To assess the value of a continuous marker in predicting the risk of a disease, a graphical tool called the predictiveness curve has been proposed. It characterizes the marker's predictiveness, or capacity to risk stratify the population by displaying the population distribution of risk endowed by the marker. Methods for making inference about the curve and for comparing curves in a general population have been developed. However, knowledge about a marker's performance in the general population only is not enough. Since a marker's effect on the risk model and its distribution can both differ across subpopulations, its predictiveness may vary when applied to different subpopulations. Moreover, knowledge about the predictiveness of a marker conditional on baseline covariates is valuable for individual decision making about having the marker measured or not. Therefore, to fully realize the usefulness of a risk prediction marker, it is important to study its performance conditional on covariates. In this article, we propose semiparametric methods for estimating covariate-specific predictiveness curves for a continuous marker. Unmatched and matched case-control study designs are accommodated. We illustrate application of the methodology by evaluating serum creatinine as a predictor of risk of renal artery stenosis.



Included in

Biostatistics Commons