Abstract
This paper describes a targeted maximum likelihood estimator (TMLE) for the parameters of longitudinal static and dynamic marginal structural models. We consider a longitudinal data structure consisting of baseline covariates, time-dependent intervention nodes, intermediate time-dependent covariates, and a possibly time dependent outcome. The intervention nodes at each time point can include a binary treatment as well as a right-censoring indicator. Given a class of dynamic or static interventions, a marginal structural model is used to model the mean of the intervention specific counterfactual outcome as a function of the intervention, time point, and possibly a subset of baseline covariates. Because the true shape of this function is rarely known, the marginal structural model is used as a working model. The causal quantity of interest is defined as the projection of the true function onto this working model. Iterated conditional expectation double robust estimators for marginal structural model parameters were previously proposed by Robins (2000a, 2002) and Bang and Robins (2005). Here we build on this work and present a pooled TMLE for the parameters of marginal structural working models. We compare this pooled estimator to a stratified TMLE that is based on estimating the intervention-specific mean separately for each intervention of interest (Schnitzer et al. 2014). The performance of the pooled TMLE is compared to the performance of the stratified TMLE and the performance of inverse probability weighted (IPW) estimators using simulations. Concepts are illustrated using an example in which the aim is to estimate the causal effect of delayed switch following immunological failure of first line antiretroviral therapy among HIV infected patients. Data from the International Epidemiological Databases to Evaluate AIDS, Southern Africa are analyzed to investigate this question using both TMLE and IPW estimators. Our results demonstrate practical advantages of the pooled TMLE over an IPW estimator for working marginal structural models for survival, as well as cases in which the pooled TMLE is superior to its stratified counterpart.
Disciplines
Biostatistics | Longitudinal Data Analysis and Time Series | Statistical Methodology | Statistical Models | Survival Analysis
Suggested Citation
Petersen, Maya L.; Schwab, Joshua; Gruber, Susan; Blaser, Nello; Schomaker, Michael; and van der Laan, Mark J., "Targeted Maximum Likelihood Estimation for Dynamic and Static Longitudinal Marginal Structural Working Models" (May 2013). U.C. Berkeley Division of Biostatistics Working Paper Series. Working Paper 312.
https://biostats.bepress.com/ucbbiostat/paper312
Included in
Biostatistics Commons, Longitudinal Data Analysis and Time Series Commons, Statistical Methodology Commons, Statistical Models Commons, Survival Analysis Commons