Abstract
We propose a methodological framework to assess heterogeneous patterns of association amongst components of a random vector expressed as a Gaussian directed acyclic graph. The proposed framework is likely to be useful when primary interest focuses on potential contrasts characterizing the association structure between known subgroups of a given sample. We provide inferential frameworks as well as an efficient computational algorithm to fit such a model and illustrate its validity through a simulation. We apply the model to Reverse Phase Protein Array data on Acute Myeloid Leukemia patients to show the contrast of association structure between refractory patients and relapsed patients.
Disciplines
Applied Statistics | Biostatistics | Microarrays | Multivariate Analysis | Statistical Methodology | Statistical Models
Suggested Citation
Yajima, Masanao; Telesca, Donatello; Ji, Yuan; and Muller, Peter, "Differential Patterns of Interaction and Gaussian Graphical Models" (April 2012). COBRA Preprint Series. Working Paper 91.
https://biostats.bepress.com/cobra/art91
Included in
Applied Statistics Commons, Biostatistics Commons, Microarrays Commons, Multivariate Analysis Commons, Statistical Methodology Commons, Statistical Models Commons