Abstract
Identifying risk factors for transition rates among normal cognition, mildly cognitive impairment, dementia and death in an Alzheimer's disease study is very important. It is known that transition rates among these states are strongly time dependent. While Markov process models are often used to describe these disease progressions, the literature mainly focuses on time homogeneous processes, and limited tools are available for dealing with non-homogeneity. Further, patients may choose when they want to visit the clinics, which creates informative observations. In this paper, we develop methods to deal with non-homogeneous Markov processes through time scale transformation when observation times are pre-planned with some observations missing. Maximum likelihood estimation via the EM algorithm is derived for parameter estimation. Simulation studies demonstrate that the proposed method works well under a variety of situations. An application to the AD study identifies that there is a significant increase in transition rates as a function of time. Furthermore, our models reveal that the nonignorable missing mechanism is perhaps reasonable.
Disciplines
Biostatistics
Suggested Citation
Zhou, Xiao-Hua and Chen, Baojiang, "Non-Homogeneous Markov Process Models with Incomplete Observations: Application to a Dementia Disease Study" (January 2011). UW Biostatistics Working Paper Series. Working Paper 372.
https://biostats.bepress.com/uwbiostat/paper372