Comments

Published 2004 in Statistical Applications in Genetics and Molecular Biology 3(1), article 14.

Abstract

The present article proposes two step-down multiple testing procedures for asymptotic control of the family-wise error rate (FWER): the first procedure is based on maxima of test statistics (step-down maxT), while the second relies on minima of unadjusted p-values (step-down minP). A key feature of our approach is the test statistics null distribution (rather than data generating null distribution) used to derive cut-offs (i.e., rejection regions) for these test statistics and the resulting adjusted p-values. For general null hypotheses, corresponding to submodels for the data generating distribution, we identify an asymptotic domination condition for a null distribution under which the step-down maxT and minP procedures asymptotically control the Type I error rate, for arbitrary data generating distributions, without the need for conditions such as subset pivotality. Inspired by this general characterization of a null distribution, we then propose as an explicit null distribution the asymptotic distribution of the vector of null-value shifted and scaled test statistics. Step-down procedures based on consistent estimators of the null distribution are shown to also provide asymptotic control of the Type I error rate. A general bootstrap algorithm is supplied to conveniently obtain consistent estimators of the null distribution.

Disciplines

Statistical Methodology | Statistical Theory

Share

COinS