is held fixed but the mediator value

is changed as it would have been changed if the exposure value were increased by one unit [30, 24].

The sum of the NDE and NIE is the total effect (TE). Under this framework, estimation methods

for the TE, NDE and NIE were developed for various statistical models. Examples include

logistic regression [10], zero-inflated regression models [37] and high-dimensional mediators in

linear regression with normal errors [11].

One way to estimate mediation is through the “product method” [2]. Another widely used

method for assessing mediation is the “difference method” [2, 1, 14]. It quantifies the difference

in estimates obtained from separate exposure-outcome relationship models, with and without

the mediator. The mediation proportion, defined as the change in the effect of the exposure due

to mediation by the mediator relative to the total effect, is a main parameter of interest when

performing mediation analysis. An analogous measure in surrogacy analysis, termed “proportion

of treatment effect” (PTE), aids researchers in deciding whether an intermediate marker can be

used as a surrogate for a final outcome of interest. Quantifying PTE entails statistical questions

relevant to those that arise in studying the mediation proportion. When the intermediate and

the final outcomes are both binary, confidence intervals for the PTE were developed [8]. A

time-to-event final outcome with surrogate biomarkers was also considered [16]. They authors

of [16] used a data duplication algorithm in order to estimate the covariance between estimators

obtained by separate models. The PTE measure in surrogacy research is still actively used and

researched (e.g.,[5, 23]).

While the mediation proportion is a popular measure in mediation analysis [4, 28, 29, 17, 25],

statistical inference for this parameter is not sufficiently developed. Early important contribu-

tions include [16] for Cox regression and [8] for logistic regression. In this paper, we provide

a framework for mediation analysis in generalized linear models (GLMs). We combine a gen-

eralized estimation equations (GEE) approach together with a data duplication algorithm to

formulate valid statistical inference under minimal assumptions on the marginal and conditional

distribution of the outcome. We discuss situations in which these assumptions should hold, and

assess robustness to departures from these assumptions in extensive simulation studies. This pa-

per further provides methods for statistical inference in mediation analysis using the difference

method, including studying confidence intervals for the mediation proportion and hypothesis

tests. We consider aspects of practical use and compare alternative methods for construction of

confidence intervals and statistical tests. Our investigation of these aspects is expanded beyond

GLMs to inference about the mediation proportion for Cox model [6].

The reminder of this paper is organized as follows. In Section 2, we formulate the models

needed for the estimation of the mediation proportion in GLMs. In Section 3, we consider the

g-linkability property for common link functions. In Section 4, we present methods for inference

for this parameter using the multivariate delta method and a data duplication method that

enables consistent variance estimation. In Section 5, we present results from a simulation study,

comparing the finite sample properties between possible procedures. In Section 6, we illustrate
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the use of the methodology developed in studying mediation of the effect of risk factors for pre-

menopausal breast cancer incidence by mammographic density in the Nurses’ Health Studies

NHSI [3] and NHSII [38]. In Section 7 we discuss results and related issues. We describe the

software we make publicly available in the Appendix.

2 The models

Assume Y1, ..., Yn is a sample of results of an outcome of interest, and that for each subject i

we also observe a vector of factors Zi = (Xi,Mi,W i) where Xi,Mi and W i are an exposure of

interest, a mediator and a vector of confounders, respectively. We assume the conditional mean

function for the outcome is E(Yi|Zi) = g−1(ZTi β) with g being the link function and where β,

an unknown parameter vector, is composed of the appropriate components βX ,βM and βW . A

consistent estimator, β̂, for β is obtained as the solution to the estimating equations

U(β) =
n∑
i=1

Div
−1
i [yi − E(Yi|Zi)] = 0 (1)

where Di = ∂E(Yi|Zi)/∂β and vi is a working variance of yi. By GEE theory, the variance of

β̂ can be consistently estimated by the robust sandwich estimator [15, 12].

Traditionally, mediation analysis considers a single mediator. However, methods for address-

ing multiple mediators have been developed [35]. For simplicity of presentation, we consider

in this paper the case of a single mediator M . First, consider the following conditional and

marginal mean models for Y , with respect to M

E(Y |X,M,W ) = g−1(β0 + β1X + β2M + βT3W ) (2)

E(Y |X,W ) = g−1(β?0 + β?1X + β?3
T
W ). (3)

Let B = (β0, β1, β2,β3) and B? = (β?0 , β
?
1 ,β

?
3) be the vectors of conditional and marginal regres-

sion model parameters, and denote B̂ and B̂? for their estimators obtained by solving equation

(1) under models (2) and (3), separately, respectively. When the two models (2) and (3) both

hold simultaneously, we say we have g-linkability.

Throughout this paper, we assume that, after adjusting for measured confounders, there is no

unmeasured confounding of the estimates of the exposure-outcome relationship, the mediator-

outcome relationship or the exposure-mediator relationship. We also assume that confounders

of the mediator-outcome relationship are unaffected by the exposure. Under these assumptions,

and when models (2) and (3) hold, the TE equals β?1 and the NIE equals β?1−β1, for the identity

and log link functions [19, 34], and if, in addition, the outcome is rare, this is also true for the

logit link function [36]. Therefore, the mediation proportion, p, which is the ratio between the

NIE and the TE, equals to

p =
β?1 − β1
β?1

= 1− β1
β?1
.

A necessary condition for M to be interpreted as a mediator is that p ∈ (0, 1]. The situation

where p = 0 corresponds to β1 = β?1 , hence in this case M does not mediate the effect of X at

all. On the other hand, if p = 1 then the effect of X is fully mediated by M . Finally, if p /∈ [0, 1],

it is either that the NDE and NIE are in opposite directions or M is not a mediator at all, but
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a confounder. In this paper, we only consider the more common and more interpretable case,

where the NDE and the NIE are in the same direction. One can get a consistent estimate for p

by simply plugging in the appropriate estimator from each model. That is, p̂ = 1 − β̂1

β̂?
1

, where

β̂1 and β̂?1 are the appropriate components of B̂ and B̂? . Under g-linkability, this estimator is

consistent by standard GEE theory and the general mapping theorem.

The question of mediation can also be investigated when the available data is survival data.

Lin et al. [16] considered this question for the Cox model in the context of the PTE. First, as

in [16], we define the following two models for the hazard function at time t, h(t), conditionally

and marginally, with respect to M

h(t|X,M,W ) = λ0(t) exp(β0 + β1X + β2M + βT3W )

h(t|X,W ) = λ?0(t) exp(β?0 + β?1X + β?3
T
W ), (4)

where X,M and W are allowed to be time dependent and λ0(t) and λ?0(t) are baseline hazard

functions. The authors of [16] have shown that these two models cannot hold at same time.

However, they claimed that if either β?3 or Λ?0(t) =
∫ t
0
λ?0(s)ds are small, then model (4) is

a good approximation to the true conditional model. The assumption that Λ?0(t) is small is

the rare outcome assumption. They confirmed this claim using a small scale simulation study.

When (4) holds, approximately, the Cox model is approximately g-linkable. Thus, in addition

to GLMs, we investigate in this paper estimation and inference for p in approximately g-linkable

Cox models.

3 Further results on g-linkability

In this section, we consider the issue of when the full model (2) and the marginal model (3) both

hold with the same function g exactly or approximately. Recall that g-linkability is sufficient

for ensuring that p̂, the point estimator of p, is consistent. This subject was also discussed

in the context of random effects models [27], in which the authors showed, for each common

statistical model, what random effect’s distribution would provide a g-linkable conditional mean

model condition on, and marginal over, the random effect. If g-linkability does not hold, then

p̂ converges to p 6= p. However, if g-linkability holds approximately, as in the case of logistic

regression under rare outcome assumption (see below, and [33]), then one may expect p to be

close to p, as discussed in [16] for the Cox model.

We consider the three common link functions: identity, log and logit. For each of these

functions we give a general condition for the distribution of M given X and W that ensures g-

linkability, where in the logit link function a rare outcome assumption is also needed. Numerous

detailed and practical examples that fulfill these conditions can be constructed. In practice,

the difference method does not require fitting of the mediator-exposure relationship model, as

noted by [13]. For the validity of the product method, however, this model has to be correctly

specified.
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3.1 Identity link function

Under the identity link function, models (2) and (3) simplify to

E(Y |X,M,W ) = β0 + β1X + β2M + βT3W

E(Y |X,W ) = β?0 + β?1X + β?3
T
W .

We now show that g-linkability holds whenever E(M |X,W ) is a linear function of X and W .

To see that, let E(M |X,W ) = a+ b1X + bT3W , for some a, b1 and b3. Then,

E(Y |X,W ) = E(E(Y |X,M,W )|X,W ) = β0+β1X+β2E(M |X,W )+βT3W = β?0+β?1X+β?3
T
W

where β?0 = β0 + a, β?1 = β1 + b1 and β?3 = β3 + b3.

3.2 Log link function

Under the log link function, g(u) = log(u), the mean models become

E(Y |X,M,W ) = exp(β0 + β1X + β2M + βT3W )

E(Y |X,W ) = exp(β?0 + β?1X + β?3
T
W )

and we have

E(Y |X,W ) = E(E(Y |X,M,W )|X,W ) = exp(β0 + β1X + βT3W )× E[exp(β2M)|X,W ].

Therefore, in the log link case, g−linkability holds if the log of the moment generating function

of M |X,W can be written as a linear function of X and W . That is, logE[exp(β2M)|X,W ] =

a′ + b′1X + b′3
T
W .

3.3 Logit link function

The issue of whether the logistic regression model holds for both the conditional and marginal

models has been discussed in the literature [27, 33, 13]. The logit link function, defined as

logit(p) = log(p/(1 − p)), is typically used when Y is binary. It is well known and readily seen

that when the outcome is rare, the logit function is similar to the log function. Thus, under

rare outcome scenario, one may expect that g-linkability holds approximately for the logit link

function, as is typical in many epidemiologic and public health studies [36]. We empirically

investigate the limits of the rare outcome assumption in Section 5.

4 Inference for the mediation proportion

For simplicity of presentation, we assume throughout this section that g-linkability holds. Then,

p̂ = 1− β̂1

β̂?
1

, where β̂1 and β̂?1 are the appropriate components of B̂ and B̂? defined in Section 2.

By the aforementioned GEE theory together with the general mapping theorem, this estimator

is consistent.

Confidence intervals for p were constructed in the past using either Fieller’s theorem or the

delta method [8, 16, 7]. Here, we consider the latter. As written in [16], by the delta method p̂

5
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has an asymptotic normal distribution with variance equals to

σ2
p̂ =

σ2
β̂1

(β?1)2
+
β2
1σ

2
β̂?
1

(β?1)4
− 2

β1σβ̂1,β̂?
1

(β?1)3
, (5)

where

σ2
β̂1

= V ar(β̂1), σ2
β̂?
1

= V ar(β̂?1) and σβ̂1,β̂?
1

= Cov(β̂1, β̂
?
1).

While σ2
β̂1

and σ2
β̂?
1

can be consistently estimated using the robust sandwich estimator [12] for

each of the models (2) and (3) separately, it is not obvious how to estimate σβ̂1,β̂?
1
, the covariance

of estimators obtained from two separate models. In Section 4.2, we propose a data duplication

algorithm to estimate this quantity.

Assume now we have estimates σ̂2
β̂1
, σ̂2
β̂?
1

and σ̂β̂1,β̂?
1

for σ2
β̂1
, σ2
β̂?
1

and σβ̂1,β̂?
1
, respectively.

These estimates are plugged in (5) in order to get an estimate σ̂2
p and a (1− α) level confidence

interval for p may be obtained as

p̂± z1−α/2σ̂p̂ (6)

with z1−α/2 being the appropriate quantile of the normal distribution. While this confidence

interval is asymptotically valid, in finite samples it may include negative values or values larger

than one. Since such values are outside the parameter space for p ifM is indeed a mediator, values

outside the parameter space should be excluded. One option is to trim the resulting confidence

interval so it would be contained in [0, 1]. Alternatively, a logit-based confidence interval can be

constructed, using again the delta method, and then back-transformed the resulting confidence

interval to get a confidence interval which is, by definition, contained in [0, 1]. More formally,

let ψ = logit(p) = log( p
1−p ) and let ψ̂ = logit(p̂). By the delta method, ψ̂ is consistent and

asymptotically normally distributed with variance

σ2
ψ̂

=
1

p2(1− p)2
σ2
p̂,

which can be estimated by plugging in p̂ and σ̂2
p in the above expression. Then, a (1− α) level

confidence interval for the mediation proportion p is obtained as exp
(
ψ̂ − z1−α/2σ̂ψ̂

)
1 + exp

(
ψ̂ − z1−α/2σ̂ψ̂

) , exp
(
ψ̂ + z1−α/2σ̂ψ̂

)
1 + exp

(
ψ̂ + z1−α/2σ̂ψ̂

)
 (7)

4.1 Hypothesis testing

Past authors concentrated on methods for testing that the mediation proportion is at least

some fraction f , with f typically being 0.5 or more [8, 16, 7]. In the context of PTE, where

the validation of intermediate biomarkers for outcome is of interest, this may be reasonable.

However, when considering a mediator, the more relevant question is whether M is indeed a

mediator. Then, the hypothesis is H0 : p = 0 vs. H1 : p > 0. Now, recall that p ∈ [0, 1]. Let

Zp = σ−1p p̂ be the scaled unconstrained estimate. By the delta method, the distribution of Zp

under the null converges to a standard normal distribution. Let Z+
p = max(0, Zp) be that scaled

estimate, obtained by replacing the unconstrained p̂ by zero if p̂ is negative. By the general

6
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mapping theorem, we then have

lim
n→∞

P (Z+
p ≥ c)→

{
1 c ≤ 0,

1− Φ(c) c > 0

where Φ is the cumulative distribution function of standard normal distribution and the p-value

for testing H0 : p = 0 vs. H1 : p > 0 equals to one if σ̂−1p p̂ < 0 and to 1 − Φ(σ̂−1p p̂) if p̂ > 0.

However, if the unconstrained p̂ is larger than one, then this is misleading. Indeed p maybe

larger than zero in this case, but p should not be interpreted as a mediation proportion, as noted

in [16]. In this case, M is not a mediator, but a confounder. This demonstrates the point that

the described test should not be used without first considering the unconstrained value of p̂, and

making sure it is within the parameter space [0, 1].

Consider the distribution of (Z+
p )2 = [max(0, Zp)]

2. This statistic equals to zero if Zp < 0,

which occurs with probability of 0.5 since Zp is a standard normal variable. Therefore, for any

nonnegative value c+ we have

P [(Z+
p )2 < c+] = P [Zp ≤ 0] + P [0 < Zp <

√
c+] = 0.5 + 0.5P [Z2

p < c+] = 0.5 + 0.5P (χ2
(1) < c+)

since P [0 < Zp <
√
c+] = 0.5P [−

√
c+ < Zp <

√
c+], where χ2

(k) is a χ2 variable with k degrees

of freedom. Thus, the asymptotic distribution of (Z+
p )2 is a mixture of χ2

(0) and χ2
(1) random

variables, with mixture probability of 0.5, similar to what was previously shown [31].

An alternative test statistic is based upon a test for the difference between the effect estimates

in the marginal and the conditional models. That is, on d̂ = β̂?1 − β̂1. Under the assumptions

in this paper, d̂ is a consistent estimate for the NIE. A test statistic based on d̂ is based on

Zd = σ−1
d̂
d̂, where

σ2
d̂

= V ar(d̂) = σ2
β̂1

+ σ2
β̂?
1

− 2σβ̂1,β̂?
1
.

Assume that β̂?1 > 0. Similar to Z+
p , we define Z+

d = max(0, Zd) and then the p-value of the

difference test is calculated as 1 − Φ(σ̂−1d d̂), if d > 0 and 1 otherwise. It is readily observed

that d̂ ∈ (0, β̂?1 ] if and only if p̂ ∈ (0, 1]. Thus, one should treat a crude result of d̂ /∈ (0, β̂?1 ]

as he or she would have treated the situation p̂ /∈ (0, 1]. Finally, if the coefficient in model (3)

corresponding to the effect of X is negative, then the p-value for the difference test is Φ(σ̂−1d d̂)

if d̂ < 0 and zero otherwise.

4.2 The data duplication algorithm

A main challenge when conducting inference for the mediation proportion p is to estimate the

covariance of estimators obtained from the two models (2) and (3). It turns out that the

covariance between B̂ and B̂? can be estimated by fitting both models by stacking the estimating

equations for the two models using a data duplication algorithm. A similar method was presented

in [16] for the Cox model in survival data. Here, we extend it to GEE for GLMs. First, the

data are augmented with additional pseudo-variables and pseudo-observations. Each variable,

including the intercept, the exposure, the confounders, but not the mediator, appears twice, and

each of the original observations is included as two pseudo-observations in the new data set. See

Table 1 for an illustration of the duplicated data structure.

7
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The following pseudo model is fitted to the duplicated data using GEE [15],

E(Yij |Xi, X
?
i ,Mi,W i,W

?
i ) = g−1(β0I{j = 1}+β1Xi+β2Mi+β

T
3W i+β

?
0I{j = 2}+β?1X?

i +β?T3 W ?
i ),

(8)

where j = 1, 2 are the rows created from duplicating each observation and are treated as repeated

measures. Model (8) implies that we can write E(Yi1|Xi, X
?
i ,Mi,W i,W

?
i ) = E(Yi1|Xi,Mi,W i)

and E(Yi2|Xi, X
?
i ,Mi,W i,W

?
i ) = E(Yi2|X?

i ,W
?
i ). Let R be a 2×2 working correlation matrix

and denote Bi = diag(vi1, vi2), where vij = V ar(Yij). Let also V i = B
1/2
i RB

1/2
i be a 2 × 2

working variance for the vector (Yi1, Yi2). Here, the GEE are defined as

UGEE(B) =
n∑
i=1

(Di,D?i )V −1i

(
yi1 − E(Yi1|Xi,Mi,W i)

yi2 − E(Yi2|X?
i ,W

?
i )

)
, (9)

where Di = ∂E(Yi1|Xi,Mi,W i)/∂B and D?i = ∂E(Yi2|X?
i ,W

?
i )/∂B? are two column vectors. If

R is taken to be the identity matrix, then V i = Bi and (9) simplifies to the following estimating

equations

UIEE(B) =

(
U

(1)
IEE(β)

U
(2)
IEE(β?)

)
=

(∑n
i=1Div

−1
i1 [yi − E(Yi1|Xi,Mi,W i)]∑n

i=1D?i v
−1
i2 [yi − E(Yi2|X?

i ,W
?
i )]

)
= 0. (10)

Then, the estimating equations given by (10) are identical to the estimating equations for fitting

models (2) and (3) separately, because Di and vi and Zi in equation (1) are equal to Di, vi1
and (Xi,Mi,W i), respectively, under model (2), and they are equal to D?i , vi2 and (X?

i ,W
?
i ),

respectively, under model (3). The major advantage of the data duplication algorithm is that

it provides an estimator for σβ1,β?
1

in a straightforward manner. Taking a working correlation

matrix other than the identity may result in more efficient estimators of B̂, but would not have

the desirable property that the duplicated data estimating equations are identical to the two

separate estimating equations from the two separate models.

5 Simulation study

In the simulation studies, we considered several issues regarding the performance of the method-

ology we presented throughout the paper. We first present results concerning g-linkability for

the logit link function and the Cox model. Then, we turn to the performance of the mediation

proportion estimator, studying its bias, the coverage rate of the accompanied confidence inter-

vals and the type I error and the power of the statistical tests described in Section 4. For the

generalized linear models, we used the GEE data duplication method as described in the previ-

ous section. For the Cox model, estimates were calculated using the data duplication method

suggested by Lin et al. [16].

Throughout these simulation studies, we assume that there are no confounders in the model.

X and M were generated using a bivariate normal with mean (0, 0)T and covariance matrix(
1 ρ

ρ 1

)
. Then, we have that β2 = p

ρβ
?
1 for the identity, log and logit link functions (the latter

under the rare outcome assumption); see Web Appendix A. In these scenarios, g−linkability

holds for all three link functions. The estimation and inference procedures apply to any bivariate

8
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distribution of X and M that satisfies the simple moment conditions given in Section 3, and

here we used the bivariate normal distribution for generating the data merely for convenience.

The estimation and inference procedures do not use the bivariate normal distribution of (X,M).

5.1 g-linkability for the logit link function and of the Cox model

In order to asses the magnitude of the bias when assuming g-linkability of the logit link function

and the Cox model, we conducted a simulation study under various conditions and inspected

the resulting bias in p̂, as estimated using the data duplication algorithm described in Section

4.2 while taking the working correlation matrix to be the identity. First we describe the logit

link function model. We simulate Y under the logistic regression model

logit(P (Y = 1|X,M)) = β0 + β1X + β2M.

We chose the model parameter values in the following way. First, we chose ρ = corr(X,M), p

and β?1 . Then, by definition we had β1 = (1 − p)β?1 , and we took β2 as if g-linkability exactly

holds. That is, β2 = p
ρβ

?
1 . Then, we fixed the unconditional case probability P (Y = 1) and

found the appropriate β0 value by solving for β0 in the equation

P (Y = 1) = E(expit(β0 + β1X + β2M)),

where expit(u) = exp(u)/(1+exp(u)). Finally, the sample size was given as n = E(Ncases)/P (Y =

1) where E(Ncases) is number of expected cases. We considered the following values for the pa-

rameters. p = 0.1, 0.2, ..., 0.8; ρ = p, p+0.1, ..., 0.8, with ρ ≥ p to satisfy that β2 ≤ β?1 or in words,

to ensure that the total effect of X is larger than effect of M ; β?1 = log(1.25), log(1.5), log(2);

P (Y = 1) = 0.005, 0.01, 0.1, 0.25; E(Ncases) = 100, 500, 1000. The number of simulation itera-

tions per scenario was 1000.

For the Cox model, we simulated the data similarly to the logit link function simulations.

First, we simulated X and M as before. Then, given fixed ρ, p and β?1 , β2 = p
ρβ

?
1 . We took a

Weibull distribution for the baseline hazard and used Exponential distribution for the censoring

(mean=50), with additional cutoff at age 90. Given the desired proportion number of cases in

the population, we used simulations to find the appropriate values for the Weibull distribution

shape parameter, while fixing the scale parameter at 200. As in the logit link case, we chose the

sample size as the number of expected cases (E(Ncases)) divided by the expected proportion of

cases (P (δ = 1)), where δ is the event indicator.

In order to assess g-linkability, and the finite sample performance of p̂, we calculated the

relative bias, defined as 100×|mean(p̂)−pp |. Ideally, this quantity should be close to zero. We note

that bias may arise either because g-linkability fails to hold, or because of a sample size not large

enough. Figure 1 presents bias for β?1 = log(1.5) as a function of the parameters. First, it is of

note that whenever the overall prevalence or cumulative incidence of Y was small, as in the rare

disease scenario, and the number of cases was sufficiently large, bias was minimal. Even when

the disease was not as rare, e.g., P (Y = 1) = 0.25, when there were enough cases, and when p

was large enough (e.g., p > 0.2 in this case), the bias was minimal. Considering the g-linkability

of the Cox model, presented for β?1 = log(1.5) in Figure 2, the results were similar to the results

obtained for the logit link function. That is, when the outcome was rare (P (δ = 1) was small)
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then the corresponding marginal Cox model for the hazard function approximately holds and

the bias in mediation proportion estimation was minimal. Figures similar to Figures 1 and 2 are

presented for β?1 = log(1.25), log(2) in Web Appendix B. The overall trends were similar.

5.2 Estimation and inference performance

For the Cox model and the logit link function, data were simulated as described above. For

the identity link function, data were simulated from the model Y = E(Y |X,M) + ε = β0 +

β1X + β2M + ε. As before, (X,M) were simulated from a bivariate normal distribution with

zero mean, unit variance, and correlation ρ. The error, ε, was a vector of iid standard normal

random variables. We also considered other distributions for ε; we will expand on this matter

later on. As in the logit link case, we fixed β?1 , ρ, and p and took β1 = (1− p)β?1 and β2 = p
ρβ

?
1 .

The intercept, β0, was chosen arbitrarily to be equal to 2. We considered various values for β?1 , p

and ρ, where as before we were only interested in scenarios where ρ ≥ p, since then β2 ≥ β?1 .

We present results for β?1 = 0.1, 0.3, 0.5, which imply multiple correlations between (X,M) and

Y of about 0.1, 0.3 and 0.5, respectively.

Table 2 presents relative bias of p̂ and coverage rates of the trimmed version of the 95%

confidence intervals given by (6). The mediation proportion estimates exhibited unstable per-

formance whenever the sample size was low and the total effect of X, β?1 , was small, regardless

of the magnitude of the mediation proportion. However, these problems disappeared when we

considered a larger sample size or a larger total effect of X. The results for the logit link function

and the Cox model in Table 2 are presented for the rare outcome case.

From estimation we move to hypothesis testing. The two test statistics compared were

described in Section 4.1, where the variance estimators used in the test statistics were obtained

by the data duplication algorithm described in Section 4.2. As previously discussed, both tests

used were one-sided since the mediation proportion is nonnegative. Since p must be in [0, 1] in

both cases, if p̂ was outside this interval we did not conducted the tests. The last column in

Table 2 gives the mean proportion of such simulations, where the mean is taken over the other

columns. The proportion of simulations with p̂ /∈ [0, 1] was larger when the total effect of X and

the sample size were small. Results are presented in Table 3. In terms of type I error, both tests

were adequate, with a conservative type I error when the correlation between the exposure and

the mediator was low. When the total effect was low, the test based on d̂ had greater power,

usually by 5% − 10%, compared to the test based on p̂. The power of both tests was highly

affected by the effect size (β?1) and the correlation between the exposure and the mediator (ρ).

High correlation between X and M decreased the power. The power of both tests was lower

when the total effect β?1 is low. It should be noted that mediation analysis is performed only

after risk factor was found to be significant, which, in general, is less likely to happen if both β?1

and the sample size are low. We further address this point in Section 7.

We next consider the finite sample properties of the confidence intervals proposed in Section

4. We considered an untransformed confidence interval (6) as well as a logit transformation

based confidence interval (7). Table 4 compares these two options in terms of coverage rate and

confidence interval width. When the unconstrained point estimate was negative or larger than

one, i.e., p̂ /∈ [0, 1], a confidence interval was not constructed. Crude confidence intervals were

trimmed to be contained in [0, 1], while the logit transformation-based confidence intervals are

contained in [0, 1] by definition. Coverage rates were generally adequate. When ρ was much
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larger than p, neither of the methods produced confidence intervals with nominal coverage,

especially when the sample size was small. Comparing between the trimmed untransformed and

the transformed-based confidence intervals, the latter did not offer any clear advantage in terms

of performance. For small sample size, the transformation-based confidence interval tended to

be wider, especially for p = 0.1, without any substantial gain in terms of coverage rate. For a

larger sample size, the two confidence intervals were comparable in their performance.

Throughout this section, we presented in parallel results for the identity and logit link function

and the Cox model. There was a very strong agreement between the results for the logit link

function for binary data and the Cox model, as one may have expect given the close relationship

between the logistic regression model and the Cox model in epidemiology and public health

evaluations.

In addition to the scenarios we described above, we conducted simulations for the identity

link function with error distributions other than the normal one. We considered symmetric

distribution with tails heavier than the normal distribution as well as skewed distributions. As

predicted by GEE theory, the performance of the mediation proportion estimator, the statistical

tests and the confidence interval was only slightly changed. Details are given in Web Appendix

C.

6 Illustrative example

We illustrate the use of our methodology in the analysis of breast cancer data from the Nurses

Health’s Studies (NHS and NHSII) [3, 38]. It was previously found that high mammographic

density (MD) is a risk factor for breast cancer [22]. The goal here is to investigate whether,

and to what extent, the effects of more distal risk factors for pre-menopausal breast cancer

are mediated by high MD. Detailed description of this study is given in [26]. In this nested

case-control study, controls were matched to cases by current age, menopausal status, current

hormone use, month, time of day, fasting status and time of the day at blood collection and

luteal day (for NHSII samples only). There were 559 pre-menopausal cases and 1727 controls.

Since the disease is rare, and as shown in the previous section, g-linkability should hold. The

mediator is percent MD. We conducted mediation analysis for all breast cancer risk factors with

significant total effects: personal history of benign breast disease (HBBD), family history of

breast cancer (FH), adolescent somatotype (ASM), body mass index at age 18 (BMI18), age at

first birth (AFB), age at menarche (AM) and height (HT). Results were adjusted for current

age, fasting status, blood collection time of the day, mammography batch (NHS batch 1, NHS

batch 2 or NHSII), current BMI, BMI18, ASM, HBBD, parity, AFB, and AM, where mediation

was assessed separately for a number of these variables, where most of the others were treated

as confounders.

Table 5 presents the estimated mediation proportions, confidence intervals and p-values,

along with the estimated risk factor effects. Of note is that MD is significant as a mediator for

HBBD, ASM and BMI18, regardless whether the test was based on p̂ or d̂, although p-values

corresponding to the latter test were much smaller. Confidence intervals were quite wide for

ASM and BMI18. This may be due to the moderate sample size, and the relatively small effect.
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7 Discussion

In this paper, we have provided methodology for estimation and inference for the mediation

proportion in generalized linear models and the Cox model using the difference method. Our

methodology for GLMs uses a data duplication algorithm with GEE and allows for the consistent

estimation of the covariance of the estimates.

Strictly speaking, the validity of the difference method relies on the assumption that the

marginal model, the one that does not include the mediator, and the conditional model, the

one that does, hold simultaneously. To address this concern, researchers have suggested more

complicated methods, e.g, a Bayesian approach [5], and more recently, a nonparamteric method

[23]. However, we demonstrate in this paper that g-linkability with respect to the mean functions

ensures that the point estimator for the mediation proportion is consistent under standard

assumptions for the identity and log link functions and under a rare outcome assumption for

the logistic link function and Cox model. The rare outcome assumption is fulfilled in most

chronic disease incidence studies in epidemiology, including the one motivating the present work.

Furthermore, the estimator is asymptotically normally distributed with a variance that can be

consistently estimated using a robust sandwich estimator easily obtained by applying a data

duplicated GEE.

Despite its popularity, the difference method for estimating the mediation proportion has

been criticized due to what appeared to be undesirable finite samples properties [20, 7]. However,

when considering binary outcomes, the covariance (or correlation) between estimates from the

marginal and conditional models was typically estimated using approximations from the linear

model [9]. We have now developed methodology for a valid covariance estimator and showed

that testing for mediation using a test based on the difference yields a valid statistical test, even

in finite samples.

The causal structure and the underlying confounding assumptions are important to consider

when our methods are used in applications. Confounding may occur due to exposure-outcome

confounders or mediator-outcome confounders. We refer the readers to [34], and references

therein, for relevant discussions on assumptions needed and analysis conducted in order to avoid,

or at least minimize, potential bias due to confounding when conducting mediation analysis. The

difference method does not allow for mediator-exposure interaction, and alternative methods to

allow for this interaction were previously developed [33].

In practice, mediation analysis is often conducted for well-established exposures or risk fac-

tors, or when the total effect is significant. As suggested by our simulation results, when the

total effect was small, mediation analysis was less likely to provide adequate results. On the

other hand, an analysis that only considers significant total effects should take into account that

it was performed conditionally on the results of a first stage analysis. The properties of such

conditional inference can be considered in future research.

In our implementation of the GEE methodology, we propose to use the independence working

correlation matrix, which has the nice property of providing identical coefficient estimates when

fitting the two models separately and when using the data duplication algorithm, fitting them

together. Under other working correlation matrices, this property does not hold anymore, but

efficiency may be gained.

Our approach assumes that the underlying model is g-linkable, where the same link function

12

http://biostats.bepress.com/harvardbiostat/paper204



holds for both the conditional model and the marginal model, where the latter is the model

without the mediator. We have shown that g-linkability holds for the identity and the log link

function when fairly general conditions are met. In addition, g-linkability holds for the logit

link function whenever the outcome is rare. When the outcome is not rare, one may fit the

log-binomial model instead, as noted in [33], which may be preferable anyway, as the odds ratio

is typically not the parameter of interest [32].

In conclusion, the general framework for mediation analysis in generalized linear models

developed in this paper along with the methodology established, will allow researchers to inves-

tigate mediation under various outcome scenarios and to quantify results based on rigorously

derived and empirically studied estimators and hypothesis tests.
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Appendix

One major goal of this paper is to produce statistical tools to be used in practice. The SAS macro

%mediate implements the data duplication algorithm and reports point and interval estimates for

the mediation proportion and the results for the mediation test using the difference method. It is

available on the last author’s website http://www.hsph.harvard.edu/donna-spiegelman/software/mediate.

Simulations were conducted using R code that can be obtained by request to the first author.

Both the SAS macro and the R code can be used for either GLMs or survival data analysis.
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Table 1: The augmented data used by the data duplication algorithm. For each original ob-
servation i, two rows j = 1, 2 are created. The duplicated data is used for the pseudo model
presented in (8).

i j Intercept Intercept? X X? M W W ? Y
1 1 1 0 x1 0 m1 w1 0 y1
1 2 0 1 0 x1 0 0 w1 y1
2 1 1 0 x2 0 m2 w2 0 y2
2 2 0 1 0 x2 0 0 w2 y2
...

...
...

...
...

...
...

...
...

...

Pr(Y = 1) = 0.005 Pr(Y = 1) = 0.01 Pr(Y = 1) = 0.1 Pr(Y = 1) = 0.25
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Figure 1: Relative bias of the mediation proportion estimator under the logistic model as a function of
the mediation proportion (p), the correlation between the exposure and the mediator (ρ), the number of
expected cases (E(Ncases)) and the outcome rate (P (Y = 1)). The value of β?

1 was taken to be log(1.5).

Pr(δ = 1) = 0.005 Pr(δ = 1) = 0.01 Pr(δ = 1) = 0.1 Pr(δ = 1) = 0.25
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Figure 2: Relative bias of the mediation proportion estimator under the Cox model as a function of
the mediation proportion (p), the correlation between the exposure and the mediator (ρ), the number
of expected cases (E(Ncases)) and the event rate (P (δ = 1)). The value of β?

1 was taken to be log(1.5).
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Table 2: Relative bias in percentage of the mediation proportion estimator under the identity
and logit link functions and the Cox model. Coverage rates of 95% trimmed untransformed
confidence intervals are displayed in brackets. Nout is the mean proportion of simulations with
p̂ /∈ [0, 1], where the mean is taken over the rest of the columns.

Identity link function (Y ∼ Normal)
n = 1000 n = 5000

β?
1 β?

1 Nout

0.1 0.3 0.5 0.1 0.3 0.5

p = 0.1 ρ = 0.1 15.3 (0.92) -0.1 (0.96) 2.3 (0.96) 3.1 (0.95) 0 (0.96) -1 (0.95) 0.0
ρ = 0.3 11.2 (0.83) 0.3 (0.94) -0.5 (0.94) 3.6 (0.95) -0.2 (0.95) -0.1 (0.94) 2.9
ρ = 0.5 23.9 (0.71) -5.1 (0.91) -1.3 (0.94) 1.5 (0.88) 2.6 (0.95) 0 (0.95) 7.9
ρ = 0.7 17.6 (0.6) 0.3 (0.78) 0.8 (0.93) 17 (0.78) -1.6 (0.96) -1.1 (0.94) 14.2

p = 0.3 ρ = 0.3 35.8 (0.92) 1.2 (0.95) 0.3 (0.95) 3 (0.96) 0.4 (0.95) 0.1 (0.94) 0.4
ρ = 0.5 22.3 (0.9) 1.4 (0.95) 0.7 (0.95) 0.9 (0.96) 0.4 (0.96) -0.5 (0.95) 1.4
ρ = 0.7 34.1 (0.76) -0.7 (0.94) -0.8 (0.94) 1.2 (0.96) 1.4 (0.94) 0 (0.94) 4.4

p = 0.5 ρ = 0.5 15.4 (0.86) 1.5 (0.95) 0.3 (0.95) 2.1 (0.96) 0.1 (0.95) 0.2 (0.95) 1.6
ρ = 0.7 14.8 (0.81) 0.5 (0.95) 0.4 (0.95) 2.5 (0.95) -0.2 (0.94) 0.2 (0.95) 3.0

Logit link function (Y ∼ Ber) with P (Y = 1) = 0.005

E(Ncases) = 500 E(Ncases) = 1000
β?
1 β?

1 Nout

log(1.25) log(1.5) log(2) log(1.25) log(1.5) log(2)

p = 0.1 ρ = 0.1 4.7 (0.94) -0.4 (0.95) -0.1 (0.95) -3 (0.92) -5.1 (0.9) -5.3 (0.86) 0.0
ρ = 0.3 5.1 (0.9) 2.9 (0.95) 1.1 (0.96) 2.7 (0.96) 0.5 (0.95) 0.3 (0.95) 0.9
ρ = 0.5 7.6 (0.77) 3.1 (0.93) -1.7 (0.96) 7.3 (0.87) -1.4 (0.95) 0.8 (0.96) 5.6
ρ = 0.7 2.6 (0.62) 6.8 (0.82) -1.1 (0.9) 3.3 (0.74) 0.3 (0.93) -0.6 (0.93) 14.3

p = 0.3 ρ = 0.3 7.5 (0.94) 0.8 (0.94) 0.5 (0.95) 0.5 (0.94) -1.2 (0.93) -1.0 (0.94) 0.0
ρ = 0.5 8.5 (0.95) 0.9 (0.95) 0.6 (0.95) 1.6 (0.96) 0.1 (0.96) 0.4 (0.94) 0.1
ρ = 0.7 5.9 (0.88) 2.2 (0.95) -0.4 (0.95) 6.5 (0.96) -0.8 (0.95) -0.7 (0.95) 1.3

p = 0.5 ρ = 0.5 9.2 (0.9) 1.1 (0.96) 0.9 (0.94) 1.5 (0.96) -0.4 (0.95) -0.1 (0.96) 0.2
ρ = 0.7 9.1 (0.88) 1.2 (0.96) 0.2 (0.94) 3.5 (0.96) 1.0 (0.95) 0.5 (0.96) 1.0

Cox model with P (δ = 1) = 0.005

E(Ncases) = 500 E(Ncases) = 1000
β?
1 β?

1 Nout

log(1.25) log(1.5) log(2) log(1.25) log(1.5) log(2)

p = 0.1 ρ = 0.1 6.9 (0.93) 0.5 (0.94) -1.1 (0.93) -5.5 (0.92) -7.3 (0.89) -7.4 (0.85) 0.0
ρ = 0.3 4.9 (0.9) 0.2 (0.95) -0.2 (0.94) 2.8 (0.96) -1.2 (0.95) -0.3 (0.96) 1.3
ρ = 0.5 0.7 (0.77) 0.0 (0.93) 2.6 (0.94) 5 (0.86) 1.3 (0.96) 1.5 (0.95) 6.2
ρ = 0.7 4.2 (0.65) -1.0 (0.81) 5.6 (0.88) 5.5 (0.74) 4.4 (0.92) -0.3 (0.94) 14.7

p = 0.3 ρ = 0.3 0.6 (0.93) 1.3 (0.95) 0.7 (0.97) -0.4 (0.94) -1.5 (0.94) -1.4 (0.95) 0.0
ρ = 0.5 5.7 (0.94) 1.3 (0.94) 0.7 (0.95) 2 (0.96) 0.5 (0.94) -0.6 (0.96) 0.1
ρ = 0.7 7.7 (0.89) 2.1 (0.94) -0.6 (0.96) 2.4 (0.94) -0.2 (0.96) -1.0 (0.95) 1.6

p = 0.5 ρ = 0.5 6.5 (0.91) 1.2 (0.96) 0.5 (0.96) 2.4 (0.95) -0.5 (0.94) -0.4 (0.96) 0.3
ρ = 0.7 0.7 (0.88) 1.3 (0.94) 0.2 (0.95) 2.4 (0.95) 0.6 (0.94) 0.6 (0.95) 0.8
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Table 3: Type I error and power for tests for mediation under the identity and logit link functions
and the Cox model.

Identity link function (Y ∼ Normal)
n = 1000

β?
1 = 0.1 β?

1 = 0.3 β?
1 = 0.5

p̂ test d̂ test p̂ test d̂ test p̂ test d̂ test

p = 0.0 ρ = 0.1 0.01 0.03 0.02 0.02 0.02 0.02
ρ = 0.3 0.03 0.06 0.04 0.04 0.05 0.05
ρ = 0.5 0.02 0.05 0.04 0.04 0.05 0.05
ρ = 0.7 0.02 0.04 0.04 0.05 0.04 0.04

p = 0.1 ρ = 0.1 0.55 0.79 0.95 0.94 0.96 0.95
ρ = 0.3 0.16 0.26 0.90 0.90 1.00 1.00
ρ = 0.5 0.08 0.15 0.46 0.47 0.85 0.85
ρ = 0.7 0.04 0.09 0.26 0.26 0.48 0.48

p = 0.2 ρ = 0.3 0.45 0.63 1.00 1.00 1.00 1.00
ρ = 0.5 0.17 0.27 0.93 0.93 1.00 1.00
ρ = 0.7 0.08 0.14 0.60 0.61 0.95 0.95

p = 0.3 ρ = 0.3 0.75 0.89 1.00 1.00 1.00 1.00
ρ = 0.5 0.32 0.47 1.00 1.00 1.00 1.00
ρ = 0.7 0.12 0.20 0.88 0.89 1.00 1.00

Logit link function (Y ∼ Ber) with P (Y = 1) = 0.005

E(Ncases) = 500
β?
1 = log(1.25) β?

1 = log(1.5) β?
1 = log(2)

p̂ test d̂ test p̂ test d̂ test p̂ test d̂ test

p = 0.0 ρ = 0.1 0.03 0.04 0.03 0.04 0.04 0.04
ρ = 0.3 0.04 0.06 0.05 0.05 0.05 0.06
ρ = 0.5 0.03 0.05 0.04 0.05 0.05 0.05
ρ = 0.7 0.04 0.06 0.06 0.06 0.06 0.06

p = 0.1 ρ = 0.1 0.98 0.99 1.00 1.00 1.00 1.00
ρ = 0.3 0.29 0.37 0.90 0.90 0.99 1.00
ρ = 0.5 0.15 0.20 0.47 0.48 0.71 0.71
ρ = 0.7 0.09 0.12 0.24 0.25 0.34 0.35

p = 0.2 ρ = 0.3 0.78 0.84 1.00 1.00 1.00 1.00
ρ = 0.5 0.32 0.39 0.92 0.92 1.00 1.00
ρ = 0.7 0.14 0.18 0.58 0.59 0.83 0.84

p = 0.3 ρ = 0.3 0.97 0.99 1.00 1.00 1.00 1.00
ρ = 0.5 0.59 0.66 1.00 1.00 1.00 1.00
ρ = 0.7 0.24 0.31 0.88 0.89 0.99 0.99

Cox model with P (δ = 1) = 0.005

E(Ncases) = 500
β?
1 = log(1.25) β?

1 = log(1.5) β?
1 = log(2)

p̂ test d̂ test p̂ test d̂ test p̂ test d̂ test

p = 0.0 ρ = 0.1 0.04 0.06 0.04 0.05 0.05 0.05
ρ = 0.3 0.04 0.06 0.05 0.05 0.05 0.06
ρ = 0.5 0.03 0.04 0.04 0.05 0.03 0.03
ρ = 0.7 0.03 0.05 0.04 0.05 0.04 0.04

p = 0.1 ρ = 0.1 0.95 0.99 1.00 1.00 1.00 1.00
ρ = 0.3 0.30 0.38 0.88 0.88 0.99 0.99
ρ = 0.5 0.12 0.17 0.45 0.46 0.71 0.72
ρ = 0.7 0.07 0.10 0.22 0.22 0.39 0.39

p = 0.2 ρ = 0.3 0.73 0.82 1.00 1.00 1.00 1.00
ρ = 0.5 0.30 0.37 0.92 0.93 1.00 1.00
ρ = 0.7 0.14 0.19 0.53 0.54 0.84 0.84

p = 0.3 ρ = 0.3 0.95 0.97 1.00 1.00 1.00 1.00
ρ = 0.5 0.60 0.67 1.00 1.00 1.00 1.00
ρ = 0.7 0.27 0.34 0.86 0.87 0.99 0.99
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Table 4: Coverage rates (CI-RATE) and lengths (CI-LEN) of trimmed untransformed and logit
transformed-based (Trans) confidence intervals for the mediation proportion under the identity
and logit link functions and the Cox model

Identity link function (Y ∼ Normal)
n = 1000 n = 5000

β?
1 = 0.3 β?

1 = 0.5 β?
1 = 0.3 β?

1 = 0.5
Trim Trans Trim Trans Trim Trans Trim Trans

p = 0.1 ρ = 0.1 CI-RATE 0.96 0.96 0.95 0.94 0.95 0.96 0.95 0.95
CI-LEN 0.13 0.14 0.12 0.13 0.06 0.06 0.05 0.05

ρ = 0.3 CI-RATE 0.94 0.96 0.94 0.96 0.95 0.95 0.94 0.94
CI-LEN 0.14 0.16 0.09 0.09 0.06 0.06 0.04 0.04

ρ = 0.5 CI-RATE 0.91 0.88 0.94 0.95 0.95 0.95 0.95 0.95
CI-LEN 0.21 0.36 0.14 0.17 0.11 0.11 0.07 0.07

ρ = 0.7 CI-RATE 0.73 0.73 0.88 0.88 0.95 0.95 0.95 0.95
CI-LEN 0.33 0.55 0.21 0.35 0.17 0.23 0.11 0.11

p = 0.3 ρ = 0.3 CI-RATE 0.95 0.96 0.95 0.95 0.95 0.95 0.94 0.95
CI-LEN 0.20 0.20 0.14 0.14 0.09 0.09 0.06 0.06

ρ = 0.5 CI-RATE 0.95 0.97 0.95 0.95 0.95 0.95 0.95 0.95
CI-LEN 0.28 0.27 0.17 0.17 0.12 0.12 0.07 0.07

ρ = 0.7 CI-RATE 0.98 0.98 0.97 0.97 0.94 0.94 0.94 0.94
CI-LEN 0.42 0.42 0.26 0.25 0.19 0.19 0.11 0.11

p = 0.5 ρ = 0.5 CI-RATE 0.95 0.97 0.95 0.95 0.95 0.95 0.95 0.95
CI-LEN 0.33 0.32 0.20 0.20 0.14 0.14 0.09 0.09

ρ = 0.7 CI-RATE 0.98 0.98 0.96 0.96 0.95 0.95 0.95 0.95
CI-LEN 0.46 0.43 0.28 0.27 0.20 0.20 0.12 0.12

Logit link function (Y ∼ Ber) with P (Y = 1) = 0.005
E(Ncases) = 500 E(Ncases) = 1000

β?
1 = log(1.25) β?

1 = log(1.5) β?
1 = log(1.25) β?

1 = log(1.5)
Trim Trans Trim Trans Trim Trans Trim Trans

p = 0.1 ρ = 0.1 CI-RATE 0.95 0.96 0.94 0.98 0.95 0.96 0.95 0.95
CI-LEN 0.08 0.08 0.15 0.16 0.06 0.06 0.04 0.04

ρ = 0.3 CI-RATE 0.96 0.95 0.90 0.87 0.95 0.95 0.95 0.96
CI-LEN 0.18 0.24 0.29 0.48 0.14 0.16 0.10 0.10

ρ = 0.5 CI-RATE 0.88 0.82 0.77 0.72 0.93 0.89 0.96 0.93
CI-LEN 0.28 0.46 0.46 0.69 0.22 0.36 0.17 0.23

ρ = 0.7 CI-RATE 0.71 0.71 0.59 0.59 0.76 0.76 0.85 0.85
CI-LEN 0.44 0.69 0.72 0.86 0.35 0.58 0.25 0.45

p = 0.3 ρ = 0.3 CI-RATE 0.94 0.96 0.94 0.98 0.94 0.95 0.95 0.96
CI-LEN 0.25 0.25 0.45 0.43 0.18 0.18 0.13 0.13

ρ = 0.5 CI-RATE 0.96 0.99 0.95 0.97 0.95 0.97 0.95 0.96
CI-LEN 0.37 0.36 0.61 0.63 0.28 0.27 0.20 0.20

ρ = 0.7 CI-RATE 0.97 0.97 0.88 0.88 0.98 0.98 0.97 0.97
CI-LEN 0.55 0.58 0.79 0.83 0.44 0.44 0.31 0.30

p = 0.5 ρ = 0.5 CI-RATE 0.96 0.97 0.90 0.94 0.96 0.97 0.94 0.96
CI-LEN 0.44 0.42 0.67 0.63 0.31 0.30 0.23 0.22

ρ = 0.7 CI-RATE 0.99 0.99 0.91 0.91 0.98 0.98 0.97 0.97
CI-LEN 0.60 0.57 0.83 0.82 0.47 0.45 0.34 0.33

Cox model with P (δ = 1) = 0.005
E(Ncases) = 500 E(Ncases) = 1000

β?
1 = log(1.25) β?

1 = log(1.5) β?
1 = log(1.25) β?

1 = log(1.5)
Trim Trans Trim Trans Trim Trans Trim Trans

p = 0.1 ρ = 0.1 CI-RATE 0.94 0.95 0.93 0.98 0.94 0.96 0.93 0.94
CI-LEN 0.08 0.08 0.17 0.18 0.07 0.07 0.05 0.05

ρ = 0.3 CI-RATE 0.96 0.96 0.90 0.86 0.95 0.96 0.94 0.96
CI-LEN 0.18 0.24 0.29 0.48 0.14 0.16 0.10 0.11

ρ = 0.5 CI-RATE 0.88 0.82 0.77 0.73 0.93 0.89 0.94 0.92
CI-LEN 0.28 0.47 0.46 0.71 0.22 0.37 0.17 0.22

ρ = 0.7 CI-RATE 0.68 0.68 0.62 0.62 0.76 0.76 0.84 0.84
CI-LEN 0.44 0.68 0.73 0.86 0.34 0.59 0.26 0.43

p = 0.3 ρ = 0.3 CI-RATE 0.96 0.96 0.93 0.98 0.95 0.95 0.97 0.97
CI-LEN 0.26 0.25 0.47 0.44 0.20 0.19 0.14 0.14

ρ = 0.5 CI-RATE 0.96 0.99 0.94 0.98 0.94 0.97 0.95 0.96
CI-LEN 0.37 0.36 0.61 0.63 0.29 0.28 0.20 0.20

ρ = 0.7 CI-RATE 0.98 0.98 0.89 0.89 0.97 0.97 0.98 0.98
CI-LEN 0.54 0.57 0.78 0.82 0.45 0.45 0.31 0.31

p = 0.5 ρ = 0.5 CI-RATE 0.94 0.95 0.91 0.94 0.96 0.97 0.95 0.96
CI-LEN 0.44 0.42 0.69 0.64 0.34 0.33 0.24 0.23

ρ = 0.7 CI-RATE 0.99 0.99 0.90 0.90 0.98 0.98 0.97 0.97
CI-LEN 0.61 0.57 0.83 0.81 0.48 0.46 0.34 0.33
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