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A Guide to Causal Parameters in Case-Control
Designs: Targeted Maximum Likelihood
Estimation

Sherri Rose and Mark J. van der Laan

Abstract

Researchers of uncommon diseases are often interested in assessing potential risk
factors. Given the low incidence of disease, these studies are frequently case-
control in design, as this allows for a sufficient number of cases to be obtained
without extensive sampling and can increase efficiency. However, these case-
control samples are then biased since the proportion of cases in the sample is not
the same as the population of interest. Methods for analyzing case-control studies
have focused on utilizing logistic regression models that provide conditional and
not causal estimates of the odds ratio. This article will demonstrate the use of the
prevalence probability and case-control weighted targeted maximum likelihood
estimation (MLE), as described by van der Laan (2008), in order to obtain causal
estimates of the parameters of interest (risk difference, relative risk, and odds ra-
tio). It is meant to be used as a guide for researchers, with step-by-step directions
to implement this methodology. We will also present simulation studies that show
the improved efficiency of the case-control weighted targeted MLE compared to
other techniques.



1 Introduction

Case-control study designs are frequently used in public health and medical
research to assess potential risk factors for disease. These study designs are
particularly attractive to investigators researching rare diseases (i.e. proba-
bility of having the disease = 0), as they are able to sample known cases of
disease, versus following a large number of subjects and waiting for disease
onset. Case-control studies can also yield increases in efficiency. However,
case-control sampling is a biased sampling method; bias occurs due to the
disproportionate number of cases in the sample versus the population of in-
terest. Researchers commonly employ the use of a logistic regression model,
treating the sample as a prospective sample, and estimate the conditional
odds ratio of having disease given the exposure of interest and measured
covariates. If one would like to estimate marginal causal effects, which corre-
spond with the traditional parameters of interest in randomized trials, there
is now a nonparametric double robust locally efficient procedure available. In
van der Laan (2008), methodology for this marginal causal effect estimation
theory in case-control designs is illustrated in detail. These techniques rely
on knowledge of the true prevalence probability Pj(Y = 1) = ¢ to elim-
inate the bias of the case-control sampling design. This methodology can
be used in conjunction with other available procedures that handle censor-
ing, missingness, measurement error, and other issues that are persistent in
prospective and retrospective studies.

When possible, the population under study should be clearly defined. As
such, the prevalence and incidence probabilities are then truly basic informa-
tion about a population of interest. Given the availability of city, state, and
national databases for many diseases, including many cancers, knowledge of
the prevalence and incidence probabilities is now increasingly realistic. The
literature, going back to the 1950’s, supports this (see Cornfield (1951) and
Cornfield (1956)). Nested case-control studies can also take advantage of the
prevalence or incidence probability available in the full cohort study. The
appropriateness of the use of the prevalence versus the incidence probability
will depend on the nature of the case-control study design. The use of the
these probabilities to eliminate the bias of case-control sampling design has
previously been discussed as update to a logistic regression model with the
intercept log qo/(1—qo) (Anderson, 1972; Prentice and Breslow, 1978; Green-
land, 1981; Morise et al., 1996; Wacholder, 1996; Greenland, 2004). When the
appropriate probability, or an estimate of the probability, is available, our
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procedure (van der Laan, 2008) can be implemented. In situations where
data on the population of interest may be sparse, the use of a range for the
probability is still beneficial.

An existing method for causal inference in case-control study designs,
discussed by Robins (1999) and Mansson et al. (2007), involves the use of
the exposure mechanism (also known as the propensity score or treatment
mechanism in other literature) among control subjects as a weight to update
a logistic regression of disease status on exposure. This inverse probability of
treatment weighted (IPTW) marginal structural model does not require the
knowledge of prevalence probability, only that the prevalence probability is
close to zero. We will discuss this and other existing methods for analysis of
case-control studies while stressing our new case-control weighting method
that utilizes the prevalence probability.

The procedure, case-control weighted targeted maximum likelihood es-
timation, “targets” the parameter of interest rather than the distribution
of interest. We use extra information, the estimate of the conditional dis-
tribution of the exposure given covariates among cases and controls (which
we refer to as the exposure mechanism), to update an initial estimate of
Py(Y | A,W). The procedure is double robust and locally efficient: it per-
forms well as long as P(Y | A, W) or Bf(A | W) is correctly specified, is
consistent if either of these models are correctly specified, and efficient if
both are correctly specified. Our case-control weighting scheme successfully
maps estimation methods designed for prospective sampling into methods for
case-control sampling. It also produces efficient estimators when its prospec-
tive sample counterpart is efficient. For theoretical development of this new
methodology, we will refer to van der Laan (2008). This article discusses
case-control weighted targeted maximum likelihood for cumulative study de-
signs with the prevalence probability and will focus on applications of the
case-control weighting scheme in unmatched (independent) studies. For an
extension of the methodology to matched case-control studies, see van der
Laan (2008) and Rose and van der Laan (2008). Theory for incidence-density
sampling with the incidence probability is also presented as an appendix in
van der Laan (2008).

1.1 Case-Control Estimation

For ease of reference throughout the remainder of this article, we will present
basic notation for understanding of the case-control estimation problem here.
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Let us define O* = (W, A,Y) ~ P; as the experimental unit and correspond-
ing distribution Fj of interest, which consists of baseline covariates W, an
exposure variable A, and a binary outcome Y that defines case or control
status. (For prospective studies, the exposure variable A would be referred
to as the “treatment” variable.) Pj therefore represents the population from
which all cases and controls will be sampled. One might be interested in sev-
eral marginal causal effect parameters, including the causal risk difference,
relative risk, and odds ratio. For causal effect parameter ¢f = ¥*(P?) € R
of Py € M* and binary exposure A € {0,1}, these parameters are defined
as:

borp = E{EG(Y |A=1W) - E;(Y | A=0,W)}

= Ey(Y1) - Eg(Yo)
= PF(vi=1)-P(Yy=1), (1)

oo BESVIA=LW)  E(v)  R(i=1)
ORE T EBsEs(Y |A=0,W)  E;(Yo) P

and,

. _ B =1)PY=0)
Yoo = B = 0B (% = 1) 9

respectively. The causal versions of these definitions require the specification
of the counterfactual outcomes Yy and Y; for binary A and (W, A, Y = Y,) as
a time-ordered missing data structure on (W, Yy, Y1), the full data structure.
In addition, one must make the randomization assumption: {A L Yy, Y |
W}. On the other hand, these parameters are always well defined parameters
of the distribution of the data, and they can thereby be viewed as W-adjusted
variable importance parameters without the need to make these assumptions.
See van der Laan (2006) for this framework.

In van der Laan (2008), independent case-contol sampling is described
as first sampling (W7, A;) from the conditional distribution of (W, A), given
Y =1 for a case and then sampling .J controls (W, A?) from (W, A), given
Y =0,5=1,...,J. The observed data structure in independent case-control
sampling is then defined by:

O:(<W17A1)7(W87A€)]:177J)) NPO; with
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(Wi, A)) ~ (WA Y =1)
(W§, A)) ~ (W, A|Y =0)

where the cluster containing one case and J controls is considered the ex-
perimental unit, and the marginal distribution of this cluster is specified by
Fj. Therefore, a case-control data set consists of n independent and iden-
tically distributed observations Oy, ..., O, with sampling distribution Fj as
described above. The model M*, where ¢y may or may not be known, im-
plies models for the marginal distribution of cases (Wi, A;) and controls
(Wi, AL, i=1,...,J.

This coupling formulation was useful when proving results for the case-
control weighting methodology, and the tools provided in van der Laan (2008)
show that the following is also true. If independent case-control sampling is
described as sampling nC' cases from the conditional distribution of (W, A),
given Y = 1, and sampling nCo controls from (W, A), given Y = 0, the
value of J used to weight each control is then nCo/nC'. This simple ratio
J =nCo/nC can be used effectively in practice.

2 Existing Methodology

As previously discussed, conditional estimation of the odds ratio of being
diseased given the exposure of interest and baseline covariates is the preva-
lent method of analysis in case-control study designs. Key publications in
the area of logistic regression for independent case-control study designs are
Anderson (1972), Prentice and Pyke (1979), Breslow and Day (1980), and
Breslow (1996). Greenland (1981) and Holland and Rubin (1988) discuss
another model-based method: the use of log-linear models to estimate the
marginal odds ratio. There are also several references for standardization
in case-control studies, which estimates marginal effects with population or
person-time averaging, including Rothman and Greenland (1998) and Green-
land (2004). Benichou and Wacholder (1994) also present multivariate meth-
ods for population-based case-control studies. In this section, we will discuss
the use of an intercept adjusted logistic regression as it can be incorporated
into our case-control weighting framework. We will also discuss an IPTW
marginal structural model for the estimation of causal effects as it is a related
methodology, making use of the exposure mechanism. While these meth-
ods are discussed in current literature, they are infrequently implemented in
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current public health and medical research compared to the use of logistic
regression for conditional effects.

2.1 Intercept Adjusted Logistic Regression

A thorough literature search yielded several publications suggesting the use of
log qo/(1 — qo) as an update to the intercept of a logistic regression. (See An-
derson (1972), Prentice and Breslow (1978), Greenland (1981), Morise et al.
(1996), Wacholder (1996), and Greenland (2004), among others.) However,
its use in practice remains limited. The adjustment is sometimes presented
as a ratio of sampling fractions:

1 (P(sampled |Y = 1))
P(sampled | Y =0)/’

which reduces to log /(1 — qo).

Adding the intercept loggy/(1 — qo), denoted as logcy, yields the true
logistic regression function Py (Y = 1| A, W) (Anderson, 1972; Prentice and
Pyke, 1979). An intercept adjusted logistic regression can be used within
the case-control weighting framework as an initial estimate of Py (Y | A,W).
This will be discussed further in Section 3.2.1 and Section 4. The true lo-
gistic regression function can also be mapped to causal effect parameters by
averaging over the case-control weighted distribution of W, which will also
be discussed in Section 3.2.1.

2.2 IPTW

Robins (1999) and Mansson et al. (2007) discuss, under a rare disease as-
sumption, the use of an approximately correct IPTW method in a marginal
structural logistic regression model for case-control study designs. This pro-
cedure uses the estimated propensity score (exposure mechanism) among con-
trol subjects to update a logistic regression of Y on A. However, this [IPTW
estimator targets a nonparametrically non-identifiable parameter, which in-
dicates strong sensitivity towards model misspecification for the exposure
mechanism. See van der Laan (2008) for formal discussion of this result. Ad-
ditionally, the causal effect estimates of the risk difference and relative risk
cannot be obtained using this method. We also refer to Newman (2006) for
a related IPTW-type approach for fitting marginal structural models based
on case-control data. This method builds on the standardization approach
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in order to weight exposed and unexposed controls using a regression of A
on W. We will include the IPTW method of Robins (1999) and Mansson
et al. (2007) in our simulations over the approach of Newman (2006) as the
weighting of cases and controls versus exposed and unexposed individuals is
more comparable to our method.

3 Case-Control Weighted Targeted Maximum
Likelihood Estimation

In this section, we provide the end user with a practical overview of the
case-control weighting scheme for targeted maximum likelihood estimation
in case-control study designs. For the formal statistical theory behind this
technique, see van der Laan (2008). We discuss the implementation of case-
control weighting for targeted maximum likelihood estimation both broadly
and step-wise so that this article may be used as a guide to researchers
wishing to employ these methods in their work.

3.1 Summary

Case-control weighted targeted maximum likelihood estimation for case-control
study designs differs from other approaches to causal parameter estimation
in case-control study design as it incorporates estimates of Py (Y | A, W),
Py(A | W), and knowledge of go. Intercept adjusted logistic regression
mapped to causal parameters discussed in the previous section relies on
knowledge of only Pj(Y | A, W) and ¢o; the IPTW procedure of Robins
(1999) and Mansson et al. (2007) relies on Pj(A | W). The case-control
weighted targeted maximum likelihood estimation procedure provides a non-
parametric double robust locally efficient estimator: it performs well as long
as Py(Y | A, W) or Pj(A | W) is correctly specified, is consistent if either of
these models are correctly specified, and efficient if both are correctly speci-
fied. It uses extra information, the estimate of the conditional distribution of
the exposure given covariates among cases and controls, to update an initial
estimate of Py(Y | A,WW). One can use data-adaptive model-selection for
estimation of Py(Y | A,W) and Pj(A | W) within our procedure. (This
will be discussed further in Section 5.) The procedure follows the basic steps
enumerated below, which we then illustrate in more detail.
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1. Assign weights gg to the cases and (1 — qo)% to the corresponding J
controls.

2. Estimate the conditional probability of Y given A and W using assigned
weights. The estimate of Pj(Y | A, W) = Q§(A, W) is Q* (A, W).

3. Estimate the conditional distribution of the exposure given covariates
using assigned weights. The estimate of Pj(A | W) = gj(A | W) is
g (A W).

4. Calculate the “clever covariate” for each subject based on g5(A | W).
The covariate is estimated by h(A, W).

5. Update the initial fit Q*(A, W) from step 2 using the covariate h(A, W).
This is achieved by holding the coefficients of Q*(A, W) fixed while
estimating a new coefficient € for h(A, W) using weighted maximum

likelihood estimation. The updated regression is given by Q7(A, W)

6. Use the assigned weights and Q*{(A, W) to estimate causal parameters
of interest seen in formulas (1), (2) and (3). This is done by averaging
over the case-control weighted distribution of W.

7. Calculate standard errors, and then, subsequently, p-values and confi-
dence intervals, using the influence curve.

3.2 Implementation

The implementation of case-control weighted targeted maximum likelihood
can be achieved using existing tools available in current software packages.
Here we illustrate the steps described in Section 3.1.

3.2.1 Estimating Qj(A, W)

After assigning weights ¢o and (1 — q())% to cases and controls, respectively,
the first step in case-control weighted targeted maximum likelihood estima-
tion for case-control designs is obtaining an estimate for Pj(Y | A, W) =
Q(A, W). We offer two approaches for fitting this initial regression, the
previously discussed intercept adjusted logistic regression, and a case-control
weighted logistic regression. A comparison of these two approaches will be
discussed in Section 4.
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Intercept Adjusted Logistic Regression for Qj(A,W). Updating a
logistic regression with log ¢y is discussed in Section 2.1.

Case-Control Weighted Logistic Regression for Qj(A, W). Using the
assigned weights, one simply performs maximum likelihood estimation for
prospective sampling ignoring the case-control sampling design. If one con-
siders a nonparametric model for the marginal distribution of the covariates
and a model {Q} : 0} for Q(A, W), the case-control weighted maximum
likelihood estimator for Q§(A, W) is then given by:

1

J .
0= argmaXZqo log QQ(AM, W) + (1 —qo) j Zlog (1-— Qe AJQZ, Wi3.)).

=1

Implementing case-control weighted maximum likelihood estimation, which
is simply a weighted logistic regression, is quite straightforward, and can be
done in many existing statistical software programs, including SAS, STATA,
and R.

Outside of the case-control weighted targeted maximum likelihood esti-
mation framework, case-control weighted logistic regression mapped to causal
inference parameters produce efficient estimators. This mapping is accom-
plished by evaluating Q*(A, W) at A =1and A = 0, applying the appro-
priate weights to estimate Pj(Y; = 1) and Bj(Yy = 1), and then computing
the desired causal parameters of interest defined in formulas (1), (2), and
(3). Estimating causal parameters will be discussed in more detail in Section
3.2.5. Case-control weighted logistic regression therefore provides researchers
an immediate one-step intuitive procedure to estimate causal inference pa-
rameters in case-control study designs.

3.2.2 Estimating ¢j(A | W)

The case-control targeted maximum likelihood estimation procedure uses the
estimate of QF(A, W) obtained above in conjunction with an estimate of
9o(A | W). 1If one further considers a model {g; : n} for g5(A | W), the
case-control weighted maximum likelihood estimator for gi(A | W) is given
by:

J
Ths=tlr g maxz qolog g, (Avi | W) + (1 —qo)— Z log g, | Wi )

1278
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For improved performance of the targeted maximum likelihood estimator in
a practical environment, estimated probabilites that are smaller than 0.01
can be set to 0.01 (Bembom et al., 2007).

3.2.3 Calculating h(A, W)

After estimating Qf(A, W) and ¢;(A | W), the next step requires calculation
of a “clever covariate” for each subject. This covariate, which is calculated
as if one has a prospective sample, takes the form:

B I(Azl) ](AZO)
BA,W) = <g*(A:1|W) _g*(A:0|W)>

for the risk difference. It is easy to see that for A = 1 the second term
disappears, and for for A = 0 the first term disappears. Two covariates:

hol4,9) = ( - g*&i:o ?)W)> and (4, W) = Q*(Zi:l |1)W>>

are used for estimation of other parameters, such as the relative risk and odds
ratio. For a more detailed discussion of the “clever covariate,” see van der
Laan and Rubin (2006) and Moore and van der Laan (2007).

3.2.4 Updating Q*(A, W)

Updating Q*(A, W) involves performing an additional weighted regression
with h(A,W) as a supplementary covariate. All other coefficients in the
initial regression Q*(A, W) are held fixed, and an intercept is suppressed in
order to estimate the coefficient in front of A(A, W), denoted e. The case-
control weighted targeted maximum likelihood estimation procedure is then
able to incorporate information from §g*(A | W), through h(A, W), into an
updated regression. It does this by extracting ¢!, the case-control weighted
maximum likelihood estimator of €, from the fit defined above, and updating
the regression estimate Q*(A, W). This updated regression is then given by
Qi(A,W): A A
QiAW) = Q* (A, W) +'h(A,W).

The updating procedure is iterated until convergence, although in many ex-
amples convergence is achieved in one step.
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3.2.5 Estimating Causal Parameters

The risk difference, relative risk, and odds ratio, were previously defined gen-
erally in formulas (1), (2), and (3). The estimate Q*(A, W) obtained in the
previous step can be easily mapped into causal parameters of interest in the
case-control weighting scheme for targeted maximum likelihood estimation
by averaging over the case-control weighted distribution of W. This is accom-
plished by evaluating Q*{(A, W) at A=1and A =0 and applying weights go
for cases and (1 — q0)§ to the corresponding .J controls to form case-control
weighted estimates of Ej(Y1) = Pi(Y1 = 1) and Ej(Yy) = Py(Yo = 1). The
risk difference, relative risk, and odds ratio can then be simply calculated
from these estimates. For example, the relative risk Ej(Y1)/E§(Yo) is esti-
mated by:

LSy qoQ g (L, W) + (1 — q0) 3 X, Q7 (1, W)

Vrr = ‘ : 2
% Z?:l quT,qo (0’ Wll) + (1 - QO)% Ej QT,qo (07 W2jz>

3.2.6 Calculating Standard Errors

The calculation of standard errors for case-control weighted targeted max-
imum likelihood involves the use of case-control weighted influence curves
for the risk difference, relative risk, and odds ratio. This methodology is
discussed in detail in van der Laan (2008), and a complete technical un-
derstanding of infuence curve derivation is not necessary to implement the
case-control targeted maximum likelihood estimation procedure. We also re-
fer to van der Laan and Robins (2002) for careful discussions of gradients
and influence curve theory.

For example, the unweighted influence curve for the risk difference of a
prospective study ¢ pp = Py (Y1 = 1) — Fy (Yo = 1) is estimated by:

I(A=1) I(A=0)
g1 w) g0 W)
+Q(L,W) = Q7(0, W) = ¢

The case-control weighted influence curve for the risk difference ¢ zp =
P;(Yy =1) — P;(Yy = 1) is then estimated by:

Drp g (¥*,9%,Q")(0) = qD*(g",Q")(Ar, Wi, 1)

1 - S .
i=1

Drp(¥*,g%,Q%)(0) (Y — Q" (1,W)) — (Y — Q" (0,W))
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Note that the case-control weighted influence curve is merely the influence
curve for prospective targeted maximum likelihood with case-control weight-
ing. See van der Laan and Rubin (2006) and Moore and van der Laan (2007)
for prospective sampling targeted maximum likelihood methodology.

An estimate of the asymptotic variance of /n (¢ — Yg) using the esti-
mate of the efficient influence curve D, (¢*, g%, Q*)(O) is given by 6% =
1

i Dgo W} g*,Q*)(0). Given the influence curve for the causal parame-

ter estimate ¢, a 95% Wald-type confidence interval can be constructed as:

)+ 20_975%. Likewise, the p-value of 1) can be calculated as 2[1 — ®(] &/Tf/ﬁ D]

4 Intercept Adjusted MLE and Case-Control
Weighted MLE

Both intercept adjusted maximum likelihood estimation and case-control
weighted maximum likelihood estimation were previously discussed as op-
tions for the initial fit Q* (A, W). Several issues became apparent when us-
ing intercept adjusted maximum likelihood estimation for Q*(A, W) in our
case-control weighted targeted maximum likelihood framework. In multiple
simulation settings we found that when Q*(A, W) was misspecified using
an intercept adjusted fit, the predicted probabilities were substantially bi-
ased compared to the misspecified case-control weighted maximum likelihood
probabilties. This additional bias can be understood intuitively since the up-
date to the logistic regression log ¢y is static regardless of the model used, and
the parameters of the model (excluding the intercept) are not adjusted by
this update. For correctly specified Q*(A, W) this is not an issue, but when
Q*(A, W) is misspecified, it leads to substantial bias. Conversely, the case-
control weighted logistic regression estimate incorporates the case-control
weights each time it fits an estimate. Thus, for misspecified Q*(A, W), case-
control weighted predicted probabilities will likely be closer to the truth than
intercept adjusted estimates. See Figure 1 for an illustration.

The case-control targeted intercept adjusted maximum likelihood im-
proved, with regard to bias, on its non-targeted counterpart for misspecified
Q*(A, W). However, the additional bias for misspecified Q*(A, W) and inter-
cept adjusted logistic regression led to much slower convergence to the true
values of the risk difference, relative risk, and odds ratio within the case-
control targeted maximum likelihood framework. Case-control weighted tar-
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Figure 1: Predicted Probabilities for misspecified Q*(A, Ww).

geted maximum likelihood with misspecified Q*(A, W) fit with case-control
weighted logistic regression became consistent for reasonable sample sizes.
Coverage probabilities for case-control weighted targeted intercept adjusted
maximum likelihood estimation for misspecified Q*(A7 W) also diverged sub-
stantially from 95% (as low as 65%) for reasonable sample sizes due to the
bias of the estimators. We should note that when Q*(A, W) is correctly spec-
ified, the intercept adjusted methods performed as well as the case-control
weighted methods. However, the correct specification of Q*(A, W) is un-
likely in practice. Given these findings, we present in our simulations the
use of case-control weighted targeted maximum likelihood estimation using
case-control weighted logistic regression for the initial fit.

5 Simulation Studies

5.1 Simulation 1

Our first simulation study was designed to illustrate the advantages of the
case-control weighting scheme for targeted maximum likelihood estimation
in case-control designs. It was based on a population of N = 120,000 indi-
viduals, where we simulated a 1-dimensional covariate W, a binary exposure
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A, and indicator Y, which was 1 for cases and 0 for controls. These variables
were generated according to the following rules:

W ~ U(0,1)

G (A W) = (A= 1W) = fros=mr—m)

QoA W) = F(Y = 1A, W) = 1+exp(—(1.2A—sin(W2)+Asin(1W2)+5Alog(W)+510g(W)—1))'
The resulting population had a prevalence probability gy = 0.035, and ex-

actly 4,165 cases. We sampled the population using a varying number of

cases and controls, and for each sample size we ran 1000 simulations. The

true values of the risk difference, relative risk, and odds ratio were given by

RD = 0.043, RR = 2.483, and OR = 2.598, with P(Y; = 1) = 0.072 and

P(Yy = 1) = 0.029. These causal effect parameters were estimated using
methods discussed in this paper:

1. IPTW: IPTW method for marginal structural models (Robins, 1999;
Mansson et al., 2007) that uses the estimated exposure mechanism
among the controls to update a logistic regression of Y on A discussed
in Section 2.2.

2. Case-Control Weighted MLE (CCW-MLE): Case-control weighted
logistic regression, discussed in Section 3.2.1, mapped to causal effect
estimators by averaging over the case-control weighted distribution of
wW.

3. Case-Control Weighted Targeted MLE (CCW-TMLE): Case-
control weighted targeted maximum likelihood procedure for case-control
designs with case-control weighted Q*(A, W) discussed in Section 3.

The initial fit for each method requiring an estimate of Q§(A, W) was
defined by:

A

Q (A, W) = ;

1+exp(—(cip+a1 A+ciz log(W)+aiz sin(W2)+cdy Alog(W)+ds Asin(W?2)))?

which was the correctly specified fit. QF(A, W) was also estimated in a
second simulation with:
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~

Q*(Av W) = !

1+exp(—(o?0+021A+OZQW)) ’

a misspecified fit. For methods requiring a fit for exposure mechanism, the
correct fit was defined by:

g(AlW) = :

1+exp(ro+m W2+ W) *

The misspecified version of the exposure mechanism was given by:

FATW) = b

In our simulation study, we realistically generated A dependent on W.
This led to some substantial increases in efficiency in the targeted estimator
when Q* (A, W) was misspecified and sample size was larger, as they also
adjust for g*(A | W). This emphasizes the double robustness of the targeted
estimators, and suggests that one should always adjust for g*(A | W) in
practice. When Q* (A, W) was correctly specified, the relative efficiency of the
targeted estimator (CCW-TMLE) was similar to its non-targeted counterpart
(CCW-MLE), demonstrating that the use of ¢y and Q*(A, W) alone can
produce efficient estimators. This was further highlighted in the results for
the odds ratio and the IPT'W estimators, which do not utilize gy, as they had
the poorest overall efficiency. Mean squared errors and relative efficiencies
for the causal odds ratio are provided in Table 1. The results for the relative
risk and risk difference are combined in Table 2. The least efficient estimator
as sample size increased for these parameters was the case-control weighted
logistic regression when Q§(A, W) was realistically misspecified.

When examining the bias of the estimators for the odds ratio, it is clear
that the IPTW estimators had the highest level of bias across all sample
sizes, as observed in the bias plot displayed in Figure 2(a). The case-control
weighted logistic regression and case-control weighted targeted maximum
likelihood with misspecified Q*(A, W) had more bias than their correctly
specified counterparts. It may be possible to avoid some of the additional bias
caused by the misspecification of Q*(A, W) in practice by fitting Q*(A, W)
with data-adaptive model-selection, such as the Deletion/Substitution/Addition
(DSA) algorithm or other readily available machine learning algorithms. For
more details about this procedure we refer to Sinisi and van der Laan (2004).
The bias results for the relative risk and risk difference followed similar trends,
as can be seen in Figure 2(b) and 2(c). While the case-control weighted lo-
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Figure 2: Simulation 1 — Bias Results. (Bias results for the case-control
weighted targeted maximum likelihood with misspecified §*(A | W) and the
correctly specified case-control weighted targeted maximum likelihood were
excluded since those values were the same as those for the targeted maximum

likelihood with correctly specified Q*(A, W) and §*(A | W).)

Hosted by The Berkeley Electronic Press



gistic regression has low variance when misspecified, it may be more biased
than its targeted counterpart. These results bolster our theoretical arguments
that gains in efficiency and reduction in bias can be obtained by having a
known prevalence probability and using a targeted estimator. Additionally,
under typical circumstances experienced in an experimental setting, the case-
control weighted targeted maximum likelihood may perform the best with
regard to bias and variability.

5.2 Simulation 2

Our second set of simulations was based on a population of N = 80, 000 indi-
viduals, and was designed to illustrate, in another setting, the advantages of
incorporating known prevalence probability into case-control design method-
ology. The population was generated with binary exposure A and disease
status Y and a 1-dimensional covariate W. These variables were generated
according to the following rules:

W ~ U(0,1)

9o (A|W) = F5(A=1]W) =

1
1+exp(—5sin(W)))

QS(A7 W) = PS(Y = 1|A’ W) = 1+exp(—(2Ai25W+AW))'

The resulting population had a prevalence probability ¢o = 0.053, exactly
4,206 cases, and also followed an independent case-control sampling design.
The true values of the risk difference, relative risk, and odds ratio were given
by RD = 0.061, RR = 3.21, and OR = 3.42, with P(Y; = 1) = 0.089 and
P(Yy = 1) = 0.028. These parameters were estimated using the same general
methods as in the previous section, albeit with different fits for Q*(A, W) and
§*(A | W). The initial fit for each method requiring a fit for Q*(A, W) was
defined by:

A

Q (A W) = 1

1+exp(— (020 +ad1 A+ W4adzs AW))?

which was the correctly specified fit. For methods requiring a fit for ex-
posure mechanism, the correct fit was defined by:

g (AlW) = .

14-exp(—(rjo+m1 sin(W))) *
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Table 3: Simulation 2 — Odds Ratio — MSE is Mean Squared Error for
[PTW misspecified Estimate, RE is Relative Efficiency of Other Estimators
Compared to IPTW misspecified Estimate MSE, nC is Number of Cases,
nCo is Number of Controls, n is Number of Total Observations, M is for Mis-
specified Q*(A, W) or §*(A | W) Fit, C is for Correctly Specified Q*(A, W)
or g*(A | W). (When two letters are noted in the “Fit” column, the first

N

letter refers to Q*(A, W) and the second to g*(A | W).)

n=350 n=>500 n=750 n=1000
nC=100 nC=250 nC=250 nC=500
Odds Ratio Fit nCo=250 nCo=250 nCo=500 nCo=500
IPTW MSE M 404.40 3667.56 306.42 2433.62
IPTW RE C 1.0E4+00 1.2E4+00 1.0E+00 1.2E+00
C/C 28E+02 4.1E403 5.7E4+02 5.7E+03
COW-TMLE RE - c/nr 29E+02 4.1E+03 5.7E+02 5.7E+03
CCW-MLE RE C 29E+02 4.2E+03 5.7E+02 5.8E+03

8 ] ’ v CCW-MLE

o CCW-TMLE

+ IPTW
2(;0 4éO 8(;0 10;0
Sample Size

Figure 3: Simulation 2 — Bias Results for the Odds Ratio. (Bias results
for the case-control weighted targeted maximum likelihood with misspecified
G (A | W) were excluded since those values were the same as those for the
targeted maximum likelihood with correctly specified Q*(A, W) and §*(A |

w).)
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The misspecified version of the exposure mechanism was given by:

5 (AIW) = ey

Results across the two case-control weighted methods for the risk differ-
ence, relative risk, and odds ratio were nearly identical, indicating in this
example that when Q* (A, W) is correct and ¢q is known, one may be well
served by either of these methods. However, the IPTW method for odds
ratio estimation was quite inefficient in comparison. We theorized in van der
Laan (2008), and Mansson et al. (2007) demonstrated, that the IPTW proce-
dure has a strong sensitivity towards model misspecification. This result was
seen in Simulation 1, although the results in Simulation 2 are more extreme.
Results for the odds ratio estimation can be seen in Table 3 and Figure 3.
Again we see that gains in efficiency and reduction in bias can be obtained
by simply having known ¢q.

5.3 Standard Errors, Confidence Intervals, and P-Values

Continuing with the simulated population from Simulation 2, we provide an
example of the use of influence curves in the estimation of standard errors for
case-control weighted targeted maximum likelihood estimation. We sampled
one data set of n = 1000 from the population, with equal numbers of cases
and controls, and estimated the odds ratio. Recall that the true value for
the odds ratio was given by OR = 3.42. The case-control weighted targeted
maximum likelihood estimator uses the influence curve to estimate standard
errors, as discussed in Section 3.2.6, with estimated variance given by 62 =
% > Dgo (¥*, g%, Q*)(0). Standard error estimates for the IPTW estimator
were calculated by bootstrapping the case and control samples 1000 times.
The results for this single sampling of the simulated population can be seen in
Table 4, including odds ratio estimates, standard errors, confidence intervals,
and p-values. It compares only the case-control weighted targeted maximum
likelihood estimator and the IPTW estimator. (The non-targeted maximum
likelihood method was excluded as we wish to draw attention to the use
of the influence curve for standard error estimation. Standard errors for
the non-targeted maximum likelihood method can also be calculated using
bootstrapping.)
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5.4 Simulation 3

Our third simulation study was designed to illustrate the performance of the
case-control weighting scheme for targeted maximum likelihood estimation
in case-control designs when ¢ is estimated. We also examine coverage prob-
abilities and percentage of rejected tests for case-control weighted targeted
maximum likelihood estimation. The simulation was based on a population
of N = 120,000 individuals, and we simulated a 1-dimensional covariate W,
binary exposure A, and indicator Y. The variables were generated according
to the following rules:

W~ U(0,1)

9o (A|W) = F5(A=1W) =

1
1+exp(—(W2—4W+1))

QA W) = (Y =1[AW) = 1+exp(—(A—sin(W2)+Asin(i/%/Q)—&-?Alog(W)+5log(W)—1))’
The resulting population had a prevalence probability ¢o = 0.032, and ex-
actly 3,834 cases. We ran 1000 simulations and sampled 500 cases and 500
controls for varying levels of the prevalence probability ¢y = (0.02,0.03,0.04).

The true value for the odds ratio was given by OR = 1.851, with P(Y; =

1) = 0.052 and P(Yy = 1) = 0.029. The causal odds ratio was estimated
using case-control weighted targeted maximum likelihood estimation. The
correctly specified initial fit for Qf(A, W) was estimated by:

~

QA W) = >

1+exp(—(cip+a1 A+cia log(W)+aiz sin(W?2)+cg Alog(W)+ds Asin(W?2))) -

The misspecified initial fit was estimated with:

A

Q*(A, W) = :

1+exp(f (020 +aiy A+adis W)) .

For exposure mechanism, the correct fit was defined by:

g (Al W) = ;

1+exp(rfo+ii W2+, W) ©

The misspecified version of the exposure mechanism was given by:

% | 1
g (A | W) T ltexp(o+i W)
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Table 4: Standard Error Illustration — OR is Odds Ratio Estimate, SE
is Standard Error, CI is Confidence Interval, P is P-value, C is for Cor-
rectly Specified Q*(A, W) or §*(A | W), M is for Misspecified §*(A | W).
(When two letters are noted in the “Fit” column, the first letter refers to

'~

Q*(A, W) and the second to §*(A | W).) The results are for one data set of
1000 individuals with 500 cases and 500 controls randomly sampled from the
population in Simulation 2. True OR = 3.42.

Odds Ratio Fit OR SE CI P
PTW C 64.98 22.44 [21.00, 108.96]  0.004
M  64.64 4.66 [55.50, 73.77] < 0.001

C/C 339 024 [2.93,385 <0.001
COW-TMLE RE c/nr 339 024 [2.92,3.86] < 0.001

Table 5: Simulation 3 — Odds Ratio — MSE is Mean Squared Error, CP is
Coverage Probability (percentage of simulations where estimated confidence
interval contained the true odds ratio), Rej is for Percent Rejected Tests
(a = 0.05), C is for Correctly Specified Q*(A, W) or §*(A | W), M is for
Misspecified Q*(A, W) or §*(A | W). (When two letters are noted in the
“Fit” column, the first letter refers to Q*(A, W) and the second to §*(A |
W).) The results are for 1000 simulations of 1000 individuals with 500 cases
and 500 controls randomly sampled from the population in Simulation 3.
True OR = 1.851. True ¢y = 0.032.

True qq qo
Fit 0.032 | 0.020 0.030 0.040

C/C| 035 | 074 039 024
CCW-TMLE MSE C/M | 035 | 0.74 039 0.24
M/C| 019 | 028 020 0.16
C/C| 004 | 095 094 0.92
CCW-TMLE CP  C/M | 097 | 097 097 0.5
M/C| 092 | 094 093 091
C/C| 033 | 032 033 034
CCW-TMLE Rej C/M | 021 | 023 022 020
M/C| 002 | 001 002 0.03
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When examining the mean squared error results of the odds ratio across
the range of values for ¢y, one can see deviations away from the values ob-
tained for the true go. However, it is important to note that the coverage
probabilities (the percentage of simulations where the estimated confidence
interval contained the true odds ratio) were not highly variant and remain
near 95%. This provides evidence that the case-control weighted targeted
maximum likelihood procedure performs well with estimated values of qq.
The percentage of rejected tests (o = 0.05) across the range of gy was also
relatively stable. The results for the mean squared errors, coverage proba-
bilities, and percent rejected tests for the odds ratio can be seen in Table
5. Simulations that resample gq from its sampling distribution could also be
used to get an estimate of the total uncertainty surrounding the parameter
of interest, but they are not explored here. An analytic equivalent to this re-
sampling can be found in the appendix to van der Laan (2008). This theorem
demonstrates that one can incorporate the standard error of the estimate gy
into the confidence interval for the parameter of interest.

6 Discussion

Case-control weighted targeted maximum likelihood estimation provides a
framework for the analysis of case-control study designs. We observed that
the IPTW method for causal parameter estimation was outperformed in con-
ditions similar to a practical setting by the new case-control weighted tar-
geted maximum likelihood estimation methodology. The case-control weigted
targeted maximum likelihood estimation procedure yields a fully robust and
locally efficient estimator of several marginal causal parameters of interest.
Model misspecification within this framework, with known exposure mech-
anism, still results in efficient estimatiors. Additionally, the case-control
weighted logistic regression mapped to causal parameters had high efficiency
and reduced bias in comparison to the IPTW estimator. This is an im-
portant result for those applied researchers who may not feel comfortable
implementing the case-control weighted targeted maximum likelihood pro-
cedure. Thus, we showed striking improvements in efficiency and bias in
all methods incorporating knowledge of the prevalence probability over the
IPTW estimator which does not use this information. Knowledge of the
prevalence probability may be realistic in many settings. Where possible, re-
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searchers might consider prioritizing accurately defining their population of
interest, which will streamline obtaining or estimating the prevalence prob-
ability. We also demonstrated that a range of values for ¢y can be used
with case-control weighted targeted maximum likelihood estimation to ob-
tain efficient causal parameters of interest. As addressed earlier, we discussed
case-control weighted targeted maximum likelihood estimation for cumula-
tive study designs with the prevalence probability. Future areas of work in-
clude adapting our methods for density sampling, where controls are drawn
from the population at risk at the time a case develops disease. For exam-
ple, using case-control weights that depend on the time points the cases and
controls were sampled, as discussed in an appendix in van der Laan (2008).
Here, the use of incidence probabilities would be more appropriate.
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